1
|
Castagnoli R, Pala F, Subramanian P, Oguz C, Schwarz B, Lim AI, Burns AS, Fontana E, Bosticardo M, Corsino C, Angelova A, Delmonte OM, Kenney H, Riley D, Smith G, Ott de Bruin L, Oikonomou V, Dos Santos Dias L, Fink D, Bohrnsen E, Kimzey CD, Marseglia GL, Alva-Lozada G, Bergerson JR, Brett A, Brigatti KW, Dimitrova D, Dutmer CM, Freeman AF, Ale H, Holland SM, Licciardi F, Pasic S, Poskitt LE, Potts DE, Dasso JF, Sharapova SO, Strauss KA, Ward BR, Yilmaz M, Kuhns DB, Lionakis MS, Daley SR, Kong HH, Segre JA, Villa A, Pittaluga S, Walter JE, Vujkovic-Cvijin I, Belkaid Y, Notarangelo LD. Immunopathological and microbial signatures of inflammatory bowel disease in partial RAG deficiency. J Exp Med 2025; 222:e20241993. [PMID: 40314722 PMCID: PMC12047384 DOI: 10.1084/jem.20241993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Partial RAG deficiency (pRD) can manifest with systemic and tissue-specific immune dysregulation, with inflammatory bowel disease (IBD) in 15% of the patients. We aimed at identifying the immunopathological and microbial signatures associated with IBD in patients with pRD and in a mouse model of pRD (Rag1w/w) with spontaneous development of colitis. pRD patients with IBD and Rag1w/w mice showed a systemic and colonic Th1/Th17 inflammatory signature. Restriction of fecal microbial diversity, abundance of pathogenic bacteria, and depletion of microbial species producing short-chain fatty acid were observed, which were associated with impaired induction of lamina propria peripheral Treg cells in Rag1w/w mice. The use of vedolizumab in Rag1w/w mice and of ustekinumab in a pRD patient were ineffective. Antibiotics ameliorated gut inflammation in Rag1w/w mice, but only bone marrow transplantation (BMT) rescued the immunopathological and microbial signatures. Our findings shed new light in the pathophysiology of gut inflammation in pRD and establish a curative role for BMT to resolve the disease phenotype.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorani Subramanian
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Burns
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angelina Angelova
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Smith
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucas Dos Santos Dias
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Cole D. Kimzey
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Jenna R.E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Cullen M. Dutmer
- Allergy and Immunology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - David E. Potts
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Svetlana O. Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Brant R. Ward
- Division of Allergy and Immunology, Children’s National Hospital, Washington, DC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen R. Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Institut Pasteur, Paris, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Churchill MJ, Pandeya A, Bauer R, Christopher T, Krug S, Honodel R, Smita S, Warner L, Mooney BM, Gibson AR, Mitchell PS, Tait Wojno ED, Rauch I. Enteric tuft cell inflammasome activation drives NKp46+ILC3 IL22 via PGD2 and inhibits Salmonella. J Exp Med 2025; 222:e20230803. [PMID: 40079814 PMCID: PMC11905811 DOI: 10.1084/jem.20230803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025] Open
Abstract
To distinguish pathogens from commensals, the intestinal epithelium employs cytosolic innate immune sensors. Activation of the NAIP-NLRC4 inflammasome initiates extrusion of infected intestinal epithelial cells (IEC) upon cytosolic bacterial sensing. We previously reported that activation of the inflammasome in tuft cells, which are primarily known for their role in parasitic infections, leads to the release of prostaglandin D2 (PGD2). We observe that NAIP-NLRC4 inflammasome activation in tuft cells leads to an antibacterial response with increased IL-22 and antimicrobial protein levels within the small intestine, which is dependent on PGD2 signaling. A NKp46+ subset of ILC3 expresses the PGD2 receptor CRTH2 and is the source of the increased IL-22. Inflammasome activation in tuft cells also leads to better control of Salmonella Typhimurium in the distal small intestine. However, tuft cells in the cecum and colon are dispensable for antibacterial immunity. These data support that intestinal tuft cells can also induce antibacterial responses, possibly in a tissue-specific manner.
Collapse
Affiliation(s)
- Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Ankit Pandeya
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Renate Bauer
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Tighe Christopher
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Stefanie Krug
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Roslyn Honodel
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Lindsey Warner
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Bridget M. Mooney
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Alexis R. Gibson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Zeng Y, Wu R, He Y, Zhang Q, Wang Z, Qin P, Yang F, Han Y, Hao M, Zheng Y, Gao L, Chen X, Zhao X, Zeng Z, Lian ZX, Xiao W, Liu Z, Zhao ZB, Gong S. Cohabitation facilitates microbiome shifts that promote isoflavone transformation to ameliorate liver injury. Cell Host Microbe 2025; 33:688-704.e10. [PMID: 40318624 DOI: 10.1016/j.chom.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/10/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Abstract
Acetaminophen overuse is a leading cause of acute liver injury (ALI). Although ALI is linked to inter-individual differences in microbiome composition, the mechanisms remain unclear. We demonstrate that horizontal transmission of gut microbiota between male and female mice impacts ALI and identify Rikenellamicrofusus-mediated isoflavone transformation as determinants of ALI severity. R. microfusus increases upon cohabitation with bacterial β-galactosidase enhancing intestinal absorption of isoflavone biochanin-A (Bio-A). R. microfusus mono-colonization reduced ALI severity following acetaminophen overdose. Genetic or chemical-mediated inhibition of β-galactosidase blocked Bio-A release and negated the hepatoprotective effects of R. microfusus. Bio-A directly binds to pyruvate carboxylase (PC) and propionyl-CoA carboxylase subunit alpha (PCCA), augmenting the tricarboxylic acid cycle and promoting protective glutathione synthesis in hepatocytes. Additionally, immunohistochemical analysis revealed reduced hepatic PC and PCCA expression in liver failure (LF) patients. These findings highlight the impacts of microbiome composition on ALI and the ability of microbial isoflavone absorption to mitigate ALI severity.
Collapse
Affiliation(s)
- Yunong Zeng
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Rong Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi He
- Department of Rheumatology and Immunology, the Third Affiliated Hospital, Southern Medical University, Guangzhou 510665, China
| | - Qian Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ze Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ping Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fangyuan Yang
- Department of Rheumatology and Immunology, the Third Affiliated Hospital, Southern Medical University, Guangzhou 510665, China
| | - Yingshi Han
- Department of Rheumatology and Immunology, the Third Affiliated Hospital, Southern Medical University, Guangzhou 510665, China
| | - Mingjing Hao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yujian Zheng
- Department of Hepatobiliary Surgery & Liver Transplantation Center, General Hospital of Southern Theater Command, Guangzhou 510010, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhe-Xiong Lian
- Medical Research Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou 510080, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou 510080, China.
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Lejeune A, Zhou C, Ercelen D, Putzel G, Yao X, Guy AR, Pawline M, Podkowik M, Pironti A, Torres VJ, Shopsin B, Cadwell K. Sex-dependent gastrointestinal colonization resistance to MRSA is microbiota and Th17 dependent. eLife 2025; 13:RP101606. [PMID: 40197396 PMCID: PMC11978300 DOI: 10.7554/elife.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Gastrointestinal (GI) colonization by methicillin-resistant Staphylococcus aureus (MRSA) is associated with a high risk of transmission and invasive disease in vulnerable populations. The immune and microbial factors that permit GI colonization remain unknown. Male sex is correlated with enhanced Staphylococcus aureus nasal carriage, skin and soft tissue infections, and bacterial sepsis. Here, we established a mouse model of sexual dimorphism during GI colonization by MRSA. Our results show that in contrast to male mice that were susceptible to persistent colonization, female mice rapidly cleared MRSA from the GI tract following oral inoculation in a manner dependent on the gut microbiota. This colonization resistance displayed by female mice was mediated by an increase in IL-17A+ CD4+ T cells (Th17) and dependent on neutrophils. Ovariectomy of female mice increased MRSA burden, but gonadal female mice that have the Y chromosome retained enhanced Th17 responses and colonization resistance. Our study reveals a novel intersection between sex and gut microbiota underlying colonization resistance against a major widespread pathogen.
Collapse
Affiliation(s)
- Alannah Lejeune
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
- Department of Medicine, Division of Infectious Diseases, New York University School of MedicineNew YorkUnited States
| | - Chunyi Zhou
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
- Department of Medicine, Division of Infectious Diseases, New York University School of MedicineNew YorkUnited States
| | - Defne Ercelen
- Department of Medicine, Division of Gastroenterology and Hepatology, New York University Langone HealthNew YorkUnited States
| | - Gregory Putzel
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Xiaomin Yao
- Department of Medicine, Division of Infectious Diseases, New York University School of MedicineNew YorkUnited States
| | - Alyson R Guy
- NYU-Regeneron Veterinary Postdoctoral Training Program in Laboratory Animal Medicine, Division of Comparative Medicine, New York University School of MedicineNew YorkUnited States
| | - Miranda Pawline
- Department of Medicine, Division of Gastroenterology and Hepatology, New York University Langone HealthNew YorkUnited States
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, New York University School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Alejandro Pironti
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Victor J Torres
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
- Department of Host-Microbe Interactions, St. Jude Children’s Research HospitalMemphisUnited States
| | - Bo Shopsin
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
- Department of Medicine, Division of Infectious Diseases, New York University School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Ken Cadwell
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
- Department of Pathobiology, University of Pennsylvania Perelman School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
5
|
Byrne SR, DeMott MS, Yuan Y, Ghanegolmohammadi F, Kaiser S, Fox JG, Alm EJ, Dedon PC. Temporal dynamics and metagenomics of phosphorothioate epigenomes in the human gut microbiome. MICROBIOME 2025; 13:81. [PMID: 40128848 PMCID: PMC11931770 DOI: 10.1186/s40168-025-02071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Epigenetic regulation of gene expression and host defense is well established in microbial communities, with dozens of DNA modifications comprising the epigenomes of prokaryotes and bacteriophage. Phosphorothioation (PT) of DNA, in which a chemically reactive sulfur atom replaces a non-bridging oxygen in the sugar-phosphate backbone, is catalyzed by dnd and ssp gene families widespread in bacteria and archaea. However, little is known about the role of PTs or other microbial epigenetic modifications in the human microbiome. Here we optimized and applied fecal DNA extraction, mass spectrometric, and metagenomics technologies to characterize the landscape and temporal dynamics of gut microbes possessing PT modifications. RESULTS Exploiting the nuclease-resistance of PTs, mass spectrometric analysis of limit digests of PT-containing DNA reveals PT dinucleotides as part of genomic consensus sequences, with 16 possible dinucleotide combinations. Analysis of mouse fecal DNA revealed a highly uniform spectrum of 11 PT dinucleotides in all littermates, with PTs estimated to occur in 5-10% of gut microbes. Though at similar levels, PT dinucleotides in fecal DNA from 11 healthy humans possessed signature combinations and levels of individual PTs. Comparison with a widely distributed microbial epigenetic mark, m6dA, suggested temporal dynamics consistent with expectations for gut microbial communities based on Taylor's Power Law. Application of PT-seq for site-specific metagenomic analysis of PT-containing bacteria in one fecal donor revealed the larger consensus sequences for the PT dinucleotides in Bacteroidota, Bacillota (formerly Firmicutes), Actinomycetota (formerly Actinobacteria), and Pseudomonadota (formerly Proteobacteria), which differed from unbiased metagenomics and suggested that the abundance of PT-containing bacteria did not simply mirror the spectrum of gut bacteria. PT-seq further revealed low abundance PT sites not detected as dinucleotides by mass spectrometry, attesting to the complementarity of the technologies. Video Abstract CONCLUSIONS: The results of our studies provide a benchmark for understanding the behavior of an abundant and chemically reactive epigenetic mark in the human gut microbiome, with implications for inflammatory conditions of the gut.
