1
|
Jong T, Stack CM, Moffitt MC, Morton CO. An Introduction to the Influence of Nutritional Factors on the Pathogenesis of Opportunist Fungal Pathogens in Humans. Pathogens 2025; 14:335. [PMID: 40333109 PMCID: PMC12030028 DOI: 10.3390/pathogens14040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans are opportunistic pathogens in humans. They usually infect individuals whose immune system is compromised due to either a primary infection, e.g., HIV/AIDS, or as part of treatment for another condition, e.g., stem cell or solid organ transplant. In hosts with a weakened immune system, these fungi can cause life-threatening infections. Unlike true pathogens, opportunistic pathogens do not have specific mechanisms to overcome a healthy host, requiring a different approach to understand how they cause infection. The ability of fungi to adapt to various environmental conditions, including the human host, is critical for virulence. In humans, micronutrient metals, such as iron, are sequestered to reduce serum concentrations, which helps to inhibit microbial growth. Other human tissues may increase metal concentrations to toxic levels to prevent infection by pathogens. The ability of fungi to acquire or detoxify nutrients, such as iron or copper, from the host is essential for the establishment of infection. In this review, the role of fungal nutrition will be discussed in relation to opportunistic fungal pathogens. It will focus on the acquisition of micronutrients, e.g., iron, copper, and zinc, and how this enables these fungi to circumvent host nutritional immunity.
Collapse
Affiliation(s)
| | | | | | - Charles Oliver Morton
- Western Sydney University, School of Science, Campbelltown, NSW 2560, Australia (C.M.S.); (M.C.M.)
| |
Collapse
|
2
|
Orzel B, Ostrowska M, Potocki S, Zoroddu MA, Kozlowski H, Peana M, Gumienna-Kontecka E. The Coordination Chemistry of Two Peptidic Models of NFeoB and Core CFeoB Regions of FeoB Protein: Complexes of Fe(II), Mn(II), and Zn(II). Inorg Chem 2025; 64:5038-5052. [PMID: 40048504 PMCID: PMC11920956 DOI: 10.1021/acs.inorgchem.4c05111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/04/2025] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
Often necessary for efficient Fe(II) trafficking into bacterial cell, the Feo system is a vital transporter for many pathogenic bacteria and indispensable for proper development and survival in the host organism during infection. In this work, we present the metal-binding characteristics of the peptidic models of two putative Fe(II)-binding sites of E. coliFeoB: L1 (Ac-477IMRGEATPFVMELPVYHVPH496-CONH2) being a fragment of the Core CFeoB region located between the transmembrane helices and L2 (Ac-38VERKEG43-CONH2), which represents the ExxE motif found within the NFeoB domain. With a variety of physicochemical methods, such as potentiometry, mass spectrometry, NMR, and EPR spectroscopy, we have determined the stability constants and metal-binding residues for the complexes of Fe(II), Mn(II), and Zn(II) with two ligands, L1 and L2, acting as models for the Core CFeoB and ExxE motif. We compare their affinities toward the studied metal ions with the previously studied C-terminal part of the protein and discuss a possible role in metal trafficking by the whole protein.
Collapse
Affiliation(s)
- Bartosz Orzel
- Faculty
of Chemistry, University of Wrocław, Wrocław 50-383, Poland
| | | | - Slawomir Potocki
- Faculty
of Chemistry, University of Wrocław, Wrocław 50-383, Poland
| | - Maria Antonietta Zoroddu
- Department
of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari 07100, Italy
| | - Henryk Kozlowski
- Faculty
of Chemistry, University of Wrocław, Wrocław 50-383, Poland
- Faculty
of Health Sciences, University of Opole, Katowicka, Opole 68 45-060, Poland
| | - Massimiliano Peana
- Department
of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari 07100, Italy
| | | |
Collapse
|
3
|
Li J, Tao L, Zhou Y, Zhu Y, Li C, Pan Y, Yao P, Qian X, Liu J. Identification of biomarkers in Alzheimer's disease and COVID-19 by bioinformatics combining single-cell data analysis and machine learning algorithms. PLoS One 2025; 20:e0317915. [PMID: 39965013 PMCID: PMC11835241 DOI: 10.1371/journal.pone.0317915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Since its emergence in 2019, COVID-19 has become a global epidemic. Several studies have suggested a link between Alzheimer's disease (AD) and COVID-19. However, there is little research into the mechanisms underlying these phenomena. Therefore, we conducted this study to identify key genes in COVID-19 associated with AD, and evaluate their correlation with immune cells characteristics and metabolic pathways. METHODS Transcriptome analyses were used to identify common biomolecular markers of AD and COVID-19. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed on gene chip datasets (GSE213313, GSE5281, and GSE63060) from AD and COVID-19 patients to identify genes associated with both conditions. Gene ontology (GO) enrichment analysis identified common molecular mechanisms. The core genes were identified using machine learning. Subsequently, we evaluated the relationship between these core genes and immune cells and metabolic pathways. Finally, our findings were validated through single-cell analysis. RESULTS The study identified 484 common differentially expressed genes (DEGs) by taking the intersection of genes between AD and COVID-19. The black module, containing 132 genes, showed the highest association between the two diseases according to WGCNA. GO enrichment analysis revealed that these genes mainly affect inflammation, cytokines, immune-related functions, and signaling pathways related to metal ions. Additionally, a machine learning approach identified eight core genes. We identified links between these genes and immune cells and also found a association between EIF3H and oxidative phosphorylation. CONCLUSION This study identifies shared genes, pathways, immune alterations, and metabolic changes potentially contributing to the pathogenesis of both COVID-19 and AD.
Collapse
Affiliation(s)
- Juntu Li
- Department of Critical Care Medicine and Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, Jiangsu, China
| | - Linfeng Tao
- Department of Critical Care Medicine and Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, Jiangsu, China
| | - Yanyou Zhou
- Department of Critical Care Medicine and Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, Jiangsu, China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chao Li
- Department of Critical Care Medicine and Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, Jiangsu, China
| | - Yiyuan Pan
- Department of Critical Care Medicine and Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, Jiangsu, China
| | - Ping Yao
- Department of Critical Care Medicine and Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, Jiangsu, China
| | - Xuefeng Qian
- Department of Critical Care Medicine and Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, Jiangsu, China
| | - Jun Liu
- Department of Critical Care Medicine and Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Hecel A, Kola A, Valensin D, Witkowska D. Thiol, His-His Motif, and the Battle over Cu(II) in the Relationship of CopM Metallophore and OprC Outer Membrane Protein. Inorg Chem 2025; 64:2936-2950. [PMID: 39914813 PMCID: PMC11836926 DOI: 10.1021/acs.inorgchem.4c05101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
The mechanisms of Cu import across the bacterial outer membrane have been investigated only in a few cases. One such mechanism involves the outer membrane OprC transporter with a unique CxxxM-HxM metal-binding site, discovered recently. This newly identified site in OprC is located outside the cell and is, therefore, most likely to bind Cu(II) through this domain. Since OprC may interact with azurin to facilitate the removal of copper, our study investigated the potential role of CopM metallophore. We selected two putative metal-binding sites in CopM, characterized by MxxHH and MHxxH motifs, which can bind Cu(II) and may interact with the extracellular CxxxM-HxM motif of OprC. At pH 7, the MxxHH motif in CopM was the most effective ligand for Cu(II) ions compared to the MHxxH domain and the novel CxxxM-HxM site in OprC. Furthermore, the CxxxM-HxM site in OprC, where a cysteine residue also binds Cu(II) ions alongside histidine, does not effectively compete with the MxxHH metal-binding site in CopM. This comparison suggests that the CopM MxxHH domain binds Cu(II) ions very strongly and is unable to give them back to the OprC; therefore, it is perhaps transported together with copper ions through OprC into the bacterial cell.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty
of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Arian Kola
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Daniela Valensin
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Danuta Witkowska
- Institute
of Health Sciences, University of Opole, 45-060 Opole, Poland
| |
Collapse
|
5
|
Dubey V, Farrington N, Harper N, Johnson A, Horner I, Stevenson A, Parkes A, Hoare L, Das S, Hope W. Acinetobacter baumannii transformants expressing oxacillinases and metallo-β-lactamases that confer resistance to meropenem: new tools for anti- Acinetobacter drug development and AMR preparedness. Antimicrob Agents Chemother 2024; 68:e0022224. [PMID: 39189767 PMCID: PMC11465972 DOI: 10.1128/aac.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
Antimicrobial resistance (AMR) in Acinetobacter baumannii is an unmet medical need. Multiple drug-resistant/extremely drug-resistant strains of A. baumannii do not display growth well in in vivo models, and consequently, their response to antibacterial therapy is inconsistent. We addressed this issue by engineering carbapenem resistance motifs into the highly virulent genetic background of A. baumannii AB5075. This strain has a chromosomally encoded oxa-23 that was deleted (Δoxa-23), then plasmids expressing oxa-23, oxa-24/40, oxa-58, imp-1, vim-2, and ndm-1 were introduced to create the mutant strains. Each transformant was used as a challenge strain in a neutropenic murine thigh infection model and assessed for the extent of growth and response to meropenem 200 mg/kg subcutaneously every 6 h (q6h). Pharmacodynamic analyses were performed by transforming drug exposure from dose (mg/kg) to the fraction of the dosing interval; free meropenem concentrations were >minimum inhibitory concentration (MIC) (fT > MIC). AB5075 and the AB5075Δoxa-23 mutant had a MICs of 32 and 4 mg/L, respectively. The transformants harboring oxacillinases oxa-24/40 and oxa-58 had an MIC of 64 mg/L. The metallo-β-lactamases imp-1, vim-2, and ndm-1 had MICs of 128, 64, and 64 mg/L, respectively. All vehicle-treated transformants displayed in vivo growth in the range of 0.75-1.4 log. The response to meropenem was consistent with the varying fT > MIC of the transformants and was readily described by an inhibitory sigmoid Emax relationship. Stasis was achieved with a fT > MIC of 0.36. These A. baumannii transformants are invaluable new tools for the assessment of anti-Acinetobacter compounds and provide a new pathway for AMR preparedness.
