1
|
Chakraborty C, Lo YH, Bhattacharya M, Das A, Wen ZH. Looking beyond the origin of SARS-CoV-2: Significant strategic aspects during the five-year journey of COVID-19 vaccine development. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102527. [PMID: 40291378 PMCID: PMC12032352 DOI: 10.1016/j.omtn.2025.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
It has been five years since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we are also approaching the five-year mark of the COVID-19 pandemic. The vaccine is a significant weapon in combating infectious diseases like SARS-CoV-2. Several vaccines were developed against SARS-CoV-2, and they demonstrated efficacy and safety during these five years. The rapid development of multiple next-generation vaccine candidates in different platforms with very little time is the success story of the vaccine development endeavor. This remarkable success of rapid vaccine development is a new paradigm for fast vaccine development that might help develop infectious diseases and fight against the pandemic. With the completion of five years since the beginning of SARS-CoV-2 origin, we are looking back on the five years and reviewing the milestones, vaccine platforms, animal models, clinical trials, successful collaborations, vaccine safety, real-world effectiveness, and challenges. Lessons learned during these five years will help us respond to public health emergencies and to fight the battle against future pandemics.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan
- Department of Nursing, Meiho University, Neipu Township, Pingtung County 91200, Taiwan
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, #70 Lien-Hai Road, Kaohsiung 804201, Taiwan
- National Museum of Marine Biology & Aquarium, # 2 Houwan Road, Checheng, Pingtung 94450, Taiwan
| |
Collapse
|
2
|
Ho CH, Casmil IC, Sharma M, Rees T, Enright K, Allan N, Blakney AK. Laminar fluid ejection device enables high yield and preservation of mRNA and SaRNA LNP formulations. Sci Rep 2025; 15:18507. [PMID: 40425752 PMCID: PMC12116890 DOI: 10.1038/s41598-025-03309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
The development of messenger RNA (mRNA) and self-amplifying RNA (saRNA) vaccines has revolutionized modern vaccinology, particularly with the success of lipid nanoparticle (LNP)-based SARS-CoV-2 vaccines. Intranasal administration offers a promising approach for respiratory vaccines, providing mucosal immunity at the primary entry site of pathogens. However, the impact of different aerosolization delivery systems on RNA-LNP stability, recovery volume and functionality is not well understood. In this study, we compare the effects of three intranasal administration devices- a commercial Nebulizer, a commercial Spray, and a Laminar Fluid Ejection (LFE) Device developed by Rocket Science Health- on LNP physicochemical properties, RNA encapsulation efficiency, and functional protein expression level. Our findings demonstrate that high shear forces in the commercial nebulizer delivery system significantly increase LNP particle size (85 nm to 300 nm) and polydispersity index (PDI), leading to RNA degradation and reduced encapsulation efficiency (100-39%). Conversely, the LFE Device preserved LNP structural integrity, achieving the highest RNA encapsulation efficiency (94% for mRNA, 102% for saRNA) and superior functional protein expression (3-fold higher luciferase activity compared to the CM Nebulizer). These results highlight the importance of selecting an appropriate delivery system to optimize RNA-LNP delivery and retention in intranasal applications. Our study supports the LFE Device as a viable candidate for effective RNA-LNP-based mucosal vaccine administration, with potential applications in next-generation RNA therapeutics.
Collapse
Affiliation(s)
- Chia Hao Ho
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Irafasha C Casmil
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | - Tim Rees
- Rocket Science Health, Victoria, BC, Canada
| | | | | | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Kuroda M, Halfmann PJ, Uraki R, Yamayoshi S, Kim T, Armbrust TA, Spyra S, Dahn R, Babujee L, Kawaoka Y. SARS-CoV-2 virus lacking the envelope and membrane open-reading frames as a vaccine platform. Nat Commun 2025; 16:4453. [PMID: 40360482 PMCID: PMC12075476 DOI: 10.1038/s41467-025-59533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
To address the need for broadly protective SARS-CoV-2 vaccines, we developed an attenuated a SARS-CoV-2 vaccine virus that lacks the open reading frames of two viral structural proteins: the envelope (E) and membrane (M) proteins. This vaccine virus (ΔEM) replicates in a cell line stably expressing E and M but not in wild-type cells. Vaccination with ΔEM elicits a CD8 T-cell response against the viral spike and nucleocapsid proteins. Two vaccinations with ΔEM provide better protection of the lower respiratory tissues than a single dose against the Delta and Omicron XBB variants in hamsters. Moreover, ΔEM is effective as a booster in hamsters previously vaccinated with an mRNA-based vaccine, providing higher levels of protection in both respiratory tissues compared to the mRNA vaccine booster. Collectively, our data demonstrate the feasibility of a SARS-CoV-2 ΔEM vaccine candidate virus as a vaccine platform.
Collapse
Affiliation(s)
- Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA.
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, 162-8655, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, 162-8655, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, 162-8655, Japan
| | - Taksoo Kim
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Tammy A Armbrust
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Sam Spyra
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Randall Dahn
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, 162-8655, Japan.
| |
Collapse
|
4
|
Waki K, Tani H, Kawahara E, Saga Y, Shimada T, Yamazaki E, Koike S, Morinaga Y, Isobe M, Kurosawa N. Comprehensive analysis of nasal IgA antibodies induced by intranasal administration of the SARS-CoV-2 spike protein. eLife 2025; 12:RP88387. [PMID: 40338637 PMCID: PMC12061477 DOI: 10.7554/elife.88387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgA), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. Currently, intranasal vaccine efficacy is evaluated based on the measurement of polyclonal antibody titers in nasal lavage fluid. However, how individual multimeric secretory IgA protects the mucosa from SARS-CoV-2 infection remains to be elucidated. To understand the precise contribution and molecular nature of multimeric secretory IgA induced by intranasal vaccines, we developed 99 monoclonal IgA clones from nasal mucosa and 114 monoclonal IgA or IgG clones from nonmucosal tissues of mice that were intranasally immunized with the SARS-CoV-2 spike protein. The nonmucosal IgA clones exhibited shared origins and common and unique somatic mutations with the related nasal IgA clones, indicating that the antigen-specific plasma cells in the nonmucosal tissues originated from B cells stimulated at the nasal mucosa. Comparing the spike protein binding reactivity, angiotensin-converting enzyme-2-blocking, and in vitro SARS-CoV-2 virus neutralization of monomeric and multimeric secretory IgA pairs recognizing different epitopes showed that even non-neutralizing monomeric IgAs, which represent 70% of the nasal IgA repertoire, can protect against SARS-CoV-2 infection when expressed as multimeric secretory IgAs. We also demonstrated that the intranasal administration of multimeric secretory IgA delivered as prophylaxis in the hamster model reduced infection-induced weight loss. Our investigation is the first to demonstrate the function of nasal IgA at the monoclonal level, showing that nasal immunization can provide effective immunity against SARS-CoV-2 by inducing multimeric secretory IgAs at the target site of the virus infection.
Collapse
Affiliation(s)
- Kentarou Waki
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Education, University of ToyamaToyamaJapan
| | - Hideki Tani
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | - Eigo Kawahara
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
| | - Yumiko Saga
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | | | - Emiko Yamazaki
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | - Seiichi Koike
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | - Yoshitomo Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
| | - Masaharu Isobe
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | - Nobuyuki Kurosawa
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| |
Collapse
|
5
|
Yardy A, Wang IQ, Rasco Y, Lenihan G, Mayo JD, Mu J, Macphail B, Larché M, Adronov A. Thermostabilization of a model viral-vectored oral thin film vaccine. Int J Pharm 2025; 678:125662. [PMID: 40348301 DOI: 10.1016/j.ijpharm.2025.125662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Vaccines rely on a global cold chain to maintain vaccine potency throughout the product life cycle. Existing vaccine thermostabilization methods like lyophilization and spray-drying impart significant stress on the vaccine, reducing its potency. Therefore, dissolvable oral thin films (OTFs) have emerged as an alternative thermostabilizing vaccine delivery platform wherein the vaccine is immobilized in a polymer-sugar matrix and administered to the oral mucosa. Herein, we demonstrate the feasibility of incorporating a model adenovirus vector into an OTF (Ad5 OTF) using a simple one-hour solvent casting process, and we demonstrate retention of the adenovirus infectious titer during storage, as assessed by flow cytometric titering. Increasing Tris buffer concentration and changing the surfactant from a nonionic Tween 80 to a zwitterionic poly(maleic anhydride-alt-1-octadecene) substituted with 3-(dimethylamino)propylamine (PMAL) and increasing its concentration improved the six-day ambient temperature stability by nearly 4-fold. A 23 full factorial design of experiment investigating the influence of PMAL, trehalose, and PEG concentration demonstrated that PMAL and trehalose concentration have the greatest impact on stability of Ad5 OTFs, improving the six-day ambient temperature stability by 250-fold, compared to the first formulation evaluated herein. The thermal stabilization of Ad5 OTFs prepared with a simple one-hour casting process demonstrates the scale-up and scale-out potential for this OTF formulation as a vaccine delivery platform, improving the accessibility of vaccines.
Collapse
Affiliation(s)
- Annika Yardy
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Iris Q Wang
- Department of Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada
| | - Yva Rasco
- Department of Chemistry and Chemical Biology & the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Grace Lenihan
- Department of Chemistry and Chemical Biology & the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - James D Mayo
- Department of Chemistry and Chemical Biology & the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Jingyu Mu
- Department of Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada
| | | | - Mark Larché
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Firestone Institute for Respiratory Health, St. Joseph's Healthcare and McMaster University, Hamilton, Ontario, Canada
| | - Alex Adronov
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Chemistry and Chemical Biology & the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Jennewein MF, Schultz MD, Beaver S, Battisti P, Bakken J, Hanson D, Akther J, Zhou F, Mohamath R, Singh J, Cross N, Kasal DN, Ykema MR, Reed S, Kalange D, Cheatwood IR, Tipper JL, Foote JB, King RG, Silva-Sanchez A, Harrod KS, Botta D, Gerhardt A, Casper C, Randall TD, Lund FE, Voigt EA. Intranasal replicon SARS-CoV-2 vaccine produces protective respiratory and systemic immunity and prevents viral transmission. Mol Ther 2025:S1525-0016(25)00281-3. [PMID: 40211539 DOI: 10.1016/j.ymthe.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/27/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
While mRNA vaccines have been effective in combating SARS-CoV-2, the waning of vaccine-induced antibody responses and lack of vaccine-induced respiratory tract immunity contribute to ongoing infection and transmission. In this work, we compare and contrast intranasal (i.n.) and intramuscular (i.m.) administration of a SARS-CoV-2 replicon vaccine delivered by a nanostructured lipid carrier (NLC). Both i.m. and i.n. vaccines induce potent systemic serum neutralizing antibodies, bone marrow-resident immunoglobulin G-secreting cells, and splenic T cell responses. The i.n. vaccine additionally induces robust respiratory mucosal immune responses, including SARS-CoV-2-reactive lung-resident memory T cell populations. As a booster following previous i.m. vaccination, the i.n. vaccine also elicits the development of mucosal virus-specific T cells. Both the i.m.- and i.n.-administered vaccines durably protect hamsters from infection-associated morbidity upon viral challenge, significantly reducing viral loads and preventing challenged hamsters from transmitting virus to naive cagemates. This replicon-NLC vaccine's potent systemic immunogenicity, and additional mucosal immunogenicity when delivered i.n., may be key for combating SARS-CoV-2 and other respiratory pathogens.
