1
|
Ramon A, Ni M, Predeina O, Gaffey R, Kunz P, Onuoha S, Sormanni P. Prediction of protein biophysical traits from limited data: a case study on nanobody thermostability through NanoMelt. MAbs 2025; 17:2442750. [PMID: 39772905 PMCID: PMC11730357 DOI: 10.1080/19420862.2024.2442750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
In-silico prediction of protein biophysical traits is often hindered by the limited availability of experimental data and their heterogeneity. Training on limited data can lead to overfitting and poor generalizability to sequences distant from those in the training set. Additionally, inadequate use of scarce and disparate data can introduce biases during evaluation, leading to unreliable model performances being reported. Here, we present a comprehensive study exploring various approaches for protein fitness prediction from limited data, leveraging pre-trained embeddings, repeated stratified nested cross-validation, and ensemble learning to ensure an unbiased assessment of the performances. We applied our framework to introduce NanoMelt, a predictor of nanobody thermostability trained with a dataset of 640 measurements of apparent melting temperature, obtained by integrating data from the literature with 129 new measurements from this study. We find that an ensemble model stacking multiple regression using diverse sequence embeddings achieves state-of-the-art accuracy in predicting nanobody thermostability. We further demonstrate NanoMelt's potential to streamline nanobody development by guiding the selection of highly stable nanobodies. We make the curated dataset of nanobody thermostability freely available and NanoMelt accessible as a downloadable software and webserver.
Collapse
Affiliation(s)
- Aubin Ramon
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Mingyang Ni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Olga Predeina
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Rebecca Gaffey
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Patrick Kunz
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Bartsch YC, Webb NE, Burgess E, Kang J, Lauffenburger DA, Julg BD. Combinatorial Fc modifications for complementary antibody functionality. MAbs 2025; 17:2465391. [PMID: 39950649 PMCID: PMC11834420 DOI: 10.1080/19420862.2025.2465391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) can be functionally enhanced via Fc engineering. To determine whether pairs of mAbs with different Fc modifications can be combined for functional complementarity, we investigated the in vitro activity of two HIV-1 mAb libraries, each equipped with 60 engineered Fc variants. Our findings demonstrate that the impact of Fc engineering on Fc functionality is dependent on the specific Fab clone. Notably, combinations of Fc variants of the same Fab specificity exhibited limited enhancement in functional breadth compared to combinations involving two distinct Fabs. This suggests that the strategic selection of complementary Fc modifications can enhance both functional activity and breadth. Furthermore, while some combinations of Fc variants displayed additive functional effects, others were detrimental, suggesting that the functional outcome of Fc mutations is not easily predicted. Collectively, these results provide preliminary evidence supporting the potential of complementary Fc modifications in mAb combinations. Future studies will be essential to identify the optimal Fc modifications that maximize in vivo efficacy.
Collapse
Affiliation(s)
- Yannic C. Bartsch
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
- Laboratory of Anti-Viral Antibody-Omics, TWINCORE-Institute for Experimental Infection Research, Helmholtz Center for Infection Research (HZI) and Medical School Hannover (MHH) and Cluster of Excellence RESIST (EXC 2155), Hannover, Germany
| | - Nicholas E. Webb
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Eleanor Burgess
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jaewon Kang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | | | - Boris D. Julg
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Hu Y, Du X, Yuan J, Gong X, Zhu Y, Li H, Lin X, Zheng F, Ran Y, Na Z, Hu H. A high-affinity antibody-drug conjugates Actuximab-MMAE for potent and selective targeting of CEACAM5-Positive tumors. Cancer Lett 2025; 620:217685. [PMID: 40158720 DOI: 10.1016/j.canlet.2025.217685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Antibody-drug conjugates (ADCs) represent a promising class of anti-cancer therapy with an increasingly critical role in treating various tumors. They broaden the range of therapeutic targets, enabling the consideration of tumor-associated proteins that are overexpressed but lack well-defined mechanisms. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is a clinically relevant screening marker due to its tumor-specific overexpression, making it an attractive target for ADC development. However, the therapeutic potential of earlier anti-CEACAM5 ADCs has been limited by side effects and suboptimal drug-to-antibody ratios (DARs), restricting their clinical utility. In this study, we developed a novel anti-CEACAM5 ADC (named Actuximab-MMAE), characterized by high affinity, an optimized DAR, and potent tumor-selective cytotoxicity. Actuximab-MMAE demonstrated rapid and effective elimination of CEACAM5-positive tumors in vivo at low doses, while maintaining a favorable safety profile. These findings highlight Actuximab-MMAE as a promising therapeutic option for CEACAM5-overexpressing tumors, offering a new therapeutic method for targeted cancer therapy.
Collapse
Affiliation(s)
- Yuqi Hu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xin Du
- Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jiayu Yuan
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xizhao Gong
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yue Zhu
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Hongde Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310018, China
| | - Xiaorong Lin
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515000, China
| | - Fang Zheng
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhenkun Na
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310018, China.
| | - Hai Hu
- Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, 310022, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Zhang M, Yang Q, Lou J, Hu Y, Shi Y. A new strategy to HER2-specific antibody discovery through artificial intelligence-powered phage display screening based on the Trastuzumab framework. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167772. [PMID: 40056877 DOI: 10.1016/j.bbadis.2025.167772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a recognized drug target, and it serves as a critical target for various cancer treatments, necessitating the discovery of more antibodies for therapeutic and detection purposes. Here, we have developed an innovative workflow for antibody generation through Artificial Intelligence-powered Phage Display Screening (AIPDS). This workflow integrates artificial intelligence-driven antibody CDRH3 sequence design, high-throughput DNA synthesis and phage display screening. We applied AIPDS workflow to generate promising antibodies against the human epidermal growth factor receptor 2 (HER2), offering a template for streamlined antibody generation. Seven novel antibodies stood out, demonstrating promising efficacy in various functional assays. Notably, DYHER2-02 demonstrates strong performance across all experimental tests. In summary, our study introduces a novel methodology to generate new antibody variants of an existing antibody using an AI-assisted phage display approach. These new antibody variants hold potential applications in research, diagnosis, and therapeutic applications.
Collapse
Affiliation(s)
- Mancang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jiangrong Lou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Yang Hu
- United Research Center for Next Generation DNA Synthesis of SJTU-Dynegene, Shanghai 201108, People's Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| |
Collapse
|
5
|
Ferraz MV, Adan WCS, Lima TE, Santos AJ, Paula SOD, Dhalia R, Wallau GL, Wade RC, Viana IF, Lins RD. Design of nanobody targeting SARS-CoV-2 spike glycoprotein using CDR-grafting assisted by molecular simulation and machine learning. PLoS Comput Biol 2025; 21:e1012921. [PMID: 40257976 DOI: 10.1371/journal.pcbi.1012921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/26/2025] [Indexed: 04/23/2025] Open
Abstract
The design of proteins capable effectively binding to specific protein targets is crucial for developing therapies, diagnostics, and vaccine candidates for viral infections. Here, we introduce a complementarity-determining region (CDR) grafting approach for designing nanobodies (Nbs) that target specific epitopes, with the aid of computer simulation and machine learning. As a proof-of-concept, we designed, evaluated, and characterized a high-affinity Nb against the spike protein of SARS-CoV-2, the causative agent of the COVID-19 pandemic. The designed Nb, referred to as Nb Ab.2, was synthesized and displayed high-affinity for both the purified receptor-binding domain protein and to the virus-like particle, demonstrating affinities of 9 nM and 60 nM, respectively, as measured with microscale thermophoresis. Circular dichroism showed the designed protein's structural integrity and its proper folding, whereas molecular dynamics simulations provided insights into the internal dynamics of Nb Ab.2. This study shows that our computational pipeline can be used to efficiently design high-affinity Nbs with diagnostic and prophylactic potential, which can be tailored to tackle different viral targets.
Collapse
Affiliation(s)
- Matheus Vf Ferraz
- Department of virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Department of fundamental chemistry, Federal University of Pernambuco, Recife, Brazil
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - W Camilla S Adan
- Department of virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Department of fundamental chemistry, Federal University of Pernambuco, Recife, Brazil
| | - Tayná E Lima
- Department of virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Adriele Jc Santos
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Sérgio O de Paula
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Rafael Dhalia
- Department of virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Gabriel L Wallau
- Department of Entomology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research. National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Isabelle Ft Viana
- Department of virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation, Recife, Brazil
| | - Roberto D Lins
- Department of virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation, Recife, Brazil
| |
Collapse
|
6
|
Peralta Ramos JM, Castellani G, Kviatcovsky D, Croese T, Tsitsou-Kampeli A, Burgaletto C, Abellanas MA, Cahalon L, Phoebeluc Colaiuta S, Salame TM, Kuperman Y, Savidor A, Itkin M, Malitsky S, Ovadia S, Ferrera S, Kalfon L, Kadmani S, Samra N, Paz R, Rokach L, Furlan R, Aharon-Peretz J, Falik-Zaccai TC, Schwartz M. Targeting CD38 immunometabolic checkpoint improves metabolic fitness and cognition in a mouse model of Alzheimer's disease. Nat Commun 2025; 16:3736. [PMID: 40254603 PMCID: PMC12009998 DOI: 10.1038/s41467-025-58494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Protective immunity, essential for brain maintenance and repair, may be compromised in Alzheimer's disease (AD). Here, using high-dimensional single-cell mass cytometry, we find a unique immunometabolic signature in circulating CD4+ T cells preceding symptom onset in individuals with familial AD, featured by the elevation of CD38 expression. Using female 5xFAD mice, a mouse model of AD, we show that treatment with an antibody directed to CD38 leads to restored metabolic fitness, improved cognitive performance, and attenuated local neuroinflammation. Comprehensive profiling across distinct immunological niches in 5xFAD mice, reveals a high level of disease-associated CD4+ T cells that produce IL-17A in the dural meninges, previously linked to cognitive decline. Targeting CD38 leads to abrogation of meningeal TH17 immunity and cortical IL-1β, breaking the negative feedback loop between these two compartments. Taken together, the present findings suggest CD38 as an immunometabolic checkpoint that could be adopted as a pre-symptomatic biomarker for early diagnosis of AD, and might also be therapeutically targeted alone or in combination with other immunotherapies for disease modification.