Collapse
Affiliation(s)
- Vineet Dubey
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Nicola Farrington
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Nicholas Harper
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Adam Johnson
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Iona Horner
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Adam Stevenson
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Annie Parkes
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Lewis Hoare
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - Shampa Das
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| | - William Hope
- Antimicrobial
Pharmacodynamics and Therapeutics, University of
Liverpool, Liverpool,
United Kingdom
| |
Collapse
|
6
|
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int J Mol Sci 2024; 25:9775. [PMID: 39337264 PMCID: PMC11432163 DOI: 10.3390/ijms25189775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Lopez-Delgado JC, Patel JJ, Stoppe C, McClave SA. Considerations for medical nutrition therapy management of the critically ill patient with hematological malignancies: A narrative review. Nutr Clin Pract 2024; 39:800-814. [PMID: 38666811 DOI: 10.1002/ncp.11152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 07/04/2024] Open
Abstract
Patients with hematological malignancies (HMs) are more frequently admitted now than in the past to the intensive care unit (ICU) due to more aggressive approaches in primary therapy of HMs and the need for critical care support. Pathophysiological alterations derived from HMs and the different hematological therapies, such as chemotherapy, negatively affect gastrointestinal (GI) function, metabolism, and nutrition status. Further, malnutrition strongly influences outcomes and tolerance of the different hematological therapies. In consequence, these critically ill patients frequently present with malnutrition and pathophysiological alterations that create challenges for the delivery of medical nutrition therapy (MNT) in the ICU. Frequent screening, gauging tolerance, and monitoring nutrition status are mandatory to provide individualized MNT and achieve nutrition objectives. The present review discusses how HM impact GI function and nutrition status, the importance of MNT in patients with HM, and specific considerations for guidance in providing adequate MNT to these patients when admitted to the ICU.
Collapse
Affiliation(s)
| | - Jayshil J Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital, Würzburg, Würzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Berlin, Germany
| | - Stephen A McClave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Bufan B, Arsenović-Ranin N, Živković I, Ćuruvija I, Blagojević V, Dragačević L, Kovačević A, Kotur-Stevuljević J, Leposavić G. Modulation of T-Cell-Dependent Humoral Immune Response to Influenza Vaccine by Multiple Antioxidant/Immunomodulatory Micronutrient Supplementation. Vaccines (Basel) 2024; 12:743. [PMID: 39066381 PMCID: PMC11281378 DOI: 10.3390/vaccines12070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Notwithstanding prevalence gaps in micronutrients supporting immune functions, the significance of their deficits/supplementation for the efficacy of vaccines is underinvestigated. Thus, the influence of supplementation combining vitamins C and D, zinc, selenium, manganese, and N-acetyl cysteine on immune correlates/surrogates of protection conferred by a quadrivalent influenza vaccine (QIV) in mice was investigated. The supplementation starting 5 days before the first of two QIV injections given 28 days apart increased the serum titres of total and neutralizing IgG against each of four influenza strains from QIV. Accordingly, the frequencies of germinal center B cells, follicular CD4+ T helper (Th) cells, and IL-21-producing Th cells increased in secondary lymphoid organs (SLOs). Additionally, the supplementation improved already increased IgG response to the second QIV injection by augmenting not only neutralizing antibody production, but also IgG2a response, which is important for virus clearance, through favoring Th1 differentiation as indicated by Th1 (IFN-γ)/Th2 (IL-4) signature cytokine level ratio upon QIV restimulation in SLO cell cultures. This most likely partly reflected antioxidant action of the supplement as indicated by splenic redox status analyses. Thus, the study provides a solid scientific background for further research aimed at repurposing the use of this safe and inexpensive micronutrient combination to improve response to the influenza vaccine.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.B.); (N.A.-R.)
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.B.); (N.A.-R.)
| | - Irena Živković
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Luka Dragačević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Ana Kovačević
- Department for Virology Control, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia;
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
9
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
10
|
Ruan H, Zhang Q, Zhang YP, Li SS, Ran X. Unraveling the role of HIF-1α in sepsis: from pathophysiology to potential therapeutics-a narrative review. Crit Care 2024; 28:100. [PMID: 38539163 PMCID: PMC10976824 DOI: 10.1186/s13054-024-04885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis is characterized by organ dysfunction resulting from a dysregulated inflammatory response triggered by infection, involving multifactorial and intricate molecular mechanisms. Hypoxia-inducible factor-1α (HIF-1α), a notable transcription factor, assumes a pivotal role in the onset and progression of sepsis. This review aims to furnish a comprehensive overview of HIF-1α's mechanism of action in sepsis, scrutinizing its involvement in inflammatory regulation, hypoxia adaptation, immune response, and organ dysfunction. The review encompasses an analysis of the structural features, regulatory activation, and downstream signaling pathways of HIF-1α, alongside its mechanism of action in the pathophysiological processes of sepsis. Furthermore, it will delve into the roles of HIF-1α in modulating the inflammatory response, including its association with inflammatory mediators, immune cell activation, and vasodilation. Additionally, attention will be directed toward the regulatory function of HIF-1α in hypoxic environments and its linkage with intracellular signaling, oxidative stress, and mitochondrial damage. Finally, the potential therapeutic value of HIF-1α as a targeted therapy and its significance in the clinical management of sepsis will be discussed, aiming to serve as a significant reference for an in-depth understanding of sepsis pathogenesis and potential therapeutic targets, as well as to establish a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - You-Ping Zhang
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Sheng Li
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Stefanache A, Lungu II, Butnariu IA, Calin G, Gutu C, Marcu C, Grierosu C, Bogdan Goroftei ER, Duceac LD, Dabija MG, Popa F, Damir D. Understanding How Minerals Contribute to Optimal Immune Function. J Immunol Res 2023; 2023:3355733. [PMID: 37946846 PMCID: PMC10632063 DOI: 10.1155/2023/3355733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 11/12/2023] Open
Abstract
Sufficient mineral supply is vital not only for the innate immune system but also for the components of the adaptive immune defense, which encompass defense mechanisms against pathogens and the delicate balance of pro- and anti-inflammatory regulation in the long term. Generally, a well-balanced diet is capable of providing the necessary minerals to support the immune system. Nevertheless, specific vulnerable populations should be cautious about obtaining adequate amounts of minerals such as magnesium, zinc, copper, iron, and selenium. Inadequate levels of these minerals can temporarily impair immune competence and disrupt the long-term regulation of systemic inflammation. Therefore, comprehending the mechanisms and sources of these minerals is crucial. In exceptional circumstances, mineral deficiencies may necessitate supplementation; however, excessive intake of supplements can have adverse effects on the immune system and should be avoided. Consequently, any supplementation should be approved by medical professionals and administered in recommended doses. This review emphasizes the crucial significance of minerals in promoting optimal functioning of the immune system. It investigates the indispensable minerals required for immune system function and the regulation of inflammation. Moreover, it delves into the significance of maintaining an optimized intake of minerals from a nutritional standpoint.