Collapse
Affiliation(s)
- Madeleine F Jennewein
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Michael D Schultz
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samuel Beaver
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Peter Battisti
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Julie Bakken
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Derek Hanson
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Jobaida Akther
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fen Zhou
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raodoh Mohamath
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Jasneet Singh
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Noah Cross
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Darshan N Kasal
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Matthew R Ykema
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Sierra Reed
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Davies Kalange
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isabella R Cheatwood
- Undergraduate Immunology Program, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy B Foote
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - R Glenn King
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Davide Botta
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Immunology Institute, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alana Gerhardt
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Corey Casper
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Immunology Institute, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Frances E Lund
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Immunology Institute, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily A Voigt
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA.
| |
Collapse
|
7
|
Mwape RK, Barday MA, van der Zalm MM, Verhagen LM. Overview of mucosal immunity and respiratory infections in children: a focus on Africa. Curr Opin Pediatr 2025; 37:137-144. [PMID: 39907513 PMCID: PMC11888837 DOI: 10.1097/mop.0000000000001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW Given the substantial burden of respiratory tract infections (RTIs) on global paediatric health, enhancing our understanding of mucosal immunity can help us advance mucosal biomarkers for diagnosis, prognosis and possible interventions in order to improve health outcomes. This review highlights the critical role of mucosal immunity in paediatric RTIs and recent advances in mucosal interventions, which offer promising strategies to improve outcomes. RECENT FINDINGS The significant burden of paediatric RTIs and growing interest in mucosal immunity advanced our understanding of the role of the respiratory mucosal immune system in protective immunity against RTIs. Studies show that sub-Saharan Africa is disproportionately affected by paediatric RTIs with poverty-associated factors such as human immunodeficiency virus (HIV) and malnutrition as risk factors. Emerging evidence highlights the important role of the respiratory microbiome and mucosal innate and adaptive immune responses in protective immunity against RTIs. SUMMARY The growing interest in mucosal immunity in RTIs has not only advanced our understanding of the overall immune responses in RTIs but also created opportunities to improve RTI care through translation of knowledge from these studies into diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
| | - Mish-Al Barday
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marieke M. van der Zalm
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lilly M. Verhagen
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Paediatric Infectious Diseases and Immunology, Radboud Community for Infectious Diseases, Amalia Children's Hospital, Radboud University Medical Center
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Lu M, Yao Y, Liu H, Peng Y, Li X, Gao G, Chen M, Zhang X, Mao L, Yang P, Zhang X, Miao J, Yuan Z, Lan J, Shan C. Single-dose intranasal AdC68-vectored vaccines rapidly protect Syrian hamsters against lethal Nipah virus infection. Mol Ther 2025:S1525-0016(25)00206-0. [PMID: 40143544 DOI: 10.1016/j.ymthe.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
Nipah virus (NiV) infection is highly lethal in humans, and the development of vaccines that provide rapid protection is critical for addressing NiV outbreaks. In this study, we demonstrate that a single intranasal immunization with the chimpanzee adenoviral-vectored NiV vaccine, AdC68-F, induced robust and sustained cellular and humoral responses in BALB/c mice, and provided complete protection against challenge with the NiV-Malaysia strain (NiV-M) in Syrian hamsters. Notably, AdC68-F, administered at a dose of 5 × 109 viral particles, offered a complete prophylactic protection window as few as 7 days before exposure to a lethal NiV-M challenge. Furthermore, passive transfer of sera from AdC68-F or AdC68-G immunized animals conferred complete protection against NiV-M infection in naive hamsters. These findings underscore the pivotal role of antigen-specific immunity in controlling NiV infection and highlight the potential of single-dose intranasal AdC68-based NiV vaccines for rapid protection during outbreaks. By providing rapid and effective protection, these vaccines could help reduce human-to-human transmission and aid in curbing NiV outbreaks.
Collapse
Affiliation(s)
- Mingqing Lu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yanfeng Yao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuejie Li
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuekai Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Lingjing Mao
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peipei Yang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - XiaoYu Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Miao
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiming Yuan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chao Shan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
9
|
Maltseva M, Galipeau Y, McCluskie P, Castonguay N, Cooper CL, Langlois MA. Systemic and Mucosal Antibody Responses to SARS-CoV-2 Variant-Specific Prime-and-Boost and Prime-and-Spike Vaccination: A Comparison of Intramuscular and Intranasal Bivalent Vaccine Administration in a Murine Model. Vaccines (Basel) 2025; 13:351. [PMID: 40333249 PMCID: PMC12031244 DOI: 10.3390/vaccines13040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Background: The rapid genetic evolution of SARS-CoV-2 has led to the emergence of immune-evading, highly transmissible variants of concern (VOCs). This prompts the need for next-generation vaccines that elicit robust mucosal immunity in the airways to directly curb viral infection. Objective: Here, we investigate the impact of heterologous variant prime-boost regimens on humoral responses, focusing on intramuscular (IM) and intranasal (IN) routes of administration. Using a murine model, we assessed the immunogenicity of unadjuvanted protein boosts with Wu-1, Omicron BA.4/5, or Wu-1 + BA.4/5 spike antigens following monovalent or bivalent IM priming with mRNA-LNP vaccines. Results: IM priming induced strong systemic total and neutralizing antibody responses that were further enhanced by IN boosts with BA.4/5. IN boosting achieved the broadest serum neutralization across all VOCs tested. Notably, bivalent mRNA-LNP IM priming induced robust, cross-variant serum neutralizing antibody production, independent of subsequent IN boost combinations. Conclusions: Our findings highlight the benefit of including distinct antigenic variants in the prime vaccination followed by a variant-tailored IN boost to elicit both systemic and mucosal variant-specific responses that are potentially capable of reducing SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pauline McCluskie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Curtis L. Cooper
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
10
|
Liu W, Li Y, Li X, Wang F, Qi R, Zhu T, Li J. Pooled Analysis of the Effect of Pre-Existing Ad5 Neutralizing Antibodies on the Immunogenicity of Adenovirus Type 5 Vector-Based COVID-19 Vaccine from Eight Clinical Trials. Vaccines (Basel) 2025; 13:333. [PMID: 40266233 PMCID: PMC11945733 DOI: 10.3390/vaccines13030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Pre-existing adenovirus immunity restricts the utilization of adenovirus-vectored vaccines. The current study aims to conduct a pooled analysis of eight clinical trials to evaluate the influence of pre-existing Ad5 neutralizing antibodies on immunogenicity of Ad5-nCoV. Methods: The primary outcome indicator of this pooled analysis is the geometric mean titers (GMTs) of live SARS-CoV-2 NAbs against the wild-type strain on day 28 post-vaccination. Participants were divided into two cohorts: an adolescent cohort comprising individuals aged 6-17 years and an adult cohort with individuals aged 18 years and older. Within each cohort, individuals were further categorized into three subgroups based on their Ad5-nCoV vaccination schedules: one subgroup received a single intramuscular dose as the primary regimen (Ad5-IM-prime), another received an intramuscular dose as the heterologous prime-boost regimen (Ad5-IM-boost), and the last subgroup received an aerosolized dose as the heterologous prime-boost regimen (Ad5-IH-boost). Results: A total of 3512 participants were included in this pooled analysis. In the Ad5-IM-prime subgroup, there were 1001 adolescents and 1450 adults; in the Ad5-IM-boost subgroup, there were 65 adolescents and 396 adults; and in the Ad5-IH-boost subgroup, there were 207 adolescents and 393 adults. In the adult cohort, the GMTs of NAbs against wild-type SARS-CoV-2 on day 28 post-vaccination for the Ad5-IM-prime, Ad5-IM-boost, and Ad5-IH-boost subgroups were 35.6 (95% CI: 32.0, 39.7), 358.3 (95% CI: 267.6, 479.6), and 2414.1 (95% CI: 2006.9, 2904.0), respectively, with negative (less than 1:12) pre-existing NAb titers compared to 10.7 (95% CI: 9.1, 12.6), 116.9 (95% CI: 84.9, 161.1), and 762.7 (95% CI: 596.2, 975.8), respectively, with high (greater than 1:1000) pre-existing NAb titers. A similar trend was observed in the adolescent cohort, where pre-existing immunity was found to reduce the peak of live SARS-CoV-2 Nabs post-vaccination. Conclusions: Regardless of whether Ad5-nCoV is administered as a primary vaccination regimen or as a heterologous prime-boost strategy, a negative impact on immunogenicity can still be observed in the presence of high pre-existing immunity. However, when primary immunization is achieved with inactivated COVID-19 vaccines, aerosol inhalation can significantly enhance the immunogenicity of Ad5-nCoV compared to intramuscular injections of Ad5-nCoV as a booster.
Collapse
Affiliation(s)
- Wenqing Liu
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Yuqing Li
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Xiaolong Li
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Feiyu Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Runjie Qi
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Jingxin Li
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Provincial Academy of Preventive Medicine, Nanjing 210009, China
| |
Collapse
|
11
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
12
|
Maison DP, Tasissa H, Deitchman A, Peluso MJ, Deng Y, Miller FD, Henrich TJ, Gerschenson M. COVID-19 clinical presentation, management, and epidemiology: a concise compendium. Front Public Health 2025; 13:1498445. [PMID: 39957982 PMCID: PMC11826932 DOI: 10.3389/fpubh.2025.1498445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Coronavirus Disease 2019, caused by severe acute respiratory coronavirus 2, has been an ever-evolving disease and pandemic, profoundly impacting clinical care, drug treatments, and understanding. In response to this global health crisis, there has been an unprecedented increase in research exploring new and repurposed drugs and advancing available clinical interventions and treatments. Given the widespread interest in this topic, this review aims to provide a current summary-for interested professionals not specializing in COVID-19-of the clinical characteristics, recommended treatments, vaccines, prevention strategies, and epidemiology of COVID-19. The review also offers a historical perspective on the pandemic to enhance understanding.
Collapse
Affiliation(s)
- David P. Maison
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Hawi Tasissa
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Amelia Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - F. DeWolfe Miller
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
13
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
14
|
Aljehani ND, Tamming L, Khan MY, Abdulal RH, Alfaleh MA, Ghazwani A, Helal A, Alsulaiman RM, Sanki MA, Alluhaybi K, Sukareh FA, Alharbi RH, Alyami FH, ElAssouli MZ, Shebbo S, Abdulaal WH, Algaissi A, Mahmoud AB, Basabrain M, Duque D, Bavananthasivam J, Chen W, Wang L, Sauve S, Abujamel TS, Altorki T, Alhabbab R, Tran A, Li X, Hashem AM. Mucosal SARS-CoV-2 S1 adenovirus-based vaccine elicits robust systemic and mucosal immunity and protects against disease in animals. mBio 2025; 16:e0217024. [PMID: 39629990 PMCID: PMC11708039 DOI: 10.1128/mbio.02170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 pandemic has emphasized the importance and need for accessible safe, effective, and versatile vaccine platforms. While approved SARS-CoV-2 vaccines have been instrumental in saving lives and reducing healthcare and economic burdens, the induction of mucosal immunity remains an unmet need. Here, we engineered and evaluated a non-replicating adenovirus 5 (rAd5)-based vaccine expressing the SARS-CoV-2 S1 subunit (rAd5-SARS2-S1). We assessed the immunogenicity, durability, and protective efficacy of intramuscular (IM) and intranasal (IN) administration of rAd5-SARS2-S1 in mice and Syrian hamsters. Two IM or IN doses of rAd5-SARS2-S1 elicited robust and sustained Th1-skewed S1-specific serum IgG, neutralizing antibodies (nAbs) against several SARS-CoV-2 variants and systemic antigen-specific memory T cell responses in mice. Additionally, IN vaccination induced potent and long-lasting mucosal S1-specific IgG, IgA, and nAbs and pulmonary memory T cells. Importantly, while IM vaccine significantly ameliorated disease severity in hamsters by reducing viral burden, lung pathology, and, to some extent, weight loss, IN immunization significantly reduced viral replication and provided superior protection against disease and weight loss. Together, our study demonstrates that the rAd5-SARS2-S1 vaccine is immunogenic in both mice and hamsters when administered intramuscularly or intranasally, with IN administration providing better protection. These findings suggest that IN delivery of rAd5-SARS2-S1 could be a promising approach for inducing mucosal and systemic immunity, offering enhanced protection against SARS-CoV-2 and emerging variants. IMPORTANCE This publication presents an assessment of the immune response and effectiveness of a vaccine containing genetically modified non-replicating recombinant that expresses the S1 subunit protein of SARS-CoV-2. We conducted a comparative analysis of the immune response potency, durability, and protective effectiveness of this vaccine using intramuscular (IM) and intranasal (IN) inoculation in mice and Syrian hamsters. Our findings indicate that both vaccinations were effective in stimulating strong and long-lasting immune responses, both locally and across the body, when administered through either IM or IN methods. Crucially, our study demonstrated that the IN vaccination outperformed the IM vaccine by effectively and significantly suppressing the multiplication of the virus in the lungs and nasal turbinates. Additionally, the IN vaccine provided protection against disease-related weight loss and lung damage in the animals. This work showcases the potential of intranasal administration as a viable method to stimulate both mucosal and systemic immunity. This technique provides improved defense against SARS-CoV-2 and maybe additional variations.