Collapse
Affiliation(s)
- Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Stefanie Kaiser
- Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - James G Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore, Singapore
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore, Singapore.
| |
Collapse
|
6
|
Winsor NJ, Bayer G, Singh O, Chan JK, Li LY, Lieng BY, Foerster E, Popovic A, Tsankov BK, Maughan H, Lemire P, Tam E, Streutker C, Chen L, Heaver SL, Ley RE, Parkinson J, Montenegro-Burke JR, Birchenough GMH, Philpott DJ, Girardin SE. Cross-kingdom-mediated detection of intestinal protozoa through NLRP6. Cell Host Microbe 2025; 33:388-407.e9. [PMID: 40043701 DOI: 10.1016/j.chom.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/13/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
Intestinal protists are detected by the host innate immune system through mechanisms that remain poorly understood. Here, we demonstrate that Tritrichomonas protozoa induce thickening of the colonic mucus in an NLRP6-, ASC-, and caspase-11-dependent manner, consistent with the activation of sentinel goblet cells. Mucus growth is recapitulated with cecal extracts from Tritrichomonas-infected mice but not purified protozoa, suggesting that NLRP6 may detect infection-induced microbial dysbiosis. In agreement, Tritrichomonas infection causes a shift in the microbiota with the expansion of Bacteroides and Prevotella, and untargeted metabolomics reveals a dramatic increase in several classes of metabolites, including sphingolipids. Finally, using a combination of gnotobiotic mice and ex vivo mucus analysis, we demonstrate that wild-type, but not sphingolipid-deficient, B. thetaiotaomicron is sufficient to induce NLRP6-dependent sentinel goblet cell function, with the greatest effect observed in female mice. Thus, we propose that NLRP6 is a sensor of intestinal protozoa infection through monitoring microbial sphingolipids.
Collapse
Affiliation(s)
- Nathaniel J Winsor
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ojas Singh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jeremy K Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lu Yi Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Brandon Y Lieng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Ana Popovic
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Boyan K Tsankov
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Paul Lemire
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Elaine Tam
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Lina Chen
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Stacey L Heaver
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - John Parkinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - J Rafael Montenegro-Burke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Stephen E Girardin
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
8
|
Lejeune A, Zhou C, Ercelen D, Putzel G, Yao X, Guy AR, Pawline M, Podkowik M, Pironti A, Torres VJ, Shopsin B, Cadwell K. Sex-dependent gastrointestinal colonization resistance to MRSA is microbiota and Th17 dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603994. [PMID: 39763855 PMCID: PMC11702559 DOI: 10.1101/2024.07.17.603994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Gastrointestinal (GI) colonization by methicillin-resistant Staphylococcus aureus (MRSA) is associated with a high risk of transmission and invasive disease in vulnerable populations. The immune and microbial factors that permit GI colonization remain unknown. Male sex is correlated with enhanced Staphylococcus aureus nasal carriage, skin and soft tissue infections, and bacterial sepsis. Here, we established a mouse model of sexual dimorphism during GI colonization by MRSA. Our results show that in contrast to male mice that were susceptible to persistent colonization, female mice rapidly cleared MRSA from the GI tract following oral inoculation in a manner dependent on the gut microbiota. This colonization resistance displayed by female mice was mediated by an increase in IL-17A+ CD4+ T cells (Th17) and dependent on neutrophils. Ovariectomy of female mice increased MRSA burden, but gonadal female mice that have the Y chromosome retained enhanced Th17 responses and colonization resistance. Our study reveals a novel intersection between sex and gut microbiota underlying colonization resistance against a major widespread pathogen.
Collapse
|
9
|
Beauchemin ET, Hunter C, Maurice CF. Dextran sodium sulfate-induced colitis alters the proportion and composition of replicating gut bacteria. mSphere 2025; 10:e0082524. [PMID: 39723822 PMCID: PMC11774032 DOI: 10.1128/msphere.00825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both ex vivo and in situ in the dextran sodium sulfate (DSS) mouse model of colitis. We show that the proportion of replicating gut bacteria decreases when mice have the highest levels of inflammation and returns to baseline levels as mice begin recovering. In addition, we report significant alterations in the composition of the replicating gut bacterial community ex vivo during colitis development. On the taxa level, we observe significant changes in the abundance of taxa such as the mucus-degrading Akkermansia and the poorly described Erysipelatoclostridium genus. We further demonstrate that many taxa exhibit variable replication rates in situ during colitis, including Akkermansia muciniphila. Lastly, we show that colitis development is positively correlated with increases in the presence and abundance of bacteria in situ which are predicted to be fast replicators. This could suggest that taxa with the potential to replicate quickly may have an advantage during intestinal inflammation. These data support the need for additional research using activity-based approaches to further characterize the gut bacterial response to intestinal inflammation and its consequences for both the host and the gut microbial community.IMPORTANCEIt is well known that the bacteria living inside the gut are important for human health. Indeed, the type of bacteria that are present and their metabolism are different in healthy people versus those with intestinal disease. However, less is known about how these gut bacteria are replicating, especially as someone begins to develop intestinal disease. This is particularly important as it is thought that metabolically active gut bacteria may be more relevant to health. Here, we begin to address this gap using several complementary approaches to characterize the replicating gut bacteria in a mouse model of intestinal inflammation. We reveal which gut bacteria are replicating, and how quickly, as mice develop and recover from inflammation. This work can serve as a model for future research to identify how actively growing gut bacteria may be impacting health, or why these particular bacteria tend to thrive during intestinal inflammation.
Collapse
Affiliation(s)
- Eve T. Beauchemin
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Claire Hunter
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Weagley J, Makimaa H, Cárdenas LAC, Romani A, Sullender M, Aggarwal S, Hogarty M, Rodgers R, Kennedy E, Foster L, Schriefer LA, Baldridge MT. Dynamics of Bacterial and Viral Transmission in Experimental Microbiota Transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633206. [PMID: 39868290 PMCID: PMC11761045 DOI: 10.1101/2025.01.15.633206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Mouse models are vital tools for discerning the relative contributions of host and microbial genetics to disease, often requiring the transplantation of microbiota between different mouse strains. Transfer methods include antibiotic treatment of recipients and colonization using either co-housing with donors or the transplantation of fecal or cecal donor material. However, the efficiency and dynamics of these methods in reconstituting recipients with donor microbes is not well understood. We thus directly compared co-housing, fecal transplantation, and cecal transplantation methods. Donor mice from Taconic Biosciences, possessing distinct microbial communities, served as the microbial source for recipient mice from Jackson Laboratories, which were treated with antibiotics to disrupt their native microbiota. We monitored microbial populations longitudinally over the course of antibiotics treatment and reconstitution using 16S rRNA gene sequencing, quantitative PCR, and shotgun sequencing of viral-like particles. As expected, antibiotic treatment rapidly depleted microbial biomass and diversity, with slow and incomplete natural recovery of the microbiota in non-transplanted control mice. While all transfer methods reconstituted recipient mice with donor microbiota, co-housing achieved this more rapidly for both bacterial and viral communities. This study provides valuable insights into microbial transfer methods, enhancing reproducibility and informing best practices for microbiota transplantation in mouse models.
Collapse
Affiliation(s)
- James Weagley
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luis Alberto Chica Cárdenas
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Romani
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meagan Sullender
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Somya Aggarwal
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Hogarty
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynne Foster
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Benga L, Rehm A, Gougoula C, Westhoff P, Wachtmeister T, Benten WPM, Engelhardt E, Weber APM, Köhrer K, Sager M, Janssen S. The host genotype actively shapes its microbiome across generations in laboratory mice. MICROBIOME 2024; 12:256. [PMID: 39639355 PMCID: PMC11619136 DOI: 10.1186/s40168-024-01954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only limited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission of a microbial maternal legacy. RESULTS To further dissect the influence of host genetics and maternal inheritance, we collected two-cell stage embryos from two representative wild types, C57BL6/J and BALB/c, and transferred a mixture of both genotype embryos into hybrid recipient mice to be inoculated by an identical microbiome at birth. CONCLUSIONS Observing the offspring for six generations unequivocally emphasizes the impact of host genetic factors over maternal legacy in constant environments, akin to murine laboratory experiments. Interestingly, maternal legacy solely controlled the microbiome in the first offspring generation. However, current evidence supporting maternal legacy has not extended beyond this initial generation, resolving the aforementioned debate. Video Abstract.
Collapse
Affiliation(s)
- Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Anna Rehm
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany
| | - Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - W Peter M Benten
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
12
|
Gillard J, Roumain M, Picalausa C, Thibaut MM, Clerbaux LA, Tailleux A, Staels B, Muccioli GG, Bindels LB, Leclercq IA. A gut microbiota-independent mechanism shapes the bile acid pool in mice with MASH. JHEP Rep 2024; 6:101148. [PMID: 39741697 PMCID: PMC11686050 DOI: 10.1016/j.jhepr.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 01/03/2025] Open
Abstract
Background & Aims An imbalance between primary and secondary bile acids contributes to the development of metabolic dysfunction-associated steatohepatitis (MASH). The precise mechanisms underlying changes in the bile acid pool in MASH remain to be identified. As gut bacteria convert primary bile acids to secondary bile acids, we investigated the contribution of the gut microbiota and its metabolizing activities to bile acid alterations in MASH. Methods To disentangle the influence of MASH from environmental and dietary factors, high-fat diet fed foz/foz mice were compared with their high-fat diet fed wildtype littermates. We developed functional assays (stable isotope labeling and in vitro experiments) to extend the analyses beyond a mere study of gut microbiota composition (16S rRNA gene sequencing). Key findings were confirmed in C57BL/6J mice were fed a Western and high-fructose diet, as an independent mouse model of MASH. Results Although mice with MASH exhibited lower levels of secondary 7α-dehydroxylated bile acids (3.5-fold lower, p = 0.0008), the gut microbial composition was similar in mice with and without MASH. Similar gut microbial bile salt hydrolase and 7α-dehydroxylating activities could not explain the low levels of secondary 7α-dehydroxylated bile acids. Furthermore, the 7α-dehydroxylating activity was unaffected by Clostridium scindens administration in mice with a non-standardized gut microbiota. By exploring alternative mechanisms, we identified an increased bile acid 7α-rehydroxylation mediated by liver CYP2A12 and CYP2A22 enzymes (4.0-fold higher, p <0.0001), that reduces secondary 7α-dehydroxylated bile acid levels in MASH. Conclusions This study reveals a gut microbiota-independent mechanism that alters the level of secondary bile acids and contributes to the development of MASH in mice. Impact and implications Although changes in bile acid levels are implicated in the development of metabolic dysfunction-associated steatohepatitis (MASH), the precise mechanisms underpinning these alterations remain elusive. In this study, we investigated the mechanisms responsible for the changes in bile acid levels in mouse models of MASH. Our results support that neither the composition nor the metabolic activity of the gut microbiota can account for the alterations in the bile acid pool. Instead, we identified hepatic 7α-rehydroxylation of secondary bile acids as a gut microbiota-independent factor contributing to the reduced levels of secondary bile acids in mice with MASH. Further investigation is warranted to understand bile acid metabolism and its physiological implications in clinical MASH. Nonetheless, our findings hold promise for exploring novel therapeutic interventions for MASH.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Corinne Picalausa
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Morgane M. Thibaut
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- Welbio department, WEL Research Institute, Wavre, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Deshayes S, Ruello P, Simard C, Dupont PA, Bauge C, Abbas A, de Boysson H, Aouba A, Manrique A. 18F-fluorodeoxyglucose PET-MR characterization of aortic inflammation in ApoE -/- mouse models of accelerated atherosclerosis: comparison of Western diet vs. uremia. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:2335-2344. [PMID: 39305349 DOI: 10.1007/s10554-024-03238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024]
Abstract
ApoE-/- mice are a widely used preclinical model of atherosclerosis, potentially accelerated by a Western diet (WD) or uremia. We aimed to compare hybrid 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-magnetic resonance (PET-MR) and immunostaining in ApoE-/- models of accelerated atherosclerosis. Five groups were studied: standard diet-fed ApoE-/- (n = 7), standard diet-fed and uremic ApoE-/- (n = 7), WD ApoE-/- (n = 7), WD and uremic ApoE-/- (n = 6), and control C57BL/6J mice (n = 6). Uremia was induced by electrocoagulation of the right kidney at 8 weeks old, followed 2 weeks later by a contralateral nephrectomy. 18F-FDG PET-MR imaging and histological staining (anti-CD4, -CD8, -CD11c, -CD20, -CD31, -CD68, -CD163, -interferon-γ, interleukin-1α, -1β, -6, -17 A antibodies) were performed in 18-week-old mice, i.e., 8 weeks after 5/6 nephrectomy and/or WD. 18F-FDG uptake was similar in all groups. In contrast, histological staining highlighted higher percentages of CD8-, CD68-, or CD11c-positive cells in ApoE-/- aortic samples than in wild-type aortic samples. In addition, immunostaining revealed some differences between ApoE-/- mouse groups. Only the WD seemed to contribute to these differences. Using immunostaining, WD appeared to be a stronger accelerator of atherosclerosis than uremia. However, 18F-FDG PET-MR imaging failed to demonstrate in vivo increased aortic glucose uptake in these models.