Collapse
Affiliation(s)
- Alina Stefanache
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ionut-Iulian Lungu
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Gabriela Calin
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11 Pacurari Street, Iasi 700511, Romania
| | | | - Letitia-Doina Duceac
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | | | - Florina Popa
- Faculty of Medicine and Pharmacy, University Dunarea de Jos, 47 Domneasca Street, Galati 800008, Romania
| | - Daniela Damir
- “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
12
|
Borer ET, Kendig AE, Holt RD. Feeding the fever: Complex host-pathogen dynamics along continuous resource gradients. Ecol Evol 2023; 13:e10315. [PMID: 37502304 PMCID: PMC10368943 DOI: 10.1002/ece3.10315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Food has long been known to perform dual functions of nutrition and medicine, but mounting evidence suggests that complex host-pathogen dynamics can emerge along continuous resource gradients. Empirical examples of nonmonotonic responses of infection with increasing host resources (e.g., low prevalence at low and high resource supply but high prevalence at intermediate resources) have been documented across the tree of life, but these dynamics, when observed, often are interpreted as nonintuitive, idiosyncratic features of pathogen and host biology. Here, by developing generalized versions of existing models of resource dependence for within- and among-host infection dynamics, we provide a synthetic view of nonmonotonic infection dynamics. We demonstrate that where resources jointly impact two (or more) processes (e.g., growth, defense, transmission, mortality, predation), nonmonotonic infection dynamics, including alternative states, can emerge across a continuous resource supply gradient. We review the few empirical examples that concurrently measured resource effects on multiple rates and pair this with a wide range of examples in which resource dependence of multiple rates could generate nonmonotonic infection outcomes under realistic conditions. This review and generalized framework highlight the likely generality of such resource effects in natural systems and point to opportunities ripe for future empirical and theoretical work.
Collapse
Affiliation(s)
- Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Amy E. Kendig
- Agronomy DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Minnesota Department of Natural ResourcesMinnesota Biological SurveySaint PaulMinnesotaUSA
| | - Robert D. Holt
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
13
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Ma W, Cui J, Abdoulaye B, Wang Y, Du H, Bourtsalas AC, Chen G. Air Pollutant Emission Inventory of Waste-to-Energy Plants in China and Prediction by the Artificial Neural Network Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:874-883. [PMID: 36172640 DOI: 10.1021/acs.est.2c01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The waste-to-energy (WTE) plant has been deployed in 205 cities in China. However, it always faces public resistance to be built because of the great concerns on flue gas pollutants (FGPs). There are limited studies on the socioeconomic heterogeneity analysis and prediction models of WTE capacity/ FGP emission inventories (EIs) based on big data. In this study, the incinerator level emission factors (EFs) in 2020 of PM, SO2, NOx, CO, HCl, dioxins, Hg, Cd + Tl, and Sb + As+ Pb + Cr + Co + Cu + Mn + Ni were calculated based on 322,926 monitoring values of all the 481 WTE plants (1140 processing lines) operating in China, with uncertainties in the range of ±34.70%. The EFs were significantly 45-96% lower than the national standard (GB18485-2014) and had negative relationships with local socioeconomic elements, while WTE capacity and FGP EIs had significantly positive correlations. Gross domestic product, area of built district, and municipal solid waste generation were the main driving forces of WTE capacity. The WTE capacity increased by 150% from 2015 to 2020, while the total emission of PM, SO2, CO, dioxins, Hg, and Sb + As + Pb + Cr + Co + Cu + Mn + Ni decreased by 42.46-88.24%. The artificial neural network models were established to predict WTE capacity and FGP EIs in the city level, with the mean square errors ranging from 0.003 to 0.19 within the model validation limits. This study provides data and model support for the formulation of appropriate WTE plans and a pollutant emission control scheme in different economic regions.
Collapse
Affiliation(s)
- Wenchao Ma
- School of Environmental Science and Engineering/Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (MoE)/Tianjin Key Lab of Biomass-wastes Utilization, Tianjin University, Tianjin 300072, China
- Earth Engineering Center, Columbia University, New York, New York 10027, United States
| | - Jicui Cui
- School of Environmental Science and Engineering/Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (MoE)/Tianjin Key Lab of Biomass-wastes Utilization, Tianjin University, Tianjin 300072, China
| | - Boré Abdoulaye
- School of Environmental Science and Engineering/Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (MoE)/Tianjin Key Lab of Biomass-wastes Utilization, Tianjin University, Tianjin 300072, China
| | - Yuan Wang
- School of Environmental Science and Engineering/Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (MoE)/Tianjin Key Lab of Biomass-wastes Utilization, Tianjin University, Tianjin 300072, China
| | - Huibin Du
- College of Management and Economics, Tianjin University, Tianjin 300072, China
| | | | - Guanyi Chen
- School of Environmental Science and Engineering/Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (MoE)/Tianjin Key Lab of Biomass-wastes Utilization, Tianjin University, Tianjin 300072, China
- School of Science, Tibet University, Lhasa 850012, China
| |
Collapse
|
15
|
Affiliation(s)
- Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Osman D, Robinson NJ. Protein metalation in a nutshell. FEBS Lett 2023; 597:141-150. [PMID: 36124565 PMCID: PMC10087151 DOI: 10.1002/1873-3468.14500] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Metalation, the acquisition of metals by proteins, must avoid mis-metalation with tighter binding metals. This is illustrated by four selected proteins that require different metals: all show similar ranked orders of affinity for bioavailable metals, as described in a universal affinity series (the Irving-Williams series). Crucially, cellular protein metalation occurs in competition with other metal binding sites. The strength of this competition defines the intracellular availability of each metal: its magnitude has been estimated by calibrating a cells' set of DNA-binding, metal-sensing, transcriptional regulators. This has established that metal availabilities (as free energies for forming metal complexes) are maintained to the inverse of the universal series. The tightest binding metals are least available. With these availabilities, correct metalation is achieved.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| | - Nigel J Robinson
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| |
Collapse
|
17
|
Essential Minerals and Metabolic Adaptation of Immune Cells. Nutrients 2022; 15:nu15010123. [PMID: 36615781 PMCID: PMC9824256 DOI: 10.3390/nu15010123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Modern lifestyles deviated considerably from the ancestral routines towards major shifts in diets and increased sedentarism. The trace elements status of the human body is no longer adequately supported by micronutrient-inferior farmed meats and crop commodities produced by the existing agricultural food systems. This is particular evident in the increased obesogenic adipogenesis and low-grade inflammation that fails to resolve with time. The metabolically restrictive environment of the inflamed tissues drives activation and proliferation of transient and resident populations of immune cells in favor of pro-inflammatory phenotypes, as well as a part of the enhanced autoimmune response. As different stages of the immune activation and resolution depend on the availability of specific minerals to maintain the structural integrity of skin and mucus membranes, activation and migration of immune cells, activation of the complement system, and the release of pro-inflammatory cytokines and chemokines, this review discusses recent advances in our understanding of the contribution of select minerals in optimizing the responses of innate and adaptive immune outcomes. An abbreviated view on the absorption, transport, and delivery of minerals to the body tissues as related to metabolic adaptation is considered.