Collapse
Affiliation(s)
| | - Giulia Castellani
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | - Liora Cahalon
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tomer-Meir Salame
- Department Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Ovadia
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shiran Kadmani
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Rotem Paz
- Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lior Rokach
- Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Judith Aharon-Peretz
- Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Afzal A, Abbasi MH, Ahmad S, Sheikh N, Khawar MB. Current Trends in Messenger RNA Technology for Cancer Therapeutics. Biomater Res 2025; 29:0178. [PMID: 40207255 PMCID: PMC11978394 DOI: 10.34133/bmr.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Messenger RNA (mRNA)-based therapy has revolutionized cancer research by enabling versatile delivery systems for therapeutic applications. The future of mRNA-based cancer therapies shows promise amidst challenges such as delivery efficiency, immunogenicity, and tumor heterogeneity. Recent progress has adapted various strategies such as design flexibility, scalable production, and targeted delivery capabilities to enhance the potential in personalized cancer therapy. Further research to optimize delivery for enhanced outcomes and efficacy in solid tumors is warranted. Therefore, we aim to explore the current landscape and future prospects of mRNA technology across various therapeutic platforms.
Collapse
Affiliation(s)
- Ali Afzal
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| | | | - Shaaf Ahmad
- King Edward Medical University/Mayo Hospital, Lahore, Punjab 54000, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology,
University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| |
Collapse
|
8
|
Wang Y, Hu Z, Chang J, Yu B. Thinking on the Use of Artificial Intelligence in Drug Discovery. J Med Chem 2025; 68:4996-4999. [PMID: 39993334 DOI: 10.1021/acs.jmedchem.5c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Affiliation(s)
- Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Zelin Hu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
9
|
Qiao X, Guo S, Meng Z, Gan H, Wu Z, Sun Y, Liu S, Dou G, Gu R. Advances in the study of death receptor 5. Front Pharmacol 2025; 16:1549808. [PMID: 40144653 PMCID: PMC11936945 DOI: 10.3389/fphar.2025.1549808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
DR5, a receptor with the highest affinity for TRAIL under physiological conditions, selectively induces apoptosis in specific target cells such as tumor and aberrant immune cells, while minimally affecting normal cells. The TRAIL-DR5 signaling pathway is a crucial regulatory mechanism when the body responds to various exogenous interference factors, including viruses, chemicals, and radiation. This pathway plays a vital role in maintaining physiological homeostasis and in the pathological development of various diseases. Different modulations of DR5, such as upregulation, activation, and antagonism, hold significant potential for therapeutic applications in tumors, cardiovascular diseases, autoimmune diseases, viral infections, and radiation injuries. This article provides an overview of the current research progress on DR5, including the status and prospects of its clinical applications.
Collapse
Affiliation(s)
- Xuan Qiao
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Guo
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
10
|
Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2025:10.1038/s41573-025-01139-y. [PMID: 40033110 DOI: 10.1038/s41573-025-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target-disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.
Collapse
Affiliation(s)
- Javier Sánchez Lorente
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Gavin Ferguson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- ALPX S.A.S., Grenoble, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Kushwaha S, Jawahar V, Kumar A, Griffin L, Rothstein TL, Sehgal D, Khan N. Complete primer set for amplification and expression of full-length recombinant human monoclonal antibodies from single human B cells. J Immunol Methods 2025; 538:113823. [PMID: 39892828 DOI: 10.1016/j.jim.2025.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Human monoclonal antibodies (mAbs) are an important segment in precision therapeutics. Various methodologies are available for generating them. Recombinant human mAbs expression from sorted single B cells is preferred for its rapid expression using mammalian vectors while maintaining in vivo immunoglobulin (Ig) pairing. The success rate of generating recombinant mAbs from single sorted human B cells directly relies on Ig heavy (IgH) and light (IgL) gene coverage of the PCR primers. Existing primer sets fail to cover all functional human Ig gene rearrangements, exhibit high degeneracy leading to non-specific amplifications and mutations arising from primer mismatch/degeneracy, and require high amplification cycles. Some existing primer sets have high coverage but are not designed for expression as recombinant mAbs. Here, we have designed a primer set to amplify all functional V(D)J transcripts in human B cell repertoire using a nested RT-PCR approach. The resultant amplicons can be cloned into mammalian vectors for expression of recombinant mAb. Non-specific amplifications were minimized using isotype-specific primers for cDNA synthesis and limiting primer degeneracy. We validated the designed primers on single sorted B cells, bulk sorted B cells and peripheral blood mononuclear cells. We were successfully able to amplify paired heavy and light chain transcripts in 38.46 % (80/208) from naive, memory and B1 B cell subsets sorted as single B cells. Paired Ig transcripts from five single B cells were cloned into expression vectors and purified from mammalian cells as recombinant mAbs. Thus, our new primer set offers significant advantages over existing primers as it allows amplification of all functional V(D)J rearrangements, facilitating rapid generation of antigen-specific recombinant antibodies from diverse human B cell repertoires following vaccinations and infections previously inaccessible due to primer limitations.
Collapse
Affiliation(s)
- Sachin Kushwaha
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Varsha Jawahar
- Center for Immunobiology, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA
| | - Ajay Kumar
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Lauren Griffin
- Center for Immunobiology, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA
| | - Thomas L Rothstein
- Center for Immunobiology, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA; Department of Investigative Medicine, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA
| | - Devinder Sehgal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Naeem Khan
- Center for Immunobiology, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA; Department of Investigative Medicine, Western Michigan University Homer Stryker M. D. School of Medicine, Kalamazoo, MI, USA.
| |
Collapse
|
12
|
Ghizzani V, Ascione A, Gonnella F, Massolini G, Luciani F. Exploring imaged capillary isoelectric focusing parameters for enhanced charge variants quality control. Front Chem 2025; 13:1536222. [PMID: 40084275 PMCID: PMC11904914 DOI: 10.3389/fchem.2025.1536222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/22/2025] [Indexed: 03/16/2025] Open
Abstract
Biopharmaceuticals are increasingly utilised in the treatment of oncological, inflammatory, and autoimmune diseases, largely due to their exceptional specificity in targeting antigens. However, their structural complexity, heterogeneity, and sensitivity pose crucial challenges in their production, purification, and delivery. Charge heterogeneity analysis, a Critical Quality Attribute of these biomolecules used in their Quality Control, is often performed using separative analytical techniques such as imaged capillary Isoelectric Focusing (icIEF). Recognized as a gold standard by the industry, icIEF leverages a pH gradient to provide high-resolution profiling of charge variants in biotherapeutics. In this review, critical experimental parameters for icIEF method development in the context of biotherapeutic drug development and QC will be discussed. Key aspects, including sample preparation, capillary properties, carrier ampholytes, stabilizers, and detection are examined, and supported by recent literature. Advances in icIEF technology and its expanding applications underline its robustness, reproducibility, and compliance with regulatory standards, affirming its pivotal role in ensuring the identity and consistency of biological products.
Collapse
Affiliation(s)
- Virginia Ghizzani
- National Centre for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Ascione
- National Centre for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| | - Federico Gonnella
- National Centre for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| | | | - Francesca Luciani
- National Centre for the Control and Evaluation of Medicines (CNCF), Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
13
|
Vincoff S, Goel S, Kholina K, Pulugurta R, Vure P, Chatterjee P. FusOn-pLM: a fusion oncoprotein-specific language model via adjusted rate masking. Nat Commun 2025; 16:1436. [PMID: 39920196 PMCID: PMC11806025 DOI: 10.1038/s41467-025-56745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
Fusion oncoproteins, a class of chimeric proteins arising from chromosomal translocations, are major drivers of various pediatric cancers. These proteins are intrinsically disordered and lack druggable pockets, making them highly challenging therapeutic targets for both small molecule-based and structure-based approaches. Protein language models (pLMs) have recently emerged as powerful tools for capturing physicochemical and functional protein features but have yet to be trained on fusion oncoprotein sequences. We introduce FusOn-pLM, a fine-tuned pLM trained on a newly curated, comprehensive set of fusion oncoprotein sequences, FusOn-DB. Employing a unique cosine-scheduled masked language modeling strategy, FusOn-pLM dynamically adjusts masking rates (15%-40%) to optimize feature extraction and representation quality, surpassing baseline embeddings in fusion-specific tasks, including localization, puncta formation, and disorder prediction. FusOn-pLM uniquely predicts drug-resistant mutations, providing insights for therapeutic design that anticipates resistance mechanisms. In total, FusOn-pLM provides biologically relevant representations for advancing therapeutic discovery in fusion-driven cancers.
Collapse
Affiliation(s)
- Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shrey Goel
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Kseniia Kholina
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Rishab Pulugurta
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Pranay Vure
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Chu L, Sun Y, Tang X, Duan X, Zhao Y, Xia H, Xu L, Zhang P, Sun K, Yang G, Wang A. The Tumor-Derived Exosomes Enhanced Bevacizumab across the Blood-Brain Barrier for Antiangiogenesis Therapy against Glioblastoma. Mol Pharm 2025; 22:972-983. [PMID: 39895311 DOI: 10.1021/acs.molpharmaceut.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Antibody therapy has become a mature cancer treatment strategy, but only one antibody drug, bevacizumab (BEV) has been approved to treat glioblastoma (GBM). The natural blood-brain barrier (BBB) significantly limits the penetration of therapeutic antibodies into the brain. In this study, an antibody delivery platform based on exosomes (EXOs) has been developed, which can cross the BBB and effectively enter the brain tissue to deliver BEV for safe and effective GBM therapy. In vitro experiments have shown that EXO-BEV could efficiently penetrate the BBB and significantly inhibit the migration of endothelial cells. Biodistribution studies in vivo have revealed that EXO serves as an effective carrier for transporting a higher concentration of BEV across the BBB into the brain. Furthermore, in vivo antiglioma experiments have illustrated that the introduction of EXO-BEV into the brain can improve the degeneration of pathological tissues, increase the apoptosis of tumor cells, and significantly extend the survival time of the model animals. All of the results suggested that EXO-BEV could cross the BBB, thereby enhancing the apoptosis of tumor cells and mitigating angiogenesis in GBM. In conclusion, this innovative platform for antibody delivery emerges as a highly promising therapeutic strategy for the clinical treatment of GBM and other neurological disorders.
