1
|
Cerdán L, Silva K, Rodríguez-Martín D, Pérez P, Noriega MA, Esteban Martín A, Gutiérrez-Adán A, Margolles Y, Corbera JA, Martín-Acebes MA, García-Arriaza J, Fernández-Recio J, Fernández LA, Casasnovas JM. Integrating immune library probing with structure-based computational design to develop potent neutralizing nanobodies against emerging SARS-CoV-2 variants. MAbs 2025; 17:2499595. [PMID: 40329514 PMCID: PMC12064060 DOI: 10.1080/19420862.2025.2499595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
To generate antibodies (Abs) against SARS-CoV-2 emerging variants, we integrated multiple tools and engineered molecules with excellent neutralizing breadth and potency. Initially, the screening of an immune library identified a nanobody (Nb), termed Nb4, specific to the receptor-binding domain (RBD) of the Omicron BA.1 variant. A Nb4-derived heavy chain antibody (hcAb4) recognized the spike (S) of the Wuhan, Beta, Delta, Omicron BA.1, and BA.5 SARS-CoV-2 variants. A high-resolution crystal structure of the Nb4 variable (VHH) domain in complex with the SARS-CoV-2 RBD (Wuhan) defined the Nb4 binding mode and interface. The Nb4 VHH domain grasped the RBD and covered most of its outer face, including the core and the receptor-binding motif (RBM), which was consistent with hcAb4 blocking RBD binding to the SARS-CoV-2 receptor. In mouse models, a humanized hcAb4 showed therapeutic potential and prevented the replication of SARS-CoV-2 BA.1 virus in the lungs of the animals. In vitro, hcAb4 neutralized Wuhan, Beta, Delta, Omicron BA.1, and BA.5 viral variants, as well as the BQ.1.1 subvariant, but showed poor neutralization against the Omicron XBB.1.5. Structure-based computation of the RBD-Nb4 interface identified three Nb4 residues with a reduced contribution to the interaction with the XBB.1.5 RBD. Site-saturation mutagenesis of these residues resulted in two hcAb4 mutants with enhanced XBB.1.5 S binding and virus neutralization, further improved by mutant Nb4 trimers. This research highlights an approach that combines library screening, Nb engineering, and structure-based computational predictions for the generation of SARS-CoV-2 Omicron-specific Abs and their adaptation to emerging variants.
Collapse
Affiliation(s)
- Lidia Cerdán
- Department of Microbial Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Katixa Silva
- Department of Macromolecular Structures, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Daniel Rodríguez-Martín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María A. Noriega
- Department of Macromolecular Structures, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Ana Esteban Martín
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | | | - Yago Margolles
- Department of Microbial Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan A. Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Arucas, Gran Canaria, Spain
| | - Miguel A. Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño, Spain
| | - Luis A. Fernández
- Department of Microbial Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Zhang Y, Wu Y, Zhang MQ, Rao H, Zhang Z, He X, Liang Y, Guo R, Yuan Y, Sun J, Duyvesteyn HME, Fry EE, Stuart DI, Zhao J, Pan X, Liu SL, Zhao J, Huo J. An RBD-Fc mucosal vaccine provides variant-proof protection against SARS-CoV-2 in mice and hamsters. NPJ Vaccines 2025; 10:100. [PMID: 40383816 PMCID: PMC12086204 DOI: 10.1038/s41541-025-01155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are effective against severe disease and death, but do not prevent viral infections, probably due to the limited mucosal immunity induced by intramuscular administration of the vaccine. Fusion of SARS-CoV-2 subunit immunogens with a human IgG Fc backbone can be used as a mucosal vaccine but its effectiveness in delivery in animal models, and its immunogenicity and the vaccine-induced protection against viral infections requires further studies. Here we investigate a bivalent RBD-Fc vaccine that includes the spike receptor-binding domains (RBDs) of the ancestral and BQ.1.1 variant of SARS-CoV-2. Ex vivo fluorescent imaging demonstrates that this vaccine can be effectively delivered to the lungs of mice through intranasal administration, with enhancement of retention in the nasal cavity and lung parenchyma. In mice, the vaccine elicited potent and broad-spectrum antibody responses against different variants including KP.3 which could persist for at least 3 months after booster. Importantly, it was able to induce RBD-specific mucosal IgA responses. Further, heterologous intranasal immunisation with adeno-vectored Chadv1 and RBD-Fc elicited both potent neutralising antibody and T cell responses. Immunised BALB/c and K18-hACE2-transgenic mice were also protected against viral challenge of XBB.1 and viral transmission was effectively limited in hamsters through intranasal immunisation. This work thus demonstrates the potential of RBD-Fc antigens as mucosal vaccines for prevention of breakthrough infections and onward transmission. Moreover, Fc-fusion proteins can be used as an effective mucosal vaccine strategy which can be used either alone or in combination with other vaccine technology to constitute heterologous immunisations, enabling strong protection against SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Bio-island, Guangzhou, China
| | - Yan Wu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Beijing, China
| | - Meng-Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, TianjinKey Laboratory of Biosensing and Molecular Recognition,Frontiers Science Centre for New Organic Matter, ResearchCentre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, PR China
| | - Haiyue Rao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangyue He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiwen Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Raoqing Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Bio-island, Guangzhou, China
| | - XiaoYan Pan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Beijing, China.
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, TianjinKey Laboratory of Biosensing and Molecular Recognition,Frontiers Science Centre for New Organic Matter, ResearchCentre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, PR China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Bio-island, Guangzhou, China.
| | - Jiandong Huo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
3
|
Liu K, Rao J, Hu X, Sun H, Lu M, Zhang X, Huang F, Shan C. Maternal Vaccination and Protective Immunity Against SARS-CoV-2 Infection in Pups. J Med Virol 2025; 97:e70418. [PMID: 40411252 DOI: 10.1002/jmv.70418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact worldwide. Currently, several vaccines are approved for emergency use in humans, and these vaccines have played a large role in controlling COVID-19. Pregnant women and newborns constitute a special population for vaccine policy. Here, we established a maternal vaccination model by injecting pregnant mice with a SARS-CoV-2 receptor-binding domain (RBD) homodimer. Maternal immunization with the RBD dimer did not cause obvious adverse effects on pregnancy or fetal development. Moreover, two-shot immunization fully protected dams and fetuses from SARS-CoV-2 infection during pregnancy. Neutralizing antibodies can be transferred from immunized dams to pups, providing protection for both lactating and weaned pups against SARS-CoV-2 infection. Our results indicate that, in addition to being used to vaccinate nonpregnant individuals, the RBD dimer can also be considered for maternal vaccination.
Collapse
MESH Headings
- Animals
- Female
- Pregnancy
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Immunity, Maternally-Acquired
- Vaccination
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Mice, Inbred BALB C
- Animals, Newborn
- Disease Models, Animal
- Pregnancy Complications, Infectious/prevention & control
- Pregnancy Complications, Infectious/immunology
Collapse
Affiliation(s)
- Kunpeng Liu
- University of the Chinese Academy of Sciences, Beijing, Beijing, China
| | - Juhong Rao
- University of the Chinese Academy of Sciences, Beijing, Beijing, China
| | - Xue Hu
- University of the Chinese Academy of Sciences, Beijing, Beijing, China
| | - Huize Sun
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Mingqing Lu
- University of the Chinese Academy of Sciences, Beijing, Beijing, China
| | - Xiaoyu Zhang
- University of the Chinese Academy of Sciences, Beijing, Beijing, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chao Shan
- University of the Chinese Academy of Sciences, Beijing, Beijing, China
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Asor R, Loewenthal D, van Wee R, Benesch JLP, Kukura P. Mass Photometry. Annu Rev Biophys 2025; 54:379-399. [PMID: 40327438 DOI: 10.1146/annurev-biophys-061824-111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mass photometry (MP) is a technology for the mass measurement of biological macromolecules in solution. Its mass accuracy and resolution have transformed label-free optical detection into a quantitative measurement, enabling the identification of distinct species in a mixture and the characterization of their relative abundances. Its applicability to a variety of biomolecules, including polypeptides, nucleic acids, lipids, and sugars, coupled with the ability to quantify heterogeneity, interaction energies, and kinetics, has driven the rapid and widespread adoption of MP across the life sciences community. These applications have been largely orthogonal to those traditionally associated with microscopy, such as detection, imaging, and tracking, instead focusing on the constituents of biomolecular complexes and their change with time. Here, we present an overview of the origins of MP, its current applications, and future improvements that will further expand its scope.
Collapse
Affiliation(s)
- Roi Asor
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Dan Loewenthal
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Raman van Wee
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom;
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Azarfar G, Sun Y, Pasini E, Sidhu A, Brudno M, Humar A, Kumar D, Bhat M, Ferreira VH. Using machine learning for personalized prediction of longitudinal coronavirus disease 2019 vaccine responses in transplant recipients. Am J Transplant 2025; 25:1107-1116. [PMID: 39643006 DOI: 10.1016/j.ajt.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/15/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
The coronavirus disease 2019 pandemic has underscored the importance of vaccines, especially for immunocompromised populations like solid organ transplant recipients, who often have weaker immune responses. The purpose of this study was to compare deep learning architectures for predicting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine responses 12 months postvaccination in this high-risk group. Using data from 303 solid organ transplant recipients from a Canadian multicenter cohort, models were developed to forecast anti-receptor-binding domain antibody levels. The study compared traditional machine learning models-logistic regression, epsilon-support vector regression, random forest regressor, and gradient boosting regressor-and deep learning architectures, including long short-term memory (LSTM), recurrent neural networks, and a novel model, routed LSTM. This new model combines capsule networks with LSTM to reduce the need for large data sets. Demographic, clinical, and transplant-specific data, along with longitudinal antibody measurements, were incorporated into the models. The routed LSTM performed best, achieving a mean square error of 0.02 ± 0.02 and a Pearson correlation coefficient of 0.79 ± 0.24, outperforming all other models. Key factors influencing vaccine response included age, immunosuppression, breakthrough infection, body mass index, sex, and transplant type. These findings suggest that artificial intelligence could be a valuable tool in tailoring vaccine strategies, improving health outcomes for vulnerable transplant recipients.
Collapse
Affiliation(s)
- Ghazal Azarfar
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Yingji Sun
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Elisa Pasini
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Aman Sidhu
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada
| | - Michael Brudno
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada
| | - Atul Humar
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada
| | - Deepali Kumar
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada.
| | - Victor H Ferreira
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Rencilin CF, Chatterjee A, Ansari MY, Deshpande S, Mukherjee S, Singh R, Jayatheertha SB, Reddy PM, Hingankar N, Varadarajan R, Bhattacharya J, Dutta S. Cryo-EM reveals conformational variability in the SARS-CoV-2 spike protein RBD induced by two broadly neutralizing monoclonal antibodies. RSC Adv 2025; 15:14385-14399. [PMID: 40330036 PMCID: PMC12053377 DOI: 10.1039/d5ra00373c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
SARS-CoV-2 spike proteins play a critical role in infection by interacting with the ACE2 receptors. Their receptor-binding domains and N-terminal domains exhibit remarkable flexibility and can adopt various conformations that facilitate receptor engagement. Previous structural studies have reported the RBD of the spike protein in "up", "down", and various intermediate states, as well as its different conformational changes during ACE2 binding. This flexibility also influences its interactions with the neutralizing antibodies, yet its role in the antibody complexes remains understudied. In this study, we used cryo-electron microscopy to investigate the structural properties of two broadly neutralizing monoclonal antibodies, THSC20.HVTR04 and THSC20.HVTR26. These antibodies were isolated from an unvaccinated individual and demonstrated potent neutralization of multiple SARS-CoV-2 variants. Our analysis revealed distinct binding characteristics and conformational changes in the spike RBD upon binding with the monoclonal antibodies. The structural characterization of the spike protein-monoclonal antibody complexes provided valuable insights into the structural variability of the spike protein and the possible mechanisms for antibody-mediated neutralization.
Collapse
Affiliation(s)
| | - Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science Bengaluru 560012 India
| | - Mohammad Yousuf Ansari
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
| | - Suprit Deshpande
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
- BRIC-Translational Health Science & Technology Institute Faridabad Haryana 121001 India
| | - Sohini Mukherjee
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
- IAVI Gurugram Haryana 122022 India
- IAVI New York NY 10004 USA
| | - Randhir Singh
- Mynvax Private Limited Vani Vilas Road, Basavanagudi Bengaluru 560004 India
| | | | - Poorvi M Reddy
- Mynvax Private Limited Vani Vilas Road, Basavanagudi Bengaluru 560004 India
| | - Nitin Hingankar
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science Bengaluru 560012 India
- Mynvax Private Limited Vani Vilas Road, Basavanagudi Bengaluru 560004 India
| | - Jayanta Bhattacharya
- Antibody Translational Research Program, Translational Health Science & Technology Institute Faridabad Haryana 121001 India
- BRIC-Translational Health Science & Technology Institute Faridabad Haryana 121001 India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science Bengaluru 560012 India
| |
Collapse
|
7
|
Fan Q, Liu C, Guo H, Tang S, Wang H, Zhou B, Sun Y, Wang M, Ge X, Liu L, Ju B, Zhang Z. A distinctive IGHV3-66 SARS-CoV-2 neutralizing antibody elicited by primary infection with an Omicron variant. Structure 2025:S0969-2126(25)00139-X. [PMID: 40306272 DOI: 10.1016/j.str.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/24/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
SARS-CoV-2 Omicron sub-variants continuously evolve under the pressure of neutralizing antibodies (nAbs), eliminating numerous potential elite monoclonal nAbs. The IGHV3-53/3-66 public nAbs have great potential for neutralizing SARS-CoV-2. However, it has been unclear whether a primary Omicron infection could also induce IGHV3-53/3-66 nAbs. In this study, we report an IGHV3-66-encoding monoclonal nAb, ConBA-998, that was elicited by primary infection with BA.1. ConBA-998 is an Omicron-dependent nAb with high binding affinity that triggers the shedding of the S1 subunit from the spike protein. The cryo-electron microscopy (cryo-EM) structure revealed the interactions between ConBA-998 and the Omicron BA.1 spike protein. ConBA-998 has a distinctive binding mode to receptor-binding domain (RBD) that differs from canonical IGHV3-53/3-66 nAbs. Overall, our findings indicate that Omicron may elicit unique specific nAbs distinct from those induced by pre-Omicron variants, providing further insights into SARS-CoV-2 variant-specific antibody responses.