Collapse
|
18
|
Li W, Xu X, Jiang Q, Long P, Xiao Y, You Y, Jia C, Wang W, Lei Y, Xu J, Wang Y, Zhang M, Liu C, Zeng Q, Ruan S, Wang X, Wang C, Yuan Y, Guo H, Wu T. Circulating metals, leukocyte microRNAs and microRNA networks: A profiling and functional analysis in Chinese adults. ENVIRONMENT INTERNATIONAL 2022; 169:107511. [PMID: 36095929 DOI: 10.1016/j.envint.2022.107511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Metals in the human body represent both environmental exposure and nutritional status. Little is known about the miRNA signature in relation to circulating metals in humans. OBJECTIVES To characterize metal-associated miRNAs in leukocytes, individually and collectively as networks. METHODS In a panel of 160 Chinese adults, we measured 23 metals/metalloids in plasma, and sequenced miRNAs and mRNAs in leukocytes. We used linear regression to model the associations between ln-transformed metal concentrations and normalized miRNA levels adjusting for potential confounders. We inferred the enriched leukocyte subtypes for the identified miRNAs using an association approach. We utilized mRNA sequencing data to explore miRNA functions. We also constructed modules to identify metal-associated miRNA networks. RESULTS We identified 55 metal-associated miRNAs at false discovery rate-adjusted P < 0.05. In particular, we found that lead, nickel, and vanadium were positively associated with potentially lymphocyte-enriched miR-142-3p, miR-150-3p, miR-28-5p, miR-361-3p, and miR-769-5p, and were inversely associated with potentially granulocyte-enriched let-7a/c/d-5p and miR-1294. Interestingly, the five lymphocyte-enriched miRNAs inhibited, whereas miR-1294 activated, ROS and DNA repair pathways. We further confirmed the findings using oxidative damage biomarkers. Next, we clustered co-expressed miRNAs into modules, and identified four miRNA modules that were associated with different metals. The identified modules represented miRNAs enriched in different leukocyte subtypes, and were involved in biological processes including hematopoiesis and immune response, mitochondrial functions, and response to the stimulus. CONCLUSIONS At commonly exposed low levels, circulating metals were associated with distinct miRNA signatures in leukocytes. The identified miRNAs, individually or as regulatory networks, may provide a mechanistic link between metal exposure and pathophysiological changes in the immune system.
Collapse
Affiliation(s)
- Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yutong You
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanshou Lei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianjian Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yufei Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chong Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuping Ruan
- Health Management Center, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Xiaozheng Wang
- Health Management Center, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
19
|
Tang Y, Zhou Y, He B, Cao T, Zhou X, Ning L, Chen E, Li Y, Xie X, Peng B, Hu Y, Liu S. Investigation of the immune escape mechanism of Treponema pallidum. Infection 2022; 51:305-321. [PMID: 36260281 DOI: 10.1007/s15010-022-01939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subspecies pallidum (T. pallidum), which is a public health problem that seriously affects human health worldwide. T. pallidum is characterized by early transmission and immune escape and is therefore termed an "invisible pathogen". METHODS This review systematically summarizes the host's innate and adaptive immune responses to T. pallidum infection as well as the escape mechanisms of T. pallidum. PURPOSE To lay the foundation for assessing the pathogenic mechanism and the systematic prevention and treatment of syphilis. CONCLUSION The immune escape mechanism of T. pallidum plays an important role in its survival. Exploring the occurrence and development of these mechanisms has laid the foundation for the development of syphilis vaccine.
Collapse
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yingjie Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Lichang Ning
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Xiaoping Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Binfeng Peng
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China.
| |
Collapse
|
20
|
Vásquez-Procopio J, Espejel-Nuñez A, Torres-Torres J, Martinez-Portilla RJ, Espino Y. Sosa S, Mateu-Rogell P, Ortega-Castillo V, Tolentino-Dolores M, Perichart-Perera O, Franco-Gallardo JO, Carranco-Martínez JA, Prieto-Rodríguez S, Guzmán-Huerta M, Missirlis F, Estrada-Gutierrez G. Inflammatory-Metal Profile as a Hallmark for COVID-19 Severity During Pregnancy. Front Cell Dev Biol 2022; 10:935363. [PMID: 36016660 PMCID: PMC9395991 DOI: 10.3389/fcell.2022.935363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
Pregnancy makes women more susceptible to infectious agents; however, available data on the effect of SARS-CoV-2 on pregnant women are limited. To date, inflammatory responses and changes in serum metal concentration have been reported in COVID-19 patients, but few associations between metal ions and cytokines have been described. The aim of this study was to evaluate correlations between inflammatory markers and serum metal ions in third-trimester pregnant women with varying COVID-19 disease severity. Patients with severe symptoms had increased concentrations of serum magnesium, copper, and calcium ions and decreased concentrations of iron, zinc, and sodium ions. Potassium ions were unaffected. Pro-inflammatory cytokines IL-6, TNF-α, IL-8, IL-1α, anti-inflammatory cytokine IL-4, and the IP-10 chemokine were induced in the severe presentation of COVID-19 during pregnancy. Robust negative correlations between iron/magnesium and zinc/IL-6, and a positive correlation between copper/IP-10 were observed in pregnant women with the severe form of the disease. Thus, coordinated alterations of serum metal ions and inflammatory markers – suggestive of underlying pathophysiological interactions—occur during SARS-CoV-2 infection in pregnancy.
Collapse
Affiliation(s)
- Johana Vásquez-Procopio
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City, Mexico
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | | | | | - Paloma Mateu-Rogell
- Clinical Research Division, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | | | - Otilia Perichart-Perera
- Department of Nutrition and Bioprogramming, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | | | | | - Mario Guzmán-Huerta
- Department of Translational Medicine, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
- *Correspondence: Guadalupe Estrada-Gutierrez, ; Fanis Missirlis,
| | - Guadalupe Estrada-Gutierrez
- Research Division, Instituto Nacional de Perinatología, Mexico City, Mexico
- *Correspondence: Guadalupe Estrada-Gutierrez, ; Fanis Missirlis,
| |
Collapse
|
21
|
Jutha N, Jardine C, Schwantje H, Mosbacher J, Kinniburgh D, Kutz S. Evaluating the use of hair as a non-invasive indicator of trace mineral status in woodland caribou (Rangifer tarandus caribou). PLoS One 2022; 17:e0269441. [PMID: 35763458 PMCID: PMC9239472 DOI: 10.1371/journal.pone.0269441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Trace mineral imbalances can have significant effects on animal health, reproductive success, and survival. Monitoring their status in wildlife populations is, therefore, important for management and conservation. Typically, livers and kidneys are sampled to measure mineral status, but biopsies and lethal-sampling are not always possible, particularly for Species at Risk. We aimed to: 1) determine baseline mineral levels in Northern Mountain caribou (Rangifer tarandus caribou; Gmelin, 1788) in northwestern British Columbia, Canada, and 2) determine if hair can be used as an effective indicator of caribou mineral status by evaluating associations between hair and organ mineral concentrations. Hair, liver, and kidney samples from adult male caribou (nHair = 31; nLiver, nKidney = 43) were collected by guide-outfitters in 2016-2018 hunting seasons. Trace minerals and heavy metals were quantified using inductively-coupled plasma mass spectrometry, and organ and hair concentrations of same individuals were compared. Some organ mineral concentrations differed from other caribou populations, though no clinical deficiency or toxicity symptoms were reported in our population. Significant correlations were found between liver and hair selenium (rho = 0.66, p<0.05), kidney and hair cobalt (rho = 0.51, p<0.05), and liver and hair molybdenum (rho = 0.37, p<0.10). These findings suggest that hair trace mineral assessment may be used as a non-invasive and easily-accessible way to monitor caribou selenium, cobalt, and molybdenum status, and may be a valuable tool to help assess overall caribou health.