Collapse
Affiliation(s)
- Liuxiang Chu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
- Yantai Laishan Fourth People's Hospital, Yantai, Shandong 264036, PR China
| | - Yuchen Sun
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohu Tang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong 264003, PR China
| | - Xinliu Duan
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Yanyan Zhao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Hangyu Xia
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Lixiao Xu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Peng Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Kaoxiang Sun
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Gangqiang Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| | - Aiping Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, Shandong 264005, PR China
| |
Collapse
|
15
|
Alphonse N, Sécher T, Heuzé-Vourc'h N. A breath of fresh air: inhaled antibodies to combat respiratory infectious diseases - a clinical trial overview. Expert Opin Drug Deliv 2025; 22:197-218. [PMID: 39711323 DOI: 10.1080/17425247.2024.2446608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION With the worldwide growing burden of respiratory tract infections (RTIs), innovative therapeutic approaches are in high demand. Inhaled antibodies (Abs) represent a promising avenue, offering targeted treatment options with potentially better therapeutic index compared to traditional delivery methods. AREAS COVERED This comprehensive review summarizes the challenges faced in delivering Abs by (intranasal and pulmonary) inhalation. It outlines the physiological and biological barriers encountered by inhaled drugs, as well as the influence of delivery devices and formulation on the deposition and efficacy of inhaled molecules. Moreover, it provides a detailed overview of the current clinical trial landscape of inhaled anti-RTI Abs, highlighting the progress in the development of inhaled Abs targeting a range of pathogens, such as severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus. The mechanism of action, therapeutic targets, and clinical outcomes of these novel therapies are detailed. EXPERT OPINION Delivery of Abs by inhalation faces several challenges. Addressing these challenges and developing specific approaches to deliver inhaled Abs represent a promising avenue for the development of the next generation of inhaled Abs. By offering targeted, localized therapy with the potential for a better therapeutic index, inhaled Abs could significantly improve outcomes for patients with RTIs.
Collapse
Affiliation(s)
- Noémie Alphonse
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Thomas Sécher
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| |
Collapse
|
16
|
Thaiprayoon A, Chantarasorn Y, Oonanant W, Kasorn A, Longsompurana P, Tapaneeyakorn S, Riangrungroj P, Loison F, Kruse AC, DeLisa MP, Waraho-Zhmayev D. Isolation of PCSK9-specific nanobodies from synthetic libraries using a combined protein selection strategy. Sci Rep 2025; 15:3594. [PMID: 39875480 PMCID: PMC11775271 DOI: 10.1038/s41598-025-88032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries. This combined process enabled isolation of three unique Nb clones (NbT15, NbT21, and NbT22) that all bound specifically to a target antigen, namely proprotein convertase subtilisin/kexin type 9 (PCSK9) as well as a gain-of-function PCSK9 mutant (D374Y). All three clones bound to PCSK9 and blocked the interaction between the low-density lipoprotein receptor (LDLR) and either wild-type PCSK9 or the D374Y mutant. Overall, our combined protein selection method enables rapid and straightforward identification of potent antigen-specific Nbs in a manner that can be executed in a basic laboratory setting without the need for specialized equipment. We anticipate that our strategy will be a valuable addition to the protein engineering toolkit, allowing development of Nbs or virtually any other synthetic binding protein for a wide range of applications.
Collapse
Affiliation(s)
- Apisitt Thaiprayoon
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Yodpong Chantarasorn
- Division of Ophthalmology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Worrapoj Oonanant
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Anongnard Kasorn
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok, Thailand
| | - Phoomintara Longsompurana
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Satita Tapaneeyakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand
| | - Pinpunya Riangrungroj
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and TechnologyDevelopment Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathumthani, 12120, Thailand
| | - Fabien Loison
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
17
|
Gonzàlez Gutierrez C, Aimard A, Biarnes-Pélicot M, Kerfelec B, Puech PH, Robert P, Piazza F, Chames P, Limozin L. Decoupling Individual Host Response and Immune Cell Engager Cytotoxic Potency. ACS NANO 2025; 19:2089-2098. [PMID: 39791371 DOI: 10.1021/acsnano.4c08541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood. In particular, disentangling the respective roles of host immune cells and engager biophysical characteristics is needed to improve their design and efficiency. Focusing here on harnessing antibody-dependent Natural Killer cell cytotoxicity, we measure the efficiency of 6 original bispecific antibodies (bsAb), associating an anti-HER2 nanobody and an anti-CD16 nanobody. In vitro cytotoxicity data using primary human NK cells on different target cell lines exposing different antigen densities were collected, exhibiting a wide range of bsAb dose response. In order to rationalize our observations, we introduce a simple multiscale model, postulating that the density of bsAb bridging the two cells is the main parameter triggering the cytotoxic response. We introduce two microscopic parameters: the surface cooperativity describing bsAb affinity at the bridging step and the threshold of bridge density determining the donor-dependent response. Both parameters permit ranking Abs and donors and predicting bsAb potency as a function of antibodies bulk affinities and receptor surface densities on cells. Our approach thus provides a general way to decouple donor response from immune engager characteristics, rationalizing the landscape of molecule design.
Collapse
Affiliation(s)
| | - Adrien Aimard
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | | | - Brigitte Kerfelec
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| | - Philippe Robert
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
- Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France
| | - Francesco Piazza
- CNRS, Univ. Orleans, CBM, 45000 Orleans, France
- Dipartimento di Fisica e Astronomia, Università di Firenze and INFN sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Patrick Chames
- Aix-Marseille Univ., CNRS, INSERM, Institut Paoli Calmettes, CRCM, 13009 Marseille, France
| | - Laurent Limozin
- Aix-Marseille Univ., CNRS, INSERM, LAI, Centuri Living Systems, 13009 Marseille, France
| |
Collapse
|
18
|
Zhao J, Chen M, Li X, Chen Z, Li W, Guo R, Wang M, Jiang Z, Song Y, Wang J, Liu D. Construction and characterization of chimeric FcγR T cells for universal T cell therapy. Exp Hematol Oncol 2025; 14:6. [PMID: 39810257 PMCID: PMC11734343 DOI: 10.1186/s40164-025-00595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy. METHODS Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64. The functionality of CFR T cells was evaluated through degranulation assays, specific target lysis experiments, in vitro cytokine production analysis, and assessment of tumor xenograft destruction specificity in mouse models using different monoclonal antibodies (MoAbs). RESULTS Three types of CFR T cells were engineered, 16s3, 32-8a, 64-8a CFR T cells. In the presence of rituximab (RTX), cytotoxicity of all three types of CFR T cells against CD20+ Raji-wt, K562-CD20+, and primary tumor cells was significantly higher than that of the mock T cells (P < 0.001). When herceptin was used, all three types of CFR T cells exhibited significant cytotoxicity against HER2+ cell lines of SK-BR-3, SK-OV-3, and HCC1954 (P < 0.001). The cytotoxicity of 64-8a CFR T cells was significantly inhibited by free human IgG at a physiological dose (P < 0.001), which was not observed in 16s3, 32-8a CFR T cells. Compared to 32-8a CFR T cells, 16s3 CFR T cells exhibited more prolonged cytotoxicity than 32-8a CFR T cells (P < 0.01). In in vivo assays using xenograft models, 16s3 CFR T cells significantly prolonged the survival of mice xenografted with Raji-wt cells in the presence of RTX (P < 0.001), and effectively reduced tumor burden in mice xenografted with SK-OV-3 cells in the presence of herceptin (P < 0.05). No significant non-specific cytotoxicity of CFR T cells was found in vivo. CONCLUSION The anti-tumor effects of the CFR T cells in vitro and in xenograft mouse models are mediated by specific MoAbs such as RTX and herceptin. The CFR T cells therefore have the features of universal T cells with specificity directed by MoAbs. 16s3 CFR T cells are chosen for clinical trials.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Manling Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xudong Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaoqi Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Delong Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
19
|
Nielsen OH, Hammerhøj A, Ainsworth MA, Gubatan J, D'Haens G. Immunogenicity of Therapeutic Antibodies Used for Inflammatory Bowel Disease: Treatment and Clinical Considerations. Drugs 2025; 85:67-85. [PMID: 39532820 DOI: 10.1007/s40265-024-02115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The introduction of tumor necrosis factor inhibitors has led to a paradigm shift in the management of inflammatory bowel disease (IBD). The subsequent introduction of both anti-integrins and cytokine blockers has since expanded the biologic armamentarium. However, immunogenicity, defined as the production of anti-drug antibodies (ADAs) to the prescribed biopharmaceutical, means a significant fraction of patients exposed to biologic agents will experience a secondary loss of response to one or more of the drugs. In clinical settings, immunogenicity may be caused by several factors, both patient related (e.g., underlying chronic disease, systemic immune burden, including previous biologic therapy failure, and [epi]genetic background) and treatment related (e.g., dose and administration regimens, drug physical structure, photostability, temperature, and agitation). Here, we outline these elements in detail to enhance biopharmaceutical delivery and therapy for patients with IBD. Moreover, concurrent immunomodulator medication may reduce the risks of ADA generation, especially when using the chimeric drug infliximab. Summarizing the latest developments and knowledge in the field, this review aims to provide strategies to prevent ADA production and information on managing non-responsiveness or loss of response to biologics. Better understanding of the molecular mechanisms underlying the formation of ADAs and the critical factors influencing the immunogenicity of biopharmaceuticals may lead to improved health outcomes in the IBD community that may benefit both the individual patient and society through lower healthcare expenses.
Collapse
Affiliation(s)
- Ole Haagen Nielsen
- Department of Gastroenterology D112, Herlev Hospital, University of Copenhagen, Borgmester Ib Juuls Vej 1, 2730 Herlev, Copenhagen, Denmark.
| | - Alexander Hammerhøj
- Department of Gastroenterology D112, Herlev Hospital, University of Copenhagen, Borgmester Ib Juuls Vej 1, 2730 Herlev, Copenhagen, Denmark
| | - Mark Andrew Ainsworth
- Department of Gastroenterology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - John Gubatan
- Department of Gastroenterology & Hepatology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Jiang S, Lv X, Ouyang Z, Chi H, Zeng Y, Wang Y, He J, Chen J, Chen J, An K, Cheng M, Wen Y, Li J, Zhang P. Programmable Circular Multivalent Nanobody-Targeting Chimeras (mNbTACs) for Multireceptor-Mediated Protein Degradation and Targeted Drug Delivery. Angew Chem Int Ed Engl 2024; 63:e202407986. [PMID: 39402961 DOI: 10.1002/anie.202407986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 11/12/2024]
Abstract
Multispecific therapeutics hold significant promise in drug delivery, protein degradation, and cell recruitment to address clinical issues of tumor heterogeneity, resistance, and immune evasion. However, their modular engineering remains challenging. We developed a targeted degradation platform, termed multivalent nanobody-targeting chimeras (mNbTACs), by encoding diverse nanobody codons on a circular template using DNA printing technology. The homo- or hetero- mNbTACs specifically recognized membrane targets in a multivalent manner and simultaneously recruited scavenger receptors to favor clathrin-/caveolae-dependent endocytosis and lysosomal degradation of multiple proteins with high efficiency and selectivity. We demonstrated that a bispecific doxorubicin-loaded mNbTAC, named Doxo-mvNbsPPH, passively accumulated at tumor sites, specifically interacted with PD-L1 and HER2 targets, and was rapidly transported into lysosome, inducing potent immunogenic cell death and alleviating immune checkpoint evasion. The synergistic boosting of innate and adaptive immunity promoted the infiltration and proliferation of CD8+ T cells in tumor microenvironment (an 11-fold increase) with high toxicity and low exhaustion, eventually enhancing antitumor efficacy. Our mNbTAC platform provides multispecific therapeutics with variable valences and programmed species, whereas it induces targeted protein degradation through multireceptor-mediated endocytosis and lysosomal degradation without the need for lysosome-targeting receptors, representing a general and modular tool to harness extracellular proteome for disease treatment.