Collapse
Affiliation(s)
- Samuel Deshayes
- Department of Internal Medicine, Normandie Univ, UNICAEN, CHU de Caen Normandie, Caen, 14000, France
- Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen Normandie, Caen, 14000, France
| | - Pauline Ruello
- Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen Normandie, Caen, 14000, France
| | - Christophe Simard
- Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen Normandie, Caen, 14000, France
| | | | - Caroline Bauge
- Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen Normandie, Caen, 14000, France
| | - Ahmed Abbas
- Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen Normandie, Caen, 14000, France
| | - Hubert de Boysson
- Department of Internal Medicine, Normandie Univ, UNICAEN, CHU de Caen Normandie, Caen, 14000, France
- Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen Normandie, Caen, 14000, France
| | - Achille Aouba
- Department of Internal Medicine, Normandie Univ, UNICAEN, CHU de Caen Normandie, Caen, 14000, France
| | - Alain Manrique
- Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen Normandie, Caen, 14000, France.
- Department of Nuclear Medicine, Normandie Univ, UNICAEN, CHU de Caen Normandie, Caen, 14000, France.
- UR4650 PSIR, GIP Cyceron, Campus Jules Horowitz, Boulevard Henri Becquerel, BP 5229, Caen, 14074, France.
| |
Collapse
|
14
|
Lange R, Glaubitz J, Frost F, Geisz A, Aghdassi AA, Weiss FU, Sendler M. Examination of duodenal and colonic microbiome changes in mouse models of acute and chronic pancreatitis. Sci Rep 2024; 14:24754. [PMID: 39433820 PMCID: PMC11493962 DOI: 10.1038/s41598-024-75564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
The exocrine pancreas is the main source of digestive enzymes which are released from secretory vesicles of acinar cells into the small intestine. Enzymes, including amylases, proteases and lipases, degrade the ingested food and thus determine the nutritional substrate for the gut microbiota. Acute (AP) and chronic pancreatitis (CP) are associated with a transitional or progressive exocrine pancreatic dysfunction, we analysed in the present study how an experimental induction of pancreatitis in mouse models affects the colonic and duodenal microbiome composition. Evaluation by 16 S rRNA gene sequencing revealed specific microbiome changes in colonic as well as in duodenal samples in different models of AP and CP. Mild acute pancreatitis, which is associated with a transient impairment of pancreatic secretion showed only minor changes in microbial composition, comparable to the ones seen in progressive dysfunctional mouse models of CP. The strongest changes were observed in a mouse model of severe AP, which suggest a direct effect of the immune response on gut microbiome in addition to a pancreatic dysfunction. Our data indicate that highly dysbiotic microbiome changes during pancreatitis are more associated with the inflammatory reaction than with a disturbed pancreatic secretion.
Collapse
Affiliation(s)
- Rabea Lange
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - Juliane Glaubitz
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - Andreas Geisz
- Department of Surgery, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - F Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Fleischmannstr. 41, 17475, Greifswald, Germany.
| |
Collapse
|
15
|
Donaldson GP, Reis GL, Saad M, Wichmann C, Mamede I, Chen G, DelGaudio NL, Zhang D, Aydin B, Harrer CE, Castro TBR, Grivennikov S, Reis BS, Stadtmueller BM, Victora GD, Mucida D. Suppression of epithelial proliferation and tumourigenesis by immunoglobulin A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561290. [PMID: 37873082 PMCID: PMC10592636 DOI: 10.1101/2023.10.06.561290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Immunoglobulin A (IgA) is the most abundant antibody isotype produced across mammals and plays a specialized role in mucosal homeostasis 1 . Constantly secreted into the lumen of the intestine, IgA binds commensal microbiota to regulate their colonization and function 2,3 with unclear implications for health. IgA deficiency is common in humans but is difficult to study due to its complex aetiology and comorbidities 4-8 . Using genetically and environmentally controlled mice, here we show that IgA-deficient animals have increased susceptibility to endogenous colorectal tumours. Cellular and molecular analyses revealed that, in the absence of IgA, colonic epithelial cells induce antibacterial factors and accelerate cell cycling in response to the microbiota. Oral treatment with IgA was sufficient to both reduce steady-state proliferation and protect mice from tumours, but this function was due to antibody structure rather than binding specificity. In both organoid and monolayer culture systems, IgA directly suppressed epithelial growth. Co-immunoprecipitation mass spectrometry and a targeted CRISPR screen identified DMBT1 as an IgA-binding epithelial surface protein required for IgA-mediated suppression of proliferation. Together, IgA and DMBT1 regulate Notch signalling and tune the normal cycling of absorptive colonocyte progenitors. In mice, deleting the transmembrane and cytoplasmic signalling portions of DMBT1 or blocking Notch signalling was sufficient to reverse both the increased proliferation and tumour susceptibility of IgA knockouts. These experiments establish a homeostatic function for IgA in tempering physiological epithelial responses to microbiota to maintain mucosal health.
Collapse
|
16
|
FitzPatrick RD, Noone JR, Cartwright RA, Gatti DM, Brosschot TP, Lane JM, Jensen EL, Kroker Kimber I, Reynolds LA. Eosinophils respond to, but are not essential for control of an acute Salmonella enterica serovar Typhimurium infection in mice. Infect Immun 2024; 92:e0032524. [PMID: 39248486 PMCID: PMC11475665 DOI: 10.1128/iai.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Eosinophils are a highly abundant cell type in the gastrointestinal tract during homeostatic conditions, where they have recently been reported to take on an activated phenotype following colonization by the bacterial microbiota. To date, there have been few studies investigating whether eosinophils respond to infection with enteric bacterial pathogens and/or investigating the requirements for eosinophils for effective bacterial pathogen control. In this study, we investigated the response of eosinophils to an acute enteric infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium. We also assessed whether eosinophil deficiency impacted Salmonella burdens in the intestinal tract or impacted the systemic dissemination of Salmonella following an oral infection of littermate wild-type BALB/cJ and eosinophil-deficient ΔdblGATA BALB/cJ mice. We found comparable Salmonella burdens in the intestinal tract of wild-type and eosinophil-deficient mice and no significant differences in the levels of Salmonella disseminating to systemic organs within 3 days of infection. Despite our evidence suggesting that eosinophils are not an essential cell type for controlling bacterial burdens in this acute infection setting, we found higher levels of eosinophils in gut-draining lymph nodes following infection, indicating that eosinophils do respond to Salmonella infection. Our data contribute to the growing evidence that eosinophils are responsive to bacterial stimuli, yet the influence of and requirements for eosinophils during bacterial infection appear to be highly context-dependent.
Collapse
Affiliation(s)
- Rachael D. FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jonathan R. Noone
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Richard A. Cartwright
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Dominique M. Gatti
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Tara P. Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jenna M. Lane
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Erik L. Jensen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Isabella Kroker Kimber
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
17
|
R Muralitharan R, Nakai ME, Snelson M, Zheng T, Dinakis E, Xie L, Jama H, Paterson M, Shihata W, Wassef F, Vinh A, Drummond GR, Kaye DM, Mackay CR, Marques FZ. Influence of angiotensin II on the gut microbiome: modest effects in comparison to experimental factors. Cardiovasc Res 2024; 120:1155-1163. [PMID: 38518247 PMCID: PMC11368123 DOI: 10.1093/cvr/cvae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 03/24/2024] Open
Abstract
AIMS Animal models are regularly used to test the role of the gut microbiome in hypertension. Small-scale pre-clinical studies have investigated changes to the gut microbiome in the angiotensin II hypertensive model. However, the gut microbiome is influenced by internal and external experimental factors, which are not regularly considered in the study design. Once these factors are accounted for, it is unclear if microbiome signatures are reproduceable. We aimed to determine the influence of angiotensin II treatment on the gut microbiome using a large and diverse cohort of mice and to quantify the magnitude by which other factors contribute to microbiome variations. METHODS AND RESULTS We conducted a retrospective study to establish a diverse mouse cohort resembling large human studies. We sequenced the V4 region of the 16S rRNA gene from 538 samples across the gastrointestinal tract of 303 male and female C57BL/6J mice randomized into sham or angiotensin II treatment from different genotypes, diets, animal facilities, and age groups. Analysing over 17 million sequencing reads, we observed that angiotensin II treatment influenced α-diversity (P = 0.0137) and β-diversity (i.e. composition of the microbiome, P < 0.001). Bacterial abundance analysis revealed patterns consistent with a reduction in short-chain fatty acid producers, microbial metabolites that lower blood pressure. Furthermore, animal facility, genotype, diet, age, sex, intestinal sampling site, and sequencing batch had significant effects on both α- and β-diversity (all P < 0.001). Sampling site (6.8%) and diet (6%) had the largest impact on the microbiome, while angiotensin II and sex had the smallest effect (each 0.4%). CONCLUSION Our large-scale data confirmed findings from small-scale studies that angiotensin II impacted the gut microbiome. However, this effect was modest relative to most of the other factors studied. Accounting for these factors in future pre-clinical hypertensive studies will increase the likelihood that microbiome findings are replicable and translatable.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
| | - Michael E Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Matthew Snelson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
| | - Tenghao Zheng
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Liang Xie
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Hamdi Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Madeleine Paterson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
| | - Waled Shihata
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
| | - Flavia Wassef
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biodiscovery Institute, Monash University, Melbourne, Australia
- Department of Biochemistry, Monash University, Melbourne, Australia
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, 18 Innovation Walk, Clayton, 3800 Melbourne, Australia
- Victorian Heart Institute, Monash University, 631 Blackburn Road, Clayton, 3800 Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, 75 Commercial Road, 3004 Melbourne, Australia
| |
Collapse
|
18
|
Stoppel H, Harvey BH, Wolmarans DW. Adult Offspring of Deer Mouse Breeding Pairs Selected for Normal and Compulsive-Like Large Nesting Expression Invariably Show the Same Behavior Without Prior In-Breeding. Dev Psychobiol 2024; 66:e22533. [PMID: 39106336 DOI: 10.1002/dev.22533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
Obsessive-compulsive disorder is a neuropsychiatric condition with notable genetic involvement. Against this background, laboratory-housed deer mice of both sexes varyingly present with excessive and persistent large nesting behavior (LNB), which has been validated for its resemblance of clinical compulsivity. Although LNB differs from normal nesting behavior (NNB) on both a biological and cognitive level, it is unknown to what extent the expression of LNB and NNB is related to familial background. Here, we randomly selected 14 NNB- and 14 LNB-expressing mice (equally distributed between sexes) to constitute 7 breeding pairs of each phenotype. Pairs were allowed to breed two successive generations of offspring, which were raised until adulthood (12 weeks) and assessed for nesting expression. Remarkably, our findings show that offspring from LNB-expressing pairs build significantly larger nests compared to offspring from NNB-expressing pairs and the nesting expression of the offspring of each breeding pair, irrespective of parental phenotype or litter, is family specific. Collectively, the results of this investigation indicate that LNB can be explored for its potential to shed light on heritable neurocognitive mechanisms that may underlie the expression of specific persistent behavioral phenotypes.