Collapse
Affiliation(s)
- Naima Jutha
- Department of Pathobiology–Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Claire Jardine
- Department of Pathobiology–Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative—Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Helen Schwantje
- Ministry of Forests, Lands, Natural Resource Operations, and Rural Development–Wildlife and Habitat Branch, Government of British Columbia, Nanaimo, British Columbia, Canada (Emeritus status)
| | - Jesper Mosbacher
- Department of Ecosystem and Public Health–Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Susan Kutz
- Department of Ecosystem and Public Health–Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Grander M, Hoffmann A, Seifert M, Demetz E, Grubwieser P, Pfeifhofer-Obermair C, Haschka D, Weiss G. DMT1 Protects Macrophages from Salmonella Infection by Controlling Cellular Iron Turnover and Lipocalin 2 Expression. Int J Mol Sci 2022; 23:ijms23126789. [PMID: 35743233 PMCID: PMC9223531 DOI: 10.3390/ijms23126789] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Macrophages are at the center of innate pathogen control and iron recycling. Divalent metal transporter 1 (DMT1) is essential for the uptake of non-transferrin-bound iron (NTBI) into macrophages and for the transfer of transferrin-bound iron from the endosome to the cytoplasm. As the control of cellular iron trafficking is central for the control of infection with siderophilic pathogens such as Salmonella Typhimurium, a Gram-negative bacterium residing within the phagosome of macrophages, we examined the potential role of DMT1 for infection control. Bone marrow derived macrophages lacking DMT1 (DMT1fl/flLysMCre(+)) present with reduced NTBI uptake and reduced levels of the iron storage protein ferritin, the iron exporter ferroportin and, surprisingly, of the iron uptake protein transferrin receptor. Further, DMT1-deficient macrophages have an impaired control of Salmonella Typhimurium infection, paralleled by reduced levels of the peptide lipocalin-2 (LCN2). LCN2 exerts anti-bacterial activity upon binding of microbial siderophores but also facilitates systemic and cellular hypoferremia. Remarkably, nifedipine, a pharmacological DMT1 activator, stimulates LCN2 expression in RAW264.7 macrophages, confirming its DMT1-dependent regulation. In addition, the absence of DMT1 increases the availability of iron for Salmonella upon infection and leads to increased bacterial proliferation and persistence within macrophages. Accordingly, mice harboring a macrophage-selective DMT1 disruption demonstrate reduced survival following Salmonella infection. This study highlights the importance of DMT1 in nutritional immunity and the significance of iron delivery for the control of infection with siderophilic bacteria.
Collapse
Affiliation(s)
- Manuel Grander
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (A.H.); (M.S.); (E.D.); (P.G.); (C.P.-O.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (A.H.); (M.S.); (E.D.); (P.G.); (C.P.-O.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (A.H.); (M.S.); (E.D.); (P.G.); (C.P.-O.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (A.H.); (M.S.); (E.D.); (P.G.); (C.P.-O.)
| | - Philipp Grubwieser
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (A.H.); (M.S.); (E.D.); (P.G.); (C.P.-O.)
| | - Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (A.H.); (M.S.); (E.D.); (P.G.); (C.P.-O.)
| | - David Haschka
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (A.H.); (M.S.); (E.D.); (P.G.); (C.P.-O.)
- Correspondence: (D.H.); (G.W.)
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (A.H.); (M.S.); (E.D.); (P.G.); (C.P.-O.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (D.H.); (G.W.)
| |
Collapse
|
23
|
Mese Y, Tuncsoy B, Ozalp P. Effects of Cu, Zn and their mixtures on bioaccumulation and antioxidant enzyme activities in Galleria mellonella L. (Lepidoptera: Pyralidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:649-656. [PMID: 35296951 DOI: 10.1007/s10646-022-02531-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The effects of Cu, Zn and their mixture on bioaccumulation and antioxidant enzyme activities of midgut and fat body of Galleria mellonella larvae were investigated. Exposure to mixtures of both metals showed a synergistic effect and the accumulation levels were increased in both tissues. When the metals were exposed separately the concentration of Zn increased in both tissues, whereas the concentration of Cu increased in midgut and decreased in fat body. Also, it was determined that, oxidative stress occurred in the midgut and fat body when G. mellonella larvae were fed singly and in a mixture with different concentrations of Cu and Zn. In addition, significant changes were observed in antioxidant and detoxification enzyme activities, which are an indicator of oxidative stress. Larvae of G. mellonella showed immune responses similar to vertebrates, and could be used as bioindicator species due to being grown easily in the laboratory and reduced research costs Understanding the detoxification mechanism in insects is an important parameter for future ecotoxicological studies on the genotoxic, cytotoxic and physiological effects that different environmental pollutants such as heavy metals can cause.
Collapse
Affiliation(s)
- Yagmur Mese
- Faculty of Science and Letters, Biology Department, Cukurova University, Adana, Turkey
| | - Benay Tuncsoy
- Bioengineering Department, Adana Alparslan Turkes Science and Technology University, Adana, Turkey.
| | - Pınar Ozalp
- Faculty of Science and Letters, Biology Department, Cukurova University, Adana, Turkey
| |
Collapse
|
24
|
Kajal S, Quadri JA, Verma P, Thota R, Sikka K, Pandey S, Thakar A, Verma H. Estimation of Serum Levels of Heavy Metals in Patients with Chronic Invasive Fungal Rhinosinusitis Before the COVID-19 Era: A Pilot Study. Turk Arch Otorhinolaryngol 2022; 60:29-35. [PMID: 35634227 PMCID: PMC9103563 DOI: 10.4274/tao.2022.2021-11-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/01/2022] Open
Abstract
Objective: Various metals play role in the survival and pathogenesis of the invasive fungal disease. The objectives of this study were to compare the levels of heavy metals in patients with chronic invasive fungal rhinosinusitis (CIFR) and healthy controls, and to analyze their role in disease outcome. Methods: Twenty-three patients (15 with invasive mucormycosis and 8 with invasive aspergillosis, Group 1), and 14 healthy controls (Group 2) were recruited. Blood samples were collected from each group into ion-free tubes and analyzed for serum levels of Nickel (Ni), Copper (Cu), Zinc (Zn), Gallium (Ga), Arsenic (As), Selenium (Se), Rubidium (Rb), Strontium (Sr), Cadmium (Cd), and Lead (Pb). The final outcome of the patients during their hospital stay was categorized clinico-radiologically as improved or worsened, or death. Results: The levels of all metals were higher in Group 1 except for As and Pb. However, the differences in Cu (p=0.0026), Ga (p=0.002), Cd (p=0.0027), and Pb (p=0.0075) levels were significant. Higher levels of Zn (p=0.009), Se (p=0.020), and Rb (p=0.016) were seen in the invasive aspergillosis subgroup. Although Zn (p=0.035), As (p=0.022), and Sr (p=0.002) levels were higher in patients with improved outcome, subgroup analysis showed no differences. Conclusion: The levels of some heavy metals in CIFR significantly differ from those of the general population and also vary with the type of the disease and its outcome. These levels may not have a direct effect on the outcome of the patient, but they do play a role in the pathogenesis of the invading fungus.
Collapse
|
25
|
Essential metals, vitamins and antioxidant enzyme activities in COVID-19 patients and their potential associations with the disease severity. Biometals 2022; 35:125-145. [PMID: 34993712 PMCID: PMC8736309 DOI: 10.1007/s10534-021-00355-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
The role of micronutrient deficiency in the pathogenesis of COVID-19 has been reviewed in the literature; however, the data are limited and conflicting. This study investigated the association between the status of essential metals, vitamins, and antioxidant enzyme activities in COVID-19 patients and disease severity. We recruited 155 patients, who were grouped into four classes based on the Adults guideline for the Management of Coronavirus Disease 2019 at King Faisal Specialist & Research Centre (KFSH&RC): asymptomatic (N = 16), mild (N = 49), moderate (N = 68), and severe (N = 22). We measured serum levels of copper (Cu), zinc (Zn), selenium (Se), vitamin D3, vitamin A, vitamin E, total antioxidant capacity, and superoxide dismutase (SOD). Among the patients, 30%, 25%, 37%, and 68% were deficient in Se (< 70.08 µg/L), Zn (< 0.693 µg/mL), vitamin A (< 0.343 µg/mL), and vitamin D3 (< 20.05 µg/L), respectively, and SOD activity was low. Among the patients, 28% had elevated Cu levels (> 1.401 µg/mL, KFSH&RC upper reference limit). Multiple regression analysis revealed an 18% decrease in Se levels in patients with severe symptoms, which increased to 30% after adjusting the model for inflammatory markers. Regardless of inflammation, Se was independently associated with COVID-19 severity. In contrast, a 50% increase in Cu levels was associated with disease severity only after adjusting for C-reactive protein, reflecting its possible inflammatory and pro-oxidant role in COVID-19 pathogenesis. We noted an imbalance in the ratio between Cu and Zn, with ~ 83% of patients having a Cu/Zn ratio > 1, which is an indicator of inflammation. Cu-to-Zn ratio increased to 45% in patients with mild symptoms and 34%–36% in patients with moderate symptoms compared to asymptomatic patients. These relationships were only obtained when one of the laboratory parameters (lymphocyte or monocyte) or inflammatory markers (neutrophil-to-lymphocyte ratio) was included in the regression model. These findings suggest that Cu/Zn might further exacerbate inflammation in COVID-19 patients and might be synergistically associated with disease severity. A 23% decrease in vitamin A was seen in patients with severe symptoms, which disappeared after adjusting for inflammatory markers. This finding may highlight the potential role of inflammation in mediating the relationship between COVID-19 severity and vitamin A levels. Despite our patients’ low status of Zn, vitamin D3, and antioxidant enzyme (SOD), there is no evidence of their role in COVID-19 progression. Our findings reinforce that deficiency or excess of certain micronutrients plays a role in the pathogenesis of COVID-19. More studies are required to support our results.