Collapse
Affiliation(s)
- Qing Fan
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Congcong Liu
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Huimin Guo
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Shilong Tang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Haiyan Wang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Bing Zhou
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Yuehong Sun
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Miao Wang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Xiangyang Ge
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China
| | - Lei Liu
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China.
| | - Bin Ju
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China; Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province 518112, China.
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China; Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province 518112, China; Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province 518112, China.
| |
Collapse
|
8
|
Dadonaite B, Burrell AR, Logue J, Chu HY, Payne DC, Haslam DB, Staat MA, Bloom JD. SARS-CoV-2 neutralizing antibody specificities differ dramatically between recently infected infants and immune-imprinted individuals. J Virol 2025; 99:e0010925. [PMID: 40130874 PMCID: PMC11998527 DOI: 10.1128/jvi.00109-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
The immune response to viral infection is shaped by past exposures to related virus strains, a phenomenon known as imprinting. For severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), much of the population has been imprinted by a viral spike from an early strain, either through vaccination or infection during the early stages of the COVID-19 pandemic. As a consequence of this imprinting, infection with more recent SARS-CoV-2 strains primarily boosts cross-reactive antibodies elicited by the imprinting strain. Here we compare the neutralizing antibody specificities of imprinted individuals versus infants infected with a recent strain. Specifically, we use pseudovirus-based deep mutational scanning to measure how spike mutations affect neutralization by the serum antibodies of adults and children imprinted by the original vaccine versus infants with a primary infection by an XBB* variant. While the serum neutralizing activity of the imprinted individuals primarily targets the spike receptor-binding domain (RBD), the serum neutralizing activity of infants infected with only XBB* mostly targets the spike N-terminal domain. In these infants, secondary exposure to the XBB* spike via vaccination shifts more of the neutralizing activity toward the RBD, although the specific RBD sites targeted are different from imprinted adults. The dramatic differences in neutralization specificities among individuals with different exposure histories likely impact SARS-CoV-2 evolution.IMPORTANCEWe show that a person's exposure history to different SARS-CoV-2 strains strongly affects which regions on the viral spike that their neutralizing antibodies target. In particular, infants who have just been infected once with a recent viral strain make neutralizing antibodies that target different regions of the viral spike than adults or children who have been exposed to both older and more recent strains. This person-to-person heterogeneity means that the same viral mutation can have different impacts on the antibody immunity of different people.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Allison R. Burrell
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jenni Logue
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Helen Y. Chu
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Daniel C. Payne
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mary A. Staat
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
9
|
Jana ID, Kanjo K, Roy S, Bhasin M, Bhattacharya S, Banerjee I, Jana S, Chatterjee A, Chakrabarti AK, Chakraborty S, Mukherjee B, Varadarajan R, Mondal A. Early 2022 breakthrough infection sera from India target the conserved cryptic class 5 epitope to counteract immune escape by SARS-CoV-2 variants. J Virol 2025; 99:e0005125. [PMID: 40135898 PMCID: PMC11998512 DOI: 10.1128/jvi.00051-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, the vast majority of epitope mapping studies have focused on sera from mRNA-vaccinated populations from high-income countries. In contrast, here, we report an analysis of 164 serum samples isolated from patients with breakthrough infection in India during early 2022 who received two doses of the ChAdOx viral vector vaccine. Sera were screened for neutralization breadth against wild-type (WT), Kappa, Delta, and Omicron BA.1 viruses. Three sera with the highest neutralization breadth and potency were selected for epitope mapping, using charged scanning mutagenesis coupled with yeast surface display and next-generation sequencing. The mapped sera primarily targeted the recently identified class 5 cryptic epitope and, to a lesser extent, the class 1 and class 4 epitopes. The class 5 epitope is completely conserved across all severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and for most sarbecoviruses. Based on these observations, an additional 26 sera were characterized, and all showed a broad neutralizing activity, including against XBB.1.5. This is in contrast with the results obtained with the sera from individuals receiving multiple doses of original and updated mRNA vaccines, where impaired neutralization of XBB and later variants of concern (VOCs) were observed. Our study demonstrates that two doses of the ChAdOx vaccine in a highly exposed population were sufficient to drive substantial neutralization breadth against emerging and upcoming variants of concern. These data highlight the important role of hybrid immunity in conferring broad protection and inform future vaccine strategies to protect against rapidly mutating viruses. IMPORTANCE Worldwide implementation of coronavirus disease 2019 (COVID-19) vaccines and the parallel emergence of newer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have shaped the humoral immune response in a population-specific manner. While characterizing this immune response is important for monitoring disease progression at the population level, it is also imperative for developing effective countermeasures in the form of novel vaccines and therapeutics. India has implemented the world's second largest COVID-19 vaccination drive and encountered a large number of post-vaccination "breakthrough" infections. From a cohort of patients with breakthrough infection, we identified individuals whose sera showed broadly neutralizing immunity against different SARS-CoV-2 variants. Interestingly, these sera primarily target a novel cryptic epitope, which was not identified in previous population-level studies conducted in Western countries. This rare cryptic epitope remains conserved across all SARS-CoV-2 variants, including recently emerged ones and for the SARS-like coronaviruses that may cause future outbreaks, thus representing a potential target for future vaccines.
Collapse
Affiliation(s)
- Indrani Das Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kawkab Kanjo
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Subhanita Roy
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Munmun Bhasin
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Shatarupa Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranath Banerjee
- B.C. Roy Technology Hospital, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Alok Kumar Chakrabarti
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Arindam Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
10
|
Dhawan M, Thakur N, Sharma M, Rabaan AA. The comprehensive insights into the B-cells-mediated immune response against COVID-19 infection amid the ongoing evolution of SARS-CoV-2. Biomed Pharmacother 2025; 185:117936. [PMID: 40056829 DOI: 10.1016/j.biopha.2025.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025] Open
Abstract
The antibody-mediated immune response is crucial for the development of protective immunity against SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Understanding the interaction between SARS-CoV-2 and the immune system is critical because new variants emerge as a result of the virus's ongoing evolution. Understanding the function of B cells in the SARS-CoV-2 infection process is critical for developing effective and long-lasting vaccines against this virus. Triggered by the innate immune response, B cells transform into memory B cells (MBCs). It is fascinating to observe how MBCs provide enduring immune defence, not only eradicating the infection but also safeguarding against future reinfection. If there is a lack of B cell activation or if the B cells are not functioning properly, it can lead to a serious manifestation of the disease and make immunisation less effective. Individuals with disruptions in the B cells have shown increased production of cytokines and chemokines, resulting in a poor prognosis for the disease. Therefore, we have developed an updated review article to gain insight into the involvement of B cells in SARS-CoV-2 infection. The discussion has covered the generation, functioning, and dynamics of neutralising antibodies (nAbs). Furthermore, we have emphasised immunotherapeutics that rely on nAbs.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India; Trafford College, Altrincham, Altrincham, Manchester WA14 5PQ, UK.
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Ali A Rabaan
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
11
|
McConnell SA, Casadevall A. New insights into antibody structure with implications for specificity, variable region restriction and isotype choice. Nat Rev Immunol 2025:10.1038/s41577-025-01150-9. [PMID: 40113994 DOI: 10.1038/s41577-025-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
The mystery surrounding the mechanisms by which antibody diversity is generated was largely settled in the 1970s by the discoveries of variable gene rearrangements and somatic hypermutation. This led to the paradigm that immunoglobulins are composed of two independent domains - variable and constant - that confer specificity and effector functions, respectively. However, since these early discoveries, there have been a series of observations of communication between the variable and constant domains that affects the overall antibody structure, which suggests that immunoglobulins have a more complex, interconnected functionality than previously thought. Another unresolved issue has been the genesis of 'restricted' antibody responses, characterized by the use of only a few variable region gene segments, despite the enormous potential combinatorial diversity. In this Perspective, we place recent findings related to immunoglobulin structure and function in the context of these immunologically important, historically unsolved problems to propose a new model for how antibody specificity is achieved without autoreactivity.
Collapse
Affiliation(s)
- Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
12
|
Liu Y, Wang K, Wang W, Kashyap S, Jih J, Imani A, Hsiai T, Zhou ZH. Demonstration and structural basis of a therapeutic DNA aptamer for SARS-CoV-2 spike protein detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643408. [PMID: 40166151 PMCID: PMC11957045 DOI: 10.1101/2025.03.14.643408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
At the onset of the COVID-19 pandemic, the absence of a rapid and highly specific diagnostic method for the SARS-CoV-2 virus led to significant delays in detection, adversely affecting clinical outcomes. This shortfall highlights the urgent need for adaptable, scalable, and reusable diagnostic technologies to improve future pandemic responses. To address this challenge, we developed a renewable electrochemical impedance biosensor device employing a synthetic nucleotide-based therapeutic aptamer (termed 'aptasensor') targeting the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). We demonstrate that our aptasensor can detect the Omicron BA.2 S protein within one hour and possesses concentration-dependent sensitivity at biologically relevant levels. Notably, the aptasensor is reusable after regeneration by a simple pH 2 buffer treatment. Aptamer binding to the S protein was confirmed by immunogold labeling and visualization by negative-stain electron microscopy. We used cryogenic electron microscopy (cryo-EM) to resolve high-resolution maps of the S protein in both the open and closed conformations and characterized aptamer binding to the up RBD in the open conformation. Taken together, these results establish the versatility and scalability of aptamer-based biosensors, presenting them as a potential transformative diagnostic platform for emerging pathogens. This combination of rapid detection, specificity, and renewable capabilities in a single diagnostic solution marks a significant advance in pandemic preparedness.
Collapse
Affiliation(s)
- Yujun Liu
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, 90095, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, 90095, California, USA
| | - Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California 90073, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Weiguang Wang
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, 90095, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, 90095, California, USA
| | - Saarang Kashyap
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, 90095, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, 90095, California, USA
| | - Jonathan Jih
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, 90095, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, 90095, California, USA
- Molecular Biology Institute, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Anthony Imani
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, 90095, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, 90095, California, USA
| | - Tzung Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California 90073, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, University of California at Los Angeles, Los Angeles, 90095, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, 90095, California, USA
- Molecular Biology Institute, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Halfmann PJ, Lee JS, McArthur N, Gupta O, Kawaoka Y, Kane RS. Potent bivalent nanobody constructs that protect against the SARS-CoV-2 XBB variant. NPJ VIRUSES 2025; 3:19. [PMID: 40295895 PMCID: PMC11906887 DOI: 10.1038/s44298-025-00101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/18/2025] [Indexed: 04/30/2025]
Abstract
Most antibody-based therapeutics approved for SARS-CoV-2 treatment have shown greatly reduced neutralization activity against emerging Omicron variants. To target recent Omicron variants, we developed XBB-specific antibody-like therapeutics by screening a yeast surface-displayed single-domain antibody library against the receptor binding domain of the XBB spike protein. Three lead nanobodies, XNb 4.13, XNb 4.14, and XNb 4.15, were selected based on their binding affinity to the XBB spike protein and were fused to a mouse Fc domain. While all three constructs showed sub-nanomolar binding affinities to the XBB S protein, XNb 4.13-Fc and XNb 4.14-Fc also neutralized XBB in vitro. Intraperitoneal injection of XNb 4.13-Fc and XNb 4.14-Fc and intranasal delivery of XNb 4.13-Fc protected transgenic mice from a challenge with XBB virus with a significant reduction in viral lung titers post-infection. These antibody-like constructs identified using yeast surface display have potential as therapeutics that can protect against SARS-CoV-2 XBB variants.
Collapse
Affiliation(s)
- Peter J Halfmann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jeong Soo Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nikki McArthur
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ojas Gupta
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan.
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
14
|
Yin Y, Liu C, Ji X, Wang Y, Mongkolsapaya J, Screaton GR, Cui Z, Huang WE. Engineering Genome-Free Bacterial Cells for Effective SARS-COV-2 Neutralisation. Microb Biotechnol 2025; 18:e70109. [PMID: 40042439 PMCID: PMC11881285 DOI: 10.1111/1751-7915.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
The COVID-19 pandemic has caused unparalleled impacts on global social dynamics, healthcare systems and economies, highlighting the urgent need for effective interventions to address current challenges and future pandemic preparedness. This study introduces a novel virus neutralisation platform based on SimCells (~1 μm) and mini-SimCells (100-200 nm), which are chromosome-free and non-replicating bacteria from an LPS-free Escherichia coli strain (ClearColi). SimCells and mini-SimCells were engineered to display nanobodies on their surface, specifically targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein - a critical immunogenic fragment essential for viral entry into host cells. It was demonstrated that nanobody-expressing SimCells achieved over 90% blocking efficiency against synthesised RBD from both the original Wuhan and the B.1.351 (Beta) variant using competitive enzyme-linked immunosorbent assay (ELISA) assay. More importantly, live virus neutralisation assays demonstrated that NB6 nanobody-presenting mini-SimCells effectively neutralised the live SARS-CoV-2 Victoria variant with an IC50 of 2.95 × 109 ± 1.40 × 108 mini-SimCells/mL. Similarly, VE nanobody-presenting mini-SimCells effectively neutralised the B.1.351 (Beta) variant of the SARS-CoV-2 virus with an IC50 of 5.68 × 109 ± 9.94 × 108 mini-SimCells/mL. The mini-SimCells successfully protected Vero cells, a cell line derived from the kidney of an African green monkey, from infection by the live virus of SARS-CoV-2 and its variants. These results suggest that SimCell-based neutralisation offers a promising strategy for the prevention and treatment of SARS-CoV-2, and potentially other viral infections.