Collapse
Affiliation(s)
- Najwa D. Aljehani
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Muhammad Yasir Khan
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A. Alfaleh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aishah Ghazwani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asalah Helal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M. Alsulaiman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad A. Sanki
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Alluhaybi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farah Ayman Sukareh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahaf H. Alharbi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faris H. Alyami
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M-Zaki ElAssouli
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salima Shebbo
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mohammad Basabrain
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diana Duque
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Ontario, Canada
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarfa Altorki
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anh Tran
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research Biologics and Radiopharmaceutical Drug Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Araujo Cirne C, Foldvari M. Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70000. [PMID: 39800783 PMCID: PMC11725562 DOI: 10.1002/wnan.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications. This review summarizes the challenges and the approaches that have been carried out to optimize the delivery of nucleic acids through the pulmonary route for vaccination purposes in recent years, with a spotlight on gold nanoparticles (AuNPs). Nonviral delivery systems have been widely explored, and AuNPs with their unique properties are emerging as promising tools for nucleic acid vaccines due to surface functionalization with mucus-penetrating polymers and targeting moieties that can bypass the barriers in pulmonary delivery and successfully deliver nucleic acids to the cells of interest. However, while promising, several challenges remain including selectively overcoming the lungs' immunological surveillance and adhesive mucus.
Collapse
Affiliation(s)
- Carolina Araujo Cirne
- School of Pharmacy and Waterloo Institute of NanotechnologyUniversity of Waterloo, 200 University Avenue WestWaterlooOntarioCanada
| | - Marianna Foldvari
- School of Pharmacy and Waterloo Institute of NanotechnologyUniversity of Waterloo, 200 University Avenue WestWaterlooOntarioCanada
| |
Collapse
|
16
|
Mahrokhian SH, Tostanoski LH, Vidal SJ, Barouch DH. COVID-19 vaccines: Immune correlates and clinical outcomes. Hum Vaccin Immunother 2024; 20:2324549. [PMID: 38517241 PMCID: PMC10962618 DOI: 10.1080/21645515.2024.2324549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Severe disease due to COVID-19 has declined dramatically as a result of widespread vaccination and natural immunity in the population. With the emergence of SARS-CoV-2 variants that largely escape vaccine-elicited neutralizing antibody responses, the efficacy of the original vaccines has waned and has required vaccine updating and boosting. Nevertheless, hospitalizations and deaths due to COVID-19 have remained low. In this review, we summarize current knowledge of immune responses that contribute to population immunity and the mechanisms how vaccines attenuate COVID-19 disease severity.
Collapse
Affiliation(s)
- Shant H. Mahrokhian
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Lisa H. Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Samuel J. Vidal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
17
|
Chen C, Tang T, Chen Z, Chen L, Cheng J, Li F, Sun J, Zhao J, Wang Y, Yan Q, Zhao J, Zhu A. Antibody dynamics for heterologous boosters with aerosolized Ad5-nCoV following inactivated COVID-19 vaccines. Hum Vaccin Immunother 2024; 20:2423466. [PMID: 39535117 PMCID: PMC11562911 DOI: 10.1080/21645515.2024.2423466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The COVID-19 pandemic has underscored vaccination as a crucial strategy for reducing disease severity and preventing hospitalizations. Heterologous boosters using aerosolized Ad5-nCoV following two doses of inactivated vaccine have demonstrated superior antibody responses. However, the comprehensive dynamics of this antibody boost and the optimal timing for heterologous boosters are still not fully understood. In this study, we investigated the dynamics of neutralizing antibody (nAb) responses in recipients of heterologous booster vaccinations with aerosolized Ad5-nCoV following either two (I-I-A) or three (I-I-I-A) doses of COVID-19 inactivated vaccines. The findings indicate that a booster dose of aerosolized Ad5-nCoV vaccine induced robust and durable nAb responses comparable to those elicited in BA.5 breakthrough infections with similar doses of inactivated vaccine. Notably, group I-I-A showed higher peak nAb titers against the WT strain, BA.5, and XBB.1 variants compared to group I-I-I-A, inversely correlating with the prior nAb levels. This suggesting the possible efficacy of the heterologous aerosolized Ad5-nCoV booster and indicates that pre-boost antibody levels may be related to the outcomes of booster vaccination.
Collapse
Affiliation(s)
- Canjie Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Jinling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, Shang-haiTech University, Shanghai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, and The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Uchiyama H, Kudo T, Yamaguchi T, Obana N, Watanabe K, Abe K, Miyazaki H, Toyofuku M, Nomura N, Akeda Y, Nakao R. Mucosal adjuvanticity and mucosal booster effect of colibactin-depleted probiotic Escherichia coli membrane vesicles. Hum Vaccin Immunother 2024; 20:2337987. [PMID: 38658133 PMCID: PMC11057659 DOI: 10.1080/21645515.2024.2337987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
There is a growing interest in development of novel vaccines against respiratory tract infections, due to COVID-19 pandemic. Here, we examined mucosal adjuvanticity and the mucosal booster effect of membrane vesicles (MVs) of a novel probiotic E. coli derivative lacking both flagella and potentially carcinogenic colibactin (ΔflhDΔclbP). ΔflhDΔclbP-derived MVs showed rather strong mucosal adjuvanticity as compared to those of a single flagellar mutant strain (ΔflhD-MVs). In addition, glycoengineered ΔflhDΔclbP-MVs displaying serotype-14 pneumococcal capsular polysaccharide (CPS14+MVs) were well-characterized based on biological and physicochemical parameters. Subcutaneous (SC) and intranasal (IN) booster effects of CPS14+MVs on systemic and mucosal immunity were evaluated in mice that have already been subcutaneously prime-immunized with the same MVs. With a two-dose regimen, an IN boost (SC-IN) elicited stronger IgA responses than homologous prime-boost immunization (SC-SC). With a three-dose regimen, serum IgG levels were comparable among all tested regimens. Homologous immunization (SC-SC-SC) elicited the highest IgM responses among all regimens tested, whereas SC-SC-SC failed to elicit IgA responses in blood and saliva. Furthermore, serum IgA and salivary SIgA levels were increased with an increased number of IN doses administrated. Notably, SC-IN-IN induced not only robust IgG response, but also the highest IgA response in both serum and saliva among the groups. The present findings suggest the potential of a heterologous three-dose administration for building both systemic and mucosal immunity, e.g. an SC-IN-IN vaccine regimen could be beneficial. Another important observation was abundant packaging of colibactin in MVs, suggesting increased applicability of ΔflhDΔclbP-MVs in the context of vaccine safety.
Collapse
Affiliation(s)
- Hiroki Uchiyama
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Vascular Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Toshifumi Kudo
- Department of Vascular Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Nozomu Obana
- Tsukuba Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kimihiro Abe
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hidetaka Miyazaki
- Department of Oculoplastic, Orbital and Lacrimal Surgery, Aichi Medical University, Nagakute, Japan
- Department of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Masanori Toyofuku
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
19
|
Yang J, Hong W, Shi H, He C, Lei H, Zhou Y, Yang H, Alu A, Chen Z, Yang Y, Yu W, Tang C, Wang J, Li B, Huang Q, Li J, Yang L, Wang W, Shen G, Yang J, Zhao Z, Song X, Su Z, Wei Y, Sun Q, Lu S, Wang Z, Wang Y, Lu G, Li W, Wei X. Trivalent recombinant protein vaccine induces cross-neutralization against XBB lineage and JN.1 subvariants: preclinical and phase 1 clinical trials. Nat Commun 2024; 15:10778. [PMID: 39738039 PMCID: PMC11686202 DOI: 10.1038/s41467-024-55087-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.1.5, formulating a trivalent vaccine (Tri-Vac) with an MF59-like adjuvant at a 1:1:4 ratio. Tri-Vac demonstrates immunogenicity in female NIH mice, inducing cross-neutralization against various SARS-CoV-2 variants, including pre-Omicron and Omicron BA.2.75, BA.5, and XBB lineages. It elicits measurable antigen-specific T cell responses, germinal center B cell responses, and T follicular helper responses, effectively protecting against live Omicron XBB.1.16 challenges. Protective immunity is maintained long-term, with sustained neutralizing antibodies and T cell responses, as well as memory B cells and long-lived plasma cells observed by day 210 post-immunization. Tri-Vac also serves as a candidate booster for enhancing immunity after three doses of inactivated virus or mRNA vaccines. A phase 1 investigator-initiated trial was initiated to assess safety and immunogenicity in humans, focusing on the primary endpoint of adverse reactions within 7 days and key secondary endpoints including the geometric mean titers (GMTs) of serum neutralizing antibodies within 30 days and 6 months post-vaccination, as well as adverse events within 30 days and serious adverse events within 6 months post-vaccination. Preliminary data indicate Tri-Vac has good safety and immunogenicity, improving neutralization against multiple variants, including JN.1, in previously vaccinated individuals, highlighting its clinical potential for protecting against SARS-CoV-2 variants. The registration number of this clinical trial is ChiCTR2200067245.