Collapse
|
26
|
Rodriguez K, Saunier F, Rigaill J, Audoux E, Botelho-Nevers E, Prier A, Dickerscheit Y, Pillet S, Pozzetto B, Bourlet T, Verhoeven PO. Evaluation of in vitro activity of copper gluconate against SARS-CoV-2 using confocal microscopy-based high content screening. J Trace Elem Med Biol 2021; 68:126818. [PMID: 34274845 PMCID: PMC8264279 DOI: 10.1016/j.jtemb.2021.126818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that emerged late in 2019 is the etiologic agent of coronavirus disease 2019 (Covid-19). There is an urgent need to develop curative and preventive therapeutics to limit the current pandemic and to prevent the re-emergence of Covid-19. This study aimed to assess the in vitro activity of copper gluconate against SARS-CoV-2. METHODS Vero E6 cells were cultured with or without copper gluconate 18-24 hours before infection. Cells were infected with a recombinant GFP expressing SARS-CoV-2. Cells were infected with a recombinant GFP expressing SARS-CoV-2. Infected cells were incubated in fresh medium containing varying concentration of copper gluconate (supplemented with bovine serum albumin or not) for an additional 48 -h period. The infection level was measured by the confocal microscopy-based high content screening method. The cell viability in presence of copper gluconate was assessed by XTT and propidium iodide assays. RESULTS The viability of Vero E6 cells exposed to copper gluconate up to 200 μM was found to be similar to that of unexposed cells, but it dropped below 70 % with 400 μM of this agent after 72 h of continuous exposure. The infection rate was 23.8 %, 18.9 %, 20.6 %, 6.9 %, 5.3 % and 5.2 % in cells treated prior infection with 0, 2, 10, 25, 50 and 100 μM of copper gluconate respectively. As compared to untreated cells, the number of infected cells was reduced by 71 %, 77 %, and 78 % with 25, 50, and 100 μM of copper gluconate respectively (p < 0.05). In cells treated only post-infection, the rate of infection dropped by 73 % with 100 μM of copper gluconate (p < 0.05). However, the antiviral activity of copper gluconate was abolished by the addition of bovine serum albumin. CONCLUSION Copper gluconate was found to mitigate SARS-CoV-2 infection in Vero E6 cells but this effect was abolished by albumin, which suggests that copper will not retain its activity in serum. Furthers studies are needed to investigate whether copper gluconate could be of benefit in mucosal administration such as mouthwash, nasal spray or aerosols.
Collapse
Affiliation(s)
- Killian Rodriguez
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France
| | - Florian Saunier
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Infectious Diseases Department, University Hospital of St-Etienne, France
| | - Josselin Rigaill
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France
| | - Estelle Audoux
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Infectious Diseases Department, University Hospital of St-Etienne, France
| | - Amélie Prier
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France
| | - Yann Dickerscheit
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France
| | - Sylvie Pillet
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France
| | - Bruno Pozzetto
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France
| | - Thomas Bourlet
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France
| | - Paul O Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France; Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, France.
| |
Collapse
|
27
|
Govind V, Bharadwaj S, Sai Ganesh MR, Vishnu J, Shankar KV, Shankar B, Rajesh R. Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. Biometals 2021; 34:1217-1235. [PMID: 34398357 PMCID: PMC8366152 DOI: 10.1007/s10534-021-00339-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
Copper (Cu) and its alloys are prospective materials in fighting covid-19 virus and several microbial pandemics, due to its excellent antiviral as well as antimicrobial properties. Even though many studies have proved that copper and its alloys exhibit antiviral properties, this research arena requires further research attention. Several studies conducted on copper and its alloys have proven that copper-based alloys possess excellent potential in controlling the spread of infectious diseases. Moreover, recent studies indicate that these alloys can effectively inactivate the covid-19 virus. In view of this, the present article reviews the importance of copper and its alloys in reducing the spread and infection of covid-19, which is a global pandemic. The electronic databases such as ScienceDirect, Web of Science and PubMed were searched for identifying relevant studies in the present review article. The review starts with a brief description on the history of copper usage in medicine followed by the effect of copper content in human body and antiviral mechanisms of copper against covid-19. The subsequent sections describe the distinctive copper based material systems such as alloys, nanomaterials and coating technologies in combating the spread of covid-19. Overall, copper based materials can be propitiously used as part of preventive and therapeutic strategies in the fight against covid-19 virus.
Collapse
Affiliation(s)
- V Govind
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - S Bharadwaj
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - M R Sai Ganesh
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Jithin Vishnu
- Centre for Biomaterials, Cellular and Molecular Theranostics, CBCMT, Vellore Institute of Technology, Vellore, India
| | - Karthik V Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - R Rajesh
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| |
Collapse
|
28
|
Noor S, Piscopo S, Gasmi A. Nutrients Interaction with the Immune System. ARCHIVES OF RAZI INSTITUTE 2021; 76:1579-1588. [PMID: 35546980 PMCID: PMC9083862 DOI: 10.22092/ari.2021.356098.1775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 09/30/2022]
Abstract
This study described the interactions of different nutritional components with the immune system. A detailed search was carried out on Google Scholar and PubMed databases to find out the relevant research studies using different keywords, such as "Nutrients", "Micronutrients", and "Immune system and micronutrients". Only those papers that discussed the interactions between nutrients and the components of the immune system were included in the study. This research outlined the impact of different vitamins, trace elements or metals, amino acids, and fatty acids on different immune system components. It was found that vitamins, such as vitamin A, D, and C, tend to help immune cell differentiation and enhance the expression of different cytokines. Vitamins also contribute to the proliferation of T and B cells and impact the production of white blood cells. Similarly, trace elements or metals act as enzyme cofactors and control different immune response cycles by controlling the expression of cytokines, chemokines, and other signaling molecules. Moreover, different essential and non-essential amino acids play important roles in immune system development as they are primarily involved in protein synthesis. Amino acids, such as arginine, glutamine, and alanine, modulate the expression of cytokines and also control the migration and transmigration capabilities of macrophages. They also enhance the phagocytic properties of macrophages and neutrophils. In a similar way, fatty acids act as anti-inflammatory agents since they can decrease the expression of major histocompatibility complex class I (MHC-I) and MHC-II. Furthermore, they inhibit the secretion of different inflammatory cytokines. In conclusion, all the components of our daily diet are associated with the development of the immune system, and understanding their interactions is important for future immune therapies and drug development.