Collapse
Affiliation(s)
- Shiqi Jiang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinru Lv
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310022, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongli Chi
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchen Zeng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yani Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jiaxuan He
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jinling Chen
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jingyi Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Keli An
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Ming Cheng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Penghui Zhang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
21
|
Michibata J, Kawaguchi Y, Hirose H, Eguchi A, Deguchi S, Takayama K, Xu W, Niidome T, Sasaki Y, Akiyoshi K, Futaki S. Polysaccharide-Based Coacervate Microgel Bearing Cationic Peptides That Achieve Dynamic Cell-Membrane Structure Alteration and Facile Cytosolic Infusion of IgGs. Bioconjug Chem 2024; 35:1888-1899. [PMID: 39500569 DOI: 10.1021/acs.bioconjchem.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Conjugates of the biocompatible polysaccharide pullulan with a cell membrane permeabilizing peptide L17E (PL-L17Es) were prepared with the aim of producing complex coacervates with pronounced intracellular antibody (IgG) delivery activity and stable structures. Coacervates with diameters of a few μm were formed simply by mixing PL-L17Es with IgG labeled with negatively charged fluorescent moieties of Alexa Fluor 488 [IgG(AF488)]. The coacervate resulted in a pronounced cytosolic infusion of IgG(AF488) and IgG binding to the target proteins inside the cell. The droplet structures were maintained even under high salt conditions, and the fluorescence in the droplet was not recovered after photobleaching, suggesting the formation of complex coacervate microgels. Dynamic changes in cell membrane structure to entrap the coacervate microgels were captured by confocal and electron microscopy, resulting in cytosolic IgG infusion. The use of M-lycotoxin instead of L17E resulted in a coacervate microgel with marked IgG delivery activity even in the presence of serum. Successful IgG delivery to primary hepatocytes, undifferentiated induced pluripotent stem (iPS) cells, and iPS cell-derived intestinal epithelial cells was also achieved. The construction of complex coacervate microgels with design flexibility and the validity of intracellular IgG delivery with high salt stability were thus demonstrated.
Collapse
Affiliation(s)
- Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akiko Eguchi
- Biobank Center, Mie University Hospital and Department of Gastroenterology and Hepatology, School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
22
|
Rogers GL, Huang C, Mathur A, Huang X, Chen HY, Stanten K, Morales H, Chang CH, Kezirian EJ, Cannon PM. Reprogramming human B cells with custom heavy-chain antibodies. Nat Biomed Eng 2024; 8:1700-1714. [PMID: 39039240 DOI: 10.1038/s41551-024-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
The immunoglobulin locus of B cells can be reprogrammed by genome editing to produce custom or non-natural antibodies that are not induced by immunization. However, current strategies for antibody reprogramming require complex expression cassettes and do not allow for customization of the constant region of the antibody. Here we show that human B cells can be edited at the immunoglobulin heavy-chain locus to express heavy-chain-only antibodies that support alterations to both the fragment crystallizable domain and the antigen-binding domain, which can be based on both antibody and non-antibody components. Using the envelope protein (Env) from the human immunodeficiency virus as a model antigen, we show that B cells edited to express heavy-chain antibodies to Env support the regulated expression of B cell receptors and antibodies through alternative splicing and that the cells respond to the Env antigen in a tonsil organoid model of immunization. This strategy allows for the reprogramming of human B cells to retain the potential for in vivo amplification while producing molecules with flexibility of composition beyond that of standard antibodies.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chun Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Atishay Mathur
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kalya Stanten
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Chan-Hua Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Eric J Kezirian
- Department of Otolaryngology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Carter PJ, Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat Rev Drug Discov 2024; 23:898-913. [PMID: 39424922 DOI: 10.1038/s41573-024-01051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Remarkable progress has been made in recent decades in engineering antibodies and other protein therapeutics, including enhancements to existing functions as well as the advent of novel molecules that confer biological activities previously unknown in nature. These protein therapeutics have brought major benefits to patients across multiple areas of medicine. One major ongoing challenge is that protein therapeutics can elicit unwanted immune responses (immunogenicity) in treated patients, including the generation of anti-drug antibodies. In rare and unpredictable cases, anti-drug antibodies can seriously compromise therapeutic safety and/or efficacy. Systematic deconvolution of this immunogenicity problem is confounded by the complexity of its many contributing factors and the inherent limitations of available experimental and computational methods. Nevertheless, continued progress with the assessment and mitigation of immunogenicity risk at the preclinical stage has the potential to reduce the incidence and severity of clinical immunogenicity events. This Review focuses on identifying key unsolved anti-drug antibody-related challenges and offers some pragmatic approaches towards addressing them. Examples are drawn mainly from antibodies, given that the majority of available clinical data are from this class of protein therapeutics. Plausible and seemingly tractable solutions are in sight for some immunogenicity problems, whereas other challenges will likely require completely new approaches.
Collapse
Affiliation(s)
- Paul J Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA.
| | - Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
24
|
Blay V, Pandiella A. Strategies to boost antibody selectivity in oncology. Trends Pharmacol Sci 2024; 45:1135-1149. [PMID: 39609227 DOI: 10.1016/j.tips.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/30/2024]
Abstract
Antibodies in oncology are being equipped with toxic cargoes and effector functions that can kill cells at very low concentrations. A key challenge is that most targets on cancer cells are also present on at least some healthy cells. Shared targets can result in off-tumor binding and compromise the safety and potential of therapeutic candidates. In this review, we survey strategies that can help direct biologics to cancer sites more selectively. These strategies are becoming increasingly feasible thanks to advances in molecular design and engineering. The objective is to create therapeutics that exploit changes in cancer and leverage the human body infrastructure, enabling therapeutics that discriminate not just self from non-self but diseased from healthy tissue.
Collapse
Affiliation(s)
- Vincent Blay
- University of California Santa Cruz, Department of Microbiology and Environmental Toxicology, Santa Cruz, CA 95064, USA.
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, CIBERONC and IBSAL, 37007 Salamanca, Spain
| |
Collapse
|
25
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 PMCID: PMC11879460 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J. Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E. Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
26
|
Lei Y, Shen Y, Chen F, He R, Zhang Z, Zhou Y, Yu JC, Crommen J, Jiang Z, Wang Q. Multiepitope recognition technology promotes the in-depth analysis of antibody‒drug conjugates. Acta Pharm Sin B 2024; 14:4962-4976. [PMID: 39664422 PMCID: PMC11628813 DOI: 10.1016/j.apsb.2024.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 12/13/2024] Open
Abstract
The dynamic tracking of antibody‒drug conjugates (ADCs) in serum is crucial. However, a versatile bioanalytical platform is lacking due to serious matrix interferences, the heterogeneity and complex biotransformation of ADCs, and the recognition deficiencies of traditional affinity technologies. To overcome this, a multiepitope recognition technology (MERT) was developed by simultaneously immobilizing CDR and non-CDR ligands onto MOF@AuNPs. MERT's excellent specificity, ultrahigh ligand density, and potential synergistic recognition ability enable it to target the different key regions of ADCs to overcome the deficiencies of traditional technologies. The binding capacity of MERT for antibodies is ten to hundred times higher than that of the mono-epitope or Fc-specific affinity technologies. Since MERT can efficiently capture target ADCs from serum, a novel bioanalytical platform based on MERT and RPLC‒QTOF-MS has been developed to monitor the dynamic changes of ADCs in serum, including the fast changes of drug-to-antibody ratio from 3.67 to 0.22, the loss of payloads (maytansinol), and the unexpected hydrolysis of the succinimide ring of the linker, which will contribute to clarify the fate of ADCs and provide a theoretical basis for future design. In summary, the MERT-based versatile platform will open a new avenue for in-depth studies of ADCs in biological fluids.
Collapse
Affiliation(s)
- Yutian Lei
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuan Shen
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Feng Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Rui He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhang Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Ying Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jin-Chen Yu
- Bio-Thera Solutions, Ltd, Guangzhou 510700, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
27
|
Whitehead CA, Wines BD, Davies AM, McDonnell JM, Trist HM, Esparon SE, Hogarth PM. Stellabody: A novel hexamer-promoting mutation for improved IgG potency. Immunol Rev 2024; 328:438-455. [PMID: 39364646 PMCID: PMC11659935 DOI: 10.1111/imr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Advances in antibody engineering are being directed at the development of next generation immunotherapeutics with improved potency. Hexamerisation of IgG is a normal physiological aspect of IgG biology and recently described mutations that facilitate this process have a substantial impact upon monoclonal antibody behavior resulting in the elicitation of dramatically enhanced complement-dependent cytotoxicity, Fc receptor function, and enhanced antigen binding effects, such as targeted receptor agonism or microbe neutralization. Whereas the discovery of IgG hexamerisation enhancing mutations has largely focused on residues with exposure at the surface of the Fc-Fc and CH2-CH3 interfaces, our unique approach is the engineering of the mostly buried residue H429 in the CH3 domain. Selective substitution at position 429 forms the basis of Stellabody technology, where the choice of amino acid results in distinct hexamerisation outcomes. H429F results in monomeric IgG that hexamerises after target binding, so called "on-target" hexamerisation, while the H429Y mutant forms pH-sensitive hexamers in-solution prior to antigen binding. Moreover, Stellabody technologies are broadly applicable across the family of antibody-based biologic therapeutics, including conventional mAbs, bispecific mAbs, and Ig-like biologics such as Fc-fusions, with applications in diverse diseases.