Collapse
Affiliation(s)
- Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huashan Shi
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hao Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiwei Zhao
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoming Su
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Youchun Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Pinto PBA, Timis J, Chuensirikulchai K, Li QH, Lu HH, Maule E, Nguyen M, Alves RPDS, Verma SK, Ana-Sosa-Batiz F, Valentine K, Landeras-Bueno S, Kim K, Hastie K, Saphire EO, Alves A, Elong Ngono A, Shresta S. Co-immunization with spike and nucleocapsid based DNA vaccines for long-term protective immunity against SARS-CoV-2 Omicron. NPJ Vaccines 2024; 9:252. [PMID: 39702529 PMCID: PMC11659323 DOI: 10.1038/s41541-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
The continuing evolution of SARS-CoV-2 variants challenges the durability of existing spike (S)-based COVID-19 vaccines. We hypothesized that vaccines composed of both S and nucleocapsid (N) antigens would increase the durability of protection by strengthening and broadening cellular immunity compared with S-based vaccines. To test this, we examined the immunogenicity and efficacy of wild-type SARS-CoV-2 S- and N-based DNA vaccines administered individually or together to K18-hACE2 mice. S, N, and S + N vaccines all elicited polyfunctional CD4+ and CD8+ T cell responses and provided short-term cross-protection against Beta and Omicron BA.2 variants, but only co-immunization with S + N vaccines provided long-term protection against Omicron BA.2. Depletion of CD4+ and CD8+ T cells reduced the long-term efficacy, demonstrating a crucial role for T cells in the durability of protection. These findings underscore the potential to enhance long-lived protection against SARS-CoV-2 variants by combining S and N antigens in next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Paolla Beatriz Almeida Pinto
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kantinan Chuensirikulchai
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qin Hui Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Hsueh Han Lu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Michael Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | | | | | | | - Kristen Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- University Cardenal Herrera-CEU, CEU Universities, Valencia, 46113, Spain
| | - Kenneth Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, 92093, USA
| | - Ada Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, 92093, USA.
| |
Collapse
|
21
|
Lykins WR, Pollet J, White JA, Keegan B, Versteeg L, Strych U, Chen WH, Mohamath R, Ramer-Denisoff G, Reed S, Renshaw C, Beaver S, Gerhardt A, Voigt EA, Tomai MA, Sitrin R, Choy RKM, Cassels FJ, Hotez PJ, Bottazzi ME, Fox CB. Optimizing immunogenicity and product presentation of a SARS-CoV-2 subunit vaccine composition: effects of delivery route, heterologous regimens with self-amplifying RNA vaccines, and lyophilization. Front Immunol 2024; 15:1480976. [PMID: 39737197 PMCID: PMC11683073 DOI: 10.3389/fimmu.2024.1480976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.) route has been shown to improve protective mucosal responses in comparison to intramuscular (i.m.) delivery. As we gain knowledge of the limitations of existing vaccines, it is of interest to understand if changes in product presentation or combinations of multiple vaccine modalities can further improve immunological outcomes. Methods We investigated a commercial-stage SARS-CoV-2 receptor binding domain (RBD) antigen adjuvanted with a clinical-stage TLR-7/8 agonist (3M-052) formulated on aluminum oxyhydroxide (Alum). In a murine immunogenicity model, we compared i.n. and i.m. dosing of the RBD-3M-052-Alum vaccine. We measured the magnitude of antibody responses in serum and lungs, the antibody-secreting cell populations in bone marrow, and antigen-specific cytokine-secreting splenocyte populations. Similarly, we compared different heterologous and homologous prime-boost regimens using the RBD-3M-052-Alum vaccine and a clinical-stage self-amplifying RNA (saRNA) vaccine formulated on a nanostructured lipid carrier (NLC) using the i.m. route alone. Finally, we developed a lyophilized presentation of the RBD-3M-052-Alum vaccine and compared it to the liquid presentation and a heterologous regimen including a previously characterized lyophilized form of the saRNA-NLC vaccine. Results and discussion We demonstrate that i.n. dosing of the RBD-3M-052-Alum vaccine increased IgA titers in the lung by more than 1.5 logs, but induced serum IgG titers 0.8 logs lower, in comparison to i.m. dosing of the same vaccine. We also show that the homologous prime-boost RBD-3M-052-Alum regimen led to the highest serum IgG and bronchial IgA titers, whereas the homologous saRNA-NLC regimen led to the highest splenocyte interferon-γ response. We found that priming with the saRNA-NLC vaccine and boosting with the RBD-3M-052-Alum vaccine led to the most desirable immune outcome of all regimens tested. Finally, we show that the lyophilized RBD-3M-052-Alum vaccine retained its immunological characteristics. Our results demonstrate that the route of delivery and the use of heterologous regimens each separately impacts the resulting immune profile, and confirm that multi-product vaccine regimens can be developed with stabilized presentations in mind.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Female
- Immunogenicity, Vaccine
- Administration, Intranasal
- Freeze Drying
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Adjuvants, Vaccine
- mRNA Vaccines/immunology
- Mice, Inbred BALB C
- Adjuvants, Immunologic/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Injections, Intramuscular
- Humans
Collapse
Affiliation(s)
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Brian Keegan
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Leroy Versteeg
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Wen-Hsiang Chen
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Raodoh Mohamath
- Access to Advanced Health Institute, Seattle, WA, United States
| | | | - Sierra Reed
- Access to Advanced Health Institute, Seattle, WA, United States
| | | | - Samuel Beaver
- Access to Advanced Health Institute, Seattle, WA, United States
| | - Alana Gerhardt
- Access to Advanced Health Institute, Seattle, WA, United States
| | - Emily A. Voigt
- Access to Advanced Health Institute, Seattle, WA, United States
| | | | | | | | | | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Christopher B. Fox
- Access to Advanced Health Institute, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Wu PH, Hong DC, Xie C, Zeng MS, Sun C. Enhancing immune defense against COVID-19: Alveolar delivery of mucosal vaccines. Sci Bull (Beijing) 2024; 69:3637-3639. [PMID: 39129115 DOI: 10.1016/j.scib.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Affiliation(s)
- Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dong-Chun Hong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
23
|
Bayarri-Olmos R, Sutta A, Rosbjerg A, Mortensen MM, Helgstrand C, Nielsen PF, Pérez-Alós L, González-García B, Johnsen LB, Matthiesen F, Egebjerg T, Hansen CB, Sette A, Grifoni A, da Silva Antunes R, Garred P. Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses. Front Immunol 2024; 15:1412873. [PMID: 39720734 PMCID: PMC11666439 DOI: 10.3389/fimmu.2024.1412873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion. Delta and Omicron variants had 3-5 times higher binding affinities to ACE-2 than the ancestral strain (KDwt = 23.4 nM, KDDelta = 8.08 nM, KDBA.1 = 4.77 nM, KDBA.2 = 4.47 nM). The pattern recognition molecule mannose-binding lectin (MBL) has been shown to recognize the spike protein. Here we found that MBL binding remained largely unchanged across the variants, even after introducing mutations at single glycan sites. Although MBL binding decreased post-vaccination, it increased by 2.6-fold upon IgG depletion, suggesting a compensatory or redundant role in immune recognition. Notably, we identified two glycan sites (N717 and N801) as potentially essential for the structural integrity of the spike protein. We also evaluated the antibody and T cell responses. Neutralization by serum immunoglobulins was predominantly mediated by IgG rather than IgA and was markedly impaired against the Delta (5.8-fold decrease) and Omicron variants BA.1 (17.4-fold) and BA.2 (14.2-fold). T cell responses, initially conserved, waned rapidly within 3 months post-Omicron infection. Our data suggests that immune imprinting may have hindered antibody and T cell responses toward the variants. Overall, despite decreased antibody neutralization, MBL recognition and T cell responses were generally unaffected by the variants. These findings extend our understanding of the complex interplay between viral adaptation and immune response, underscoring the importance of considering MBL interactions, immune imprinting, and viral evolution dynamics in developing new vaccine and treatment strategies.
Collapse
Affiliation(s)
- Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Adrian Sutta
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz González-García
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Simayi A, Chen Y, Chu J, Yu H, Zhang S, Bao C, Zhu F, Jin H, Qin Y, Zhen Q, Liu Y, Zhu L. Ad5-nCoV boosted vaccine and reinfection-induced memory T/B cell responses and humoral immunity to SARS-CoV-2: based on two prospective cohorts. Emerg Microbes Infect 2024; 13:2412619. [PMID: 39360715 PMCID: PMC11529888 DOI: 10.1080/22221751.2024.2412619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Here, we regularly followed two SARS-CoV-2 infected cohorts to investigate the combined effects of neutralizing antibodies (NAbs) and B and T cell profiles during the convalescent period. Ten infected participants in December 2022 were selected to assess the effects of an inhaled adenovirus type 5 vectored COVID-19 vaccine (Ad5-nCoV) booster on B cells and humoral immunity in the first cohort. To evaluate T cell responses, eight primary and 20 reinfection participants were included in the second cohort. Blood samples from all 38 participants were collected at 1-, 2-, and 6-months post-infection. In the first cohort, eighteen monoclonal antibodies (mAbs) with neutralizing activity from memory B cells (MBC) against SARS-CoV-2 mutants were obtained by high throughput single-B-cell cloning method, which lasted from 1- month to 6- month post infection. The overall number of mAbs from MBC in the boosted immunization group was higher than that in the nonboosted immunization group at 2-, and 6-months post-infection. In the second cohort, circulating T follicular helper cells (cTfh) and AIM + CD4 + T cells increased over time in the reinfection group (P < 0.05). In both cohorts, serum NAb titers showed significant immune escape, while cTfh and AIM + CD4 + T cells in the second cohort essentially showed no immune escape to new strains (including XBB, EG.5). AIM + CD4 + T cells against BA.5 and EG.5 were strongly negatively correlated with the time to viral clearance in the reinfected group at 6-months post-infection. We comprehensively assessed the ability of the SARS-CoV-2 boosted immunization and reinfection-induced generation of T/B cell immune memories in preventing reinfection.
Collapse
Affiliation(s)
- Aidibai Simayi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People’s Republic of China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing
| | - Jinjin Chu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Huiyan Yu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Shihan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People’s Republic of China
| | - Changjun Bao
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, People’s Republic of China
| | - Fengcai Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
- Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People’s Republic of China
| | - Yuanfang Qin
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Qian Zhen
- Department of Acute Infectious Disease Control and Prevention, Changzhou Center for Disease Control and Prevention, Changzhou, People’s Republic of China
| | - Yong Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing
| | - Liguo Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
- Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
25
|
Xu JW, Wang BS, Gao P, Huang HT, Wang FY, Qiu W, Zhang YY, Xu Y, Gou JB, Yu LL, Liu X, Wang RJ, Zhu T, Hou LH, Wang Q. Safety and immunogenicity of heterologous boosting with orally administered aerosolized bivalent adenovirus type-5 vectored COVID-19 vaccine and B.1.1.529 variant adenovirus type-5 vectored COVID-19 vaccine in adults 18 years and older: a randomized, double blinded, parallel controlled trial. Emerg Microbes Infect 2024; 13:2281355. [PMID: 37933089 PMCID: PMC11025474 DOI: 10.1080/22221751.2023.2281355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/04/2023] [Indexed: 11/08/2023]
Abstract
Vaccination strategies that can induce a broad spectrum immune response are important to enhance protection against SARS-CoV-2 variants. We conducted a randomized, double-blind and parallel controlled trial to evaluate the safety and immunogenicity of the bivalent (5×1010viral particles) and B.1.1.529 variant (5×1010viral particles) adenovirus type-5 (Ad5) vectored COVID-19 vaccines administrated via inhalation. 451 eligible subjects aged 18 years and older who had been vaccinated with three doses inactivated COVID-19 vaccines were randomly assigned to inhale one dose of either B.1.1.529 variant Ad5 vectored COVID-19 vaccine (Ad5-nCoVO-IH group, N=150), bivalent Ad5 vectored COVID-19 vaccine (Ad5-nCoV/O-IH group, N=151), or Ad5 vectored COVID-19 vaccine (5×1010viral particles; Ad5-nCoV-IH group, N=150). Adverse reactions reported by 37 (24.67%) participants in the Ad5-nCoVO-IH group, 28 (18.54%) in the Ad5-nCoV/O-IH group, and 26 (17.33%) in the Ad5-nCoV-IH group with mainly mild to moderate dry mouth, oropharyngeal pain, headache, myalgia, cough, fever and fatigue. No serious adverse events related to the vaccine were reported. Investigational vaccines were immunogenic, with significant difference in the GMTs of neutralizing antibodies against Omicron BA.1 between Ad5-nCoV/O-IH (43.70) and Ad5-nCoV-IH (29.25) at 28 days after vaccination (P=0.0238). The seroconversion rates of neutralizing antibodies against BA.1 in Ad5-nCoVO-IH, Ad5-nCoV/O-IH, and Ad5-nCoV-IH groups were 56.00%, 59.60% and 48.67% with no significant difference among the groups. Overall, the investigational vaccines were demonstrated to be safe and well tolerated in adults, and was highly effective in inducing mucosal immunities in addition to humoral and cellular immune responses defending against SARS-CoV-2 variants.Trial registration: Chictr.org identifier: ChiCTR2200063996.