Collapse
Affiliation(s)
- S Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan, Pakistan
| | - S Piscopo
- Research and Development Department, Nutri-Logics SA, Weiswampach, Luxembourg
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - A Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| |
Collapse
|
29
|
Vu THT, Van Horn L, Daviglus ML, Chan Q, Dyer AR, Zhong VW, Gibson R, Elliott P, Stamler J. Association between egg intake and blood pressure in the USA: the INTERnational study on MAcro/micronutrients and blood Pressure (INTERMAP). Public Health Nutr 2021; 24:6272-6280. [PMID: 34334150 PMCID: PMC11148583 DOI: 10.1017/s1368980021002949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To investigate associations of egg intake with blood pressure (BP) and the role of dietary variables and other macro- and micro-nutrients in the association. DESIGN We used cross-sectional data for the USA as part of the INTERnational study on MAcro/micronutrients and blood Pressure (INTERMAP). INTERMAP was surveyed between 1996 and 1999, including four 24-h dietary recalls, two 24-h urine collections and eight measurements of systolic BP and diastolic BP (SBP, DBP). Average egg intake (g/d) was calculated. Multivariable linear regression models were used to estimate the association between egg intake (per each 50 g/d or per quintile) and BP. The roles of dietary variables and other macro- and micro-nutrients in this association were also investigated. SETTING In the USA. PARTICIPANTS In total, 2195 US INTERMAP men and women aged 40-59 years. RESULTS Participants were 50 % female, 54 % non-Hispanic White and 16 % non-Hispanic Black. Mean egg intake (sd) in men and women was 30·4(29·8) and 21·6(20·5) g/d, respectively. Adjusting for demographics, socio-economics, lifestyle and urinary Na:K excretion ratios, we found non-linear associations with BP in non-obese women (P-quadratic terms: 0·004 for SBP and 0·035 for DBP).The associations remained after adjusting for dietary variables, macro/micro nutrients or minerals. Dietary cholesterol was highly correlated with egg intake and may factor in the association. No association was found in obese women and in obese or non-obese men. CONCLUSION Egg intake was non-linearly associated with SBP and DBP in non-obese women, but not in obese women or men. Underlying mechanisms require additional study regarding the role of obesity and sex.
Collapse
Affiliation(s)
- Thanh-Huyen T Vu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alan R Dyer
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Victor W Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rachel Gibson
- 5Department of Nutritional Sciences, King's College London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jeremiah Stamler
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
30
|
Iron, Copper, and Zinc Homeostasis: Physiology, Physiopathology, and Nanomediated Applications. NANOMATERIALS 2021; 11:nano11112958. [PMID: 34835722 PMCID: PMC8620808 DOI: 10.3390/nano11112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Understanding of how the human organism functions has preoccupied researchers in medicine for a very long time. While most of the mechanisms are well understood and detailed thoroughly, medicine has yet much to discover. Iron (Fe), Copper (Cu), and Zinc (Zn) are elements on which organisms, ranging from simple bacteria all the way to complex ones such as mammals, rely on these divalent ions. Compounded by the continuously evolving biotechnologies, these ions are still relevant today. This review article aims at recapping the mechanisms involved in Fe, Cu, and Zn homeostasis. By applying the knowledge and expanding on future research areas, this article aims to shine new light of existing illness. Thanks to the expanding field of nanotechnology, genetic disorders such as hemochromatosis and thalassemia can be managed today. Nanoparticles (NPs) improve delivery of ions and confer targeting capabilities, with the potential for use in treatment and diagnosis. Iron deficiency, cancer, and sepsis are persisting major issues. While targeted delivery using Fe NPs can be used as food fortifiers, chemotherapeutic agents against cancer cells and microbes have been developed using both Fe and Cu NPs. A fast and accurate means of diagnosis is a major impacting factor on outcome of patients, especially when critically ill. Good quality imaging and bed side diagnostic tools are possible using NPs, which may positively impact outcome.
Collapse
|
31
|
Elhakim YA, Ali AE, Hosny AEDMS, Abdeltawab NF. Zinc Deprivation as a Promising Approach for Combating Methicillin-Resistant Staphylococcus aureus: A Pilot Study. Pathogens 2021; 10:1228. [PMID: 34684179 PMCID: PMC8540720 DOI: 10.3390/pathogens10101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are a global health burden with an urgent need for antimicrobial agents. Studies have shown that host immune responses limit essential metals such as zinc during infection, leading to the limitation of bacterial virulence. Thus, the deprivation of zinc as an important co-factor for the activity of many S. aureus enzymes can be a potential antimicrobial approach. However, the effect of zinc deprivation on S. aureus and MRSA is not fully understood. Therefore, the current study aimed to dissect the effects of zinc deprivation on S. aureus hemolytic activity and biofilm formation through employing biochemical and genetic approaches to study the effect of zinc deprivation on S. aureus growth and virulence. Chemically defined media (CDM) with and without ZnCl2, was used to assess the effect of zinc deprivation on growth, biofilm formation, and hemolytic activity in methicillin-susceptible S. aureus (MSSA) RN6390 and MRSA N315 strains. Zinc deprivation decreased the growth of RN6390 and N315 S. aureus strains significantly by 1.5-2 folds, respectively compared to the zinc physiological range encountered by the bacteria in the human body (7-20 µM) (p < 0.05). Zinc deprivation significantly reduced biofilm formation by 1.5 folds compared to physiological levels (p < 0.05). Moreover, the hemolytic activity of RN6390 and N315 S. aureus strains was significantly decreased by 20 and 30 percent, respectively compared to physiological zinc levels (p < 0.05). Expression of biofilm-associated transcripts levels at late stage of biofilm formation (20 h) murein hydrolase activator A (cidA) and cidB were downregulated by 3 and 5 folds, respectively (p < 0.05) suggested an effect on extracellular DNA production. Expression of hemolysins-associated genes (hld, hlb, hla) was downregulated by 3, 5, and 10 folds, respectively, in absence of zinc (p < 0.001). Collectively the current study showed that zinc deprivation in vitro affected growth, biofilm formation, and hemolytic activity of S. aureus. Our in vitro findings suggested that zinc deprivation can be a potential supportive anti-biofilm formation and antihemolytic approach to contain MRSA topical infections.
Collapse
Affiliation(s)
- Yomna A. Elhakim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (Y.A.E.); (A.E.-D.M.S.H.)
| | - Amal E. Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, New Cairo 12311, Egypt;
| | - Alaa El-Dien M. S. Hosny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (Y.A.E.); (A.E.-D.M.S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 12055, Egypt
| | - Nourtan F. Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (Y.A.E.); (A.E.-D.M.S.H.)
| |
Collapse
|
32
|
Verduci E, Köglmeier J. Immunomodulation in Children: The Role of the Diet. J Pediatr Gastroenterol Nutr 2021; 73:293-298. [PMID: 33872290 PMCID: PMC9770123 DOI: 10.1097/mpg.0000000000003152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/06/2021] [Indexed: 01/18/2023]
Abstract
Immune maturation and response to inflammation depend on good nutritional status. Protein and amino acid deficiencies can compromise innate and adaptive immune functions, particularly following injury or during illness. Dietary omega-3 long-chain fatty acids, prebiotics and micronutrients are beneficial to the immune system. A complex interplay exists between diet, microbiome, and epigenetic factors. The effect of single nutrients on immune function may hence be difficult to study. Well-designed intervention studies, investigating the effects of whole dietary pattern on the immune system, are needed.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Pediatrics, Ospedale dei bambini V. Buzzi
- Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Jutta Köglmeier
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
33
|
Insights into interactions of cellulose acetate and metal ions (Zn2+, Cu2+, and Ag+) in aqueous media using DFT study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
35
|
Navarro M, Justo RMS, Delgado GYS, Visbal G. Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights. Curr Pharm Des 2021; 27:1763-1789. [PMID: 33185155 DOI: 10.2174/1381612826666201113104633] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Trypanosomatid parasites are responsible for many Neglected Tropical Diseases (NTDs). NTDs are a group of illnesses that prevail in low-income populations, such as in tropical and subtropical areas of Africa, Asia, and the Americas. The three major human diseases caused by trypanosomatids are African trypanosomiasis, Chagas disease and leishmaniasis. There are known drugs for the treatment of these diseases that are used extensively and are affordable; however, the use of these medicines is limited by several drawbacks such as the development of chemo-resistance, side effects such as cardiotoxicity, low selectivity, and others. Therefore, there is a need to develop new chemotherapeutic against these tropical parasitic diseases. Metal-based drugs against NTDs have been discussed over the years as alternative ways to overcome the difficulties presented by approved antiparasitic agents. The study of late transition metal-based drugs as chemotherapeutics is an exciting research field in chemistry, biology, and medicine due to the ability to develop multitarget antiparasitic agents. The evaluation of the late transition metal complexes for the treatment of trypanosomatid diseases is provided here, as well as some insights about their mechanism of action.