Collapse
Affiliation(s)
- Clarissa A. Whitehead
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Bruce D. Wines
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Anna M. Davies
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's HouseLondonUK
| | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's HouseLondonUK
| | - Halina M. Trist
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
| | | | - P. Mark Hogarth
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PathologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
28
|
Kim MY, Mason HS, Ma JKC, Reljic R. Recombinant immune complexes as vaccines against infectious diseases. Trends Biotechnol 2024; 42:1427-1438. [PMID: 38825437 DOI: 10.1016/j.tibtech.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
New vaccine technologies are needed to combat many existing infections and prepare better for those that may emerge in the future. The conventional technologies that rely on protein-based vaccines are still severely restricted by the sparsity and poor accessibility of available adjuvants. One possible solution to this problem is to enhance antigen immunogenicity by a more natural means by complexing it with antibodies in the form of immune complexes (ICs). However, natural ICs are impractical as vaccines, and significant research efforts have been made to generate them in recombinant form, with plant bioengineering being at the forefront of these efforts. Here, we describe the challenges and progress made to date to make recombinant IC vaccines applicable to humans.
Collapse
Affiliation(s)
- Mi-Young Kim
- St. George's University of London, London, UK; Jeonbuk National University, Jeonju, South Korea
| | - Hugh S Mason
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
29
|
D’Orsi L, Capasso B, Lamacchia G, Pizzichini P, Ferranti S, Liverani A, Fontana C, Panunzi S, De Gaetano A, Lo Presti E. Recent Advances in Artificial Intelligence to Improve Immunotherapy and the Use of Digital Twins to Identify Prognosis of Patients with Solid Tumors. Int J Mol Sci 2024; 25:11588. [PMID: 39519142 PMCID: PMC11546512 DOI: 10.3390/ijms252111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
To date, the public health system has been impacted by the increasing costs of many diagnostic and therapeutic pathways due to limited resources. At the same time, we are constantly seeking to improve these paths through approaches aimed at personalized medicine. To achieve the required levels of diagnostic and therapeutic precision, it is necessary to integrate data from different sources and simulation platforms. Today, artificial intelligence (AI), machine learning (ML), and predictive computer models are more efficient at guiding decisions regarding better therapies and medical procedures. The evolution of these multiparametric and multimodal systems has led to the creation of digital twins (DTs). The goal of our review is to summarize AI applications in discovering new immunotherapies and developing predictive models for more precise immunotherapeutic decision-making. The findings from this literature review highlight that DTs, particularly predictive mathematical models, will be pivotal in advancing healthcare outcomes. Over time, DTs will indeed bring the benefits of diagnostic precision and personalized treatment to a broader spectrum of patients.
Collapse
Affiliation(s)
- Laura D’Orsi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Biagio Capasso
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Giuseppe Lamacchia
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Paolo Pizzichini
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Sergio Ferranti
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Andrea Liverani
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Costantino Fontana
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Simona Panunzi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Andrea De Gaetano
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
- Department of Biomatics, Óbuda University, Bécsi Road 96/B, H-1034 Budapest, Hungary
| | - Elena Lo Presti
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
| |
Collapse
|
30
|
Jagota M, Hsu C, Mazumder T, Sung K, DeWitt WS, Listgarten J, Matsen FA, Ye CJ, Song YS. Learning antibody sequence constraints from allelic inclusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619760. [PMID: 39484623 PMCID: PMC11526943 DOI: 10.1101/2024.10.22.619760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Antibodies and B-cell receptors (BCRs) are produced by B cells, and are built of a heavy chain and a light chain. Although each B cell could express two different heavy chains and four different light chains, usually only a unique pair of heavy chain and light chain is expressed-a phenomenon known as allelic exclusion. However, a small fraction of naive-B cells violate allelic exclusion by expressing two productive light chains, one of which has impaired function; this has been called allelic inclusion. We demonstrate that these B cells can be used to learn constraints on antibody sequence. Using large-scale single-cell sequencing data from humans, we find examples of light chain allelic inclusion in thousands of naive-B cells, which is an order of magnitude larger than existing datasets. We train machine learning models to identify the abnormal sequences in these cells. The resulting models correlate with antibody properties that they were not trained on, including polyreactivity, surface expression, and mutation usage in affinity maturation. These correlations are larger than what is achieved by existing antibody modeling approaches, indicating that allelic inclusion data contains useful new information. We also investigate the impact of similar selection forces on the heavy chain in mouse, and observe that pairing with the surrogate light chain significantly restricts heavy chain diversity.
Collapse
Affiliation(s)
- Milind Jagota
- Computer Science Division, UC Berkeley, Berkeley, CA USA
| | - Chloe Hsu
- Computer Science Division, UC Berkeley, Berkeley, CA USA
| | - Thomas Mazumder
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, CA, USA
- Institute for Human Genetics, UCSF, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Yun S. Song
- Computer Science Division, UC Berkeley, Berkeley, CA USA
- Department of Statistics, UC Berkeley, Berkeley, CA, USA October 23, 2024
| |
Collapse
|
31
|
Lebon C, Grossmann S, Mann G, Lindner F, Koide A, Koide S, Diepold A, Hantschel O. Cytosolic delivery of monobodies using the bacterial type III secretion system inhibits oncogenic BCR: ABL1 signaling. Cell Commun Signal 2024; 22:500. [PMID: 39415233 PMCID: PMC11483992 DOI: 10.1186/s12964-024-01874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells. Monobodies are small synthetic binding proteins that can inhibit oncogene signaling in cancer cells with high selectivity upon intracellular expression. Here, we engineered monobodies targeting the BCR::ABL1 tyrosine kinase for efficient delivery by the T3SS, quantified cytosolic delivery and target engagement in cancer cells and monitored inhibition of BCR::ABL1 signaling. METHODS In vitro assays were performed to characterize destabilized monobodies (thermal shift assay and isothermal titration calorimetry) and to assess their secretion by the T3SS. Immunoblot assays were used to study the translocation of monobodies into different cell lines and to determine the intracellular concentration after translocation. Split-Nanoluc assays were performed to understand translocation and degradation kinetics and to evaluate target engagement after translocation. Phospho flow cytometry and apoptosis assays were performed to assess the functional effects of monobody translocation into BCR:ABL1-expressing leukemia cells. RESULTS To enable efficient translocation of the stable monobody proteins by the T3SS, we engineered destabilized mutant monobodies that retained high affinity target binding and were efficiently injected into different cell lines. After injection, the cytosolic monobody concentrations reached mid-micromolar concentrations considerably exceeding their binding affinity. We found that injected monobodies targeting the BCR::ABL1 tyrosine kinase selectively engaged their target in the cytosol. The translocation resulted in inhibition of oncogenic signaling and specifically induced apoptosis in BCR::ABL1-dependent cells, consistent with the phenotype when the same monobody was intracellularly expressed. CONCLUSION Hence, we establish the T3SS of Y. enterocolitica as a highly efficient protein translocation method for monobody delivery, enabling the selective targeting of different oncogenic signaling pathways and providing a foundation for future therapeutic application against intracellular targets.
Collapse
Affiliation(s)
- Chiara Lebon
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-Von-Frisch-Straße 2, 35043, Marburg, Germany
| | - Sebastian Grossmann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Greg Mann
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Florian Lindner
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Akiko Koide
- Department of Medicine, New York University School of Medicine, 522 1st Avenue, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, NY, 10016, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, 522 1st Avenue, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 1st Avenue, New York, NY, 10016, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-Von-Frisch-Straße 10, 35043, Marburg, Germany.
- Institute of Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Oliver Hantschel
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-Von-Frisch-Straße 2, 35043, Marburg, Germany.
| |
Collapse
|
32
|
Moseman AP, Chen CW, Liang X, Liao D, Kuraoka M, Moseman EA. Therapeutic glycan-specific antibody binding mediates protection during primary amoebic meningoencephalitis. Infect Immun 2024; 92:e0018324. [PMID: 39235225 PMCID: PMC11475618 DOI: 10.1128/iai.00183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Naegleria fowleri (N. fowleri) infection via the upper respiratory tract causes a fatal CNS disease known as primary amoebic meningoencephalitis (PAM). The robust in vivo immune response to N. fowleri infection underlies the immunopathology that characterizes the disease. However, little is known about why this pathogen evades immune control. Infections occur in seemingly healthy individuals and effective clinical options are lacking, thus a nearly 98% fatality rate. It is unclear how or if host factors may contribute to susceptibility or disease exacerbation, yet mechanistic studies of the in vivo immune response and disease progression are hampered by a lack of tools. In this study, we have generated monoclonal antibodies to N. fowleri surface antigens and shown them to be excellent tools for studying the in vivo immune response. We also identified one monoclonal, 2B6, with potent inherent anti-amoebastatic activity in vitro. This antibody is also able to therapeutically prolong host survival in vivo and furthermore, recombinant antibodies with an isotype more capable of directing immune effector activity further improved survival when given therapeutically. Thus, we report the generation of a novel monoclonal antibody to N. fowleri that can enhance beneficial immune functions, even when given therapeutically during disease. We believe this provides evidence for the potential of therapeutic antibody treatments in PAM.IMPORTANCENaegleria fowleri (N. fowleri) is a free-living amoeba that is found ubiquitously in warm freshwater. While human exposure is common, it rarely results in pathogenesis. However, when N. fowleri gains access to the upper airway, specifically the olfactory mucosa, infection leads to a lethal disease known as primary amoebic meningoencephalitis (PAM). As a free-living amoeba, N. fowleri does not need a mammalian host; indeed, it can be accurately described as an accidental opportunistic pathogen. While most opportunistic infections occur in humans who are immunocompromised, there are no reported immune dysfunctions associated with N. fowleri infection. Therefore, the basis for N. fowleri opportunism is not known, and the reasons why some humans develop PAM while others do not are simply not well understood. It is reasonable to speculate that local or acute immune failures, potentially even a lack of prior adaptive immunity, are related to disease susceptibility. Careful immune profiling and characterization of the in vivo immune response to N. fowleri in a mammalian host are desperately needed to understand which host factors are critical to defense, and how these responses might be compromised in a way that results in lethal infection. To identify genes and pathways that provide resistance against in vivo N. fowleri infection, we generated surface reactive monoclonal antibodies (Abs) that provide rapid amoeba detection and quantification in vivo. Interestingly, N. fowleri binding Abs have been readily detected in the serum and saliva of humans and animals suggesting that non-lethal exposure drives a humoral immune response against the amoeba. Yet, how Abs might interact with Naegleria in vivo or contribute to preventing lethal infection is not well understood. In this study, we have generated and characterized a monoclonal antibody (Ab), Clone 2B6, that recognizes a glycosylated surface antigen present in cultured in vitro N. fowleri as well as mouse passaged N. fowleri. When clone 2B6 binds to N. fowleri, it inhibits amoeba motility and feeding behavior, leading to strong growth inhibition. Mice treated systemically and intracerebrally with Ab displayed a delayed disease onset and prolonged survival. In addition, we found that enhancing immune-directed effector activity via antibody isotype could further enhance survival without obvious immunopathogenic side effects. These findings show the potential for antibody treatment as an additional therapeutic to those used currently in PAM.