Collapse
Affiliation(s)
- Jia-Wei Xu
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Bu-Sen Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ping Gao
- Logistics University of Chinese People’s Armed Police Force, Tianjin, People’s Republic of China
| | - Hai-Tao Huang
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Fei-Yu Wang
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Wei Qiu
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Yuan-Yuan Zhang
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Yu Xu
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Jin-Bo Gou
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Lin-Ling Yu
- Expanded Program on Immunization, Yubei District Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| | - Xuan Liu
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Rui-Jie Wang
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin, People’s Republic of China
| | - Li-Hua Hou
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Qing- Wang
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, People’s Republic of China
| |
Collapse
|
26
|
Yang Y, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Shi J, Forsman H, Lee P, Yang L, Filatov A, Zhai Z, Liu C. The characterization of CD8 + T-cell responses in COVID-19. Emerg Microbes Infect 2024; 13:2287118. [PMID: 37990907 PMCID: PMC10786432 DOI: 10.1080/22221751.2023.2287118] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
This review gives an overview of the protective role of CD8+ T cells in SARS-CoV-2 infection. The cross-reactive responses intermediated by CD8+ T cells in unexposed cohorts are described. Additionally, the relevance of resident CD8+ T cells in the upper and lower airway during infection and CD8+ T-cell responses following vaccination are discussed, including recent worrisome breakthrough infections and variants of concerns (VOCs). Lastly, we explain the correlation between CD8+ T cells and COVID-19 severity. This review aids in a deeper comprehension of the association between CD8+ T cells and SARS-CoV-2 and broadens a vision for future exploration.
Collapse
Affiliation(s)
- Yuanting Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, USA
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Junming Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
27
|
Wu L, Xu W, Jiang H, Yang M, Cun D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm Sin B 2024; 14:5132-5160. [PMID: 39807330 PMCID: PMC11725141 DOI: 10.1016/j.apsb.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 01/16/2025] Open
Abstract
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high. Despite considerable attempts at the development of respiratory vaccines, the rational formulation design still warrants attention, i.e., how the formulation composition, particle properties, formulation type (liquid or solid), and devices would influence the immune outcome. This article reviews the recent advances in the formulation design and development of respiratory vaccines. The focus is on the state of the art of delivering antigenic compounds through the respiratory tract, overcoming the pulmonary bio-barriers, enhancing delivery efficiencies of respiratory vaccines as well as maintaining the stability of vaccines during storage and use. The choice of devices and the influence of deposition sites on vaccine efficiencies were also reviewed.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- School of Food and Drug, Shenzhen Polytechnic University, China, Shenzhen 518055, China
| |
Collapse
|
28
|
Ko KH, Bae HS, Park JW, Lee JS, Park S, Heo J, Park H, Choi J, Bae E, Na W, Park SH, Seong BL, Han SH, Kim DH, Cha SB. A vaccine platform targeting lung-resident memory CD4 + T-cells provides protection against heterosubtypic influenza infections in mice and ferrets. Nat Commun 2024; 15:10368. [PMID: 39609429 PMCID: PMC11604757 DOI: 10.1038/s41467-024-54620-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Lung tissue-resident memory T (TRM) cells induced by influenza vaccination are crucial for heterosubtypic immunity upon re-exposure to the influenza virus, enabling rapid and robust responses upon reactivation. To enhance the efficacy of influenza vaccines, we induce the generation of lung TRM cells following intranasal vaccination with a commercial influenza vaccine adjuvanted with NexaVant (NVT), a TLR3 agonist-based adjuvant. We demonstrate that intranasal immunization with the NVT-adjuvanted vaccine provides improved protection against influenza virus infections by inducing the generation of CD4+ TRM cells in the lungs in a type I interferon-dependent manner. These pulmonary CD4+ TRM cells provide potent mucosal immunity and cross-protection against heterosubtypic infections in both mouse and ferret models. This vaccine platform has the potential to significantly improve conventional intramuscular influenza vaccines by providing broader protection.
Collapse
Affiliation(s)
- Kwang Hyun Ko
- R&D Center, NA Vaccine Institute, Seoul, 05854, Republic of Korea
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Shik Bae
- R&D Center, NA Vaccine Institute, Seoul, 05854, Republic of Korea
| | - Jeong Woo Park
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Sun Lee
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Somin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Heo
- Vaccine R&D Team, Central Institute, Il-Yang Pharmaceutical, Yongin, 17096, Republic of Korea
| | - Hyunsoo Park
- Vaccine R&D Team, Central Institute, Il-Yang Pharmaceutical, Yongin, 17096, Republic of Korea
| | - Jaeseok Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eunseo Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Hyun Park
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, 08826, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 08826, Republic of Korea
| | - Seung Hyun Han
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Ho Kim
- R&D Center, NA Vaccine Institute, Seoul, 05854, Republic of Korea.
| | - Seung Bin Cha
- R&D Center, NA Vaccine Institute, Seoul, 05854, Republic of Korea.
| |
Collapse
|
29
|
Jung SM, Kim SJ, Park YC, Seo ES, Kim CG, Kim T, Lee S, Cho E, Chang J, Yun CH, Shim BS, Cheon IS, Son YM. RSV Vaccine with Nanoparticle-Based Poly-Sorbitol Transporter (PST) Adjuvant Improves Respiratory Protection Against RSV Through Inducing Both Systemic and Mucosal Humoral Immunity. Vaccines (Basel) 2024; 12:1354. [PMID: 39772016 PMCID: PMC11680183 DOI: 10.3390/vaccines12121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Respiratory syncytial virus (RSV) causes symptoms similar to a mild cold for adults, but in case of infants, it causes bronchitis and/or pneumonia, and in some cases, mortality. Mucosal immunity within the respiratory tract includes tissue-resident memory T (TRM) cells and tissue-resident memory B (BRM) cells, which provides rapid and efficient protection against RSV re-infection. Therefore, vaccine strategies should aim to generate mucosal immune responses. However, the interactions between RSV vaccines and mucosal immune responses within the respiratory tract are poorly understood. We evaluated a mucosal immune system following immunization by RSV vaccine with poly-sorbitol transporter (RSV-PST), a nanoparticle adjuvant. Methods: We intranasally immunized the RSV-PST and identified the systemic and mucosal immune responses. Furthermore, we challenged with RSV A2 strain after immunization and investigated the protective effects. Results: Consequently, antigen-specific CD8+ TRM cells were markedly elevated in the lung parenchyma, yet exhibited impaired cytokine expression. In contrast, humoral immunity, with systemic antibody production from serum, but not in the respiratory tract, was significantly increased by RSV-PST immunization. Interestingly, the production of respiratory mucosal antigen-specific IgG after RSV A2 challenge dramatically increased in the bronchoalveolar lavage fluid (BALF) of the RSV-PST immunized group in the presence of FTY720, and the lung-infected RSV titer was significantly lower in this group. Furthermore, after RSV A2 challenge, CD69+ IgG+ BRM cells were significantly increased in lung tissues in the RSV-PST group. Conclusions: The RSV-PST vaccine has protective effects against RSV infection by promoting both systemic and local humoral immunity rather than cellular immunity.
Collapse
Affiliation(s)
- Seong-Mook Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea; (S.-M.J.); (Y.C.P.); (E.S.S.)
| | - Soo Ji Kim
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea; (S.-M.J.); (Y.C.P.); (E.S.S.)
| | - Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea; (S.-M.J.); (Y.C.P.); (E.S.S.)
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; (C.G.K.); (C.-H.Y.)
| | - Taewoo Kim
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - Sumin Lee
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - Eunjin Cho
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; (C.G.K.); (C.-H.Y.)
| | - Byoung-Shik Shim
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - In Su Cheon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea; (S.-M.J.); (Y.C.P.); (E.S.S.)
| |
Collapse
|
30
|
Yang L, Liu Q, Kumar P, Sengupta A, Farnoud A, Shen R, Trofimova D, Ziegler S, Davoudi N, Doryab A, Yildirim AÖ, Diefenbacher ME, Schiller HB, Razansky D, Piraud M, Burgstaller G, Kreyling WG, Isensee F, Rehberg M, Stoeger T, Schmid O. LungVis 1.0: an automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages. Nat Commun 2024; 15:10138. [PMID: 39604430 PMCID: PMC11603200 DOI: 10.1038/s41467-024-54267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Targeted (nano-)drug delivery is essential for treating respiratory diseases, which are often confined to distinct lung regions. However, spatio-temporal profiling of drugs or nanoparticles (NPs) and their interactions with lung macrophages remains unresolved. Here, we present LungVis 1.0, an AI-powered imaging ecosystem that integrates light sheet fluorescence microscopy with deep learning-based image analysis pipelines to map NP deposition and dosage holistically and quantitatively across bronchial and alveolar (acinar) regions in murine lungs for widely-used bulk-liquid and aerosol-based delivery methods. We demonstrate that bulk-liquid delivery results in patchy NP distribution with elevated bronchial doses, whereas aerosols achieve uniform deposition reaching distal alveoli. Furthermore, we reveal that lung tissue-resident macrophages (TRMs) are dynamic, actively patrolling and redistributing NPs within alveoli, contesting the conventional paradigm of TRMs as static entities. LungVis 1.0 provides an advanced framework for exploring pulmonary delivery dynamics and deepening insights into TRM-mediated lung immunity.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pramod Kumar
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Arunima Sengupta
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Farnoud
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruolin Shen
- Helmholtz AI, Helmholtz Munich, Munich, Germany
| | - Darya Trofimova
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Ziegler
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Neda Davoudi
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ali Doryab
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Markus E Diefenbacher
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Ludwig Maximilian University Munich, Munich, Germany
- DKTK Munich, Munich, Germany
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Unit for Precision Regenerative Medicine (PRM), Helmholtz Munich, Munich, Germany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Wolfgang G Kreyling
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Epidemiology (EPI), Helmholtz Munich, Munich, Germany
| | - Fabian Isensee
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
31
|
Lei H, Hong W, Yang J, He C, Zhou Y, Zhang Y, Alu A, Shi J, Liu J, Qin F, Ao D, Huang X, Chen Z, Yang H, Yang Y, Yu W, Tang C, Wang J, Li B, Huang Q, Hu H, Cheng W, Dong H, Lei J, Chen L, Zhou X, Li J, Yang L, Wang Z, Wang W, Shen G, Yang J, Zhao Z, Song X, Lu G, Sun Q, Wang Y, Lu S, Wei X. Intranasal delivery of a subunit protein vaccine provides protective immunity against JN.1 and XBB-lineage variants. Signal Transduct Target Ther 2024; 9:311. [PMID: 39562542 DOI: 10.1038/s41392-024-02025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The mucosal immune response plays a crucial role in the prevention of respiratory viruses. Given the risk of recurrent SARS-CoV-2 infections in the population, the rapid development of next-generation intranasal COVID-19 vaccines with high safety and efficacy is paramount. In the current study, we developed a protein-based intranasal vaccine comprising the XBB.1.5 receptor binding domain (RBD)-derived trimeric recombinant protein (RBDXBB.1.5-HR) and an MF59-like oil-in-water adjuvant. Intranasal administration of RBDXBB.1.5-HR vaccine elicited robust and sustained humoral immune responses in mice and rats, resulting in high levels of neutralizing antibodies against XBB-lineage subvariants, with protection lasting for at least six months. The intranasal RBDXBB.1.5-HR vaccine generated potent mucosal immune responses, characterized by the inductions of tissue-resident T (TRM) cells, local cellular immunity, germinal center, and memory B cell responses in the respiratory tract. The combination of intramuscular and intranasal delivery of the RBDXBB.1.5-HR vaccine demonstrated exceptional systemic and mucosal protective immunity. Furthermore, intranasal delivery of RBDXBB.1.5-HR vaccine as a heterologous booster shot showed more effective boosting effects after mRNA administration compared to homologous vaccination, as evidenced by the induction of superior systemic and extra mucosal immune response. Importantly, the intranasal RBDXBB.1.5-HR vaccine conferred efficient protection against the challenge with authentic EG.5.1 viruses in vivo. These findings identify the intranasal RBDXBB.1.5-HR vaccine as a potential mucosal vaccine candidate for the prevention of SARS-CoV-2 infection.