Collapse
Affiliation(s)
- Yutong Yin
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
| | - Xianglin Ji
- Oxford Suzhou Centre for Advanced Research (OSCAR)University of Oxford, Suzhou Industrial ParkSuzhouJiangsuChina
| | - Yun Wang
- Oxford Suzhou Centre for Advanced Research (OSCAR)University of Oxford, Suzhou Industrial ParkSuzhouJiangsuChina
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitBangkokThailand
- Department of MedicineUniversity of OxfordOxfordUK
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
| | - Zhanfeng Cui
- Department of Engineering ScienceUniversity of OxfordOxfordUK
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
15
|
Liu B, Bai M, Zheng F, Yan M, Huang E, Wen J, Li Y, Wang J. The Identification of Dual T-Cell and B-Cell Epitopes Within Viral Proteins Utilizing a Comprehensive Peptide Array Approach. Vaccines (Basel) 2025; 13:239. [PMID: 40266119 PMCID: PMC11946625 DOI: 10.3390/vaccines13030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: The development of vaccines that elicit both T-cell and B-cell responses is crucial for effective immunity against pathogens. This study introduces a novel approach to identify precise epitope peptides within viral proteins that can stimulate both arms of the adaptive immune response, using Porcine Parvovirus (PPV) as a model. Methods: Mice were infected with PPV, and a peptide array was utilized to detect IgG signals in their sera. This approach facilitated the assessment of the immunogenicity of the PPV proteome, leading to the identification of 14 potential epitope candidates. These candidates were then used to immunize additional mice, and their ability to induce T-cell and B-cell responses was evaluated. Results: The immunization experiments identified an optimal peptide, P6, which robustly activated both T cells and B cells. Further analysis of the sub-regions of this peptide confirmed P6 as the most potent inducer of immune responses. The anticipated epitope was detected in mice immunized with P6, highlighting the efficacy of our method in identifying epitopes that engage both T cells and B cells. Conclusions: This study presents a novel strategy for the identification of dual T-cell and B-cell epitopes by directly evaluating the immunoreactivity of antibodies in serum. This finding holds significant promise for the advancement of epitope-based vaccines.
Collapse
Affiliation(s)
- Binghang Liu
- iCarbonX, Zhuhai 519000, China; (B.L.); (M.B.); (J.W.)
- Shenzhen Digital Life Institute, Shenzhen 518000, China
| | - Muqun Bai
- iCarbonX, Zhuhai 519000, China; (B.L.); (M.B.); (J.W.)
- Shenzhen Digital Life Institute, Shenzhen 518000, China
| | - Fei Zheng
- iCarbonX, Zhuhai 519000, China; (B.L.); (M.B.); (J.W.)
| | - Mingchen Yan
- iCarbonX, Zhuhai 519000, China; (B.L.); (M.B.); (J.W.)
| | - Enen Huang
- iCarbonX, Zhuhai 519000, China; (B.L.); (M.B.); (J.W.)
| | - Jie Wen
- iCarbonX, Zhuhai 519000, China; (B.L.); (M.B.); (J.W.)
| | - Yingrui Li
- iCarbonX, Zhuhai 519000, China; (B.L.); (M.B.); (J.W.)
- Shenzhen Digital Life Institute, Shenzhen 518000, China
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Jun Wang
- iCarbonX, Zhuhai 519000, China; (B.L.); (M.B.); (J.W.)
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
16
|
Li D, Hu C, Su J, Du S, Zhang Y, Ni W, Ren L, Hao Y, Feng Y, Jin C, Wang S, Dai X, Wang Z, Zhu B, Xiao J, Shao Y. Function and structure of broadly neutralizing antibodies against SARS-CoV-2 Omicron variants isolated from prototype strain infected convalescents. J Transl Med 2025; 23:212. [PMID: 39985112 PMCID: PMC11844185 DOI: 10.1186/s12967-025-06162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/22/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The ongoing emergence of evolving SARS-CoV-2 variants poses great threaten to the efficacy of authorized monoclonal antibody-based passive immunization or treatments. Developing potent broadly neutralizing antibodies (bNabs) against SARS-CoV-2 and elucidating their potential evolutionary pathways are essential for battling the coronavirus disease 2019 (COVID-19) pandemic. METHODS Broadly neutralizing antibodies were isolated using single cell sorting from three COVID-19 convalescents infected with prototype SARS-CoV-2 strain. Their neutralizing activity against diverse SARS-CoV-2 strains were tested in vitro and in vivo, respectively. The structures of antibody-antigen complexes were resolved using crystallization or Cryo-EM method. Antibodyomics analyses were performed using the non-bias deep sequencing results of BCR repertoires. RESULTS We obtained a series of RBD-specific monoclonal antibodies with highly neutralizing potency against a variety of pseudotyped and live SARS-CoV-2 variants, including five global VOCs and some Omicron subtypes such as BA.1, BA.2, BA.4/5, BF.7, and XBB. 2YYQH9 and LQLD6HL antibody cocktail also displayed good therapeutic and prophylactic efficacy in an XBB.1.16 infected hamster animal model. Cryo-EM and crystal structural analyses revealed that broadly neutralizing antibodies directly blocked the binding of ACE2 by almost covering the entire receptor binding motif (RBM) and largely avoided mutated RBD residues in the VOCs, demonstrating their broad and potent neutralizing activity. In addition, antibodyomics assays indicate that the germline frequencies of RBD-specific antibodies increase after an inactivated vaccine immunization. Moreover, the CDR3 frequencies of Vκ/λ presenting high amino acid identity with the broadly neutralizing antibodies were higher than those of VH. CONCLUSIONS These data suggest that current identified broadly neutralizing antibodies could serve as promising drug candidates for COVID-19 and can be used for reverse vaccine design against future pandemics.
Collapse
Affiliation(s)
- Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Junwei Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuo Du
- Changping Laboratory, Beijing, 102206, China
| | - Ying Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100091, China
| | - Wanqi Ni
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yanling Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yi Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinxian Dai
- National Vaccine and Serum Institute, Beijing, 101111, China
- China National Biotec Group Company Limited, Beijing, 100024, China
| | - Zheng Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Junyu Xiao
- Changping Laboratory, Beijing, 102206, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100091, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100091, China.
| | - Yiming Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/ STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Changping Laboratory, Beijing, 102206, China.
| |
Collapse
|
17
|
Alshahrani M, Parikh V, Foley B, Raisinghani N, Verkhivker G. Mutational Scanning and Binding Free Energy Computations of the SARS-CoV-2 Spike Complexes with Distinct Groups of Neutralizing Antibodies: Energetic Drivers of Convergent Evolution of Binding Affinity and Immune Escape Hotspots. Int J Mol Sci 2025; 26:1507. [PMID: 40003970 PMCID: PMC11855367 DOI: 10.3390/ijms26041507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. In this study, we conducted a comprehensive structural and energetic analysis of SARS-CoV-2 spike receptor-binding domain (RBD) complexes with neutralizing antibodies from four distinct groups (A-D), including group A LY-CoV016, group B AZD8895 and REGN10933, group C LY-CoV555, and group D antibodies AZD1061, REGN10987, and LY-CoV1404. Using coarse-grained simplified simulation models, rapid energy-based mutational scanning, and rigorous MM-GBSA binding free energy calculations, we elucidated the molecular mechanisms of antibody binding and escape mechanisms, identified key binding hotspots, and explored the evolutionary strategies employed by the virus to evade neutralization. The residue-based decomposition analysis revealed energetic mechanisms and thermodynamic factors underlying the effect of mutations on antibody binding. The results demonstrate excellent qualitative agreement between the predicted binding hotspots and the latest experiments on antibody escape. These findings provide valuable insights into the molecular determinants of antibody binding and viral escape, highlighting the importance of targeting conserved epitopes and leveraging combination therapies to mitigate the risk of immune evasion.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Humans
- Immune Evasion
- Thermodynamics
- Mutation
- COVID-19/virology
- COVID-19/immunology
- Protein Binding
- Molecular Dynamics Simulation
- Evolution, Molecular
- Binding Sites
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Vedant Parikh
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Brandon Foley
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
| | - Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (V.P.); (B.F.); (N.R.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
18
|
Dadonaite B, Burrell AR, Logue J, Chu HY, Payne DC, Haslam DB, Staat MA, Bloom JD. SARS-CoV-2 neutralizing antibody specificities differ dramatically between recently infected infants and immune-imprinted individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633612. [PMID: 39896663 PMCID: PMC11785066 DOI: 10.1101/2025.01.17.633612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The immune response to viral infection is shaped by past exposures to related virus strains, a phenomenon known as imprinting. For SARS-CoV-2, much of the population has been imprinted by a viral spike from an early strain, either through vaccination or infection during the early stages of the COVID-19 pandemic. As a consequence of this imprinting, infection with more recent SARS-CoV-2 strains primarily boosts cross-reactive antibodies elicited by the imprinting strain. Here we compare the neutralizing antibody specificities of imprinted individuals versus infants infected with a recent strain. Specifically, we use pseudovirus-based deep mutational scanning to measure how spike mutations affect neutralization by the serum antibodies of adults and children imprinted by the original vaccine versus infants with a primary infection by a XBB* variant. While the serum neutralizing activity of the imprinted individuals primarily targets the spike receptor-binding domain (RBD), serum neutralizing activity of infants only infected with XBB* mostly targets the spike N-terminal domain (NTD). In these infants, secondary exposure to the XBB* spike via vaccination shifts more of the neutralizing activity towards the RBD, although the specific RBD sites targeted are different than for imprinted adults. The dramatic differences in neutralization specificities among individuals with different exposure histories likely impact SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Allison R. Burrell
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jenni Logue
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA
| | - Helen Y. Chu
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA
| | - Daniel C. Payne
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mary A. Staat
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| |
Collapse
|
19
|
Mazigi O, Langley DB, Henry JY, Burnett DL, Sobti M, Walker GJ, Rouet R, Balachandran H, Lenthall H, Jackson J, Ubiparipovic S, Schofield P, Brown SHJ, Schulz SR, Hoffmann M, Pöhlmann S, Post J, Martinello M, Ahlenstiel G, Kelleher A, Rawlinson WD, Turville SG, Bull RA, Stewart AG, Jäck HM, Goodnow CC, Christ D. Affinity maturation endows potent activity onto class 6 SARS-CoV-2 broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2025; 122:e2417544121. [PMID: 39746041 PMCID: PMC11725916 DOI: 10.1073/pnas.2417544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) has greatly diminished the neutralizing activity of previously FDA-approved monoclonal antibodies (mAbs), including that of antibody cocktails and of first-generation broadly neutralizing antibodies such as S309 (Sotrovimab). In contrast, antibodies targeting cryptic conformational epitopes of the receptor binding domain (RBD) have demonstrated broad activity against emerging variants, but exert only moderate neutralizing activity, which has so far hindered clinical development. Here, we utilize in vitro display technology to identify and affinity-mature antibodies targeting the cryptic class 6 epitope, accessible only in the "up" conformation of the SARS-CoV-2 spike trimer. Increasing antibody affinity into the low picomolar range endowed potent neutralization of VOCs and protection of hACE2 mice from viral challenge. Cryoelectron microscopy and crystal structures of two affinity-matured antibodies (4C12-B12 and 4G1-C2) in complex with RBD highlighted binding modes and epitopes distal from mutational hotspots commonly overserved in VOCs, providing direct structural insights into the observed mutational resistance. Moreover, we further demonstrate that antibodies targeting the class 6 epitope, rather than being an artifact of in vitro selection, are common in the IgG1+ memory B cell repertoire of convalescent patients and can be induced in human antibody V-gene transgenic mice through immunization. Our results highlight the importance of very high (picomolar) affinity in the development of neutralizing antibodies and vaccines and suggest an affinity threshold in the provision of broad and long-lasting immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Ohan Mazigi
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - David B. Langley
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Jake Y. Henry
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Deborah L. Burnett
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
| | - Meghna Sobti
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW2010, Australia
| | - Gregory J. Walker
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Prince of Wales Hospital, Sydney, NSW2031, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Harikrishnan Balachandran
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Stephanie Ubiparipovic
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| | - Simon H. J. Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW2522, Australia
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen-Nürnberg91054, Germany
- University Hospital Erlangen, Erlangen-Nürnberg91054, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen37073, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, Georg-August University Göttingen, Göttingen37073, Germany
| | - Jeffrey Post
- Prince of Wales Hospital, Sydney, NSW2031, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales Australia, Sydney, NSW2031, Australia
| | - Marianne Martinello
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - Golo Ahlenstiel
- Blacktown Mt. Druitt Hospital, Blacktown, NSW2148, Australia
| | - Anthony Kelleher
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - William D. Rawlinson
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Prince of Wales Hospital, Sydney, NSW2031, Australia
| | - Stuart G. Turville
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - Rowena A. Bull
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW2033, Australia
| | - Alastair G. Stewart
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW2010, Australia
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen-Nürnberg91054, Germany
- University Hospital Erlangen, Erlangen-Nürnberg91054, Germany
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, School of Biomedical Sciences, Faculty of Medicine, Sydney, NSW2052, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW2010, Australia
- University of New South Wales Sydney, St. Vincent’s Clinical School, Faculty of Medicine, Sydney, NSW2010, Australia
| |
Collapse
|
20
|
Huhn A, Nissley D, Wilson DB, Kutuzov MA, Donat R, Tan TK, Zhang Y, Barton MI, Liu C, Dejnirattisai W, Supasa P, Mongkolsapaya J, Townsend A, James W, Screaton G, van der Merwe PA, Deane CM, Isaacson SA, Dushek O. The molecular reach of antibodies crucially underpins their viral neutralisation capacity. Nat Commun 2025; 16:338. [PMID: 39746910 PMCID: PMC11695720 DOI: 10.1038/s41467-024-54916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However, viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we use a new mechanistic model of bivalent binding to study >45 patient-isolated IgG1 antibodies interacting with SARS-CoV-2 RBD surfaces. The model provides the standard monovalent affinity/kinetics and new bivalent parameters, including the molecular reach: the maximum antigen separation enabling bivalent binding. We find large variations in these parameters across antibodies, including reach variations (22-46 nm) that exceed the physical antibody size (~15 nm). By using antigens of different physical sizes, we show that these large molecular reaches are the result of both the antibody and antigen sizes. Although viral neutralisation correlates poorly with affinity, a striking correlation is observed with molecular reach. Indeed, the molecular reach explains differences in neutralisation for antibodies binding with the same affinity to the same RBD-epitope. Thus, antibodies within an isotype class binding the same antigen can display differences in molecular reach, substantially modulating their binding and functional properties.