Collapse
Affiliation(s)
- Annie Park Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ching-wen Chen
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoe Liang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dongmei Liao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
33
|
Zhao Y, Jiang H, Chen H, Yu J, Wang L, Zhou W, Du J. Charge-guided masking of a membrane-destabilizing peptide enables efficient endosomal escape for targeted intracellular delivery of proteins. Acta Pharm Sin B 2024; 14:4478-4492. [PMID: 39525569 PMCID: PMC11544179 DOI: 10.1016/j.apsb.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024] Open
Abstract
Intracellular delivery of biologicals such as peptides, proteins, and nucleic acids presents a great opportunity for innovative therapeutics. However, the endosome entrapment remains a major bottleneck in the intracellular delivery of biomacromolecules, largely limiting their therapeutic potential. Here, we converted a cell-penetrating peptide (CPP), low molecular weight protamine (LMWP), to endosomal escape peptides (EEPs) by masking LMWP with a pH-responsive counter-ionic peptide. The resulting masked CPPs (mLMWP and mLMWP2) effectively promoted the escape of peptide/protein cargoes from endosomes into the cytoplasm. Consequential lysosome repair and lysophagy were initiated upon the endolysosomal leakage. Minimal reactive oxygen species (ROS) elevation or cell death was observed. Based on mLMWP2, we constructed an intracellular protein delivery system containing an antibody as a targeting module, mLMWP2 as an endosomal escape module, and the desired protein cargo. With the HER2-targeting delivery system, we efficiently translocated cyclization recombination enzyme (Cre) and BH3-interacting domain death agonist (BID) into the cytosol of HER2+ cells to exert their biological activity. Thereby, the modular delivery system shows its potential as a promising tool for scientific studies and therapeutic applications.
Collapse
Affiliation(s)
- Yan Zhao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, Peking University, Beijing 100871, China
| | - Hang Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jiazhen Yu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Luyao Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Tulika T, Ruso-Julve F, Ahmadi S, Ljungars A, Rivera-de-Torre E, Wade J, Fernández-Quintero ML, Jenkins TP, Belfakir SB, Ross GMS, Boyens-Thiele L, Buell AK, Sakya SA, Sørensen CV, Bohn MF, Ledsgaard L, Voldborg BG, Francavilla C, Schlothauer T, Lomonte B, Andersen JT, Laustsen AH. Engineering of pH-dependent antigen binding properties for toxin-targeting IgG1 antibodies using light-chain shuffling. Structure 2024; 32:1404-1418.e7. [PMID: 39146931 PMCID: PMC11385703 DOI: 10.1016/j.str.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/07/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Immunoglobulin G (IgG) antibodies that bind their cognate antigen in a pH-dependent manner (acid-switched antibodies) can release their bound antigen for degradation in the acidic environment of endosomes, while the IgGs are rescued by the neonatal Fc receptor (FcRn). Thus, such IgGs can neutralize multiple antigens over time and therefore be used at lower doses than their non-pH-responsive counterparts. Here, we show that light-chain shuffling combined with phage display technology can be used to discover IgG1 antibodies with increased pH-dependent antigen binding properties, using the snake venom toxins, myotoxin II and α-cobratoxin, as examples. We reveal differences in how the selected IgG1s engage their antigens and human FcRn and show how these differences translate into distinct cellular handling properties related to their pH-dependent antigen binding phenotypes and Fc-engineering for improved FcRn binding. Our study showcases the complexity of engineering pH-dependent antigen binding IgG1s and demonstrates the effects on cellular antibody-antigen recycling.
Collapse
Affiliation(s)
- Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Fulgencio Ruso-Julve
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Selma B Belfakir
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; VenomAid Diagnostics ApS, Lyngby, Denmark
| | | | - Lars Boyens-Thiele
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Siri A Sakya
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Markus-Frederik Bohn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bjørn G Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Chiara Francavilla
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Jan Terje Andersen
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway.
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
35
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
36
|
Gamie Z, Krippner-Heidenreich A, Gerrand C, Rankin KS. Targeting Death Receptor 5 (DR5) for the imaging and treatment of primary bone and soft tissue tumors: an update of the literature. Front Mol Biosci 2024; 11:1384795. [PMID: 39286782 PMCID: PMC11402684 DOI: 10.3389/fmolb.2024.1384795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Death Receptor 5 (DR5) is expressed on the surface of primary bone and soft tissue sarcoma cells, and its activation induces cell death primarily through apoptosis. The combination of DR5 agonists and commonly used chemotherapeutic agents, such as doxorubicin, can promote cell death. Currently, clinical trials are investigating the effectiveness of DR5 activation using new biological agents, such as bi-specific or tetravalent antibodies, in improving the survival of patients with relapsed or refractory cancers. Furthermore, investigations continue into the use of novel combination therapies to enhance DR5 response, for example, with inhibitor of apoptosis protein (IAP) antagonist agents [such as the second mitochondria-derived activator of caspase (SMAC) mimetics] and with immune checkpoint inhibitor anti-programmed death-ligand 1 (anti-PD-L1) or anti-programmed cell death-1 (anti-PD-1) antibodies. Other therapies include nanoparticle-mediated delivery of TRAIL plasmid DNA or TRAIL mRNA and stem cells as a vehicle for the targeted delivery of anti-cancer agents, such as TRAIL, to the tumor. Methods Scoping review of the literature from November 2017 to March 2024, utilizing PubMed and Google Scholar. Results New agents under investigation include nanoTRAIL, anti-Kv10.1, multimeric IgM, and humanized tetravalent antibodies. Developments have been made to test novel agents, and imaging has been used to detect DR5 in preclinical models and patients. The models include 3D spheroids, genetically modified mouse models, a novel jaw osteosarcoma model, and patient-derived xenograft (PDX) animal models. There are currently two ongoing clinical trials focusing on the activation of DR5, namely, IGM-8444 and INBRX-109, which have progressed to phase 2. Further modifications of TRAIL delivery with fusion to single-chain variable fragments (scFv-TRAIL), directed against tumor-associated antigens (TAAs), and in the use of stem cells focus on targeted TRAIL delivery to cancer cells using bi-functional strategies. Conclusion In vitro, in vivo, and clinical trials, as well as advances in imaging and theranostics, indicate that targeting DR5 remains a valid strategy in the treatment of some relapsed and refractory cancers.
Collapse
Affiliation(s)
- Zakareya Gamie
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Craig Gerrand
- Department of Orthopaedic Oncology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom
| | - Kenneth Samora Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
37
|
McCoy KM, Ackerman ME, Grigoryan G. A comparison of antibody-antigen complex sequence-to-structure prediction methods and their systematic biases. Protein Sci 2024; 33:e5127. [PMID: 39167052 PMCID: PMC11337930 DOI: 10.1002/pro.5127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 08/23/2024]
Abstract
The ability to accurately predict antibody-antigen complex structures from their sequences could greatly advance our understanding of the immune system and would aid in the development of novel antibody therapeutics. There have been considerable recent advancements in predicting protein-protein interactions (PPIs) fueled by progress in machine learning (ML). To understand the current state of the field, we compare six representative methods for predicting antibody-antigen complexes from sequence, including two deep learning approaches trained to predict PPIs in general (AlphaFold-Multimer and RoseTTAFold), two composite methods that initially predict antibody and antigen structures separately and dock them (using antibody-mode ClusPro), local refinement in Rosetta (SnugDock) of globally docked poses from ClusPro, and a pipeline combining homology modeling with rigid-body docking informed by ML-based epitope and paratope prediction (AbAdapt). We find that AlphaFold-Multimer outperformed other methods, although the absolute performance leaves considerable room for improvement. AlphaFold-Multimer models of lower quality display significant structural biases at the level of tertiary motifs (TERMs) toward having fewer structural matches in non-antibody-containing structures from the Protein Data Bank (PDB). Specifically, better models exhibit more common PDB-like TERMs at the antibody-antigen interface than worse ones. Importantly, the clear relationship between performance and the commonness of interfacial TERMs suggests that the scarcity of interfacial geometry data in the structural database may currently limit the application of ML to the prediction of antibody-antigen interactions.
Collapse
Affiliation(s)
- Katherine Maia McCoy
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
| | - Margaret E. Ackerman
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
- Thayer School of EngineeringDartmouth CollegeHanoverNew HampshireUSA
| | - Gevorg Grigoryan
- Molecular and Cell Biology Graduate ProgramDartmouth CollegeHanoverNew HampshireUSA
- Department of Computer ScienceDartmouth CollegeHanoverNew HampshireUSA
| |
Collapse
|
38
|
Luobin L, Wanxin H, Yingxin G, Qinzhou Z, Zefeng L, Danyang W, Huaqin L. Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives. Cell Death Discov 2024; 10:386. [PMID: 39209834 PMCID: PMC11362291 DOI: 10.1038/s41420-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance to conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.