Collapse
MESH Headings
- Animals
- Administration, Intranasal
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- Rats
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Antibodies, Neutralizing/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Humans
- Antibodies, Viral/immunology
- Female
- Immunity, Mucosal/immunology
- Mice, Inbred BALB C
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Immunity, Humoral/immunology
- Immunity, Humoral/drug effects
- Polysorbates/administration & dosage
Collapse
Affiliation(s)
- Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jie Shi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xiya Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Hao Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Hongbo Hu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Wei Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jian Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Lu Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xikun Zhou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Zhiwei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Youchun Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
32
|
Jiang M, Zhang H, Yao X, Wang Y, Lai X, Fang H. Immunization-related stress and stress-related responses of mucosal versus intramuscular COVID-19 vaccination among adults in China. Vaccine 2024; 42:126150. [PMID: 39095276 DOI: 10.1016/j.vaccine.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND In late 2022, China became the first country to roll out mucosal COVID-19 vaccines. No prior study has yet compared the immunization stress-related responses (ISRR) among different routes of COVID-19 vaccine delivery. We aimed to compare the immunization-related psychological stress and ISRR between mucosal and intramuscular COVID-19 vaccines. METHODS A cross-sectional questionnaire survey using a biopsychosocial framework design was performed from January 11 to 20, 2023. Adults with COVID-19 vaccination were eligible for the study, and a total of 1073 adults participated with community-based sample. Primary outcomes were the psychological stress levels and prevalence of ISRR. Multivariate regression models were employed to compare these outcomes between the two vaccination groups. The potential mediating effects of stress on vaccination and ISRR were examined using bootstrap sampling method. To further ensure the robustness of our results, sensitivity analysis with propensity score matching was performed. FINDINGS In the univariate analysis, participants who received mucosal vaccination reported significantly lower stress levels compared to those who received intramuscular vaccination (3.39 ± 3.02 vs. 3.93 ± 3.24, P = .006). The prevalence of overall ISRR was significantly lower in the mucosal group compared to the intramuscular group (38.4% vs. 47.9%, P = .002). Multivariate regression models revealed that participants who received mucosal vaccination had a significantly lower stress level (β = -0.516, 95% CI: -0.852 to -0.180; P = .003) and 38.7% fewer overall ISRR (OR = 0.613, 95% CI: 0.427 to 0.881; P = .008), particularly in terms of neurological symptoms. The immunization-related stress mediated the association between vaccination type and ISRR, with indirect effects estimated at 0.0663 (95% CI: 0.0195 to 0.1346) for overall ISRR. CONCLUSIONS Mucosal COVID-19 vaccination was associated with reduced psychological stress and physical responses, as compared to intramuscular vaccination, which may contribute to increased trust and compliance with routine or mass vaccination efforts in the future.
Collapse
Affiliation(s)
- Minghuan Jiang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China; Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China; Institute for Global Health and Development, Peking University, Beijing, China
| | - Haijun Zhang
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China; China Center for Health Development Studies, Peking University, Beijing, China; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA; International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Xuelin Yao
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China; Center for Drug Safety and Policy Research, Xi'an Jiaotong University, Xi'an, China
| | - Yang Wang
- China Center for Health Development Studies, Peking University, Beijing, China
| | - Xiaozhen Lai
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China; China Center for Health Development Studies, Peking University, Beijing, China; Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hai Fang
- China Center for Health Development Studies, Peking University, Beijing, China; Peking University Health Science Center - Chinese Center for Disease Control and Prevention Joint Research Center for Vaccine Economics, Beijing, China.
| |
Collapse
|
33
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
34
|
Chew CK, Wang R, Bavanandan S, Zainudin N, Zhao X, Ahmed S, Nair D, Hou L, Yahya R, Ch'ng SS, Pang LH, Abdul Aziz A, Huang H, Rajasuriar R, Wu S, Zhang Z, Wang X, Chun GY, Mohd Norzi A, Cheah KY, Lee YL, Wan Mohamad WH, Mohd Din MR, Wan Ahmad Kamil WMR, Tan MH, Xu X, Wang L, Yan M, Liu Y, Chin VK, Teo JS, Lim TO, Zhu T, Gou J, Ng SSM. Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial. NPJ Vaccines 2024; 9:209. [PMID: 39482336 PMCID: PMC11527888 DOI: 10.1038/s41541-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
This phase 3, observer-blinded, non-inferiority randomized trial (ClinicalTrials.gov: NCT05517642), conducted from September 2022 to May 2023 at three Malaysian sites, involved 540 adults previously vaccinated with three COVID-19 doses. Participants were randomized 1:1 to receive either one dose of inhaled Recombinant COVID-19 Vaccine (Ad5-nCoV-IH) or intramuscular tozinameran (BNT-IM). The study assessed safety, vaccine efficacy (VE) and immunogenicity against SARS-CoV-2 variants. The primary outcome was the non-inferiority of anti-spike protein receptor-binding domain (S-RBD IgG) antibodies, with a 97.5% confidence interval lower limit for the geometric mean concentration (GMC) ratio >0.67. Ad5-nCoV-IH showed lower immunogenicity than BNT-IM, with a GMC ratio of 0.22 and a seroconversion rate difference of -71.91%. Adverse drug reactions (ADRs) were less frequent with Ad5-nCoV-IH (39.26%) compared to BNT-IM (64.68%). No serious vaccine-related adverse events were reported. Both vaccines had comparable efficacy against COVID-19 variants. This study was funded by Tianjin Biomedical Science and Technology Major Project.
Collapse
Affiliation(s)
- Chun K Chew
- Centre for Clinical Trial, Institute for Clinical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Ruijie Wang
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Sunita Bavanandan
- Department of Nephrology, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | - Xiaoyuan Zhao
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Sumeyya Ahmed
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Damenthi Nair
- Clinical Research Ward, Centre for Clinical Trial, Institute for Clinical Research, Hospital Ampang, Selangor, Malaysia
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
| | - Rosnawati Yahya
- Department of Nephrology, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | - Lai H Pang
- Clinical Research Ward, Centre for Clinical Trial, Institute for Clinical Research, Hospital Ampang, Selangor, Malaysia
| | - Azrini Abdul Aziz
- Department of Nephrology, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Haitao Huang
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Reena Rajasuriar
- Immunotherapeutcis Laboratory and Department of Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhe Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Xuewen Wang
- Shanghai ImStat Medical Technology Co., Ltd., Shanghai, China
| | - Geok Y Chun
- Centre for Clinical Trial, Institute for Clinical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Aisyah Mohd Norzi
- Clinical Research Ward, Centre for Clinical Trial, Institute for Clinical Research, Hospital Ampang, Selangor, Malaysia
| | - Kit Y Cheah
- Clinical Research Ward, Centre for Clinical Trial, Institute for Clinical Research, Hospital Ampang, Selangor, Malaysia
| | - Yi L Lee
- Clinical Research Ward, Centre for Clinical Trial, Institute for Clinical Research, Hospital Ampang, Selangor, Malaysia
| | - Wan H Wan Mohamad
- Department of Nephrology, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | | | - Min H Tan
- Department of Nephrology, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Xiaoyu Xu
- Nanjing Vazyme Biotech Co., Ltd., Nanjing, China
| | - Lina Wang
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Meixu Yan
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Yusi Liu
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Voon K Chin
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Jau S Teo
- Clindata Consult Sdn Bhd, Petaling Jaya, Selangor, Malaysia
| | - Teck O Lim
- Clin Research Private Enterprise, Petaling Jaya, Selangor, Malaysia
| | - Tao Zhu
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China
| | - Jinbo Gou
- Clinical Operations Center, CanSino Biologics Inc., Tianjin, China.
| | - Sharon S M Ng
- Centre for Clinical Trial, Institute for Clinical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia.
| |
Collapse
|
35
|
Lett MJ, Otte F, Hauser D, Schön J, Kipfer ET, Hoffmann D, Halwe NJ, Breithaupt A, Ulrich L, Britzke T, Kochmann J, Corleis B, Zhang Y, Urda L, Cmiljanovic V, Lang C, Beer M, Mittelholzer C, Klimkait T. High protection and transmission-blocking immunity elicited by single-cycle SARS-CoV-2 vaccine in hamsters. NPJ Vaccines 2024; 9:206. [PMID: 39472701 PMCID: PMC11522273 DOI: 10.1038/s41541-024-00992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Vaccines have played a central role in combating the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants are increasingly evading first-generation vaccine protection. To address this challenge, we designed "single-cycle infection SARS-CoV-2 viruses" (SCVs) that lack essential viral genes, possess distinctive immune-modulatory features, and exhibit an excellent safety profile in the Syrian hamster model. Animals intranasally vaccinated with an Envelope-gene-deleted vaccine candidate were fully protected against an autologous challenge with the SARS-CoV-2 virus through systemic and mucosal humoral immune responses. Additionally, the deletion of immune-downregulating viral genes in the vaccine construct prevented challenge virus transmission to contact animals. Moreover, vaccinated animals displayed neither tissue inflammation nor lung damage. Consequently, SCVs hold promising potential to induce potent protection against COVID-19, surpassing the immunity conferred by natural infection, as demonstrated in human immune cells.
Collapse
Affiliation(s)
- Martin Joseph Lett
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Enja Tatjana Kipfer
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Nico J Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Tobias Britzke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Christopher Lang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald - Isle of Riems, Greifswald, Germany
| | - Christian Mittelholzer
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- RocketVax AG, Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Fuchs J, Hübner J, Schmidt A, Irrgang P, Maier C, Vieira Antão A, Oltmanns F, Thirion C, Lapuente D, Tenbusch M. Evaluation of adenoviral vector Ad19a encoding RSV-F as novel vaccine against respiratory syncytial virus. NPJ Vaccines 2024; 9:205. [PMID: 39472590 PMCID: PMC11522487 DOI: 10.1038/s41541-024-01001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infections in infants and toddlers. Since natural infections do not induce persistent immunity, there is the need of vaccines providing long-term protection. Here, we evaluated a new adenoviral vector (rAd) vaccine based on the rare serotype rAd19a and compared the immunogenicity and efficacy to the highly immunogenic rAd5. Given as an intranasal boost in DNA primed mice, both vectors encoding the F protein provided efficient protection against a subsequent RSV infection. However, intramuscular immunization with rAd19a vectors provoked vaccine-enhanced disease after RSV infection compared to non-vaccinated animals. While mucosal IgA antibodies and tissue-resident memory T-cells in intranasally vaccinated mice rapidly control RSV replication, a strong anamnestic systemic T-cell response in absence of local immunity might be the reason for immune-mediated enhanced disease. Our study highlighted the potential benefits of developing effective mucosal against respiratory pathogens.