Collapse
Affiliation(s)
- Anna Huhn
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Daniel Nissley
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robert Donat
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tiong Kit Tan
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ying Zhang
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Department of Mathematics and Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Michael I Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alain Townsend
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - William James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
| | | | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
| | - Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA.
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
22
|
Thankamani K, Shubham D, Kandpal G, Isaac AM, Kavitha MS, Raj VS. Middle East respiratory syndrome coronavirus (MERS-CoV) internalization does not rely on DPP4 cytoplasmic tail signaling. NPJ VIRUSES 2024; 2:67. [PMID: 40295839 PMCID: PMC11721135 DOI: 10.1038/s44298-024-00080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 04/30/2025]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infects respiratory epithelial cells in humans and camels by binding to dipeptidyl peptidase 4 (DPP4) as its entry receptor. DPP4 is a multifunctional type II membrane protein with a long ectodomain and a short six-amino-acid (aa) cytoplasmic tail. MERS-CoV is known to bind to the ectodomain of DPP4 to gain entry into the host cell. However, the role of the cytoplasmic tail in the entry process remains unclear. Here, we show that mutating or deleting individual aa residues or the entire cytoplasmic tail of DPP4 (ΔcytDPP4) does not completely prevent DPP4 from being inserted into the membrane or from allowing the binding of the MERS-CoV spike protein and pseudovirus infection. Although two mutants, ΔcytDPP4, and a single aa deleted DPP4 (ΔK6DPP4) displayed less surface presentation than wtDPP4, the spike protein could still bind and localize on different DPP4 mutants. The reduced surface expression of ΔK6DPP4 might be due to the extended transmembrane domain, which is altered by the hydrophobic tryptophan (W) residue adjacent to the deleted K6. Furthermore, HEK293T cells transiently expressing DPP4 mutants were permeable to MERS-CoV pseudovirus infection. Not only transiently expressing cells but also cells stably expressing the ΔcytDPP4 mutant were susceptible to MERS-CoV pseudoviral infection, indicating that the DPP4 cytoplasmic tail is not required for MERS-CoV entry. Overall, these data suggest that, although MERS-CoV binds to DPP4, other host factors may need to interact with DPP4 or the spike protein to trigger internalization.
Collapse
Affiliation(s)
- Karthika Thankamani
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Divakar Shubham
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Gayatri Kandpal
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Ann Mary Isaac
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Modenkattil Sethumadhavan Kavitha
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - V Stalin Raj
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
23
|
Lyukmanova EN, Pichkur EB, Nolde DE, Kocharovskaya MV, Manuvera VA, Shirokov DA, Kharlampieva DD, Grafskaia EN, Svetlova JI, Lazarev VN, Varizhuk AM, Kirpichnikov MP, Shenkarev ZO. Structure and dynamics of the interaction of Delta and Omicron BA.1 SARS-CoV-2 variants with REGN10987 Fab reveal mechanism of antibody action. Commun Biol 2024; 7:1698. [PMID: 39719448 DOI: 10.1038/s42003-024-07422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody. S-protein adopts "two RBD-down and one RBD-up" conformation. Fab interacts with RBDs in both conformations, blocking the recognition of angiotensin converting enzyme-2. Three-dimensional variability analysis reveals high mobility of the RBD/Fab regions. Interaction of REGN10987 with Wuhan, Delta, Omicron BA.1, and mutated variants of RBDs is analyzed by microscale thermophoresis, molecular dynamics simulations, and ΔG calculations with umbrella sampling and one-dimensional potential of mean force. Variability in molecular dynamics trajectories results in a large scatter of calculated ΔG values, but Boltzmann weighting provides an acceptable correlation with experiment. REGN10987 evasion of the Omicron variant is found to be due to the additive effect of the N440K and G446S mutations located at the RBD/Fab binding interface with a small effect of Q498R mutation. Our study explains the influence of known-to-date SARS-CoV-2 RBD mutations on REGN10987 recognition and highlights the importance of dynamics data beyond the static structure of the RBD/Fab complex.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Evgeny B Pichkur
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Dmitry E Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentin A Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitriy A Shirokov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina N Grafskaia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Julia I Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vassili N Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
24
|
Tang X, Chen J, Zhang L, Liu T, Ding M, Zheng YW, Zhang Y. Interfacial subregions of SARS-CoV-2 spike RBD to hACE2 affect intermolecular affinity by their distinct roles played in association and dissociation kinetics. Commun Biol 2024; 7:1621. [PMID: 39638851 PMCID: PMC11621773 DOI: 10.1038/s42003-024-07081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
SARS-CoV-2's rapid global transmission depends on spike RBD's strong affinity to hACE2. In the context of binding hot spots well defined, the work investigated how interfacial subregions of SARS-CoV-2 spike RBD to hACE2 affect intermolecular affinity and their potential distinct roles involved in association and dissociation kinetics due to their local structural characteristics. Three spatially consecutive subregions of SARS-CoV-2 RBD were structurally partitioned across RBD's receptor binding motif (RBM). Their impacts on binding affinity and kinetics were differentiated through a comprehensive SPR measurement of hACE2 binding by chimeric swap mutants of respective subdomains from SARS-CoV-2 VOCs & phylogenetically close sarbecoviruses, and further compared with those of included single mutations across RBM and around the RBD core. The data supports that the intermediate interfacial subregion of RBD involving key residue at 417 is the rate-limiting effector of association kinetics and the subregion encompassing residues at 501/498/449 is the key binding energy contributor dictating dissociation kinetics, both of which relate to SARS-CoV-2's adaptive mutational evolution and host tropism closely. The kinetic data and structural analysis of local mutations' impact on spike RBD's binding and thermal stability provide a new perspective in evaluating SARS-CoV-2 evolution and other sarbecoviruses' evolvable binding to hACE2. The inherent binding mode offers direct clues of valid epitope in designing new antibodies that the coronavirus can't elude.
Collapse
Affiliation(s)
- Xiangwu Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Jingxian Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Tao Liu
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Min Ding
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, Guangdong, China
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yinghui Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, Guangdong, China.
| |
Collapse
|
25
|
Seow J, Jefferson GCE, Keegan MD, Yau Y, Snell LB, Doores KJ. Profiling serum immunodominance following SARS-CoV-2 primary and breakthrough infection reveals distinct variant-specific epitope usage and immune imprinting. PLoS Pathog 2024; 20:e1012724. [PMID: 39556615 DOI: 10.1371/journal.ppat.1012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024] Open
Abstract
Over the course of the COVID-19 pandemic, variants have emerged with increased mutations and immune evasive capabilities. This has led to breakthrough infections (BTI) in vaccinated individuals, with a large proportion of the neutralizing antibody response targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike glycoprotein. Immune imprinting, where prior exposure of the immune system to an antigen can influence the response to subsequent exposures, and its role in a population with heterogenous exposure histories has important implications in future vaccine design. Here, we develop an accessible approach to map epitope immunodominance of the neutralizing antibody response in sera. By using a panel of mutant Spike proteins in a pseudotyped virus neutralization assay, we observed distinct epitope usage in convalescent donors infected during wave 1, or infected with the Delta, or BA.1 variants, highlighting the antigenic diversity of the variant Spikes. Analysis of longitudinal serum samples taken spanning 3 doses of COVID-19 vaccine and subsequent breakthrough infection, showed the influence of immune imprinting from the ancestral-based vaccine, where reactivation of existing B cells elicited by the vaccine resulted in the enrichment of the pre-existing epitope immunodominance. However, subtle shifts in epitope usage in sera were observed following BTI by Omicron sub-lineage variants. Antigenic distance of Spike, time after last exposure, and number of vaccine boosters may play a role in the persistence of imprinting from the vaccine. This study provides insight into RBD neutralizing epitope usage in individuals with varying exposure histories and has implications for design of future SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - George C E Jefferson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Michael D Keegan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Yeuk Yau
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Ouarab M, Bouaiti E, Rhazzar Z, El Annaz H, el kochri S, Hemlali M, Ghammaz H, Nyabi O, el Bakkouri K, Touil N, Elouennass M, Belayachi L, Gala JL, Ennibi K, El Fahime E. Immunogenicity of two-dose sinopharm BBIB-CorV vaccine in Morocco: One-year follow-up and neutralizing activity against severe acute respiratory syndrome coronavirus 2 variants of concern. Immun Inflamm Dis 2024; 12:e1359. [PMID: 39530285 PMCID: PMC11555486 DOI: 10.1002/iid3.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the immunogenicity of a two-dose Sinopharm BBIB-CorV (Vero cells) vaccine against SARS-CoV-2, at 28 days, 6 months, and 1-year postvaccination. And assess the capacity of two-dose vaccine recipients to neutralize SARS-CoV-2 strains B.1 (Wuhan/D614G), B.1.1.7 (Alpha), AY.33 (Delta), or BA.5.2.2 (Omicron) variants of concern (VOCs). METHODS A prospective matched case-control cohort study was conducted at the Military Hospital of Rabat, Morocco between February 2021 and 2022. Immunogenicity was evaluated by standard Microneutralization (MN) assay against four variants (Wuhan D614G, Alpha, Delta, and Omicron). RESULTS The overall positive neutralizing rates for vaccine recipients against B.1 D614G were 72.09%, 74.82%, and 75.19% on 28-, 180-, 365- day respectively. The proportion of NAbs targeting the Wuhan D614G, and Alpha variants under the BBIBP-CorV vaccination was high on Day 28- and 6 months postvaccination. CONCLUSION The immunogenic response to the newly emerging SARS-CoV-2 variants of concern (VOCs), such as Delta and Omicron was comparatively reduced. As a result, it is recommended that additional boost vaccinations be considered.
Collapse
Affiliation(s)
- Maha Ouarab
- Neuroscience and Neurogenetics Research Team, Faculty of Medicine and PharmacyUniversity Mohammed V of RabatRabatMorocco
- Molecular Biology and Functional Genomics PlatformNational Center for Scientific and Technical Research (CNRST)RabatMorocco
| | - Elarbi Bouaiti
- Center of Virology, Infectious and Tropical DiseasesMohammed V Military Teaching HospitalRabatMorocco
| | - Zineb Rhazzar
- Cell Culture Unit, Center of Virology, Infectious and Tropical DiseasesMohammed V Military Teaching HospitalRabatMorocco
- Immunopathology Research Team (ERIP), Faculty of Medicine and PharmacyUniversity Mohammed VRabatMorocco
| | - Hicham El Annaz
- Center of Virology, Infectious and Tropical DiseasesMohammed V Military Teaching HospitalRabatMorocco
| | - Safae el kochri
- Center of Virology, Infectious and Tropical DiseasesMohammed V Military Teaching HospitalRabatMorocco
- Faculty of Medicine and PharmacyUniversity Hassan IICasablancaMorocco
| | - Mouhssine Hemlali
- Neuroscience and Neurogenetics Research Team, Faculty of Medicine and PharmacyUniversity Mohammed V of RabatRabatMorocco
- Molecular Biology and Functional Genomics PlatformNational Center for Scientific and Technical Research (CNRST)RabatMorocco
- Cell Culture Unit, Center of Virology, Infectious and Tropical DiseasesMohammed V Military Teaching HospitalRabatMorocco
| | - Hamza Ghammaz
- Neuroscience and Neurogenetics Research Team, Faculty of Medicine and PharmacyUniversity Mohammed V of RabatRabatMorocco
- Molecular Biology and Functional Genomics PlatformNational Center for Scientific and Technical Research (CNRST)RabatMorocco
| | - Omar Nyabi
- Center for Applied Molecular Technologies (CTMA), Institute of Clinical and Experimental ResearchUniversité Catholique de LouvainBrusselsBelgium
| | - Karim el Bakkouri
- Center for Applied Molecular Technologies (CTMA), Institute of Clinical and Experimental ResearchUniversité Catholique de LouvainBrusselsBelgium
| | - Nadia Touil
- Cell Culture Unit, Center of Virology, Infectious and Tropical DiseasesMohammed V Military Teaching HospitalRabatMorocco
- Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and PharmacyUniversity Mohammed VRabatMorocco
| | - Mostafa Elouennass
- Department of BacteriologyMohammed V Military Teaching HospitalRabatMorocco
| | - Lamiae Belayachi
- Health Sciences Research Center, BioMed UnitUniversity International of Rabat (UIR)Sala‐Al JadidaMorocco
| | - Jean Luc Gala
- Center for Applied Molecular Technologies (CTMA), Institute of Clinical and Experimental ResearchUniversité Catholique de LouvainBrusselsBelgium
| | - Khalid Ennibi
- Center of Virology, Infectious and Tropical DiseasesMohammed V Military Teaching HospitalRabatMorocco
- Immunopathology Research Team (ERIP), Faculty of Medicine and PharmacyUniversity Mohammed VRabatMorocco
| | - Elmostafa El Fahime
- Neuroscience and Neurogenetics Research Team, Faculty of Medicine and PharmacyUniversity Mohammed V of RabatRabatMorocco
- Molecular Biology and Functional Genomics PlatformNational Center for Scientific and Technical Research (CNRST)RabatMorocco
- Mohammed VI Center of Research and InnovationMohammed VI Univeristy of Sciences and HealthRabatMorocco
| |
Collapse
|
27
|
Dong H, Zhou R, Chen J, Wei J, Wei Z, Yang Z, Zhu K, Yang Y, Yang Q, Liu N, Chen Y, Wu Y, Liang Y, Zeng Y, Guo Q, Li M, Shan S, Wang H, Niu M, Yunfei Zeng I, Shi X, Zhang Q, Wang X, Chen Z, Zhang L. Super broad and protective nanobodies against Sarbecoviruses including SARS-CoV-1 and the divergent SARS-CoV-2 subvariant KP.3.1.1. PLoS Pathog 2024; 20:e1012625. [PMID: 39527594 PMCID: PMC11554226 DOI: 10.1371/journal.ppat.1012625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
The ongoing evolution and immune escape of SARS-CoV-2, alongside the potential threat of SARS-CoV-1 and other sarbecoviruses, underscore the urgent need for effective strategies against their infection and transmission. This study highlights the discovery of nanobodies from immunized alpacas, which demonstrate exceptionally broad and potent neutralizing capabilities against the recently emerged and more divergent SARS-CoV-2 Omicron subvariants including JD.1.1, JN.1, KP.3, KP.3.1.1, as well as SARS-CoV-1 and coronaviruses from bats and pangolins utilizing receptor ACE2. Among these, Tnb04-1 emerges as the most broad and potent, binding to a conserved hydrophobic pocket in the spike's receptor-binding domain, distinct from the ACE2 binding site. This interaction disrupts the formation of a proteinase K-resistant core, crucial for viral-cell fusion. Notably, intranasal administration of Tnb04-1 in Syrian hamsters effectively prevented respiratory infection and transmission of the authentic Omicron XBB.1.5 subvariant. Thus, Thb04-1 holds promise in combating respiratory acquisition and transmission of diverse sarbecoviruses.