Collapse
Affiliation(s)
- Heike Stoppel
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Department of Psychiatry and Neuroscience Institute, South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Rondebosch, South Africa
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University and Barwon Health, Geelong, Australia
| | - De Wet Wolmarans
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
19
|
McKinnon Reish H, Dewey L, Kirschman LJ. A host of issues: pseudoreplication in host-microbiota studies. Appl Environ Microbiol 2024; 90:e0103324. [PMID: 39082810 PMCID: PMC11337823 DOI: 10.1128/aem.01033-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Pseudoreplication compromises the validity of research by treating non-independent samples as independent replicates. This review examines the prevalence of pseudoreplication in host-microbiota studies, highlighting the critical need for rigorous experimental design and appropriate statistical analysis. We systematically reviewed 115 manuscripts on host-microbiota interactions. Our analysis revealed that 22% of the papers contained pseudoreplication, primarily due to co-housed organisms, whereas 52% lacked sufficient methodological details. The remaining 26% adequately addressed pseudoreplication through proper experimental design or statistical analysis. The high incidence of pseudoreplication and insufficient information underscores the importance of methodological reporting and statistical rigor to ensure reproducibility of host-microbiota research.
Collapse
Affiliation(s)
- Hannah McKinnon Reish
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
| | - Lindsey Dewey
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
- Deparment of Biology, University of Dayton, Dayton, Ohio, USA
| | - Lucas J. Kirschman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
| |
Collapse
|
20
|
Mohr AE, Jasbi P, van Woerden I, Chi J, Gu H, Bruening M, Whisner CM. Microbial Ecology and Metabolism of Emerging Adulthood: Gut Microbiome Insights from a College Freshman Cohort. GUT MICROBES REPORTS 2024; 1:1-23. [PMID: 39221110 PMCID: PMC11361303 DOI: 10.1080/29933935.2024.2387936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The human gut microbiome (GM) undergoes dynamic changes throughout life, transitioning from infancy to adulthood. Despite improved understanding over the past years about how genetics, lifestyle, and the external environment impact the GM, limited research has explored the GM's evolution during late-stage adolescence, especially among college students. This study addresses this gap by investigating the longitudinal dynamics of fecal microbial, functional, and metabolomic signatures in a diverse group of first-year, dormitory-housed college students. A total of 485 stool samples from 246 participants were analyzed, identifying four primary GM community types, predominantly led by Bacteroides (66.8% of samples), as well as Blautia and Prevotella. The Prevotella/Bacteroides (P/B) ratio emerged as a robust GM composition indicator, predictively associated with 15 metabolites. Notably, higher P/B ratios correlated negatively with p-cresol sulfate and cholesterol sulfate, implying potential health implications, while positively correlating with kynurenic acid. Distinct GM transition and stability patterns were found from a detailed longitudinal subset of 93 participants over an academic year. Parasutterella and the Ruminococcus gnavus group exhibited positive associations with compositional variability, whereas Faecalibacterium and Eubacterium ventriosum group displayed negative associations, the latter suggesting stabilizing roles in the GM. Most notably, nearly half of the longitudinal cohort experienced GM community shifts, emphasizing long-term GM adaptability. Comparing individuals with stable community types to those undergoing transitions, we observed significant differences in microbial composition and diversity, signifying substantial shifts in the microbiota during transitions. Although diet-related variables contributed to some observed variance, diet did not independently predict the probability of switching between community types within the study's timeframe via multi-state Markov modeling. Furthermore, exploration of stability within dynamic microbiomes among the longitudinal cohort experiencing shifts in community types revealed that microbiome taxa at the genus level exhibited significantly higher total variance than estimated functional and fecal metabolomic features. This suggests tight control of function and metabolism, despite community shifting. Overall, this study highlights the dynamic nature of the late-stage adolescent GM, the role of core taxa, metabolic pathways, the fecal metabolome, and lifestyle and dietary factors, contributing to our understanding of GM assembly and potential health implications during this life phase.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Center for Personalized Diagnostics, School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Irene van Woerden
- Community and Public Health, Idaho State University, Pocatello, ID, USA
| | - Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Meg Bruening
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Department of Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
21
|
Zampieri G, Cabrol L, Urra C, Castro-Nallar E, Schwob G, Cleary D, Angione C, Deacon RMJ, Hurley MJ, Cogram P. Microbiome alterations are associated with apolipoprotein E mutation in Octodon degus and humans with Alzheimer's disease. iScience 2024; 27:110348. [PMID: 39148714 PMCID: PMC11324989 DOI: 10.1016/j.isci.2024.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer's disease (AD). A major risk factor for AD is polymorphism in the apolipoprotein E (APOE) gene, which affects gut microbiome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing AD-like pathologies are needed. Octodon degus (degu) exhibit spontaneous AD-like symptoms and ApoE mutations, making them suitable for studying the interplay between AD genetic determinants and gut microbiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and 32 degu using16S rRNA gene amplicon sequencing. Significant associations were found between the degu ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akkermansiaceae and an enrichment of Prevotellaceae, mirroring patterns seen in people with AD. The altered taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for studying the AD/microbiome crosstalk.
Collapse
Affiliation(s)
- Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Department of Computer Science and Information Systems, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Léa Cabrol
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Aix Marseille University, University Toulon, CNRS, IRD, Méditerranéen Institute of Océanographie (MIO) UM 110, Avenue de Luminy, 13009 Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 7800003, Chile
| | - Claudio Urra
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Avenida República 239, Santiago 7591538, Chile
| | - Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 7800003, Chile
| | - David Cleary
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Department of Computer Science and Information Systems, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Robert M J Deacon
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Michael J Hurley
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Patricia Cogram
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Department of Anatomy and Neurobiology, School of Medicine, B240 Med Sci, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Ignácio ADC, Guerra AMDR, de Souza-Silva TG, Carmo MAVD, Paula HADA. Effects of glyphosate exposure on intestinal microbiota, metabolism and microstructure: a systematic review. Food Funct 2024; 15:7757-7781. [PMID: 38994673 DOI: 10.1039/d4fo00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glyphosate is the most commercialized herbicide in Brazil and worldwide, and this has become a worrying scenario in recent years. In 2015 glyphosate was classified as potentially carcinogenic by the World Health Organization, which opened avenues for numerous debates about its safe use regarding non-target species' health, including humans. This review aimed to observe the impacts of glyphosate and its formulations on the gut microbiota, as well as on the gut microstructure and animal metabolism. A systematic review was conducted based on the PRISMA recommendations, and the search for original articles was performed in Pubmed/Medline, Scopus and Web of Science databases. The risk of bias in the studies was assessed using the SYRCLE strategy. Our findings revealed that glyphosate and its formulations are able to induce intestinal dysbiosis by altering bacterial metabolism, intestinal permeability, and mucus secretion, as well as causing damage to the microvilli and the intestinal lumen. Additionally, immunological, enzymatic and genetic changes were also observed in the animal models. At the metabolic level, damage was observed in lipid and energy metabolism, the circulatory system, cofactor and vitamin metabolism, and replication, repair, and translation processes. In this context, we pointed out that the studies revealed that these alterations, caused by glyphosate-based herbicides, can lead to intestinal and systemic diseases, such as Crohn's disease and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Araújo Vieira do Carmo
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| | - Hudsara Aparecida de Almeida Paula
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
24
|
Reynders A, Anissa Jhumka Z, Gaillard S, Mantilleri A, Malapert P, Magalon K, Etzerodt A, Salio C, Ugolini S, Castets F, Saurin AJ, Serino M, Hoeffel G, Moqrich A. Gut microbiota promotes pain chronicity in Myosin1A deficient male mice. Brain Behav Immun 2024; 119:750-766. [PMID: 38710336 DOI: 10.1016/j.bbi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Chronic pain is a heavily debilitating condition and a huge socio-economic burden, with no efficient treatment. Over the past decade, the gut microbiota has emerged as an important regulator of nervous system's health and disease states. Yet, its contribution to the pathogenesis of chronic somatic pain remains poorly documented. Here, we report that male but not female mice lacking Myosin1a (KO) raised under single genotype housing conditions (KO-SGH) are predisposed to develop chronic pain in response to a peripheral tissue injury. We further underscore the potential of MYO1A loss-of-function to alter the composition of the gut microbiota and uncover a functional connection between the vulnerability to chronic pain and the dysbiotic gut microbiota of KO-SGH males. As such, parental antibiotic treatment modifies gut microbiota composition and completely rescues the injury-induced pain chronicity in male KO-SGH offspring. Furthermore, in KO-SGH males, this dysbiosis is accompanied by a transcriptomic activation signature in the dorsal root ganglia (DRG) macrophage compartment, in response to tissue injury. We identify CD206+CD163- and CD206+CD163+ as the main subsets of DRG resident macrophages and show that both are long-lived and self-maintained and exhibit the capacity to monitor the vasculature. Consistently, in vivo depletion of DRG macrophages rescues KO-SGH males from injury-induced chronic pain underscoring a deleterious role for DRG macrophages in a Myo1a-loss-of function context. Together, our findings reveal gene-sex-microbiota interactions in determining the predisposition to injury-induced chronic pain and point-out DRG macrophages as potential effector cells.