Collapse
Affiliation(s)
- Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Julian Hübner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Clara Maier
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | | | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054, Erlangen, Germany.
| |
Collapse
|
37
|
Bozkus CC, Brown M, Velazquez L, Thomas M, Wilson EA, O’Donnell T, Ruchnewitz D, Geertz D, Bykov Y, Kodysh J, Oguntuyo KY, Roudko V, Hoyos D, Srivastava KD, Kleiner G, Alshammary H, Karekar N, McClain C, Gopal R, Nie K, Del Valle D, Delbeau-Zagelbaum D, Rodriguez D, Setal J, The Mount Sinai COVID-19 Biobank Team, Carroll E, Wiesendanger M, Gulko PS, Charney A, Merad M, Kim-Schulze S, Lee B, Wajnberg A, Simon V, Greenbaum BD, Chowell D, Vabret N, Luksza M, Bhardwaj N. T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619918. [PMID: 39484455 PMCID: PMC11527131 DOI: 10.1101/2024.10.23.619918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
As SARS-CoV-2 variants continue to emerge capable of evading neutralizing antibodies, it has become increasingly important to fully understand the breadth and functional profile of T cell responses to determine their impact on the immune surveillance of variant strains. Here, sampling healthy individuals, we profiled the kinetics and polyfunctionality of T cell immunity elicited by mRNA vaccination. Modeling of anti-spike T cell responses against ancestral and variant strains of SARS-CoV-2 suggested that epitope immunodominance and cross-reactivity are major predictive determinants of T cell immunity. To identify immunodominant epitopes across the viral proteome, we generated a comprehensive map of CD4+ and CD8+ T cell epitopes within non-spike proteins that induced polyfunctional T cell responses in convalescent patients. We found that immunodominant epitopes mainly resided within regions that were minimally disrupted by mutations in emerging variants. Conservation analysis across historical human coronaviruses combined with in silico alanine scanning mutagenesis of non-spike proteins underscored the functional importance of mutationally-constrained immunodominant regions. Collectively, these findings identify immunodominant T cell epitopes across the mutationally-constrained SARS-CoV-2 proteome, potentially providing immune surveillance against emerging variants, and inform the design of next-generation vaccines targeting antigens throughout SARS-CoV-2 proteome for broader and more durable protection.
Collapse
Affiliation(s)
- Cansu Cimen Bozkus
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Matthew Brown
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leandra Velazquez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus Thomas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A. Wilson
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy O’Donnell
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Douglas Geertz
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonina Bykov
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Kodysh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasopefoluwa Y. Oguntuyo
- The Department of Medicine, The Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal D. Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Kleiner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha Karekar
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher McClain
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramya Gopal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Del Valle
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Denise Rodriguez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Setal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Emily Carroll
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margrit Wiesendanger
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Percio S. Gulko
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ania Wajnberg
- The Department of Medicine, The Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Diego Chowell
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Vabret
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Luksza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
38
|
Kang A, Ye G, Afkhami S, Aleithan F, Singh K, Dvorkin-Gheva A, Berg T, Miller MS, Jeyanathan M, Xing Z. LPS-induced lung tissue-resident trained innate immunity provides differential protection against pneumococci and SARS-CoV-2. Cell Rep 2024; 43:114849. [PMID: 39383035 DOI: 10.1016/j.celrep.2024.114849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Recent evidence indicates that tissue-resident innate immune memory and trained innate immunity (TII) can be induced centrally in myeloid cells within the bone marrow and locally in tissue-resident macrophages in respiratory mucosal tissues. However, it remains unclear whether acute exposure to airborne microbial components like lipopolysaccharide (LPS) induces lasting innate immune memory in airway macrophages and TII capable of protection against heterologous pathogens. Using a murine model, we demonstrate that acute LPS exposure leads to dynamic changes in the immune phenotype of airway macrophages that persist long after the acute inflammatory response has subsided. The original airway-resident alveolar macrophage pool remains stable in size despite these changes and the earlier transient acute inflammatory responses, including monocytic recruitment in the lung. We further demonstrate that the induction of innate immune memory in airway macrophages is accompanied by TII capable of robust protection against acute pneumococcal infection, whereas it provides minimal protection against acute SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alisha Kang
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Gluke Ye
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fatemah Aleithan
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kanwaldeep Singh
- Department of Oncology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tobias Berg
- Department of Oncology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, Department of Medicine, and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
39
|
Rader NA, Lee KS, Loes AN, Miller-Stump OA, Cooper M, Wong TY, Boehm DT, Barbier M, Bevere JR, Heath Damron F. Influenza virus strains expressing SARS-CoV-2 receptor binding domain protein confer immunity in K18-hACE2 mice. Vaccine X 2024; 20:100543. [PMID: 39221180 PMCID: PMC11364132 DOI: 10.1016/j.jvacx.2024.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.
Collapse
Affiliation(s)
- Nathaniel A. Rader
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Katherine S. Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Olivia A. Miller-Stump
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
40
|
Zheng H, Li C, Zheng X, Jiang HD, Li Y, Yao A, Li X, Wang F, Liu W, Cao X, Qi R, Chen L, Jin L, Zhu F, Li J, Chen F. Immune responses and transcription landscape of adults with the third dose of homologous and heterologous booster vaccines of COVID-19. Front Immunol 2024; 15:1461419. [PMID: 39328415 PMCID: PMC11424439 DOI: 10.3389/fimmu.2024.1461419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background Heterologous booster vaccines are more effective than homologous booster vaccines in combating the coronavirus disease 2019 (COVID-19) outbreak. However, our understanding of homologous and heterologous booster vaccines for COVID-19 remains limited. Methods We recruited 34 healthy participants from two cohorts who were primed with two-dose inactivated COVID-19 vaccine before, vaccinated with COVID-19 inactivated vaccine and adenovirus-vectored vaccine (intramuscular and aerosol inhalation of Ad5-nCoV) as a third booster dose. We assessed the immune responses of participants before and 14 days after vaccination, including levels of neutralizing antibodies, IgG, and cytokines, and quantified the transcriptional profile of peripheral blood mononuclear cells (PBMCs). Results The Ad5-nCoV group showed a significantly higher neutralizing antibody geometric mean titer (GMT) compared to the ICV group after 14 days of heterologous boosting. The intramuscular Ad5-nCoV group had a GMT of 191.8 (95% CI 129.0, 285.1) compared to 38.1 (95% CI 23.1, 62.8) in the ICV1 group (p<0.0001). The aerosolized Ad5-nCoV group had a GMT of 738.4 (95% CI 250.9-2173.0) compared to 244.0 (95% CI 135.0, 441.2) in the ICV2 group (p=0.0434). Participants in the aerosolized Ad5-nCoV group had median IFN-γ+ spot counts of 36.5 (IQR 15.3-58.8) per 106 PBMCs, whereas, both intramuscular Ad5-nCoV and CoronaVac immunization as the third dose showed lower responses. This suggests that a third dose of booster Ad5-nCoV vaccine (especially aerosolized inhalation) as a heterologous vaccine booster induces stronger humoral and cellular immune responses, which may be more potent against VOCs than the use of inactivated vaccine homologs. In transcriptomic analyses, both aerosolized inhalation/intramuscular injection of the Ad5-nCoV vaccine and inactivated vaccine induced a large number of differentially expressed genes that were significantly associated with several important innate immune pathways including inflammatory responses, regulation of the defense response, and regulation of cytokine production. In addition, we identified crucial molecular modules of protective immunity that are significantly correlated with vaccine type and neutralizing antibodies level. Conclusion This study demonstrated that inhalation/intramuscular injection of the Ad5-nCoV vaccine-mediated stronger humoral and cellular immune responses compared with the inactivated vaccine, and correlated significantly with innate immune function modules, supporting a heterologous booster immunization strategy.
Collapse
Affiliation(s)
- Hui Zheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Cuidan Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiuyu Zheng
- Research and Development Department, CanSino Biologics Inc., Tianjin, China
| | - Hu-Dachuan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Yuqing Li
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aihua Yao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xiaolong Li
- Research and Development Department, CanSino Biologics Inc., Tianjin, China
| | - Feiyu Wang
- Research and Development Department, CanSino Biologics Inc., Tianjin, China
| | - Wenqing Liu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Runjie Qi
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Lairun Jin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Fengcai Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingxin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| |
Collapse
|
41
|
Yang CH, Shen KY, Ho HM, Huang CY, Cheng YJ, Pu CC, Chiu FF, Huang WC, Liao HC, Chen HW, Liao CL, Liu SJ, Huang MH. Boosting DNA vaccine power by lipid nanoparticles surface engineered with amphiphilic bioresorbable copolymer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102261. [PMID: 39071950 PMCID: PMC11278320 DOI: 10.1016/j.omtn.2024.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
Successful DNA vaccination generally requires the aid of either a viral vector within vaccine components or an electroporation device into the muscle or skin of the host. However, these systems come with certain obstacles, including limited transgene capacity, broad preexisting immunity in humans, and substantial cell death caused by high voltage pulses, respectively. In this study, we repurposed the use of an amphiphilic bioresorbable copolymer (ABC), called PLA-PEG, as a surface engineering agent that conciliates lipid nanoparticles (LNPs) between stability during preparation and biocompatibility post-vaccination. The LNP carrier can be loaded with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-specific DNA; in this form, the DNA-LNP is immunogenic in hamsters and elicits protective immunity following DNA-LNP vaccination against heterologous virus challenge or as a hybrid-type vaccine booster against SARS-CoV-2 variants. The data provide comprehensive information on the relationships between LNP composition, manufacturing process, and vaccine efficacy. The outcomes of this study offer new insights into designing next-generation LNP formulations and pave the way for boosting vaccine power to combat existing and possible emerging infectious diseases/pathogens.
Collapse
Affiliation(s)
- Chung-Hsiang Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chih-Chun Pu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wan-Chun Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
42
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
43
|
Zhou H, Leng P, Wang Y, Yang K, Li C, Ojcius DM, Wang P, Jiang S. Development of T cell antigen-based human coronavirus vaccines against nAb-escaping SARS-CoV-2 variants. Sci Bull (Beijing) 2024; 69:2456-2470. [PMID: 38942698 DOI: 10.1016/j.scib.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 06/30/2024]
Abstract
Currently approved vaccines have been successful in preventing the severity of COVID-19 and hospitalization. These vaccines primarily induce humoral immune responses; however, highly transmissible and mutated variants, such as the Omicron variant, weaken the neutralization potential of the vaccines, thus, raising serious concerns about their efficacy. Additionally, while neutralizing antibodies (nAbs) tend to wane more rapidly than cell-mediated immunity, long-lasting T cells typically prevent severe viral illness by directly killing infected cells or aiding other immune cells. Importantly, T cells are more cross-reactive than antibodies, thus, highly mutated variants are less likely to escape lasting broadly cross-reactive T cell immunity. Therefore, T cell antigen-based human coronavirus (HCoV) vaccines with the potential to serve as a supplementary weapon to combat emerging SARS-CoV-2 variants with resistance to nAbs are urgently needed. Alternatively, T cell antigens could also be included in B cell antigen-based vaccines to strengthen vaccine efficacy. This review summarizes recent advancements in research and development of vaccines containing T cell antigens or both T and B cell antigens derived from proteins of SARS-CoV-2 variants and/or other HCoVs based on different vaccine platforms.