Collapse
Affiliation(s)
- Haodi Dong
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jing Chen
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Wei
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Zimeng Wei
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Ziqing Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Kun Zhu
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yufan Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Qianqian Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuting Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yuhan Wu
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yan Liang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Yige Zeng
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Qile Guo
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Mingxi Li
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Sisi Shan
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Han Wang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Mengyue Niu
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Isabella Yunfei Zeng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People’s Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
28
|
Wimalawansa SJ. Unveiling the Interplay-Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2. BIOLOGY 2024; 13:831. [PMID: 39452140 PMCID: PMC11504239 DOI: 10.3390/biology13100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024]
Abstract
The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells. Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 expression, vitamin D increases it, counteracting the virus's harmful effects. Vitamin D's beneficial actions are mediated through complex molecular mechanisms involving innate and adaptive immune systems. Meanwhile, vitamin D status [25(OH)D concentration] is inversely correlated with severity, complications, and mortality rates from COVID-19. This study explores mechanisms through which vitamin D inhibits SARS-CoV-2 replication, including the suppression of transcription enzymes, reduced inflammation and oxidative stress, and increased expression of neutralizing antibodies and antimicrobial peptides. Both hypovitaminosis D and SARS-CoV-2 elevate renin levels, the rate-limiting step in the renin-angiotensin-aldosterone system (RAS); it increases ACE-1 but reduces ACE-2 expression. This imbalance leads to elevated levels of the pro-inflammatory, pro-coagulatory, and vasoconstricting peptide angiotensin-II (Ang-II), leading to widespread inflammation. It also causes increased membrane permeability, allowing fluid and viruses to infiltrate soft tissues, lungs, and the vascular system. In contrast, sufficient vitamin D levels suppress renin expression, reducing RAS activity, lowering ACE-1, and increasing ACE-2 levels. ACE-2 cleaves Ang-II to generate Ang(1-7), a vasodilatory, anti-inflammatory, and anti-thrombotic peptide that mitigates oxidative stress and counteracts the harmful effects of SARS-CoV-2. Excess ACE-2 molecules spill into the bloodstream as soluble receptors, neutralizing and facilitating the destruction of the virus. These combined mechanisms reduce viral replication, load, and spread. Hence, vitamin D facilitates rapid recovery and minimizes transmission to others. Overall, vitamin D enhances the immune response and counteracts the pathological effects of SARS-CoV-2. Additionally, data suggests that widely used anti-hypertensive agents-angiotensin receptor blockers and ACE inhibitors-may lessen the adverse impacts of SARS-CoV-2, although they are less potent than vitamin D.
Collapse
|
29
|
Ashoor D, Marzouq M, Fathallah MD. Comparison of the Neutralization Power of Sotrovimab Against SARS-CoV-2 Variants: Development of a Rapid Computational Method. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2024; 5:e58018. [PMID: 39388246 PMCID: PMC11502979 DOI: 10.2196/58018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The rapid evolution of SARS-CoV-2 imposed a huge challenge on disease control. Immune evasion caused by genetic variations of the SARS-CoV-2 spike protein's immunogenic epitopes affects the efficiency of monoclonal antibody-based therapy of COVID-19. Therefore, a rapid method is needed to evaluate the efficacy of the available monoclonal antibodies against the new emerging variants or potential novel variants. OBJECTIVE The aim of this study is to develop a rapid computational method to evaluate the neutralization power of anti-SARS-CoV-2 monoclonal antibodies against new SARS-CoV-2 variants and other potential new mutations. METHODS The amino acid sequence of the extracellular domain of the spike proteins of the severe acute respiratory syndrome coronavirus (GenBank accession number YP_009825051.1) and SARS-CoV-2 (GenBank accession number YP_009724390.1) were used to create computational 3D models for the native spike proteins. Specific mutations were introduced to the curated sequence to generate the different variant spike models. The neutralization potential of sotrovimab (S309) against these variants was evaluated based on its molecular interactions and Gibbs free energy in comparison to a reference model after molecular replacement of the reference receptor-binding domain with the variant's receptor-binding domain. RESULTS Our results show a loss in the binding affinity of the neutralizing antibody S309 with both SARS-CoV and SARS-CoV-2. The binding affinity of S309 was greater to the Alpha, Beta, Gamma, and Kappa variants than to the original Wuhan strain of SARS-CoV-2. However, S309 showed a substantially decreased binding affinity to the Delta and Omicron variants. Based on the mutational profile of Omicron subvariants, our data describe the effect of the G339H and G339D mutations and their role in escaping antibody neutralization, which is in line with published clinical reports. CONCLUSIONS This method is rapid, applicable, and of interest to adapt the use of therapeutic antibodies to the treatment of emerging variants. It could be applied to antibody-based treatment of other viral infections.
Collapse
Affiliation(s)
- Dana Ashoor
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Maryam Marzouq
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - M-Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
30
|
Duyvesteyn HME, Dijokaite-Guraliuc A, Liu C, Supasa P, Kronsteiner B, Jeffery K, Stafford L, Klenerman P, Dunachie SJ, Mongkolsapaya J, Fry EE, Ren J, Stuart DI, Screaton GR. Concerted deletions eliminate a neutralizing supersite in SARS-CoV-2 BA.2.87.1 spike. Structure 2024; 32:1594-1602.e6. [PMID: 39173622 DOI: 10.1016/j.str.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BA.2.87.1 represents a major shift in the BA.2 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is unusual in having two lengthy deletions of polypeptide in the spike (S) protein, one of which removes a beta-strand. Here we investigate its neutralization by a variety of sera from infected and vaccinated individuals and determine its spike (S) ectodomain structure. The BA.2.87.1 receptor binding domain (RBD) is structurally conserved and the RBDs are tightly packed in an "all-down" conformation with a small rotation relative to the trimer axis as compared to the closest previously observed conformation. The N-terminal domain (NTD) maintains a remarkably similar structure overall; however, the rearrangements resulting from the deletions essentially destroy the so-called supersite epitope and eliminate one glycan site, while a mutation creates an additional glycan site, effectively shielding another NTD epitope. BA.2.87.1 is relatively easily neutralized but acquisition of additional mutations in the RBD could increase antibody escape allowing it to become a dominant sub-lineage.
Collapse
Affiliation(s)
- Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK
| | - Aiste Dijokaite-Guraliuc
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Kronsteiner
- NDM Centre For Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lizzie Stafford
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Asor R, Olerinyova A, Burnap SA, Kushwah MS, Soltermann F, Rudden LS, Hensen M, Vasiljevic S, Brun J, Hill M, Chang L, Dejnirattisai W, Supasa P, Mongkolsapaya J, Zhou D, Stuart DI, Screaton GR, Degiacomi MT, Zitzmann N, Benesch JLP, Struwe WB, Kukura P. Oligomerization-driven avidity correlates with SARS-CoV-2 cellular binding and inhibition. Proc Natl Acad Sci U S A 2024; 121:e2403260121. [PMID: 39298475 PMCID: PMC11459207 DOI: 10.1073/pnas.2403260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/28/2024] [Indexed: 09/21/2024] Open
Abstract
Cellular processes are controlled by the thermodynamics of the underlying biomolecular interactions. Frequently, structural investigations use one monomeric binding partner, while ensemble measurements of binding affinities generally yield one affinity representative of a 1:1 interaction, despite the majority of the proteome consisting of oligomeric proteins. For example, viral entry and inhibition in SARS-CoV-2 involve a trimeric spike surface protein, a dimeric angiotensin-converting enzyme 2 (ACE2) cell-surface receptor and dimeric antibodies. Here, we reveal that cooperativity correlates with infectivity and inhibition as opposed to 1:1 binding strength. We show that ACE2 oligomerizes spike more strongly for more infectious variants, while exhibiting weaker 1:1 affinity. Furthermore, we find that antibodies use induced oligomerization both as a primary inhibition mechanism and to enhance the effects of receptor-site blocking. Our results suggest that naive affinity measurements are poor predictors of potency, and introduce an antibody-based inhibition mechanism for oligomeric targets. More generally, they point toward a much broader role of induced oligomerization in controlling biomolecular interactions.
Collapse
Affiliation(s)
- Roi Asor
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Anna Olerinyova
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Sean A. Burnap
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Manish S. Kushwah
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Lucas S.P. Rudden
- Department of Physics, Durham University, DurhamDH1 3LE, United Kingdom
| | - Mario Hensen
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Snežana Vasiljevic
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Juliane Brun
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Michelle Hill
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Liu Chang
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, OxfordOX3 7FZ, United Kingdom
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok10700, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, OxfordOX3 7FZ, United Kingdom
| | - Daming Zhou
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
- Diamond Light Source (United Kingdom), Harwell Science and Innovation Campus, DidcotOX110DE, United Kingdom
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7BN, United Kingdom
- Oxford University Hospitals National Health Service Foundation Trust, OxfordOX3 7JH, United Kingdom
| | | | - Nicole Zitzmann
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Justin L. P. Benesch
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Weston B. Struwe
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
32
|
Schoefbaenker M, Günther T, Lorentzen EU, Romberg ML, Hennies MT, Neddermeyer R, Müller MM, Mellmann A, Bojarzyn CR, Lenz G, Stelljes M, Hrincius ER, Vollenberg R, Ludwig S, Tepasse PR, Kühn JE. Characterisation of the antibody-mediated selective pressure driving intra-host evolution of SARS-CoV-2 in prolonged infection. PLoS Pathog 2024; 20:e1012624. [PMID: 39405332 PMCID: PMC11508484 DOI: 10.1371/journal.ppat.1012624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/25/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Neutralising antibodies against the SARS-CoV-2 spike (S) protein are major determinants of protective immunity, though insufficient antibody responses may cause the emergence of escape mutants. We studied the humoral immune response causing intra-host evolution in a B-cell depleted, haemato-oncologic patient experiencing clinically severe, prolonged SARS-CoV-2 infection with a virus of lineage B.1.177.81. Following bamlanivimab treatment at an early stage of infection, the patient developed a bamlanivimab-resistant mutation, S:S494P. After five weeks of apparent genetic stability, the emergence of additional substitutions and deletions within the N-terminal domain (NTD) and the receptor binding domain (RBD) of S was observed. Notably, the composition and frequency of escape mutations changed in a short period with an unprecedented dynamic. The triple mutant S:Delta141-4 E484K S494P became dominant until virus elimination. Routine serology revealed no evidence of an antibody response in the patient. A detailed analysis of the variant-specific immune response by pseudotyped virus neutralisation test, surrogate virus neutralisation test, and immunoglobulin-capture enzyme immunoassay showed that the onset of an IgM-dominated antibody response coincided with the appearance of escape mutations. The formation of neutralising antibodies against S:Delta141-4 E484K S494P correlated with virus elimination. One year later, the patient experienced clinically mild re-infection with Omicron BA.1.18, which was treated with sotrovimab and resulted in an increase in Omicron-reactive antibodies. In conclusion, the onset of an IgM-dominated endogenous immune response in an immunocompromised patient coincided with the appearance of additional mutations in the NTD and RBD of S in a bamlanivimab-resistant virus. Although virus elimination was ultimately achieved, this humoral immune response escaped detection by routine diagnosis and created a situation temporarily favouring the rapid emergence of various antibody escape mutants with known epidemiological relevance.