Collapse
Affiliation(s)
- Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| | - Z Anissa Jhumka
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | | | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Karine Magalon
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Sophie Ugolini
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Francis Castets
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Matteo Serino
- Institut de Recherche en Santé Digestive, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Guillaume Hoeffel
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| |
Collapse
|
25
|
Byrne SR, DeMott MS, Yuan Y, Ghanegolmohammadi F, Kaiser S, Fox JG, Alm EJ, Dedon PC. Temporal dynamics and metagenomics of phosphorothioate epigenomes in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596306. [PMID: 38854053 PMCID: PMC11160787 DOI: 10.1101/2024.05.29.596306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Epigenetic regulation of gene expression and host defense is well established in microbial communities, with dozens of DNA modifications comprising the epigenomes of prokaryotes and bacteriophage. Phosphorothioation (PT) of DNA, in which a chemically-reactive sulfur atom replaces a non-bridging oxygen in the sugar-phosphate backbone, is catalyzed by dnd and ssp gene families widespread in bacteria and archaea. However, little is known about the role of PTs or other microbial epigenetic modifications in the human microbiome. Here we optimized and applied fecal DNA extraction, mass spectrometric, and metagenomics technologies to characterize the landscape and temporal dynamics of gut microbes possessing PT modifications. Results Exploiting the nuclease-resistance of PTs, mass spectrometric analysis of limit digests of PT-containing DNA reveals PT dinucleotides as part of genomic consensus sequences, with 16 possible dinucleotide combinations. Analysis of mouse fecal DNA revealed a highly uniform spectrum of 11 PT dinucleotides in all littermates, with PTs estimated to occur in 5-10% of gut microbes. Though at similar levels, PT dinucleotides in fecal DNA from 11 healthy humans possessed signature combinations and levels of individual PTs. Comparison with a widely distributed microbial epigenetic mark, m6dA, suggested temporal dynamics consistent with expectations for gut microbial communities based on Taylor's Power Law. Application of PT-seq for site-specific metagenomic analysis of PT-containing bacteria in one fecal donor revealed the larger consensus sequences for the PT dinucleotides in Bacteroidota, Firmicutes, Actinobacteria, and Proteobacteria, which differed from unbiased metagenomics and suggested that the abundance of PT-containing bacteria did not simply mirror the spectrum of gut bacteria. PT-seq further revealed low abundance PT sites not detected as dinucleotides by mass spectrometry, attesting to the complementarity of the technologies. Conclusions The results of our studies provide a benchmark for understanding the behavior of an abundant and chemically-reactive epigenetic mark in the human gut microbiome, with implications for inflammatory conditions of the gut.
Collapse
Affiliation(s)
- Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefanie Kaiser
- Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Singapore
| |
Collapse
|
26
|
Mühlen S, Heroven AK, Elxnat B, Kahl S, Pieper DH, Dersch P. Infection and antibiotic-associated changes in the fecal microbiota of C. rodentium ϕ stx2dact-infected C57BL/6 mice. Antimicrob Agents Chemother 2024; 68:e0005724. [PMID: 38526080 PMCID: PMC11064522 DOI: 10.1128/aac.00057-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/24/2024] [Indexed: 03/26/2024] Open
Abstract
Enterohemorrhagic Escherichia coli causes watery to bloody diarrhea, which may progress to hemorrhagic colitis and hemolytic-uremic syndrome. While early studies suggested that antibiotic treatment may worsen the pathology of an enterohemorrhagic Escherichia coli (EHEC) infection, recent work has shown that certain non-Shiga toxin-inducing antibiotics avert disease progression. Unfortunately, both intestinal bacterial infections and antibiotic treatment are associated with dysbiosis. This can alleviate colonization resistance, facilitate secondary infections, and potentially lead to more severe illness. To address the consequences in the context of an EHEC infection, we used the established mouse infection model organism Citrobacter rodentium ϕstx2dact and monitored changes in fecal microbiota composition during infection and antibiotic treatment. C. rodentium ϕstx2dact infection resulted in minor changes compared to antibiotic treatment. The infection caused clear alterations in the microbial community, leading mainly to a reduction of Muribaculaceae and a transient increase in Enterobacteriaceae distinct from Citrobacter. Antibiotic treatments of the infection resulted in marked and distinct variations in microbiota composition, diversity, and dispersion. Enrofloxacin and trimethoprim/sulfamethoxazole, which did not prevent Shiga toxin-mediated organ damage, had the least disruptive effects on the intestinal microbiota, while kanamycin and tetracycline, which rapidly cleared the infection without causing organ damage, caused a severe reduction in diversity. Kanamycin treatment resulted in the depletion of all but Bacteroidetes genera, whereas tetracycline effects on Clostridia were less severe. Together, these data highlight the need to address the impact of individual antibiotics in the clinical care of life-threatening infections and consider microbiota-regenerating therapies.IMPORTANCEUnderstanding the impact of antibiotic treatment on EHEC infections is crucial for appropriate clinical care. While discouraged by early studies, recent findings suggest certain antibiotics can impede disease progression. Here, we investigated the impact of individual antibiotics on the fecal microbiota in the context of an established EHEC mouse model using C. rodentium ϕstx2dact. The infection caused significant variations in the microbiota, leading to a transient increase in Enterobacteriaceae distinct from Citrobacter. However, these effects were minor compared to those observed for antibiotic treatments. Indeed, antibiotics that most efficiently cleared the infection also had the most detrimental effect on the fecal microbiota, causing a substantial reduction in microbial diversity. Conversely, antibiotics showing adverse effects or incomplete bacterial clearance had a reduced impact on microbiota composition and diversity. Taken together, our findings emphasize the delicate balance required to weigh the harmful effects of infection and antibiosis in treatment.
Collapse
Affiliation(s)
- Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
- German Centre for Infection Research (DZIF), partner site HZI, Braunschweig, and associated site University of Münster, Münster, Germany
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bettina Elxnat
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
- German Centre for Infection Research (DZIF), partner site HZI, Braunschweig, and associated site University of Münster, Münster, Germany
| |
Collapse
|
27
|
Moeckli B, Delaune V, Gilbert B, Peloso A, Oldani G, El Hajji S, Slits F, Ribeiro JR, Mercier R, Gleyzolle A, Rubbia-Brandt L, Gex Q, Lacotte S, Toso C. Maternal obesity increases the risk of hepatocellular carcinoma through the transmission of an altered gut microbiome. JHEP Rep 2024; 6:101056. [PMID: 38681863 PMCID: PMC11046215 DOI: 10.1016/j.jhepr.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background & Aims Emerging evidence suggests that maternal obesity negatively impacts the health of offspring. Additionally, obesity is a risk factor for hepatocellular carcinoma (HCC). Our study aims to investigate the impact of maternal obesity on the risk for HCC development in offspring and elucidate the underlying transmission mechanisms. Methods Female mice were fed either a high-fat diet (HFD) or a normal diet (ND). All offspring received a ND after weaning. We studied liver histology and tumor load in a N-diethylnitrosamine (DEN)-induced HCC mouse model. Results Maternal obesity induced a distinguishable shift in gut microbial composition. At 40 weeks, female offspring of HFD-fed mothers (HFD offspring) were more likely to develop steatosis (9.43% vs. 3.09%, p = 0.0023) and fibrosis (3.75% vs. 2.70%, p = 0.039), as well as exhibiting an increased number of inflammatory infiltrates (4.8 vs. 1.0, p = 0.018) and higher expression of genes involved in fibrosis and inflammation, compared to offspring of ND-fed mothers (ND offspring). A higher proportion of HFD offspring developed liver tumors after DEN induction (79.8% vs. 37.5%, p = 0.0084) with a higher mean tumor volume (234 vs. 3 μm3, p = 0.0041). HFD offspring had a significantly less diverse microbiota than ND offspring (Shannon index 2.56 vs. 2.92, p = 0.0089), which was rescued through co-housing. In the principal component analysis, the microbiota profile of co-housed animals clustered together, regardless of maternal diet. Co-housing of HFD offspring with ND offspring normalized their tumor load. Conclusions Maternal obesity increases female offspring's susceptibility to HCC. The transmission of an altered gut microbiome plays an important role in this predisposition. Impact and implications The worldwide incidence of obesity is constantly rising, with more and more children born to obese mothers. In this study, we investigate the impact of maternal diet on gut microbiome composition and its role in liver cancer development in offspring. We found that mice born to mothers with a high-fat diet inherited a less diverse gut microbiome, presented chronic liver injury and an increased risk of developing liver cancer. Co-housing offspring from normal diet- and high-fat diet-fed mothers restored the gut microbiome and, remarkably, normalized the risk of developing liver cancer. The implementation of microbial screening and restoration of microbial diversity holds promise in helping to identify and treat individuals at risk to prevent harm for future generations.
Collapse
Affiliation(s)
- Beat Moeckli
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Benoît Gilbert
- Department of Medicine, Division of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland
- Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrea Peloso
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of General Surgery, The University of British Columbia, Vancouver, Canada
| | - Sofia El Hajji
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Joana Rodrigues Ribeiro
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Ruben Mercier
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Adrien Gleyzolle
- Department of Diagnostics, Division of Radiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Department of Diagnostics Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Stephanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
28
|
Modrego J, Ortega-Hernández A, Sánchez-González S, Corbatón-Anchuelo A, Gómez-Garre D. Analysis of the gut microbiota profile targeted to multiple hypervariable regions of 16S rRNA in a hypertensive heart failure rat model. Methods Cell Biol 2024; 188:183-203. [PMID: 38880524 DOI: 10.1016/bs.mcb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The gut microbiota, comprising a diverse community of microorganisms, significantly influences various aspects of health. Changes in the composition of the gut microbiota are implicated in adverse effects on host physiology, contributing to the pathogenesis of cardiovascular diseases, among others pathological conditions. Understanding the role of the gut microbiota in the context of heart failure is particularly important. In this regard, the spontaneously hypertensive heart failure (SHHF) rat is an adequate experimental model since exhibits many features in common with heart failure (HF) in humans. Recent advancements in next-generation sequencing (NGS) have greatly improved microbiome analysis. However, standardization and the adoption of best practices are essential to mitigate experimental variations across studies. This manuscript outlines a straightforward methodology for analyzing gut microbiota composition in SHHF rat fecal samples using 16S rRNA sequencing, emphasizing the relevance of gut microbiota in heart failure.
Collapse
Affiliation(s)
- Javier Modrego
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Adriana Ortega-Hernández
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Silvia Sánchez-González
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Arturo Corbatón-Anchuelo
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
29
|
Young SM, Woode RA, Williams EC, Ericsson AC, Clarke LL. Fecal dysbiosis and inflammation in intestinal-specific Cftr knockout mice on regimens preventing intestinal obstruction. Physiol Genomics 2024; 56:247-264. [PMID: 38073491 PMCID: PMC11283905 DOI: 10.1152/physiolgenomics.00077.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023] Open
Abstract
Chronic intestinal inflammation is a poorly understood manifestation of cystic fibrosis (CF), which may be refractory to ion channel CF transmembrane conductance regulator (CFTR) modulator therapy. People with CF exhibit intestinal dysbiosis, which has the potential for stimulating intestinal and systemic inflammation. CFTR is expressed in organ epithelia, leukocytes, and other tissues. Here, we investigate the contribution of intestinal epithelium-specific loss of Cftr [iCftr knockout (KO)] to dysbiosis and inflammation in mice treated with either of two antiobstructive dietary regimens necessary to maintain CF mouse models [polyethylene glycol (PEG) laxative or a liquid diet (LiqD)]. Feces collected from iCftr KO mice and their wild-type (WT) sex-matched littermates were used to measure fecal calprotectin to evaluate inflammation and to perform 16S rRNA sequencing to characterize the gut microbiome. Fecal calprotectin was elevated in iCftr KO relative to WT mice that consumed either PEG or LiqD. PEG iCftr KO mice did not show a change in α diversity versus WT mice but demonstrated a significant difference in microbial composition (β diversity) with included increases in the phylum Proteobacteria, the family Peptostreptococcaceae, four genera of Clostridia including C. innocuum, and the mucolytic genus Akkermansia. Fecal microbiome analysis of LiqD-fed iCftr KO mice showed both decreased α diversity and differences in microbial composition with increases in the Proteobacteria family Enterobacteriaceae, Firmicutes families Clostridiaceae and Peptostreptococcaceae, and enrichment of Clostridium perfringens, C. innocuum, C. difficile, mucolytic Ruminococcus gnavus, and reduction of Akkermansia. It was concluded that epithelium-specific loss of Cftr is a major driver of CF intestinal dysbiosis and inflammation with significant similarities to previous studies of pan Cftr KO mice.NEW & NOTEWORTHY Chronic intestinal inflammation is a manifestation of cystic fibrosis (CF), a disease caused by loss of the anion channel CF transmembrane conductance regulator (CFTR) that is expressed in many tissues. This study shows that intestinal epithelial cell-specific loss of CFTR [inducible Cftr knockout (KO)] in mice is sufficient to induce intestinal dysbiosis and inflammation. Experiments were performed on mice consuming two dietary regimens routinely used to prevent obstruction in CF mice.