Collapse
Affiliation(s)
- Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94115, USA
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministry of Education/Ministry of Health/Chinese Academy of Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
44
|
Talks BJ, Mather MW, Chahal M, Coates M, Clatworthy MR, Haniffa M. Mapping Human Immunity and the Education of Waldeyer's Ring. Annu Rev Genomics Hum Genet 2024; 25:161-182. [PMID: 38594932 DOI: 10.1146/annurev-genom-120522-012938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The development and deployment of single-cell genomic technologies have driven a resolution revolution in our understanding of the immune system, providing unprecedented insight into the diversity of immune cells present throughout the body and their function in health and disease. Waldeyer's ring is the collective name for the lymphoid tissue aggregations of the upper aerodigestive tract, comprising the palatine, pharyngeal (adenoids), lingual, and tubal tonsils. These tonsils are the first immune sentinels encountered by ingested and inhaled antigens and are responsible for mounting the first wave of adaptive immune response. An effective mucosal immune response is critical to neutralizing infection in the upper airway and preventing systemic spread, and dysfunctional immune responses can result in ear, nose, and throat pathologies. This review uses Waldeyer's ring to demonstrate how single-cell technologies are being applied to advance our understanding of the immune system and highlight directions for future research.
Collapse
Affiliation(s)
- Benjamin J Talks
- Department of Otolaryngology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Michael W Mather
- Department of Otolaryngology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Manisha Chahal
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| | - Matthew Coates
- Department of Medicine, University of Cambridge, Cambridge, UK; ,
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Hinxton, UK;
- Department of Medicine, University of Cambridge, Cambridge, UK; ,
| | - Muzlifah Haniffa
- Department of Dermatology and National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Hinxton, UK;
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; , ,
| |
Collapse
|
45
|
Jiang Y, Sun L, Qiao N, Wang X, Zhu C, Xing M, Liu H, Zhou P, Zhou D. A quadrivalent norovirus vaccine based on a chimpanzee adenovirus vector induces potent immunity in mice. Virol Sin 2024; 39:675-684. [PMID: 38997087 PMCID: PMC11401472 DOI: 10.1016/j.virs.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Norovirus (NoV) infection is a major cause of gastroenteritis worldwide. The virus poses great challenges in developing vaccines with broad immune protection due to its genetic and antigenic diversity. To date, there are no approved NoV vaccines for clinical use. Here, we aimed to develop a broad-acting quadrivalent NoV vaccine based on a chimpanzee adenovirus vector, AdC68, carrying the major capsid protein (VP1) of noroviral GI and GII genotypes. Compared to intramuscular (i.m.), intranasal (i.n.), or other prime-boost immunization regimens (i.m. + i.m., i.m. + i.n., i.n. + i.m.), AdC68-GI.1-GII.3 (E1)-GII.4-GII.17 (E3), administered via i.n. + i.n. induced higher titers of serum IgG antibodies and higher IgA antibodies in bronchoalveolar lavage fluid (BALF) and saliva against the four homologous VP1s in mice. It also significantly stimulated the production of blocking antibodies against the four genotypes. In response to re-stimulation with virus-like particles (VLP)-GI.1, VLP-GII.3, VLP-GII.4, and VLP-GII.17, the quadrivalent vaccine administered according to the i.n. + i.n. regimen effectively triggered specific cell-mediated immune responses, primarily characterized by IFN-γ secretion. Furthermore, the preparation of this novel quadrivalent NoV vaccine requires only a single recombinant adenovirus to provide broad preventive immunity against the major GI/GII epidemic strains, making it a promising vaccine candidate for further development.
Collapse
Affiliation(s)
- Yihua Jiang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Nan Qiao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Caihong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Hui Liu
- R&D Centre, Chengdu Kanghua Biological Products Co., Ltd, Chengdu, 610000, China.
| | - Ping Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
46
|
Chai P, Shi Y, Yu J, Liu X, Li D, Li J, Li L, Li D, Duan Z. The Central Conserved Peptides of Respiratory Syncytial Virus G Protein Enhance the Immune Response to the RSV F Protein in an Adenovirus Vector Vaccine Candidate. Vaccines (Basel) 2024; 12:807. [PMID: 39066445 PMCID: PMC11281717 DOI: 10.3390/vaccines12070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a serious human respiratory pathogen that commonly affects children, older adults, and immunocompromised individuals. At present, the design of licensed vaccines focuses on the incorporation of the pre-fusion protein (PreF protein) of RSV, as this protein has the ability to induce antibodies that offer a high level of protection. Moreover, the G protein contains the CX3C motif that binds the chemokine receptor CX3CR1 in respiratory epithelial cells, which plays an essential role in viral infection. Therefore, incorporating the G antigen into vaccine design may prove more advantageous for RSV prevention. In this study, we developed a human adenoviral vector-based RSV vaccine containing highly neutralizing immunogens, a modified full-length PreF protein fused with the central conserved peptides of the G protein (Gcc) from both RSV subgroups trimerized via a C-terminal foldon, and evaluated its immune response in mice through intranasal (i.n.) immunization. Our results showed that immunization with Ad5-PreF-Qa-Gcc elicited a balanced Th1/Th2 immune response and robust mucosal immunity with higher neutralizing antibody titers against RSV Long and RSV B1. Importantly, immunization with Ad5-PreF-Qa-Gcc enhanced CD4+ CD25+ FoxP3+ Treg cell response and protected the mice against RSV infection. Our data demonstrate that the combination of Gcc and the PreF antigen is a viable strategy for developing effective RSV vaccines.
Collapse
Affiliation(s)
- Pengdi Chai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Yi Shi
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730101, China; (Y.S.)
| | - Junjie Yu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730101, China; (Y.S.)
| | - Xiafei Liu
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Dongwei Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Jinsong Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Lili Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Dandi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| | - Zhaojun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China (D.L.)
| |
Collapse
|
47
|
Li J, Xing H, Meng F, Liu T, Hong X, Han X, Dong Y, Li M, Wang Z, Zhang S, Cui C, Zheng A. Virus-Mimetic Extracellular-Vesicle Vaccine Boosts Systemic and Mucosal Immunity via Immune Recruitment. ACS NANO 2024. [PMID: 39013102 DOI: 10.1021/acsnano.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Mucosal vaccines can prevent viruses from infecting the respiratory mucosa, rather than only curtailing infection and protecting against the development of disease symptoms. The SARS-CoV-2 spike receptor-binding domain (RBD) is a compelling vaccine target but is undermined by suboptimal mucosal immunogenicity. Here, we report a SARS-CoV-2-mimetic extracellular-vesicle vaccine developed using genetic engineering and dendritic cell membrane budding. After mucosal immunization, the vaccine recruits antigen-presenting cells rapidly initiating a strong innate immune response. Notably, it obviates the need for adjuvants and can induce germinal center formation through both intramuscular and intratracheal vaccination. It not only elicits high levels of RBD-specific antibodies but also stimulates extensive cellular immunity in the respiratory mucosa. A sequential immunization strategy, starting with an intramuscular injection followed by an intratracheal booster, significantly bolsters mucosal immunity with high levels of IgA and tissue-resident memory T cell responses, thereby establishing a formidable defense against pseudovirus infection.
Collapse
Affiliation(s)
- Jingru Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Haonan Xing
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fan Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xiaoxuan Hong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xiaolu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuhan Dong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shuang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
48
|
Ross KA, Kelly S, Phadke KS, Peroutka-Bigus N, Fasina O, Siddoway A, Mallapragada SK, Wannemuehler MJ, Bellaire BH, Narasimhan B. Next-generation nanovaccine induces durable immunity and protects against SARS-CoV-2. Acta Biomater 2024; 183:318-329. [PMID: 38844193 DOI: 10.1016/j.actbio.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While first generation SARS-CoV-2 vaccines were effective in slowing the spread and severity of disease during the COVID-19 pandemic, there is a need for vaccines capable of inducing durable and broad immunity against emerging variants of concern. Nanoparticle-based vaccines (i.e., "nanovaccines") composed of polyanhydride nanoparticles and pentablock copolymer micelles have previously been shown to protect against respiratory pathogens, including influenza A virus, respiratory syncytial virus, and Yersinia pestis. In this work, a nanovaccine containing SARS-CoV-2 spike and nucleocapsid antigens was designed and optimized. The optimized nanovaccine induced long-lived systemic IgG antibody responses against wild-type SARS-CoV-2 virus. In addition, the nanovaccine induced antibody responses capable of neutralization and cross-reactivity to multiple SARS-CoV-2 variants (including B.1.1.529) and antigen-specific CD4+ and CD8+ T cell responses. Finally, the nanovaccine protected mice against a lethal SARS-CoV-2 challenge, setting the stage for advancing particle-based SARS-CoV-2 nanovaccines. STATEMENT OF SIGNIFICANCE: First-generation SARS-CoV-2 vaccines were effective in slowing the spread and limiting the severity of COVID-19. However, current vaccines target only one antigen of the virus (i.e., spike protein) and focus on the generation of neutralizing antibodies, which may be less effective against new, circulating strains. In this work, we demonstrated the ability of a novel nanovaccine platform, based on polyanhydride nanoparticles and pentablock copolymer micelles, to generate durable and broad immunity against SARS-CoV-2. These nanovaccines induced long-lasting (> 62 weeks) serum antibody responses which neutralized binding to ACE2 receptors and were cross-reactive to multiple SARS-CoV-2 variants. Additionally, mice immunized with the SARS-CoV-2 nanovaccine showed a significant increase of antigen-specific T cell responses in the draining lymph nodes and spleens. Together, these nanovaccine-induced immune responses contributed to the protection of mice against a lethal challenge of live SARS-CoV-2 virus, indicating that this nanovaccine platform is a promising next-generation SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Kathleen A Ross
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | - Sean Kelly
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kruttika S Phadke
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nathan Peroutka-Bigus
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Olufemi Fasina
- Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
| | - Alaric Siddoway
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bryan H Bellaire
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
49
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
50
|
Chen L, Ren W, Lei H, Wang J, Que H, Wan D, Alu A, Peng D, Fu M, Hong W, Huang Y, Song X, Lu G, Wei X. Intranasal boosting with RBD-HR protein vaccine elicits robust mucosal and systemic immune responses. Genes Dis 2024; 11:101066. [PMID: 38550714 PMCID: PMC10972810 DOI: 10.1016/j.gendis.2023.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Accepted: 06/27/2023] [Indexed: 03/17/2025] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has decreased the efficacy of SARS-CoV-2 vaccines in containing coronavirus disease 2019 (COVID-19) over time, and booster vaccination strategies are urgently necessitated to achieve sufficient protection. Intranasal immunization can improve mucosal immunity, offering protection against the infection and sustaining the spread of SARS-CoV-2. In this study, an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum, nasal lavage fluid, and bronchoalveolar lavage fluid compared with only two doses of mRNA vaccine. After intranasal boosting with the RBD-HR vaccine, the levels of serum neutralizing antibodies against prototype and variant strains of SARS-CoV-2 pseudoviruses were markedly higher than those in mice receiving mRNA vaccine alone, and intranasal boosting with the RBD-HR vaccine also inhibited the binding of RBD to hACE2 receptors. Furthermore, the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+ dendritic cells in the respiratory mucosa, and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs, including mediastinal lymph nodes, inguinal lymph nodes, and spleen. Collectively, these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locally and systemically.
Collapse
Affiliation(s)
| | | | | | - Jiayu Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dandan Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|