Collapse
Affiliation(s)
| | - Theresa Günther
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Eva Ulla Lorentzen
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Marc Tim Hennies
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Rieke Neddermeyer
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Matthias Stelljes
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | | | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Joachim Ewald Kühn
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
33
|
Ruiz F, Foreman WB, Lilly M, Baharani VA, Depierreux DM, Chohan V, Taylor AL, Guenthoer J, Ralph D, Matsen IV FA, Chu HY, Bieniasz PD, Côté M, Starr TN, Overbaugh J. Delineating the functional activity of antibodies with cross-reactivity to SARS-CoV-2, SARS-CoV-1 and related sarbecoviruses. PLoS Pathog 2024; 20:e1012650. [PMID: 39466880 PMCID: PMC11542851 DOI: 10.1371/journal.ppat.1012650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The recurring spillover of pathogenic coronaviruses and demonstrated capacity of sarbecoviruses, such SARS-CoV-2, to rapidly evolve in humans underscores the need to better understand immune responses to this virus family. For this purpose, we characterized the functional breadth and potency of antibodies targeting the receptor binding domain (RBD) of the spike glycoprotein that exhibited cross-reactivity against SARS-CoV-2 variants, SARS-CoV-1 and sarbecoviruses from diverse clades and animal origins with spillover potential. One neutralizing antibody, C68.61, showed remarkable neutralization breadth against both SARS-CoV-2 variants and viruses from different sarbecovirus clades. C68.61, which targets a conserved RBD class 5 epitope, did not select for escape variants of SARS-CoV-2 or SARS-CoV-1 in culture nor have predicted escape variants among circulating SARS-CoV-2 strains, suggesting this epitope is functionally constrained. We identified 11 additional SARS-CoV-2/SARS-CoV-1 cross-reactive antibodies that target the more sequence conserved class 4 and class 5 epitopes within RBD that show activity against a subset of diverse sarbecoviruses with one antibody binding every single sarbecovirus RBD tested. A subset of these antibodies exhibited Fc-mediated effector functions as potent as antibodies that impact infection outcome in animal models. Thus, our study identified antibodies targeting conserved regions across SARS-CoV-2 variants and sarbecoviruses that may serve as therapeutics for pandemic preparedness as well as blueprints for the design of immunogens capable of eliciting cross-neutralizing responses.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - William B. Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen IV
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
34
|
Guenthoer J, Garrett ME, Lilly M, Depierreux DM, Ruiz F, Chi M, Stoddard CI, Chohan V, Yaffe ZA, Sung K, Ralph D, Chu HY, Matsen FA, Overbaugh J. The S2 subunit of spike encodes diverse targets for functional antibody responses to SARS-CoV-2. PLoS Pathog 2024; 20:e1012383. [PMID: 39093891 PMCID: PMC11324185 DOI: 10.1371/journal.ppat.1012383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 virus responsible for the COVID-19 global pandemic has exhibited a striking capacity for viral evolution that drives continued evasion from vaccine and infection-induced immune responses. Mutations in the receptor binding domain of the S1 subunit of the spike glycoprotein have led to considerable escape from antibody responses, reducing the efficacy of vaccines and monoclonal antibody (mAb) therapies. Therefore, there is a need to interrogate more constrained regions of spike, such as the S2 subdomain. Here, we present a collection of S2 mAbs from two SARS-CoV-2 convalescent individuals that target multiple regions in S2, including regions outside of those commonly reported. One of the S2 mAbs, C20.119, which bound to a highly conserved epitope in the fusion peptide, was able to broadly neutralize across SARS-CoV-2 variants, SARS-CoV-1, and closely related zoonotic sarbecoviruses. The majority of the mAbs were non-neutralizing; however, many of them could mediate antibody-dependent cellular cytotoxicity (ADCC) at levels similar to the S1-targeting mAb S309 that was previously authorized for treatment of SARS-CoV-2 infections. Several of the mAbs with ADCC function also bound to spike trimers from other human coronaviruses (HCoVs), such as MERS-CoV and HCoV-HKU1. Our findings suggest S2 mAbs can target diverse epitopes in S2, including functional mAbs with HCoV and sarbecovirus breadth that likely target functionally constrained regions of spike. These mAbs could be developed for potential future pandemics, while also providing insight into ideal epitopes for eliciting a broad HCoV response.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Margaret Chi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caitlin I. Stoddard
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Gong X, Peng L, Wang F, Liu J, Tang Y, Peng Y, Niu S, Yin J, Guo L, Lu H, Liu Y, Yang Y. Repeated Omicron infection dampens immune imprinting from previous vaccination and induces broad neutralizing antibodies against Omicron sub-variants. J Infect 2024; 89:106208. [PMID: 38908522 DOI: 10.1016/j.jinf.2024.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Similar with influenza virus, antigenic drift is highly relevant to SARS-CoV-2 evolution, and immune imprinting has been found to limit the performance of updated vaccines based on the emerging variants of SARS-CoV-2. We aimed to investigate whether repeated exposure to Omicron variant could reduce the immune imprinting from previous vaccination. METHODS A total of 194 participants with different status of vaccination (unvaccinated, regular vaccination and booster vaccination) confirmed for first infection and re-infection with BA.5, BF.7 and XBB variants were enrolled, and the neutralizing profiles against wild type (WT) SARS-CoV-2 and Omicron sub-variants were analyzed. RESULTS Neutralizing potency against the corresponding infected variant is significantly hampered along with the doses of vaccination during first infection. However, for the participants with first infection of BA.5/BF.7 variants and re-infection of XBB variant, immune imprinting was obviously alleviated, indicated as significantly increased ratio of the corresponding infected variant/WT ID50 titers and higher percentage of samples with high neutralizing activities (ID50 > 500) against BA.5, BF.7 and XBB variants. Moreover, repeated Omicron infection could induce strong neutralizing potency with broad neutralizing profiles against a series of other Omicron sub-variants, both in the vaccine naive and vaccine experienced individuals. CONCLUSIONS Our results demonstrate that repeated Omicron infection dampens immune imprinting from vaccination with WT SARS-CoV-2 and induces broad neutralizing profiles against Omicron sub-variants.
Collapse
Affiliation(s)
- Xiaohua Gong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Ling Peng
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Fuxiang Wang
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, China
| | - Yimin Tang
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China
| | - Juzhen Yin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China
| | - Liping Guo
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China; Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, China; National Clinical Research Center for Infectious Disease, Shenzhen, China.
| |
Collapse
|
36
|
Driouich JS, Cochin M, Lingas G, Luciani L, Baronti C, Bernadin O, Gilles M, Villarroel PMS, Moureau G, Petit PR, Dupont A, Izopet J, Kamar N, Autran B, Paintaud G, Caillard S, le Bourgeois A, Richez C, Couzi L, Xhaard A, Marjanovic Z, Avouac J, Jacquet C, Anglicheau D, Cheminant M, Nguyen S, Terrier B, Gottenberg JE, Besson C, Letrou S, Tine J, Basilua JM, Angoulvant D, Tardivon C, Blancho G, Martin-Blondel G, Yazdanpanah Y, Mentré F, Lévy V, Touret F, Guedj J, de Lamballerie X, Nougairède A. Preclinical in vivo assessment of the activity of AZD7442 anti-SARS-CoV-2 monoclonal antibodies against Omicron sublineages. Biomed Pharmacother 2024; 177:116988. [PMID: 38897157 DOI: 10.1016/j.biopha.2024.116988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Therapeutic monoclonal antibodies have been successful in protecting vulnerable populations against SARS-CoV-2. However, their effectiveness has been hampered by the emergence of new variants. To adapt the therapeutic landscape, health authorities have based their recommendations mostly on in vitro neutralization tests. However, these do not provide a reliable understanding of the changes in the dose-effect relationship and how they may translate into clinical efficacy. Taking the example of EvusheldTM (AZD7442), we aimed to investigate how in vivo data can provide critical quantitative results and project clinical effectiveness. We used the Golden Syrian hamster model to estimate 90 % effective concentrations (EC90) of AZD7442 in vivo against SARS-CoV-2 Omicron BA.1, BA.2 and BA.5 variants. While our in vivo results confirmed the partial loss of AZD7442 activity for BA.1 and BA.2, they showed a much greater loss of efficacy against BA.5 than that obtained in vitro. We analyzed in vivo EC90s in perspective with antibody levels measured in a cohort of immunocompromised patients who received 300 mg of AZD7442. We found that a substantial proportion of patients had serum levels of anti-SARS-CoV-2 spike protein IgG above the estimated in vivo EC90 for BA.1 and BA.2 (21 % and 92 % after 1 month, respectively), but not for BA.5. These findings suggest that AZD7442 is likely to retain clinical efficacy against BA.2 and BA.1, but not against BA.5. Overall, the present study illustrates the importance of complementing in vitro investigations by preclinical studies in animal models to help predict the efficacy of monoclonal antibodies in humans.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/drug effects
- Mesocricetus
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/immunology
- COVID-19/immunology
- COVID-19/virology
- Humans
- Cricetinae
- COVID-19 Drug Treatment
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Male
- Disease Models, Animal
- Betacoronavirus/immunology
- Betacoronavirus/drug effects
- Drug Evaluation, Preclinical/methods
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
Collapse
Affiliation(s)
- Jean-Sélim Driouich
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France.
| | - Maxime Cochin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | | | - Léa Luciani
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Cécile Baronti
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Ornéllie Bernadin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Magali Gilles
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | | | - Grégory Moureau
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Paul-Rémi Petit
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Axelle Dupont
- Université de Paris Cité, IAME, INSERM, Paris F-75018, France; AP-HP, Hôpital Bichat, Département d'Épidémiologie, Biostatistique et Recherche Clinique, Paris F-75018, France
| | - Jacques Izopet
- CHU Toulouse, Hôpital Purpan, Laboratoire de Virologie, National Reference Center for Hepatitis E, Toulouse 31300, France; Inserm UMR 1291, CNRS UMR5051, Université Toulouse III, Toulouse 31000, France
| | - Nassim Kamar
- Département de Néphrologie et Transplantation d'Organes, CHU Rangueil, Toulouse 31059, France
| | - Brigitte Autran
- Sorbonne-Université, Cimi-Paris, Inserm U1135, CNRS ERL8255, UPMC CR7, Team "NK and T Cell Immunity, Infections and Cancer", Paris, France
| | - Gilles Paintaud
- Université de Tours, EA4245 Transplantation, Immunology and Inflammation, Tours, France
| | - Sophie Caillard
- Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg 67000, France; Inserm UMR S1109 Labex Transplantex, Fédération de Médecine Translationnelle, Strasbourg University, Strasbourg, France
| | - Amandine le Bourgeois
- Service d'hématologie clinique, CHU Nantes, 1 place Alexis Ricordeau, Nantes 44000, France
| | - Christophe Richez
- Hôpital Pellegrin, CHU de Bordeaux, Service de Rhumatologie, Centre de référence des maladies autoimmunes systémiques rares (RESO), UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Lionel Couzi
- Nephrologie-Transplantation-Dialyse, CHU Bordeaux, Bordeaux, France; CNRS-UMR 5164 Immuno ConcEpT, Université de Bordeaux, Bordeaux, France
| | - Aliénor Xhaard
- Service d'hématologie greffe Hôpital Saint-Louis, APHP, Université de Paris Cité, Paris, France
| | - Zora Marjanovic
- Sorbonne University, Paris, France; Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, Paris, France; INSERM, UMRs 938, Paris, France
| | - Jerome Avouac
- Université de Paris Service de Rhumatologie, Hôpital Cochin, AP-HP, CUP, 27 rue du Faubourg Saint-Jacques, Paris 75014, France
| | - Caroline Jacquet
- Service d'Hématologie, CHRU Nancy, Hôpitaux Brabois, Vandoeuvre les Nancy, France
| | - Dany Anglicheau
- Department of Nephrology and kidney transplantation, Necker Hospital, APHP and Université de Paris Cité, Paris, France
| | - Morgane Cheminant
- Clinical Hematology, Necker-Enfants Malades University Hospital, AP-HP, F-75015, Université de Paris Cité, Paris, France
| | - Stéphanie Nguyen
- Sorbonne université, Groupe Hospitalier Pitié-Salpêtrière APHP, Service d'Hématologie clinique, Pavillon Georges Heuyer, 47-83 boulevard de l'Hôpital, Paris Cedex 13 75651, France; Sorbonne Université, Inserm CNRS 1135 "NK and T Cell Immunity, Virus and Cancer", Centre d'Immunologie et des Pathologies Infectieuses (CIMI), UPMC UMRS CR7-Inserm U1135-CNRS ERL 8255, faculté de Médecine Sorbonne Université, Site Pitié-Salpêtrière, 91 boulevard de l'Hôpital, Paris 75013, France
| | - Benjamin Terrier
- Assistance Publique-Hôpitaux de Paris, Département de Médecine Interne, Centre de Référence National pour les maladies auto-immunes systémiques rares, Hôpital Cochin Paris, Université Paris, France
| | - Jacques Eric Gottenberg
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; CNR RESO, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France; Laboratoire d'Immunopathologie et de Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
| | - Caroline Besson
- Université Paris-Saclay, UVSQ, CESP-INSERM1018, CH de Versailles, Le Chesnay 78150, France
| | - Sophie Letrou
- AP-HP, Hôpital Bichat, Département d'Épidémiologie, Biostatistique et Recherche Clinique, Paris F-75018, France
| | - Josephine Tine
- ANRS|Emerging Infectious Diseases, Department of Clinical Research, Paris, France
| | | | - Denis Angoulvant
- Service de Cardiologie, CHRU de Tours & UMR Inserm 1327 ISCHEMIA "Membrane Signaling and Inflammation in Reperfusion Injuries", Université de Tours, Tours F37000, France
| | - Coralie Tardivon
- AP-HP, Hôpital Bichat, Département d'Épidémiologie, Biostatistique et Recherche Clinique, Paris F-75018, France
| | - Gilles Blancho
- CHU Nantes, Nantes Université, Service de Néphrologie - Immunologie Clinique, ITUN, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes F-44000, France
| | - Guillaume Martin-Blondel
- Service des Maladies Infectieuses et Tropicales, CHU de Toulouse & Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, France
| | | | - France Mentré
- Université de Paris Cité, IAME, INSERM, Paris F-75018, France; AP-HP, Hôpital Bichat, Département d'Épidémiologie, Biostatistique et Recherche Clinique, Paris F-75018, France
| | - Vincent Lévy
- Département de Recherche Clinique, Hôpital Avicenne, APHP, Université Sorbonne Paris Nord and CRESS INSERM U1153, ECSTRRA Team, Paris, France
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Jérémie Guedj
- Université de Paris Cité, IAME, INSERM, Paris F-75018, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France.
| |
Collapse
|
37
|
Suryadevara N, Otrelo-Cardoso AR, Kose N, Hu YX, Binshtein E, Wolters RM, Greninger AL, Handal LS, Carnahan RH, Moscona A, Jardetzky TS, Crowe JE. Functional and structural basis of human parainfluenza virus type 3 neutralization with human monoclonal antibodies. Nat Microbiol 2024; 9:2128-2143. [PMID: 38858594 DOI: 10.1038/s41564-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/02/2024] [Indexed: 06/12/2024]
Abstract
Human parainfluenza virus type 3 (hPIV3) is a respiratory pathogen that can cause severe disease in older people and infants. Currently, vaccines against hPIV3 are in clinical trials but none have been approved yet. The haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Here we describe naturally occurring potently neutralizing human antibodies directed against both surface glycoproteins of hPIV3. We isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. One HN-binding monoclonal antibody (mAb), designated PIV3-23, exhibited functional attributes including haemagglutination and neuraminidase inhibition. We also delineated the structural basis of neutralization for two HN and one F mAbs. MAbs that neutralized hPIV3 in vitro protected against infection and disease in vivo in a cotton rat model of hPIV3 infection, suggesting correlates of protection for hPIV3 and the potential clinical utility of these mAbs.