Collapse
Affiliation(s)
- Lin Luobin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - He Wanxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Guo Yingxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Zheng Qinzhou
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liang Zefeng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wu Danyang
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Li Huaqin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
39
|
Zhang C, Li T, Hou S, Tang J, Wen R, Wang C, Yuan S, Li Z, Zhao W. Enhancing the therapeutic potential of P29 protein-targeted monoclonal antibodies in the management of alveolar echinococcosis through CDC-mediated mechanisms. PLoS Pathog 2024; 20:e1012479. [PMID: 39178325 PMCID: PMC11376570 DOI: 10.1371/journal.ppat.1012479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024] Open
Abstract
Alveolar echinococcosis (AE) is a highly lethal helminth infection. Current chemotherapeutic strategies for AE primarily involve the use of benzimidazoles (BZs) such as mebendazole (MDZ) and albendazole (ABZ), which exhibit limited efficacy. In a previous study, the vaccine of recombinant Echinococcus granulosus P29 (rEgP29) showed significant immunoprotection against E. granulosus in both mice and sheep. In the current study, we utilized hybridoma technology to generate five monoclonal antibodies (mAbs) against P29, among which 4G10F4 mAb exhibited the highest antigen-specific binding capacity. This mAb was selected for further investigation of anti-AE therapy, both in vivo and in vitro. In vitro, 4G10F4 inhibited a noteworthy inhibition of E. multilocularis protoscoleces and primary cells viability through complement-dependent cytotoxicity (CDC) mechanism. In vivo, two experiments were conducted. In the first experiment, mice were intraperitoneally injected with Em protoscoleces, and subsequently treated with 4G10F4 mAb (2.5/5/10 mg/kg) at 12 weeks postinfection once per week for 8 times via tail vein injection. Mice that were treated with 4G10F4 mAb only in dosage of 5mg/kg exhibited a significant lower mean parasite burden (0.89±0.97 g) compared to isotype mAb treated control mice (2.21±1.30 g). In the second experiment, mice were infected through hepatic portal vein and treated with 4G10F4 mAb (5mg/kg) at one week after surgery once per week for 8 times. The numbers of hepatic metacestode lesions of the 4G10F4 treatment group were significantly lower in comparison to the isotype control group. Pathological analysis revealed severe disruption of the inner structure of the metacestode in both experiments, particularly affecting the germinal and laminated layers, resulting in the transformation into infertile vesicles after treatment with 4G10F4. In addition, the safety of 4G10F4 for AE treatment was confirmed through assessment of mouse weight and evaluation of liver and kidney function. This study presents antigen-specific monoclonal antibody immunotherapy as a promising therapeutic approach against E. multilocularis induced AE.
Collapse
Affiliation(s)
- Cuiying Zhang
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Tao Li
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University at Yinchuan, Yinchuan, China
| | - Siyu Hou
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Jing Tang
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Rou Wen
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Chan Wang
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| | - Shiqin Yuan
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University at Yinchuan, Yinchuan, China
| | - Zihua Li
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University at Yinchuan, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Disease at Yinchuan, Yinchuan, China
| |
Collapse
|
40
|
Ye QN, Zhu L, Liang J, Zhao DK, Tian TY, Fan YN, Ye SY, Liu H, Huang XY, Cao ZT, Shen S, Wang J. Orchestrating NK and T cells via tri-specific nano-antibodies for synergistic antitumor immunity. Nat Commun 2024; 15:6211. [PMID: 39043643 PMCID: PMC11266419 DOI: 10.1038/s41467-024-50474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
The functions of natural killer (NK) and T cells in innate and adaptive immunity, as well as their functions in tumor eradication, are complementary and intertwined. Here we show that utilization of multi-specific antibodies or nano-antibodies capable of simultaneously targeting both NK and T cells could be a valuable approach in cancer immunotherapy. Here, we introduce a tri-specific Nano-Antibody (Tri-NAb), generated by immobilizing three types of monoclonal antibodies (mAbs), using an optimized albumin/polyester composite nanoparticle conjugated with anti-Fc antibody. This Tri-NAb, targeting PDL1, 4-1BB, and NKG2A (or TIGIT) simultaneously, effectively binds to NK and CD8+ T cells, triggering their activation and proliferation, while facilitating their interaction with tumor cells, thereby inducing efficient tumor killing. Importantly, the antitumor efficacy of Tri-NAb is validated in multiple models, including patient-derived tumor organoids and humanized mice, highlighting the translational potential of NK and T cell co-targeting.
Collapse
Affiliation(s)
- Qian-Ni Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Long Zhu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Jie Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Dong-Kun Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Tai-Yu Tian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Si-Yi Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Hua Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Xiao-Yi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Zhi-Ting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P. R. China.
| |
Collapse
|
41
|
Auer F, Guttman A. In Migratio Noncovalent Fluorophore Labeling of Proteins by Propidium Iodide in Sodium Dodecyl Sulfate Capillary Gel Electrophoresis. Anal Chem 2024; 96:10969-10977. [PMID: 38938066 DOI: 10.1021/acs.analchem.4c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sodium dodecyl sulfate capillary gel electrophoresis is one of the frequently used methods for size-based protein separation in molecular biology laboratories and the biopharmaceutical industry. To increase throughput, quite a few multicapillary electrophoresis systems have been recently developed, but most of them only support fluorescence detection, requiring fluorophore labeling of the sample proteins. To avoid the time-consuming derivatization reaction, we developed an on-column labeling approach utilizing propidium iodide for the first time in SDS-CGE of proteins, a dye only used before for nucleic acid analysis. As a key ingredient of the gel-buffer system, the oppositely migrating positively charged propidium ligand in migratio complexes with the SDS-proteins, therefore, supports in situ labeling during the electrophoretic separation process, not requiring any extra pre- or postcolumn derivatization step. A theoretical treatment is given to shed light on the basic principles of this novel online labeling process, also addressing the influence of propidium iodide on the electroosmotic flow, resulting in reduced retardation. The concept of propidium labeling in SDS-CGE was first demonstrated using a commercially available protein sizing ladder ranging from 6.5 to 200 kDa with different isoelectric points and post-translational modifications. Considering the increasing number of protein therapeutics on the market next, we focused on the labeling optimization of a therapeutic monoclonal antibody and its subunits, including the addition of the nonglycosylated heavy chain. Peak efficiency and resolution were compared between noncovalent and covalent labeling. The effect of ligand concentration on the effective and apparent electrophoretic mobility, the resulting peak area, and the resolution were all evaluated in view of the theoretical considerations. The best detection sensitivity for the intact monoclonal antibody was obtained by using 200 μg/mL propidium iodide in the separation medium (LOD 2 μg/mL, 1.35 × 10-8 M) with excellent detection linearity over 3 orders of magnitude. On the other hand, the resolution between the biopharmaceutical protein test mixture components containing the intact and subunit fragments of the therapeutic monoclonal antibody was very good in the ligand concentration range of 50-200 μg/mL, but using the local maximum at 100 μg/mL for the nonglycosylated/glycosylated heavy chain pair is recommended. The figures of merit, including precision, sensitivity, detection linear range, and resolution for a sample mixture in hand, can be optimized by varying the propidium iodide concentration in the gel-buffer system, as demonstrated in this paper.
Collapse
Affiliation(s)
- Felicia Auer
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem 8200, Hungary
| | - Andras Guttman
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem 8200, Hungary
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
42
|
McCoy KM, Ackerman ME, Grigoryan G. A Comparison of Antibody-Antigen Complex Sequence-to-Structure Prediction Methods and their Systematic Biases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585121. [PMID: 38979267 PMCID: PMC11230293 DOI: 10.1101/2024.03.15.585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The ability to accurately predict antibody-antigen complex structures from their sequences could greatly advance our understanding of the immune system and would aid in the development of novel antibody therapeutics. There have been considerable recent advancements in predicting protein-protein interactions (PPIs) fueled by progress in machine learning (ML). To understand the current state of the field, we compare six representative methods for predicting antibody-antigen complexes from sequence, including two deep learning approaches trained to predict PPIs in general (AlphaFold-Multimer, RoseTTAFold), two composite methods that initially predict antibody and antigen structures separately and dock them (using antibody-mode ClusPro), local refinement in Rosetta (SnugDock) of globally docked poses from ClusPro, and a pipeline combining homology modeling with rigid-body docking informed by ML-based epitope and paratope prediction (AbAdapt). We find that AlphaFold-Multimer outperformed other methods, although the absolute performance leaves considerable room for improvement. AlphaFold-Multimer models of lower-quality display significant structural biases at the level of tertiary motifs (TERMs) towards having fewer structural matches in non-antibody containing structures from the Protein Data Bank (PDB). Specifically, better models exhibit more common PDB-like TERMs at the antibody-antigen interface than worse ones. Importantly, the clear relationship between performance and the commonness of interfacial TERMs suggests that scarcity of interfacial geometry data in the structural database may currently limit application of machine learning to the prediction of antibody-antigen interactions.
Collapse
Affiliation(s)
- Katherine Maia McCoy
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
- Molecular and Cell Biology Graduate Program, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
43
|
Alkhamis O, Canoura J, Wang L, Xiao Y. Nuclease-assisted selection of slow-off rate aptamers. SCIENCE ADVANCES 2024; 10:eadl3426. [PMID: 38865469 PMCID: PMC11168469 DOI: 10.1126/sciadv.adl3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Conventional directed evolution methods offer the ability to select bioreceptors with high binding affinity for a specific target in terms of thermodynamic properties. However, there is a lack of analogous approaches for kinetic selection, which could yield affinity reagents that exhibit slow off-rates and thus remain tightly bound to targets for extended periods. Here, we describe an in vitro directed evolution methodology that uses the nuclease flap endonuclease 1 to achieve the efficient discovery of aptamers that have slow dissociation rates. Our nuclease-assisted selection strategy can yield specific aptamers for both small molecules and proteins with off-rates that are an order of magnitude slower relative to those obtained with conventional selection methods while still retaining excellent overall target affinity in terms of thermodynamics. This new methodology provides a generalizable approach for generating slow off-rate aptamers for diverse targets, which could, in turn, prove valuable for applications including molecular devices, bioimaging, and therapy.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | - Linlin Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA
| | | |
Collapse
|
44
|
Garaudé S, Marone R, Lepore R, Devaux A, Beerlage A, Seyres D, Dell' Aglio A, Juskevicius D, Zuin J, Burgold T, Wang S, Katta V, Manquen G, Li Y, Larrue C, Camus A, Durzynska I, Wellinger LC, Kirby I, Van Berkel PH, Kunz C, Tamburini J, Bertoni F, Widmer CC, Tsai SQ, Simonetta F, Urlinger S, Jeker LT. Selective haematological cancer eradication with preserved haematopoiesis. Nature 2024; 630:728-735. [PMID: 38778101 PMCID: PMC11186773 DOI: 10.1038/s41586-024-07456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2-5. Here we demonstrate that an antibody-drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies.
Collapse
Affiliation(s)
- Simon Garaudé
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Rosalba Lepore
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
- Cimeio Therapeutics, Basel, Switzerland
| | - Anna Devaux
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Astrid Beerlage
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
- Department of Hematology, Basel University Hospital, Basel, Switzerland
| | - Denis Seyres
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Alessandro Dell' Aglio
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Darius Juskevicius
- Department of Laboratory Medicine, Diagnostic Hematology, Basel University Hospital, Basel, Switzerland
| | - Jessica Zuin
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Thomas Burgold
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland
| | - Sisi Wang
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Varun Katta
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Garret Manquen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clément Larrue
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
| | | | | | | | | | | | | | - Jérôme Tamburini
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Corinne C Widmer
- Department of Hematology, Basel University Hospital, Basel, Switzerland
- Department of Laboratory Medicine, Diagnostic Hematology, Basel University Hospital, Basel, Switzerland
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.