Collapse
Affiliation(s)
- Sarah M Young
- College of Veterinary Medicine, University of Missouri Comparative Medicine Program, Columbia, Missouri, United States
| | - Rowena A Woode
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Estela C Williams
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Aaron C Ericsson
- College of Veterinary Medicine, University of Missouri Comparative Medicine Program, Columbia, Missouri, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- College of Veterinary Medicine, University of Missouri Metagenomics Center, Columbia, Missouri, United States
| | - Lane L Clarke
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
30
|
Tsankov BK, Luchak A, Carr C, Philpott DJ. The effects of NOD-like receptors on adaptive immune responses. Biomed J 2024; 47:100637. [PMID: 37541620 PMCID: PMC10796267 DOI: 10.1016/j.bj.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
It has long been appreciated that cues from the innate immune system orchestrate downstream adaptive immune responses. Although previous work has focused on the roles of Toll-like receptors in this regard, relatively little is known about how Nod-like receptors instruct adaptive immunity. Here we review the functions of different members of the Nod-like receptor family in orchestrating effector and anamnestic adaptive immune responses. In particular, we address the ways in which inflammasome and non-inflammasome members of this family affect adaptive immunity under various infectious and environmental contexts. Furthermore, we identify several key mechanistic questions that studies in this field have left unaddressed. Our aim is to provide a framework through which immunologists in the adaptive immune field may view their questions through an innate-immune lens and vice-versa.
Collapse
Affiliation(s)
- Boyan K Tsankov
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Alexander Luchak
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Charles Carr
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Bauer KC, Trehan R, Ruf B, Myojin Y, Benmebarek MR, Ma C, Seifert M, Nur A, Qi J, Huang P, Soliman M, Green BL, Wabitsch S, Springer DA, Rodriguez-Matos FJ, Ghabra S, Gregory SN, Matta J, Dawson B, Golino J, Xie C, Dzutsev A, Trinchieri G, Korangy F, Greten TF. The Gut Microbiome Controls Liver Tumors via the Vagus Nerve. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576951. [PMID: 38328040 PMCID: PMC10849697 DOI: 10.1101/2024.01.23.576951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Liver cancer ranks amongst the deadliest cancers. Nerves have emerged as an understudied regulator of tumor progression. The parasympathetic vagus nerve influences systemic immunity via acetylcholine (ACh). Whether cholinergic neuroimmune interactions influence hepatocellular carcinoma (HCC) remains uncertain. Liver denervation via hepatic vagotomy (HV) significantly reduced liver tumor burden, while pharmacological enhancement of parasympathetic tone promoted tumor growth. Cholinergic disruption in Rag1KO mice revealed that cholinergic regulation requires adaptive immunity. Further scRNA-seq and in vitro studies indicated that vagal ACh dampens CD8+ T cell activity via muscarinic ACh receptor (AChR) CHRM3. Depletion of CD8+ T cells abrogated HV outcomes and selective deletion of Chrm3 on CD8 + T cells inhibited liver tumor growth. Beyond tumor-specific outcomes, vagotomy improved cancer-associated fatigue and anxiety-like behavior. As microbiota transplantation from HCC donors was sufficient to impair behavior, we investigated putative microbiota-neuroimmune crosstalk. Tumor, rather than vagotomy, robustly altered fecal bacterial composition, increasing Desulfovibrionales and Clostridial taxa. Strikingly, in tumor-free mice, vagotomy permitted HCC-associated microbiota to activate hepatic CD8+ T cells. These findings reveal that gut bacteria influence behavior and liver anti-tumor immunity via a dynamic and pharmaceutically targetable, vagus-liver axis.
Collapse
|
32
|
Bogatova D, Smirnakis SM, Palagina G. Tug-of-Peace: Visual Rivalry and Atypical Visual Motion Processing in MECP2 Duplication Syndrome of Autism. eNeuro 2024; 11:ENEURO.0102-23.2023. [PMID: 37940561 PMCID: PMC10792601 DOI: 10.1523/eneuro.0102-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/25/2023] [Accepted: 08/12/2023] [Indexed: 11/10/2023] Open
Abstract
Extracting common patterns of neural circuit computations in the autism spectrum and confirming them as a cause of specific core traits of autism is the first step toward identifying cell-level and circuit-level targets for effective clinical intervention. Studies in humans with autism have identified functional links and common anatomic substrates between core restricted behavioral repertoire, cognitive rigidity, and overstability of visual percepts during visual rivalry. To study these processes with single-cell precision and comprehensive neuronal population coverage, we developed the visual bistable perception paradigm for mice based on ambiguous moving plaid patterns consisting of two transparent gratings drifting at an angle of 120°. This results in spontaneous reversals of the perception between local component motion (plaid perceived as two separate moving grating components) and integrated global pattern motion (plaid perceived as a fused moving texture). This robust paradigm does not depend on the explicit report of the mouse, since the direction of the optokinetic nystagmus (OKN) is used to infer the dominant percept. Using this paradigm, we found that the rate of perceptual reversals between global and local motion interpretations is reduced in the methyl-CpG-binding protein 2 duplication syndrome (MECP2-ds) mouse model of autism. Moreover, the stability of local motion percepts is greatly increased in MECP2-ds mice at the expense of global motion percepts. Thus, our model reproduces a subclass of the core features in human autism (reduced rate of visual rivalry and atypical perception of visual motion). This further offers a well-controlled approach for dissecting neuronal circuits underlying these core features.
Collapse
Affiliation(s)
- Daria Bogatova
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Biology, Boston University, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
- Jamaica Plain Veterans Affairs Hospital, Boston, MA 02130
| | - Ganna Palagina
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
- Jamaica Plain Veterans Affairs Hospital, Boston, MA 02130
| |
Collapse
|
33
|
Abdelgawad A, Nicola T, Martin I, Halloran BA, Tanaka K, Adegboye CY, Jain P, Ren C, Lal CV, Ambalavanan N, O'Connell AE, Jilling T, Willis KA. Antimicrobial peptides modulate lung injury by altering the intestinal microbiota. MICROBIOME 2023; 11:226. [PMID: 37845716 PMCID: PMC10578018 DOI: 10.1186/s40168-023-01673-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical, host-derived regulators of the microbiota. However, mechanisms that support microbiota homeostasis in response to inflammatory stimuli, such as supraphysiologic oxygen, remain unclear. RESULTS We show that supraphysiologic oxygen exposure to neonatal mice, or direct exposure of intestinal organoids to supraphysiologic oxygen, suppresses the intestinal expression of AMPs and alters intestinal microbiota composition. Oral supplementation of the prototypical AMP lysozyme to hyperoxia-exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. CONCLUSIONS Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury in newborns. Together, these data support that intestinal AMPs modulate lung injury and repair. Video Abstract.
Collapse
Affiliation(s)
- Ahmed Abdelgawad
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Teodora Nicola
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Isaac Martin
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian A Halloran
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kosuke Tanaka
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pankaj Jain
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changchun Ren
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charitharth V Lal
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E O'Connell
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamás Jilling
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kent A Willis
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
34
|
Le Naour J, Montégut L, Pan Y, Scuderi SA, Cordier P, Joseph A, Sauvat A, Iebba V, Paillet J, Ferrere G, Brechard L, Mulot C, Dubourg G, Zitvogel L, Pol JG, Vacchelli E, Puig PL, Kroemer G. Formyl peptide receptor-1 (FPR1) represses intestinal oncogenesis. Oncoimmunology 2023; 12:2237354. [PMID: 37492227 PMCID: PMC10364666 DOI: 10.1080/2162402x.2023.2237354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Formyl peptide receptor-1 (FPR1) is a pattern recognition receptor that is mostly expressed by myeloid cells. In patients with colorectal cancer (CRC), a loss-of-function polymorphism (rs867228) in the gene coding for FPR1 has been associated with reduced responses to chemotherapy or chemoradiotherapy. Moreover, rs867228 is associated with accelerated esophageal and colorectal carcinogenesis. Here, we show that dendritic cells from Fpr1-/- mice exhibit reduced migration in response to chemotherapy-treated CRC cells. Moreover, Fpr1-/- mice are particularly susceptible to chronic ulcerative colitis and colorectal oncogenesis induced by the mutagen azoxymethane followed by oral dextran sodium sulfate, a detergent that induces colitis. These experiments were performed after initial co-housing of Fpr1-/- mice and wild-type controls, precluding major Fpr1-driven differences in the microbiota. Pharmacological inhibition of Fpr1 by cyclosporin H also tended to increase intestinal oncogenesis in mice bearing the ApcMin mutation, and this effect was reversed by the anti-inflammatory drug sulindac. We conclude that defective FPR1 signaling favors intestinal tumorigenesis through the modulation of the innate inflammatory/immune response.
Collapse
Affiliation(s)
- Julie Le Naour
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sarah Adriana Scuderi
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Pierre Cordier
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Gladys Ferrere
- Institut National de la Santé Et de la Recherche Medicale (INSERM) U1015 and Equipe Labellisée–Ligue Nationale Contre le Cancer, Villejuif, France
| | - Ludivine Brechard
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Claire Mulot
- Centre de Recherche des Cordeliers, Equipe Labélisée Ligue Contre le Cancer, Sorbonne Université, Université Paris Cité, INSERM, Paris, France
| | - Grégory Dubourg
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Laurence Zitvogel
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
| | - Erika Vacchelli
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
| | - Pierre-Laurent Puig
- Centre de Recherche des Cordeliers, Equipe Labélisée Ligue Contre le Cancer, Sorbonne Université, Université Paris Cité, INSERM, Paris, France
- Institut du Cancer Paris CARPEM, APHP. Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Institut du Cancer Paris CARPEM, APHP. Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
35
|
Nangaku M, Kitching AR, Boor P, Fornoni A, Floege J, Coates PT, Himmelfarb J, Lennon R, Anders HJ, Humphreys BD, Caskey FJ, Fogo AB. International Society of Nephrology first consensus guidance for preclinical animal studies in translational nephrology. Kidney Int 2023; 104:36-45. [PMID: 37001557 DOI: 10.1016/j.kint.2023.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Preclinical tests in animal models are key steps in early drug development. Consequently, the International Society of Nephrology held a consensus meeting that connected experts in the global kidney community in order to provide guidance on optimal management of translational animal studies for the development of new drugs to treat kidney disease, entitled "TRANSFORM; TRAnslational Nephrology Science FOR new Medications." The meeting covered various themes, including the following: (i) selection of disease model; (ii) pharmacokinetics; (iii) interventions in late preclinical models; (iv) choice of animal; (v) statistical power; (vi) organoids and organ-on-a-chip models; and (vii) reporting of results. This guidance is the first to be provided on the optimal conduct of translational animal studies for the development of new drugs to treat kidney disease. These recommendations are designed to accelerate development of new drugs for efficacious treatment of kidney diseases, and to improve the prognosis and quality of life of patients with a variety of kidney diseases.