Collapse
MESH Headings
- Animals
- Parainfluenza Virus 3, Human/immunology
- Parainfluenza Virus 3, Human/genetics
- Humans
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Sigmodontinae
- Viral Fusion Proteins/immunology
- Viral Fusion Proteins/chemistry
- HN Protein/immunology
- HN Protein/chemistry
- HN Protein/genetics
- Respirovirus Infections/immunology
- Respirovirus Infections/virology
- Disease Models, Animal
- Neutralization Tests
- B-Lymphocytes/immunology
- Models, Molecular
Collapse
Affiliation(s)
| | | | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yao-Xiong Hu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael M Wolters
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anne Moscona
- Departments of Pediatrics, Microbiology and Immunology, and Physiology and Cellular Biophysics, and Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
38
|
Cui L, Li T, Lan M, Zhou M, Xue W, Zhang S, Wang H, Hong M, Zhang Y, Yuan L, Sun H, Ye J, Zheng Q, Guan Y, Gu Y, Xia N, Li S. A cryptic site in class 5 epitope of SARS-CoV-2 RBD maintains highly conservation across natural isolates. iScience 2024; 27:110208. [PMID: 39015149 PMCID: PMC11251093 DOI: 10.1016/j.isci.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024] Open
Abstract
The emergence of SARS-CoV-2 variants raises concerns about the efficacy of existing COVID-19 vaccines and therapeutics. Previously, we identified a conserved cryptic class 5 epitope of SARS-CoV-2 receptor binding domain (RBD) by two cross-neutralizing antibodies 7D6 and 6D6. Intriguingly, this site remains resistant to substantial mutations occurred in ever-changing SARS-CoV-2 subvariants. As compared to class 3 antibody S309, 6D6 maintains broad and consistent neutralizing activities against SARS-CoV-2 variants. Furthermore, 6D6 effectively protected hamster from the virulent Beta strain. Sequence alignment of approximately 6 million documented SARS-CoV-2 isolates revealed that 6D6 epitope maintains an exceptionally high conservation rate (99.92%). Structural analysis demonstrated that all 33 mutations accumulated in XBB.1.5 since the original strain do not perturb the binding 6D6 to RBD, in line with the sequence analysis throughout the antigenicity evolution of SARS-CoV-2. These findings suggest the potential of this epitope serving as a critical determinant for vaccines and therapeutic design.
Collapse
Affiliation(s)
- Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Miaolin Lan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ming Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Minqing Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Yali Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Jianghui Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong 999077, China
- Joint Institute of Virology (Shantou University and University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou 515063, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
39
|
Cai Y, Diallo S, Rosenthal K, Ren K, Flores DJ, Dippel A, Oganesyan V, van Dyk N, Chen X, Cantu E, Choudhary R, Sulikowski M, Adissu H, Chawla B, Kar S, Liu C, Dijokaite-Guraliuc A, Mongkolsapaya J, Rajan S, Loo YM, Beavon R, Webber C, Chang LJ, Thomas S, Clegg L, Zhang H, Screaton GR, Philbin N, Harre M, Selim A, Martinez-Alier N, Uriel A, Cohen TS, Perez JL, Esser MT, Blair W, Francica JR. AZD3152 neutralizes SARS-CoV-2 historical and contemporary variants and is protective in hamsters and well tolerated in adults. Sci Transl Med 2024; 16:eado2817. [PMID: 38924429 DOI: 10.1126/scitranslmed.ado2817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in variants that can escape neutralization by therapeutic antibodies. Here, we describe AZD3152, a SARS-CoV-2-neutralizing monoclonal antibody designed to provide improved potency and coverage against emerging variants. AZD3152 binds to the back left shoulder of the SARS-CoV-2 spike protein receptor binding domain and prevents interaction with the human angiotensin-converting enzyme 2 receptor. AZD3152 potently neutralized a broad panel of pseudovirus variants, including the currently dominant Omicron variant JN.1 but has reduced potency against XBB subvariants containing F456L. In vitro studies confirmed F456L resistance and additionally identified T415I and K458E as escape mutations. In a Syrian hamster challenge model, prophylactic administration of AZD3152 protected hamsters from weight loss and inflammation-related lung pathologies and reduced lung viral load. In the phase 1 sentinel safety cohort of the ongoing SUPERNOVA study (ClinicalTrials.gov: NCT05648110), a single 600-mg intramuscular injection of AZD5156 (containing 300 mg each of AZD3152 and cilgavimab) was well tolerated in adults through day 91. Observed serum concentrations of AZD3152 through day 91 were similar to those observed with cilgavimab and consistent with predictions for AZD7442, a SARS-CoV-2-neutralizing antibody combination of cilgavimab and tixagevimab, in a population pharmacokinetic model. On the basis of its pharmacokinetic characteristics, AZD3152 is predicted to provide durable protection against symptomatic coronavirus disease 2019 caused by susceptible SARS-CoV-2 variants, such as JN.1, in humans.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/drug effects
- Humans
- COVID-19/virology
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Cricetinae
- COVID-19 Drug Treatment
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Mesocricetus
- Female
- Male
- Adult
- Antibodies, Viral/immunology
- Mutation/genetics
- Antibodies, Monoclonal
- Angiotensin-Converting Enzyme 2/metabolism
- Viral Load/drug effects
Collapse
Affiliation(s)
- Yingyun Cai
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Seme Diallo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Kim Rosenthal
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Kuishu Ren
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Daniel J Flores
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Andrew Dippel
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Vaheh Oganesyan
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nydia van Dyk
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Xiaoru Chen
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Erin Cantu
- Imaging and Data Analytics, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Rakesh Choudhary
- Imaging and Data Analytics, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | - Hibret Adissu
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | | | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Aiste Dijokaite-Guraliuc
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand, Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Saravanan Rajan
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Yueh-Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Rohini Beavon
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Chris Webber
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Lee-Jah Chang
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Steven Thomas
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Lindsay Clegg
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Huixia Zhang
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Nora Philbin
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Mark Harre
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Abdulhafez Selim
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Nuria Martinez-Alier
- Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 8PA, UK
| | - Alison Uriel
- Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital (Manchester University NHS Foundation Trust), Manchester M8 5RB, UK
| | - Taylor S Cohen
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - John L Perez
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Wade Blair
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Joseph R Francica
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| |
Collapse
|
40
|
Ferretti F, Kardar M. Universal characterization of epitope immunodominance from a multiscale model of clonal competition in germinal centers. Phys Rev E 2024; 109:064409. [PMID: 39020898 DOI: 10.1103/physreve.109.064409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 07/20/2024]
Abstract
We introduce a multiscale model for affinity maturation, which aims to capture the intraclonal, interclonal, and epitope-specific organization of the B-cell population in a germinal center. We describe the evolution of the B-cell population via a quasispecies dynamics, with species corresponding to unique B-cell receptors (BCRs), where the desired multiscale structure is reflected on the mutational connectivity of the accessible BCR space, and on the statistical properties of its fitness landscape. Within this mathematical framework, we study the competition among classes of BCRs targeting different antigen epitopes, and we construct an effective immunogenic space where epitope immunodominance relations can be universally characterized. We finally study how varying the relative composition of a mixture of antigens with variable and conserved domains allows for a parametric exploration of this space, and we identify general principles for the rational design of two-antigen cocktails.
Collapse
Affiliation(s)
- Federica Ferretti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
41
|
Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Kit Tan T, Rijal P, Chen CP, Cheng SH, Lee WH, Chou YC, Townsend AR, Ma C, Huang KYA. The presence of broadly neutralizing anti-SARS-CoV-2 RBD antibodies elicited by primary series and booster dose of COVID-19 vaccine. PLoS Pathog 2024; 20:e1012246. [PMID: 38857264 PMCID: PMC11192315 DOI: 10.1371/journal.ppat.1012246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/21/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Antibody-mediated immunity plays a key role in protection against SARS-CoV-2. We characterized B-cell-derived anti-SARS-CoV-2 RBD antibody repertoires from vaccinated and infected individuals and elucidate the mechanism of action of broadly neutralizing antibodies and dissect antibodies at the epitope level. The breadth and clonality of anti-RBD B cell response varies among individuals. The majority of neutralizing antibody clones lose or exhibit reduced activities against Beta, Delta, and Omicron variants. Nevertheless, a portion of anti-RBD antibody clones that develops after a primary series or booster dose of COVID-19 vaccination exhibit broad neutralization against emerging Omicron BA.2, BA.4, BA.5, BQ.1.1, XBB.1.5 and XBB.1.16 variants. These broadly neutralizing antibodies share genetic features including a conserved usage of the IGHV3-53 and 3-9 genes and recognize three clustered epitopes of the RBD, including epitopes that partially overlap the classically defined set identified early in the pandemic. The Fab-RBD crystal and Fab-Spike complex structures corroborate the epitope grouping of antibodies and reveal the detailed binding mode of broadly neutralizing antibodies. Structure-guided mutagenesis improves binding and neutralization potency of antibody with Omicron variants via a single amino-substitution. Together, these results provide an immunological basis for partial protection against severe COVID-19 by the ancestral strain-based vaccine and indicate guidance for next generation monoclonal antibody development and vaccine design.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Alain R. Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ying A. Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Liu C, Zhou D, Dijokaite-Guraliuc A, Supasa P, Duyvesteyn HME, Ginn HM, Selvaraj M, Mentzer AJ, Das R, de Silva TI, Ritter TG, Plowright M, Newman TAH, Stafford L, Kronsteiner B, Temperton N, Lui Y, Fellermeyer M, Goulder P, Klenerman P, Dunachie SJ, Barton MI, Kutuzov MA, Dushek O, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. A structure-function analysis shows SARS-CoV-2 BA.2.86 balances antibody escape and ACE2 affinity. Cell Rep Med 2024; 5:101553. [PMID: 38723626 PMCID: PMC11148769 DOI: 10.1016/j.xcrm.2024.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility.
Collapse
Affiliation(s)
- Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | | | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | - Helen M Ginn
- Centre for Free Electron Laser Science, Hamburg, Germany
| | - Muneeswaran Selvaraj
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Raksha Das
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas G Ritter
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Lizzie Stafford
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich Chatham Maritime, Kent ME4 4TB, UK
| | - Yuan Lui
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Martin Fellermeyer
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Michael I Barton
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Mikhail A Kutuzov
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Omer Dushek
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK; Sir William Dunn School of Pathology, Oxford, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Nurdin A, Movieta Nency Y, Maddeppungeng M, Sekartini R, Mulia Sari R, Surachman F, Fitry Yani F, Raveinal, Anggrainy F, Hafiz A, Linosefa, Machmud R, Awaliyah Deza P, Rujiana V, Bella Rahimi M, Farhanah N, Gundi Pramudo S, Hapsari R, Tri Anantyo D, Mulyono, Mahati E, Maharani N, Darma S, Husni Esa Darussalam A, Shakinah S, Nasrum Massi M, Soedjatmiko. Immunogenicity and safety of SARS-CoV-2 recombinant protein subunit vaccine (IndoVac) adjuvanted with alum and CpG 1018 in Indonesian adults: A phase 3, randomized, active-controlled, multicenter trial. Vaccine 2024; 42:3009-3017. [PMID: 38575433 DOI: 10.1016/j.vaccine.2024.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Bio Farma has developed a recombinant protein subunit vaccine (IndoVac) that is indicated for active immunization in population of all ages. This article reported the results of the phase 3 immunogenicity and safety study in Indonesian adults aged 18 years and above. METHODS We conducted a randomized, active-controlled, multicenter, prospective intervention study to evaluate the immunogenicity and safety of IndoVac in adults aged 18 years and above. Participants who were SARS-CoV-2 vaccine-naïve received two doses of either IndoVac or control (Covovax) with 28 days interval between doses and were followed up until 12 months after complete vaccination. RESULTS A total of 4050 participants were enrolled from June to August 2022 and received at least one dose of vaccine. The geometric mean ratio (GMR) of neutralizing antibody at 14 days after the second dose was 1.01 (95 % confidence interval (CI) 0.89-1.16), which met the WHO non-inferiority criteria for immunobridging (95 % CI lower bound > 0.67). The antibody levels were maintained through 12 months after the second dose. The incidence rate of adverse events (AEs) were 27.95 % in IndoVac group and 32.15 % in Covovax group with mostly mild intensity (27.70 %). The most reported solicited AEs were pain (14.69 %) followed by myalgia (7.48 %) and fatigue (6.77 %). Unsolicited AEs varied, with each of the incidence rate under 5 %. There were no serious AEs assessed as possibly, probably, or likely related to vaccine. CONCLUSIONS IndoVac in adults showed favourable safety profile and elicited non-inferior immune response to Covovax. (ClinicalTrials.gov: NCT05433285, Indonesian Clinical Research Registry: INA-R5752S9).