- Transplantation Immunology & Nephrology, Basel University Hospital, Basel, Switzerland.
- Innovation Focus Cell Therapy, Basel University Hospital, Basel, Switzerland.
| |
Collapse
|
45
|
Cheng J, Liang T, Xie XQ, Feng Z, Meng L. A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discov Today 2024; 29:103984. [PMID: 38642702 DOI: 10.1016/j.drudis.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Given their high affinity and specificity for a range of macromolecules, antibodies are widely used in the treatment of autoimmune diseases, cancers, inflammatory diseases, and Alzheimer's disease (AD). Traditional experimental methods are time-consuming, expensive, and labor-intensive. Recent advances in artificial intelligence (AI) technologies provide complementary methods that can reduce the time and costs required for antibody design by minimizing failures and increasing the success rate of experimental tests. In this review, we scrutinize the plethora of AI-driven methodologies that have been deployed over the past 4 years for modeling antibody structures, predicting antibody-antigen interactions, optimizing antibody affinity, and generating novel antibody candidates. We also briefly address the challenges faced in integrating AI-based models with traditional antibody discovery pipelines and highlight the potential future directions in this burgeoning field.
Collapse
Affiliation(s)
- Jin Cheng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Li Meng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
46
|
Sanaee M, Ronquist KG, Sandberg E, Morrell JM, Widengren J, Gallo K. Antibody-Loading of Biological Nanocarrier Vesicles Derived from Red-Blood-Cell Membranes. ACS OMEGA 2024; 9:22711-22718. [PMID: 38826552 PMCID: PMC11137724 DOI: 10.1021/acsomega.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Antibodies, disruptive potent therapeutic agents against pharmacological targets, face a barrier in crossing immune systems and cellular membranes. To overcome these, various strategies have been explored including shuttling via liposomes or biocamouflaged nanoparticles. Here, we demonstrate the feasibility of loading antibodies into exosome-mimetic nanovesicles derived from human red-blood-cell membranes, which can act as nanocarriers for intracellular delivery. Goat-antichicken antibodies are loaded into erythrocyte-derived nanovesicles, and their loading yields are characterized and compared with smaller dUTP-cargo molecules. Applying dual-color coincident fluorescence burst analyses, the loading yield of nanocarriers is rigorously profiled at the single-vesicle level, overcoming challenges due to size-heterogeneity and demonstrating a maximum antibody-loading yield of 38-41% at the optimal vesicle radius of 52 nm. The achieved average loading yields, amounting to 14% across the entire nanovesicle population, with more than two antibodies per loaded vesicle, are fully comparable to those obtained for the much smaller dUTP molecules loaded in the nanovesicles after additional exosome-spin-column purification. The results suggest a promising new avenue for therapeutic delivery of antibodies, potentially encompassing also intracellular targets and suitable for large-scale pharmacological applications, which relies on the exosome-mimetic properties, biocompatibility, and low-immunogenicity of bioengineered nanocarriers synthesized from human erythrocyte membranes.
Collapse
Affiliation(s)
- Maryam Sanaee
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm 10691, Sweden
| | - K. Göran Ronquist
- Department
of Clinical Sciences, Swedish University
of Agricultural Sciences, Uppsala 75007, Sweden
| | - Elin Sandberg
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm 10691, Sweden
| | - Jane M. Morrell
- Department
of Clinical Sciences, Swedish University
of Agricultural Sciences, Uppsala 75007, Sweden
| | - Jerker Widengren
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm 10691, Sweden
| | - Katia Gallo
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm 10691, Sweden
| |
Collapse
|
47
|
Feng J, Cao H, Xiang Y, Deng C, Li Y. An integrated methodology for quality assessment of therapeutic antibodies with potential long circulation half-life in harvested cell culture fluid using FcRn immobilized hydrophilic magnetic graphene. Talanta 2024; 272:125781. [PMID: 38359719 DOI: 10.1016/j.talanta.2024.125781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Designing modified therapeutic antibodies with enhanced FcRn-binding affinity holds promise in the extension of circulation half-lives and potential refinement of pharmacokinetics. During the development of these new-generation therapeutic antibodies, FcRn binding affinity of IgGs is emphasized and monitored as a critical quality attribute (CQA), alongside other critical assessments including titer and aggregation level. However, the traditional workflow for assessing the overall quality of expressed IgGs in harvested cell culture fluid (HCCF) is blamed to be cumbersome and time-consuming. This study presents an integrated methodology for the rapid quality assessment of IgGs in HCCF by selectively extracting IgGs with favorable high FcRn affinity for subsequent analysis using size exclusion chromatography (SEC). The approach utilizes innovative adsorbents known as FcRn immobilized hydrophilic magnetic graphene (MG@PDA@PAMAM-FcRn) in a magnetic solid-phase extraction (MSPE) process. To simulate the in vivo binding dynamics, MSPE binding and dissociation was performed at pH 6.0 and 7.4, respectively. The composite have demonstrated enhanced extraction efficiency and impurity removal ability in comparison to commercially available magnetic beads. The SEC monomer peak area value provides the output of this method, the ranking of which enabled the facile identification of superior HCCF samples with high overall quality of IgG. Optimization of MSPE parameters was performed, and the method was validated for specificity, precision, sensitivity, and accuracy. The proposed method exhibited an analytical time of 0.6 h, which is 7-22 times shortened in comparison to the conventional workflow.
Collapse
Affiliation(s)
- Jianan Feng
- Pharmaceutical Analysis Department, School of Pharmacy and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Hao Cao
- Pharmaceutical Analysis Department, School of Pharmacy and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Yangjiayi Xiang
- Pharmaceutical Analysis Department, School of Pharmacy and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
48
|
Zhu N, Smallwood PM, Rattner A, Chang TH, Williams J, Wang Y, Nathans J. Utility of protein-protein binding surfaces composed of anti-parallel alpha-helices and beta-sheets selected by phage display. J Biol Chem 2024; 300:107283. [PMID: 38608728 PMCID: PMC11107207 DOI: 10.1016/j.jbc.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past 3 decades, a diverse collection of small protein domains have been used as scaffolds to generate general purpose protein-binding reagents using a variety of protein display and enrichment technologies. To expand the repertoire of scaffolds and protein surfaces that might serve this purpose, we have explored the utility of (i) a pair of anti-parallel alpha-helices in a small highly disulfide-bonded 4-helix bundle, the CC4 domain from reversion-inducing Cysteine-rich Protein with Kazal Motifs and (ii) a concave beta-sheet surface and two adjacent loops in the human FN3 domain, the scaffold for the widely used monobody platform. Using M13 phage display and next generation sequencing, we observe that, in both systems, libraries of ∼30 million variants contain binding proteins with affinities in the low μM range for baits corresponding to the extracellular domains of multiple mammalian proteins. CC4- and FN3-based binding proteins were fused to the N- and/or C-termini of Fc domains and used for immunostaining of transfected cells. Additionally, FN3-based binding proteins were inserted into VP1 of AAV to direct AAV infection to cells expressing a defined surface receptor. Finally, FN3-based binding proteins were inserted into the Pvc13 tail fiber protein of an extracellular contractile injection system particle to direct protein cargo delivery to cells expressing a defined surface receptor. These experiments support the utility of CC4 helices B and C and of FN3 beta-strands C, D, and F together with adjacent loops CD and FG as surfaces for engineering general purpose protein-binding reagents.
Collapse
Affiliation(s)
- Ningyu Zhu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tao-Hsin Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
49
|
Sun W, Wu Y, Ying T. Progress in novel delivery technologies to improve efficacy of therapeutic antibodies. Antiviral Res 2024; 225:105867. [PMID: 38521465 DOI: 10.1016/j.antiviral.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Monoclonal antibody-based therapeutics have achieved remarkable success in treating a wide range of human diseases. However, conventional systemic delivery methods have limitations in insufficient target tissue permeability, high costs, repeated administrations, etc. Novel technologies have been developed to address these limitations and further enhance antibody therapy. Local antibody delivery via respiratory tract, gastrointestinal tract, eye and blood-brain barrier have shown promising results in increasing local concentrations and overcoming barriers. Nucleic acid-encoded antibodies expressed from plasmid DNA, viral vectors or mRNA delivery platforms also offer advantages over recombinant proteins such as sustained expression, rapid onset, and lower costs. This review summarizes recent advances in antibody delivery methods and highlights innovative technologies that have potential to expand therapeutic applications of antibodies.
Collapse
Affiliation(s)
- Wenli Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| |
Collapse
|
50
|
Wang H, Song M, Xu J, Liu Z, Peng M, Qin H, Wang S, Wang Z, Liu K. Long-Acting Strategies for Antibody Drugs: Structural Modification, Controlling Release, and Changing the Administration Route. Eur J Drug Metab Pharmacokinet 2024; 49:295-316. [PMID: 38635015 DOI: 10.1007/s13318-024-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Because of their high specificity, high affinity, and targeting, antibody drugs have been widely used in the treatment of many diseases and have become the most favored new drugs for research in the world. However, some antibody drugs (such as small-molecule antibody fragments) have a short half-life and need to be administered frequently, and are often associated with injection-site reactions and local toxicities during use. Increasing attention has been paid to the development of antibody drugs that are long-acting and have fewer side effects. This paper reviews existing strategies to achieve long-acting antibody drugs, including modification of the drug structure, the application of drug delivery systems, and changing their administration route. Among these, microspheres have been studied extensively regarding their excellent tolerance at the injection site, controllable loading and release of drugs, and good material safety. Subcutaneous injection is favored by most patients because it can be quickly self-administered. Subcutaneous injection of microspheres is expected to become the focus of developing long-lasting antibody drug strategies in the near future.
Collapse
Affiliation(s)
- Hao Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mengdi Song
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Jiaqi Xu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Zhenjing Liu
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Mingyue Peng
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Haoqiang Qin
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Shaoqian Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Ziyang Wang
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China
| | - Kehai Liu
- College of Food, Shanghai Ocean University, 999 Hucheng Ring Road, Nanhui New Town, Pudong New Area, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai Ocean University, Hucheng Ring Road, Shanghai, 201306, China.
| |
Collapse
|