Collapse
Affiliation(s)
- Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia; Department of Nephrology, Monash Health, Clayton, Victoria, Australia; Department of Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Peter Boor
- Institute of Pathology, Rheinisch Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jürgen Floege
- Division of Nephrology and Rheumatology, Rheinisch Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
| | - P Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia; University of Adelaide, Medical Specialties, Adelaide, Australia; South Australian Medical Research Institute, Adelaide, South Australia, Australia
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of Ludwig Maximilian University of Munich, Munich, Germany
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Fergus J Caskey
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Even G, Mouray A, Vandenabeele N, Martel S, Merlin S, Lebrun-Ruer S, Chabé M, Audebert C. Bact-to-Batch: A Microbiota-Based Tool to Determine Optimal Animal Allocation in Experimental Designs. Int J Mol Sci 2023; 24:ijms24097912. [PMID: 37175619 PMCID: PMC10178137 DOI: 10.3390/ijms24097912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The basis of any animal experimentation begins with the housing of animals that should take into account the need for splitting animals into similar groups. Even if it is generally recommended to use the minimum number of animals necessary to obtain reliable and statistically significant results (3Rs rule), the allocation of animals is currently mostly based on randomness. Since variability in gut microbiota is an important confounding factor in animal experiments, the main objective of this study was to develop a new approach based on 16S rRNA gene sequencing analysis of the gut microbiota of animals participating in an experiment, in order to correctly assign the animals across batches. For this purpose, a pilot study was performed on 20 mouse faecal samples with the aim of establishing two groups of 10 mice as similar as possible in terms of their faecal microbiota fingerprinting assuming that this approach limits future analytical bias and ensures reproducibility. The suggested approach was challenged with previously published data from a third-party study. This new method allows to embrace the unavoidable microbiota variability between animals in order to limit artefacts and to provide an additional assurance for the reproducibility of animal experiments.
Collapse
Affiliation(s)
- Gaël Even
- GD Biotech-Gènes Diffusion, F-59000 Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, F-59019 Lille, France
| | - Anthony Mouray
- Plateforme d'Expérimentations et de Hautes Technologies Animales, Institut Pasteur de Lille, F-59019 Lille, France
- Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Université Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - Nicolas Vandenabeele
- Plateforme d'Expérimentations et de Hautes Technologies Animales, Institut Pasteur de Lille, F-59019 Lille, France
- Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Université Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France
| | - Sophie Martel
- GD Biotech-Gènes Diffusion, F-59000 Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, F-59019 Lille, France
| | - Sophie Merlin
- GD Biotech-Gènes Diffusion, F-59000 Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, F-59019 Lille, France
| | - Ségolène Lebrun-Ruer
- GD Biotech-Gènes Diffusion, F-59000 Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, F-59019 Lille, France
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, Université de Lille, F-59000 Lille, France
| | - Christophe Audebert
- GD Biotech-Gènes Diffusion, F-59000 Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, F-59019 Lille, France
| |
Collapse
|
37
|
Mazumder MHH, Gandhi J, Majumder N, Wang L, Cumming RI, Stradtman S, Velayutham M, Hathaway QA, Shannahan J, Hu G, Nurkiewicz TR, Tighe RM, Kelley EE, Hussain S. Lung-gut axis of microbiome alterations following co-exposure to ultrafine carbon black and ozone. Part Fibre Toxicol 2023; 20:15. [PMID: 37085867 PMCID: PMC10122302 DOI: 10.1186/s12989-023-00528-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.
Collapse
Affiliation(s)
- Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Jasleen Gandhi
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Nairrita Majumder
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Lei Wang
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Robert Ian Cumming
- Department of Medicine, Duke University Medical Center, Durham, NC, 2927, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Murugesan Velayutham
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Quincy A Hathaway
- Heart and Vascular Institute, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gangqing Hu
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, 2927, USA
| | - Eric E Kelley
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology, and Toxicology, Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
38
|
Breznik JA, Jury J, Verdú EF, Sloboda DM, Bowdish DME. Diet-induced obesity alters intestinal monocyte-derived and tissue-resident macrophages and increases intestinal permeability in female mice independent of tumor necrosis factor. Am J Physiol Gastrointest Liver Physiol 2023; 324:G305-G321. [PMID: 36749921 DOI: 10.1152/ajpgi.00231.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Macrophages are essential for homeostatic maintenance of the anti-inflammatory and tolerogenic intestinal environment, yet monocyte-derived macrophages can promote local inflammation. Proinflammatory macrophage accumulation within the intestines may contribute to the development of systemic chronic inflammation and immunometabolic dysfunction in obesity. Using a model of high-fat diet-induced obesity in C57BL/6J female mice, we assessed intestinal paracellular permeability by in vivo and ex vivo assays and quantitated intestinal macrophages in ileum and colon tissues by multicolor flow cytometry after short (6 wk), intermediate (12 wk), and prolonged (18 wk) diet allocation. We characterized monocyte-derived CD4-TIM4- and CD4+TIM4- macrophages, as well as tissue-resident CD4+TIM4+ macrophages. Diet-induced obesity had tissue- and time-dependent effects on intestinal permeability, as well as monocyte and macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and tumor necrosis factor (TNF). We found that obese mice had increased paracellular permeability, in particular within the ileum, but this did not elicit recruitment of monocytes nor a local proinflammatory response by monocyte-derived or tissue-resident macrophages in either the ileum or colon. Proliferation of monocyte-derived and tissue-resident macrophages was also unchanged. Wild-type and TNF-/- littermate mice had similar intestinal permeability and macrophage population characteristics in response to diet-induced obesity. These data are unique from reported effects of diet-induced obesity on macrophages in metabolic tissues, as well as outcomes of acute inflammation within the intestines. These experiments also collectively indicate that TNF does not mediate effects of diet-induced obesity on paracellular permeability or intestinal monocyte-derived and tissue-resident intestinal macrophages in young female mice.NEW & NOTEWORTHY We found that diet-induced obesity in female mice has tissue- and time-dependent effects on intestinal paracellular permeability as well as monocyte-derived and tissue-resident macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and TNF. These changes were not mediated by TNF.
Collapse
Affiliation(s)
- Jessica A Breznik
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Jury
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F Verdú
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
39
|
Zheng D, Mohapatra G, Kern L, He Y, Shmueli MD, Valdés-Mas R, Kolodziejczyk AA, Próchnicki T, Vasconcelos MB, Schorr L, Hertel F, Lee YS, Rufino MC, Ceddaha E, Shimshy S, Hodgetts RJ, Dori-Bachash M, Kleimeyer C, Goldenberg K, Heinemann M, Stettner N, Harmelin A, Shapiro H, Puschhof J, Chen M, Flavell RA, Latz E, Merbl Y, Abdeen SK, Elinav E. Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation. Nat Immunol 2023; 24:585-594. [PMID: 36941399 DOI: 10.1038/s41590-023-01450-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1β and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Lara Kern
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Yiming He
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Merav D Shmueli
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Rafael Valdés-Mas
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tomasz Próchnicki
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Lena Schorr
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Franziska Hertel
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | - Ye Seul Lee
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | | | - Emmanuelle Ceddaha
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sandy Shimshy
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ryan James Hodgetts
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mally Dori-Bachash
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Kleimeyer
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kim Goldenberg
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Melina Heinemann
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Shapiro
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Puschhof
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yifat Merbl
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
40
|
Abdelgawad A, Nicola T, Martin I, Halloran BA, Tanaka K, Adegboye CY, Jain P, Ren C, Lal CV, Ambalavanan N, O'Connell AE, Jilling T, Willis KA. Antimicrobial peptides modulate lung injury by altering the intestinal microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.529700. [PMID: 36993189 PMCID: PMC10054967 DOI: 10.1101/2023.03.14.529700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical host-derived regulators of the microbiota. However, mechanisms that support homeostasis of the microbiota in response to inflammatory stimuli such as supraphysiologic oxygen remain unclear. Here, we show that neonatal mice breathing supraphysiologic oxygen or direct exposure of intestinal organoids to supraphysiologic oxygen suppress the intestinal expression of AMPs and alters the composition of the intestinal microbiota. Oral supplementation of the prototypical AMP lysozyme to hyperoxia exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury. Together, these data support that intestinal AMPs modulate lung injury and repair. In Brief Using a combination of murine models and organoids, Abdelgawad and Nicola et al. find that suppression of antimicrobial peptide release by the neonatal intestine in response to supra-physiological oxygen influences the progression of lung injury likely via modulation of the ileal microbiota. Highlights Supraphysiologic oxygen exposure alters intestinal antimicrobial peptides (AMPs).Intestinal AMP expression has an inverse relationship with the severity of lung injury.AMP-driven alterations in the intestinal microbiota form a gut-lung axis that modulates lung injury.AMPs may mediate a gut-lung axis that modulates lung injury.
Collapse
|
41
|
Papotto PH, Yilmaz B, Pimenta G, Mensurado S, Cunha C, Fiala GJ, Gomes da Costa D, Gonçalves-Sousa N, Chan BHK, Blankenhaus B, Domingues RG, Carvalho T, Hepworth MR, Macpherson AJ, Allen JE, Silva-Santos B. Maternal γδ T cells shape offspring pulmonary type 2 immunity in a microbiota-dependent manner. Cell Rep 2023; 42:112074. [PMID: 36787741 PMCID: PMC7615642 DOI: 10.1016/j.celrep.2023.112074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Immune development is profoundly influenced by vertically transferred cues. However, little is known about how maternal innate-like lymphocytes regulate offspring immunity. Here, we show that mice born from γδ T cell-deficient (TCRδ-/-) dams display an increase in first-breath-induced inflammation, with a pulmonary milieu selectively enriched in type 2 cytokines and type 2-polarized immune cells, when compared with the progeny of γδ T cell-sufficient dams. Upon helminth infection, mice born from TCRδ-/- dams sustain an increased type 2 inflammatory response. This is independent of the genotype of the pups. Instead, the offspring of TCRδ-/- dams harbors a distinct intestinal microbiota, acquired during birth and fostering, and decreased levels of intestinal short-chain fatty acids (SCFAs), such as pentanoate and hexanoate. Importantly, exogenous SCFA supplementation inhibits type 2 innate lymphoid cell function and suppresses first-breath- and infection-induced inflammation. Taken together, our findings unravel a maternal γδ T cell-microbiota-SCFA axis regulating neonatal lung immunity.