Collapse
Affiliation(s)
| | | | | | - Rini Sekartini
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | | | | - Raveinal
- Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | | | - Al Hafiz
- Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Linosefa
- Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | | | | | | | | | - Nur Farhanah
- Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | | | | | | | - Mulyono
- Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Endang Mahati
- Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Nani Maharani
- Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Sidrah Darma
- Faculty of Medicine, Universitas Muslim Indonesia, Makassar, Indonesia
| | | | | | | | - Soedjatmiko
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
44
|
Liu C, Das R, Dijokaite-Guraliuc A, Zhou D, Mentzer AJ, Supasa P, Selvaraj M, Duyvesteyn HME, Ritter TG, Temperton N, Klenerman P, Dunachie SJ, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. Emerging variants develop total escape from potent monoclonal antibodies induced by BA.4/5 infection. Nat Commun 2024; 15:3284. [PMID: 38627386 PMCID: PMC11021415 DOI: 10.1038/s41467-024-47393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called 'FLip' mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.
Collapse
Affiliation(s)
- Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Raksha Das
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Alexander J Mentzer
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Piyada Supasa
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Thomas G Ritter
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susanna J Dunachie
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Neil G Paterson
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Mark A Williams
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - David R Hall
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Anzai I, Fujita J, Ono C, Kosaka Y, Miyamoto Y, Shichinohe S, Takada K, Torii S, Taguwa S, Suzuki K, Makino F, Kajita T, Inoue T, Namba K, Watanabe T, Matsuura Y. Characterization of a neutralizing antibody that recognizes a loop region adjacent to the receptor-binding interface of the SARS-CoV-2 spike receptor-binding domain. Microbiol Spectr 2024; 12:e0365523. [PMID: 38415660 PMCID: PMC10986471 DOI: 10.1128/spectrum.03655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Although the global crisis caused by the coronavirus disease 2019 (COVID-19) pandemic is over, the global epidemic of the disease continues. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, initiates infection via the binding of the receptor-binding domain (RBD) of its spike protein to the human angiotensin-converting enzyme II (ACE2) receptor, and this interaction has been the primary target for the development of COVID-19 therapeutics. Here, we identified neutralizing antibodies against SARS-CoV-2 by screening mouse monoclonal antibodies and characterized an antibody, CSW1-1805, that targets a narrow region at the RBD ridge of the spike protein. CSW1-1805 neutralized several variants in vitro and completely protected mice from SARS-CoV-2 infection. Cryo-EM and biochemical analyses revealed that this antibody recognizes the loop region adjacent to the ACE2-binding interface with the RBD in both a receptor-inaccessible "down" state and a receptor-accessible "up" state and could stabilize the RBD conformation in the up-state. CSW1-1805 also showed different binding orientations and complementarity determining region properties compared to other RBD ridge-targeting antibodies with similar binding epitopes. It is important to continuously characterize neutralizing antibodies to address new variants that continue to emerge. Our characterization of this antibody that recognizes the RBD ridge of the spike protein will aid in the development of future neutralizing antibodies.IMPORTANCESARS-CoV-2 cell entry is initiated by the interaction of the viral spike protein with the host cell receptor. Therefore, mechanistic findings regarding receptor recognition by the spike protein help uncover the molecular mechanism of SARS-CoV-2 infection and guide neutralizing antibody development. Here, we characterized a SARS-CoV-2 neutralizing antibody that recognizes an epitope, a loop region adjacent to the receptor-binding interface, that may be involved in the conformational transition of the receptor-binding domain (RBD) of the spike protein from a receptor-inaccessible "down" state into a receptor-accessible "up" state, and also stabilizes the RBD in the up-state. Our mechanistic findings provide new insights into SARS-CoV-2 receptor recognition and guidance for neutralizing antibody development.
Collapse
Grants
- JP16H06429, JP16K21723, JP16H06432 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP16H06429, JP16K21723, JP16H06434 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H02521 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15042 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21H02736 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP25K000013 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K22630 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP223fa627002, JP22am0401030, JP23fk0108659, JP20jk0210021, JP22gm1610010, JP19fk0108113 Japan Agency for Medical Research and Development (AMED)
- JP223fa627002 Japan Agency for Medical Research and Development (AMED)
- JP19fk0108113, JP20fk0108281, JP20pc0101047 Japan Agency for Medical Research and Development (AMED)
- JP20fk0108401, JP21fk0108493 Japan Agency for Medical Research and Development (AMED)
- JP21am0101117, JP17pc0101020 Japan Agency for Medical Research and Development (AMED)
- JPMJOP1861 MEXT | Japan Science and Technology Agency (JST)
- JPMJMS2025 MEXT | Japan Science and Technology Agency (JST)
Collapse
Affiliation(s)
- Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | - Shintaro Shichinohe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kosuke Takada
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shiho Torii
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shuhei Taguwa
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
- JEOL Ltd., Akishima, Tokyo, Japan
| | | | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research and Spring-8 Center, Suita, Osaka, Japan
| | - Tokiko Watanabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
46
|
Zhou D, Supasa P, Liu C, Dijokaite-Guraliuc A, Duyvesteyn HME, Selvaraj M, Mentzer AJ, Das R, Dejnirattisai W, Temperton N, Klenerman P, Dunachie SJ, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. The SARS-CoV-2 neutralizing antibody response to SD1 and its evasion by BA.2.86. Nat Commun 2024; 15:2734. [PMID: 38548763 PMCID: PMC10978878 DOI: 10.1038/s41467-024-46982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Under pressure from neutralising antibodies induced by vaccination or infection the SARS-CoV-2 spike gene has become a hotspot for evolutionary change, leading to the failure of all mAbs developed for clinical use. Most potent antibodies bind to the receptor binding domain which has become heavily mutated. Here we study responses to a conserved epitope in sub-domain-1 (SD1) of spike which have become more prominent because of mutational escape from antibodies directed to the receptor binding domain. Some SD1 reactive mAbs show potent and broad neutralization of SARS-CoV-2 variants. We structurally map the dominant SD1 epitope and provide a mechanism of action by blocking interaction with ACE2. Mutations in SD1 have not been sustained to date, but one, E554K, leads to escape from mAbs. This mutation has now emerged in several sublineages including BA.2.86, reflecting selection pressure on the virus exerted by the increasing prominence of the anti-SD1 response.
Collapse
Affiliation(s)
- Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | - Muneeswaran Selvaraj
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Raksha Das
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok, 10700, Thailand
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
47
|
Inchauste L, Nurtop E, Brisbarre N, Ninove L, Gallian P, de Lamballerie X, Priet S. Exploring cell-free assays for COVID-19 serosurvey. Sci Rep 2024; 14:6096. [PMID: 38480769 PMCID: PMC10938000 DOI: 10.1038/s41598-024-55852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Serosurveys to monitor immunity toward COVID-19 in the population are primarily performed using an ELISA to screen samples for SARS-CoV-2 antibodies, followed by confirmation by a virus neutralization test, which is considered the Gold Standard. However, virus neutralization test may not be feasible for some laboratories because of the requirement for specific facilities and trained personnel. In an attempt to address this limitation, we evaluated three cell-free methods as potential alternatives for assessing SARS-CoV-2 seroprevalence in human population from plasma. We report the establishment of two inhibition ELISAs designed to detect anti-Spike RBD IgG antibodies and a microsphere quantitative suspension array technology assay, based on the Luminex xMAP platform, to measure the presence of antibodies against various SARS-CoV-2 antigens, including anti-RBD. These methods were also compared to a commercial chemiluminescent immunoassay designed for anti-RBD antibodies detection and to the combined ELISA + virus neutralization test strategy. These cell-free assays performed equally to estimate the percentage of positive and negative samples and could be used to determine the prevalence of SARS-CoV-2 antibodies in human population, at least in cohort with high-expected prevalence, without the use of seroneutralization assay.
Collapse
Affiliation(s)
- Lucia Inchauste
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Elif Nurtop
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Nadège Brisbarre
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Établissement Français du Sang Provence Alpes Côte d'Azur et Corse, Marseille, France
| | - Laetitia Ninove
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Pierre Gallian
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Établissement Français du Sang, La Plaine Saint-Denis, Saint-Denis, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Stéphane Priet
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France.
| |
Collapse
|
48
|
Kumar N, Tripathi S, Sharma N, Patiyal S, Devi NL, Raghava GPS. A method for predicting linear and conformational B-cell epitopes in an antigen from its primary sequence. Comput Biol Med 2024; 170:108083. [PMID: 38295479 DOI: 10.1016/j.compbiomed.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/26/2023] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
B-cell is an essential component of the immune system that plays a vital role in providing the immune response against any pathogenic infection by producing antibodies. Existing methods either predict linear or conformational B-cell epitopes in an antigen. In this study, a single method was developed for predicting both types (linear/conformational) of B-cell epitopes. The dataset used in this study contains 3875 B-cell epitopes and 3996 non-B-cell epitopes, where B-cell epitopes consist of both linear and conformational B-cell epitopes. Our primary analysis indicates that certain residues (like Asp, Glu, Lys, and Asn) are more prominent in B-cell epitopes. We developed machine-learning based methods using different types of sequence composition and achieved the highest AUROC of 0.80 using dipeptide composition. In addition, models were developed on selected features, but no further improvement was observed. Our similarity-based method implemented using BLAST shows a high probability of correct prediction with poor sensitivity. Finally, we developed a hybrid model that combines alignment-free (dipeptide based random forest model) and alignment-based (BLAST-based similarity) models. Our hybrid model attained a maximum AUROC of 0.83 with an MCC of 0.49 on the independent dataset. Our hybrid model performs better than existing methods on an independent dataset used in this study. All models were trained and tested on 80 % of the data using a cross-validation technique, and the final model was evaluated on 20 % of the data, called an independent or validation dataset. A webserver and standalone package named "CLBTope" has been developed for predicting, designing, and scanning B-cell epitopes in an antigen sequence available at (https://webs.iiitd.edu.in/raghava/clbtope/).
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sadhana Tripathi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Naorem Leimarembi Devi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
49
|
Zhang Y, Sun J, Zheng J, Li S, Rao H, Dai J, Zhang Z, Wang Y, Liu D, Chen Z, Ran W, Zhu A, Li F, Yan Q, Wang Y, Yu K, Zhang S, Wang D, Tang Y, Liu B, Cheng L, Huo J, Perlman S, Zhao J, Zhao J. Mosaic RBD Nanoparticles Elicit Protective Immunity Against Multiple Human Coronaviruses in Animal Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303366. [PMID: 38105421 PMCID: PMC10916629 DOI: 10.1002/advs.202303366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/27/2023] [Indexed: 12/19/2023]
Abstract
To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (β-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of β-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-β-CoV vaccine.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jian Zheng
- Department of Microbiology and ImmunologyUniversity of IowaIowa CityIA52242USA
| | - Suxiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Haiyue Rao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jun Dai
- Guangzhou Customs District Technology CenterGuangzhou510700P. R. China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yanhong Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Banghui Liu
- State Key Laboratory of Respiratory DiseaseGuangdong Laboratory of Computational BiomedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530P. R. China
| | - Linling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jiandong Huo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
| | - Stanley Perlman
- Department of Microbiology and ImmunologyUniversity of IowaIowa CityIA52242USA
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
- Institute of Infectious diseaseGuangzhou Eighth People's Hospital of Guangzhou Medical UniversityGuangzhou510060P. R. China
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's Hospitalthe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112P. R. China
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
50
|
de Campos-Mata L, Trinité B, Modrego A, Tejedor Vaquero S, Pradenas E, Pons-Grífols A, Rodrigo Melero N, Carlero D, Marfil S, Santiago C, Raïch-Regué D, Bueno-Carrasco MT, Tarrés-Freixas F, Abancó F, Urrea V, Izquierdo-Useros N, Riveira-Muñoz E, Ballana E, Pérez M, Vergara-Alert J, Segalés J, Carolis C, Arranz R, Blanco J, Magri G. A monoclonal antibody targeting a large surface of the receptor binding motif shows pan-neutralizing SARS-CoV-2 activity. Nat Commun 2024; 15:1051. [PMID: 38316751 PMCID: PMC10844294 DOI: 10.1038/s41467-024-45171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Here we report the characterization of 17T2, a SARS-CoV-2 pan-neutralizing human monoclonal antibody isolated from a COVID-19 convalescent individual infected during the first pandemic wave. 17T2 is a class 1 VH1-58/κ3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA+ memory B cell, with a broad neutralizing activity against former and new SARS-CoV-2 variants, including XBB.1.16 and BA.2.86 Omicron subvariants. Consistently, 17T2 demonstrates in vivo prophylactic and therapeutic activity against Omicron BA.1.1 infection in K18-hACE2 mice. Cryo-electron microscopy reconstruction shows that 17T2 binds the BA.1 spike with the RBD in "up" position and blocks the receptor binding motif, as other structurally similar antibodies do, including S2E12. Yet, unlike S2E12, 17T2 retains its neutralizing activity against all variants tested, probably due to a larger RBD contact area. These results highlight the impact of small structural antibody changes on neutralizing performance and identify 17T2 as a potential candidate for future clinical interventions.
Collapse
Affiliation(s)
- Leire de Campos-Mata
- Translational Clinical Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
| | - Andrea Modrego
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
| | - Anna Pons-Grífols
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
| | - Natalia Rodrigo Melero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego Carlero
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
| | - César Santiago
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
| | | | - Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ferran Abancó
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Mónica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Rocío Arranz
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Campus Can Ruti, Badalona, Spain.
- CIBERINFEC, ISCIII, Madrid, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain.
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|