Collapse
Affiliation(s)
- Pedro H Papotto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland; Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gonçalo Pimenta
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Cunha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Gina J Fiala
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Gomes da Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Natacha Gonçalves-Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Brian H K Chan
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Birte Blankenhaus
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita G Domingues
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Matthew R Hepworth
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew J Macpherson
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland; Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
42
|
Zhu J, Naughton S, Bowman N, LeRoith T, Luo X, Leeth C. Maternal antibody repertoire restriction modulates the development of lupus-like disease in BXSB offspring. Int Immunol 2023; 35:95-104. [PMID: 36190342 DOI: 10.1093/intimm/dxac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that has a strong preference for women of child-bearing age. Maternal factors play an essential role in shaping the immune system of the newborn, yet it is unknown whether maternal factors could modulate the development of SLE in the offspring. Activation-induced cytidine deaminase (AID) is an enzyme required for somatic hypermutation and class switch recombination. Given that IgG and IgA isotypes account for the vast majority of passive immunity in rodents, our previously established AID-deficient BXSB mice provide a model in which maternal antibodies that can be transferred to the offspring are greatly diminished and have restricted repertoire. In this study, we compared genotypically identical mice born to either AID-sufficient dams or AID-deficient dams and evaluated the effects of maternal antibodies in disease progression. Offspring from knockout dams developed disease at a faster rate, as shown by more severe nephritis and elevated pathogenic autoantibodies compared to their counterparts born to wild-type dams. When immune competent pups were cross fostered onto AID-deficient dams, these mice exhibited more severe disease characteristics, including exacerbated lupus nephritis, increased levels of circulating antinuclear antibodies, and more activated T cells. These results suggest that a protective antibody effect contributes to the modulation of SLE progression in postnatal period. Overall, these findings highlight the importance of maternal antibodies in programming the immune system and altering SLE development in offspring.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Animal and Poultry Sciences, Virginia Tech, 175 West Campus Drive, 3280 Litton Reaves Hall, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Samantha Naughton
- Department of Animal and Poultry Sciences, Virginia Tech, 175 West Campus Drive, 3280 Litton Reaves Hall, Blacksburg, VA 24061, USA
| | - Nina Bowman
- Department of Animal and Poultry Sciences, Virginia Tech, 175 West Campus Drive, 3280 Litton Reaves Hall, Blacksburg, VA 24061, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xin Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Caroline Leeth
- Department of Animal and Poultry Sciences, Virginia Tech, 175 West Campus Drive, 3280 Litton Reaves Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
43
|
Campos-Iglesias D, Freije JMP, López-Otín C. Assessing microbiota composition in the context of aging. Methods Cell Biol 2023; 181:73-85. [PMID: 38302245 DOI: 10.1016/bs.mcb.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The gut microbiota is a complex community of different microbial species that influence many aspects of health. Consequently, shifts in the composition of gut microbiome have been proposed to exert negative effects on the host physiology, leading to the pathogenesis of various age-related disorders, including cardiovascular and neurological diseases, type 2 diabetes, obesity, non-alcoholic liver disease, and other pathological conditions. Thus, understanding how the gut microbiota influences the aging-related decline is particularly topical. Advances in next-generation sequencing techniques, together with mechanistic experiments in animal models, have provided substantial improvements in microbiome analysis. However, standardization and best practices are needed to limit experimental variation between different studies. Here, we detail a simple method for microbiota composition analysis in mouse fecal samples using 16S rRNA next-generation sequencing.
Collapse
Affiliation(s)
- Diana Campos-Iglesias
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - José M P Freije
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
44
|
Wang G, Wang Y, Bai J, Li G, Liu Y, Deng S, Zhou R, Tao K, Xia Z. Increased plasma genistein after bariatric surgery could promote remission of NAFLD in patients with obesity. Front Endocrinol (Lausanne) 2023; 13:1024769. [PMID: 36686492 PMCID: PMC9846086 DOI: 10.3389/fendo.2022.1024769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bariatric surgery is associated with a positive effect on the progress of non-alcoholic associated fatty liver disease (NAFLD). Although weight loss is the obvious mechanism, there are also weight-independent mechanisms. Methods We collected blood samples from 5 patients with obesity before and 3 months after surgery and performed an LC-MS-based untargeted metabolomics test to detect potential systemic changes. We also constructed sleeve gastrectomy (SG) mice models. The plasma, liver and intestine samples were collected and analyzed by qPCR, ELISA and HPLC. Cohousing experiments and feces transplantation experiments were performed on mice to study the effect of gut microbiota. Genistein administration experiments were used to study the in vivo function of the metabolites. Results Plasma genistein (GE) was identified to be elevated after surgery. Both clinical data and rodent models suggested that plasma GE is negatively related to the degree of NAFLD. We fed diet-induced obese (DIO) mice with GE, and we found that there was significant remission of NAFLD. Both in vivo and in vitro experiments showed that GE could restrict the inflammation state in the liver and thus relieve NAFLD. Finally, we used co-housing experiments to alter the gut microbiota in mice, and it was identified that sleeve gastrectomy (SG) mice had a special gut microbiota phenotype, which could result in higher plasma GE levels. By feces transplantation experiment (FMT), we found that only feces from the SG mice (and not from other lean mice) could induce higher plasma GE levels. Conclusion Our studies showed that SG but not calorie restriction could induce higher plasma GE levels by altering the gut microbiota. This change could promote NAFLD remission. Our study provides new insights into the systemic effects of bariatric surgery. Bariatric surgery could affect remote organs via altered metabolites from the gut microbiota. Our study also identified that additional supplement of GE after surgery could be a therapy for NAFLD.
Collapse
Affiliation(s)
- Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Bai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shichang Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zefeng Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Ribeiro BE, Breves J, de Souza HSP. Pathogenesis: Crohn’s disease and ulcerative colitis. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:9-46. [DOI: 10.1016/b978-0-323-99111-7.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Abstract
Experiments involving metagenomics data are become increasingly commonplace. Processing such data requires a unique set of considerations. Quality control of metagenomics data is critical to extracting pertinent insights. In this chapter, we outline some considerations in terms of study design and other confounding factors that can often only be realized at the point of data analysis.In this chapter, we outline some basic principles of quality control in metagenomics, including overall reproducibility and some good practices to follow. The general quality control of sequencing data is then outlined, and we introduce ways to process this data by using bash scripts and developing pipelines in Snakemake (Python).A significant part of quality control in metagenomics is in analyzing the data to ensure you can spot relationships between variables and to identify when they might be confounded. This chapter provides a walkthrough of analyzing some microbiome data (in the R statistical language) and demonstrates a few days to identify overall differences and similarities in microbiome data. The chapter is concluded by discussing remarks about considering taxonomic results in the context of the study and interrogating sequence alignments using the command line.
Collapse
Affiliation(s)
- Abraham Gihawi
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ryan Cardenas
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rachel Hurst
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Daniel S Brewer
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
47
|
Longitudinal Analysis of the Microbiome and Metabolome in the 5xfAD Mouse Model of Alzheimer's Disease. mBio 2022; 13:e0179422. [PMID: 36468884 PMCID: PMC9765021 DOI: 10.1128/mbio.01794-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent reports implicate gut microbiome dysbiosis in the onset and progression of Alzheimer's disease (AD), yet studies involving model animals overwhelmingly omit the microbial perspective. Here, we evaluate longitudinal microbiomes and metabolomes from a popular transgenic mouse model for familial AD (5xfAD). Cecal and fecal samples from 5xfAD and wild-type B6J (WT) mice from 4 to 18 months of age were subjected to shotgun Illumina sequencing. Metabolomics was performed on plasma and feces from a subset of the same animals. Significant genotype, sex, age, and cage-specific differences were observed in the microbiome, with the variance explained by genotype at 4 and 18 months of age rising from 0.9 to 9% and 0.3 to 8% for the cecal and fecal samples, respectively. Bacteria at significantly higher abundances in AD mice include multiple Alistipes spp., two Ligilactobacillus spp., and Lactobacillus sp. P38, while multiple species of Turicibacter, Lactobacillus johnsonii, and Romboutsia ilealis were less abundant. Turicibacter is similarly depleted in people with AD, and members of this genus both consume and induce the production of gut-derived serotonin. Contradicting previous findings in humans, serotonin is significantly more concentrated in the blood of older 5xfAD animals compared to their WT littermates. 5xfAD animals exhibited significantly lower plasma concentrations of carnosine and the lysophospholipid lysoPC a C18:1. Correlations between the microbiome and metabolome were also explored. Taken together, these findings strengthen the link between Turicibacter abundance and AD, provide a basis for further microbiome studies of murine models for AD, and suggest that greater control over animal model microbiomes is needed in AD research. IMPORTANCE Microorganisms residing within the gastrointestinal tract are implicated in the onset and progression of Alzheimer's disease (AD) through the mediation of inflammation, exchange of small-molecules across the blood-brain barrier, and stimulation of the vagus nerve. Unfortunately, most animal models for AD are housed under conditions that do not reflect real-world human microbial exposure and do not sufficiently account for (or meaningfully consider) variations in the microbiome. An improved understanding of AD model animal microbiomes will increase model efficacy and the translatability of research findings into humans. Here, we present the characterization of the microbiome and metabolome of the 5xfAD mouse model, which is one of the most common animal models for familial AD. The manuscript highlights the importance of considering the microbiome in study design and aims to lay the groundwork for future studies involving mouse models for AD.
Collapse
|
48
|
Transfer efficiency and impact on disease phenotype of differing methods of gut microbiota transfer. Sci Rep 2022; 12:19621. [PMID: 36380056 PMCID: PMC9666633 DOI: 10.1038/s41598-022-24014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
To test causal relationships between complex gut microbiota (GM) and host outcomes, researchers frequently transfer GM between donor and recipient mice via embryo transfer (ET) rederivation, cross-fostering (CF), and co-housing. In this study, we assess the influence of the transfer method and the differences in baseline donor and recipient microbiota richness, on transfer efficiency. Additionally, recipient mice were subjected to DSS-induced chronic colitis to determine whether disease severity was affected by GM transfer efficiency or features within the GM. We found that the recipient's genetic background, the baseline richness of donor and recipient GM, and the transfer method all influenced the GM transfer efficiency. Recipient genetic background and GM both had significant effects on DSS colitis severity and, unexpectedly, the transfer method was strongly associated with differential disease severity regardless of the other factors.
Collapse
|
49
|
Yan J, Yu W, Wang G, Lu C, Liu C, Jiang L, Jiang Z, Liang Z, Liu D. LRRK2 deficiency mitigates colitis progression by favoring resolution of inflammation and restoring homeostasis of gut microbiota. Genomics 2022; 114:110527. [PMID: 36455749 DOI: 10.1016/j.ygeno.2022.110527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Leucine rich-repeat kinase 2 (LRRK2) has been considered a susceptibility gene for ulcerative colitis (UC), and its protein abundance was enhanced in the peripheral blood mononuclear cells (PBMCs) from UC cohorts as compared to healthy volunteers. In preclinical models of colitis, Lrrk2 deficiency ameliorated dextran sodium sulfate (DSS)-induced colitis progression, whereas the processes were aggravated by R1441C mutation. While intestinal macrophages (MФs) from Lrrk2 knock-out (Lrrk2-/-) mice exhibited a tendency to transit to alternatively activated MФs, R1441C MФs mutation facilitated the pro-inflammatory phenotype polarization, determined by RNA sequencing and qPCR. Moreover, we characterized their microbiota profiles and found that loss of Lrrk2 increased the bacterial richness and altered bacterial community structure, and this shift contributed to the alleviation of colitis development and progression. We proposed that Lrrk2 deficiency promotes M2 MФ transition and facilitates probiotics colonization, providing a protective role during colitis.
Collapse
Affiliation(s)
- Jing Yan
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China.
| | - Wei Yu
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining city, Shandong province 272067, China
| | - Dong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining city, Shandong province 272067, China
| |
Collapse
|
50
|
Jaric I, Voelkl B, Clerc M, Schmid MW, Novak J, Rosso M, Rufener R, von Kortzfleisch VT, Richter SH, Buettner M, Bleich A, Amrein I, Wolfer DP, Touma C, Sunagawa S, Würbel H. The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level. PLoS Biol 2022; 20:e3001837. [PMID: 36269766 PMCID: PMC9629646 DOI: 10.1371/journal.pbio.3001837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/02/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings. The phenotype of an organism results not only from its genotype but also the influence of its environment throughout development. This study shows that common environmental differences between animal facilities can induce substantial variation in the phenotype of mice, thereby highlighting an important limitation of inferences from single-laboratory studies in animal research.
Collapse
Affiliation(s)
- Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Clerc
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | | | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianna Rosso
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | | | - S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Irmgard Amrein
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - David P. Wolfer
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Chadi Touma
- Department of Behavioural Biology, Osnabrück University, Osnabrück, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| |
Collapse
|