Collapse
Affiliation(s)
- Maribel Navarro
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo M S Justo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Giset Y Sánchez Delgado
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil
| |
Collapse
|
36
|
The Important Role of Metal Ions for Survival of Francisella in Water within Amoeba Environment. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6673642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Francisella tularensis is a gram-negative facultative intracellular bacterium that resists harsh environments. Several outbreaks of tularemia are linked to the consumption and contact with spring water. The number of F. tularensis in some waters is high, while in others, this bacterium does not survive. Except organic compounds, metals could be important for the survival of F. tularensis in water. Some Francisella strains showed the association with amoeba, which may act as the environmental reservoir. This study was aimed at following the role of metal ions and/or amoeba in the existence and replication of F. novicida in spring waters by growth kinetics, acquisition of metals, and ultrastructural analyses of bacteria. The bacteria showed a longer survival in water with higher initial concentrations of Mn and Zn. Although Mn and Zn were necessary for the survival of F. novicida, the results also showed that the bacterium does not grow in water with high levels of Zn. In contrast, high levels of Mn did not have such a negative effect on the survival of this bacterium in water. In addition, while F. novicida benefits presence of amoeba in spring water, the number of amoebae is decreasing in a coculture model with F. novicida.
Collapse
|
37
|
Verduci E, D'Auria E, Bosetti A, DI Profio E, Vizzuso S, Milanta C, Pendezza E, Borsani B, Zuccotti GV. Immunomodulatory diet in pediatric age. Minerva Pediatr (Torino) 2021; 73:128-149. [PMID: 33880904 DOI: 10.23736/s2724-5276.21.06214-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the last few decades, the importance of a functioning immune system and health status has become more evident. Multiple factors are able to influence the development of chronic diseases and diet is one of the most important environmental factors. Evidence demonstrates that dietary patterns high in fat and low in fiber are associated with the development of non-communicable diseases. Moreover, optimal nutritional status can modulate immune maturation and response to inflammation. During inflammatory conditions, nutritional deficiencies may occur, establishing a vicious circle, consequently a balanced nutritional status is essential to prevent and counteract infections. Dietary diversity can prevent allergic diseases and nutrients such as DHA, arginine, vitamins and trace elements have an impact on physical barriers (such as gut mucosal barrier and skin), on the immune system response and on microbiome modulation. Protein deficiencies can compromise innate and adaptive immune functions; arginine availability can affect the immune response in injured states and other disease processes; EPA and DHA can modulate both innate and adaptive immunity; prebiotics have a beneficial effect on the functioning of the immune system. Zinc, copper, selenium and iron are involved in the correct development and function of the immune system. Vitamins D, E, A, B and C have a role on immune system through different mechanisms of action. Since a complex interplay exists between diet, microbiome and epigenetic factors which determine nutrient-induced changes on the immune function, the effect of each single nutrient may be difficult to study. Well-designed intervention studies, investigating the effects of whole dietary pattern, should be performed to clarify impact of foods on the immune function and disease risk.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy -
- Department of Health Science, University of Milan, Milan, Italy -
| | - Enza D'Auria
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
- Department of Health Science, University of Milan, Milan, Italy
| | | | | | - Sara Vizzuso
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
| | - Chiara Milanta
- Department of Health Science, University of Milan, Milan, Italy
| | - Erica Pendezza
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
| | - Barbara Borsani
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
| | | |
Collapse
|
38
|
Qi C, Wang H, Liu Z, Yang H. Oxidative Stress and Trace Elements in Pulmonary Tuberculosis Patients During 6 Months Anti-tuberculosis Treatment. Biol Trace Elem Res 2021; 199:1259-1267. [PMID: 32583224 DOI: 10.1007/s12011-020-02254-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
Pulmonary tuberculosis (TB) is a well-known cause of imbalance in oxidative stress (OS) status and trace element levels. However, little information is available for targeting the correlation between OS and trace elements in pulmonary TB patients. The aim of our study was to analyze the OS status and its correlation with trace elements in patients initially and during 6 months anti-TB treatment. Eighty-six newly diagnosed pulmonary TB patients were consecutively recruited, and 112 age- and sex-matched healthy controls participated in the study. Serum markers of OS and trace elements levels were tested and analyzed in all subjects during 6 months anti-TB treatment. Compared with healthy controls, significantly increased level of malondialdehyde (MDA), decreased glutathione (GSH) level, superoxide dismutase (SOD), and catalase (CAT) activities were found in TB patients. The activities of SOD and CAT and GSH level recovered till normal range at treatment final. Zinc (Zn), selenium (Se), and copper (Cu) concentrations were significantly lower in TB patients in comparison with healthy controls, whereas Zn, Cu, and Se concentrations rise during 6 months anti-TB treatment. Zn was positively correlated with Cu, Se, and GSH, while MDA was negatively correlated with Zn, Se, SOD, and CAT, and SOD was positively correlated with Cu, Zn, and CAT. Our findings indicate that anti-TB treatment could reduce the status of OS and increase the levels of trace elements. The routine assessment of OS markers and element traces may guarantee improved monitoring the anti-TB treatment.
Collapse
Affiliation(s)
- Chaoqun Qi
- Department of Clinical Laboratory, Linyi People's Hospital, Fenghuang Street 233, Hedong District, Linyi, 276000, China
| | - Hongjun Wang
- Department of Occupational Disease, Linyi People's Hospital, Fenghuang Street 233, Hedong District, Linyi, 276000, China
| | - Zhaoying Liu
- Department of Occupational Disease, Linyi People's Hospital, Fenghuang Street 233, Hedong District, Linyi, 276000, China
| | - Haibo Yang
- Department of Occupational Disease, Linyi People's Hospital, Fenghuang Street 233, Hedong District, Linyi, 276000, China.
| |
Collapse
|
39
|
Domingo JL, Marquès M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem Toxicol 2021; 152:112161. [PMID: 33794307 PMCID: PMC8006493 DOI: 10.1016/j.fct.2021.112161] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Thousands of studies have been conducted in order to understand in depth the characteristics of the novel coronavirus SARS-CoV-2, its infectivity and ways of transmission, and very especially everything related to the clinical and severity of the COVID-19, as well as the potential treatments. In this sense, the role that essential and toxic metals/metalloids have in the development and course of this disease is being studied. Metals/metalloids such as arsenic, cadmium, lead, mercury or vanadium, are elements with known toxic effects in mammals, while trace elements such as cobalt, copper, iron, manganese, selenium and zinc are considered essential. Given the importance of metals/metalloids in nutrition and human health, the present review was aimed at assessing the relationship between various essential and toxic metals/metalloids and the health outcomes related with the COVID-19. We are in the position to conclude that particular attention must be paid to the load/levels of essential trace elements in COVID-19 patients, mainly zinc and selenium. On the other hand, the exposure to air pollutants in general, and toxic metal/metalloids in particular, should be avoided as much as possible to reduce the possibilities of viral infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
40
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
41
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
42
|
Iron in immune cell function and host defense. Semin Cell Dev Biol 2020; 115:27-36. [PMID: 33386235 DOI: 10.1016/j.semcdb.2020.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The control over iron availability is crucial under homeostatic conditions and even more in the case of an infection. This results from diverse properties of iron: first, iron is an important trace element for the host as well as for the pathogen for various cellular and metabolic processes, second, free iron catalyzes Fenton reaction and is therefore producing reactive oxygen species as a part of the host defense machinery, third, iron exhibits important effects on immune cell function and differentiation and fourth almost every immune activation in turn impacts on iron metabolism and spatio-temporal iron distribution. The central importance of iron in the host and microbe interplay and thus for the course of infections led to diverse strategies to restrict iron for invading pathogens. In this review, we focus on how iron restriction to the pathogen is a powerful innate immune defense mechanism of the host called "nutritional immunity". Important proteins in the iron-host-pathogen interplay will be discussed as well as the influence of iron on the efficacy of innate and adaptive immunity. Recently described processes like ferritinophagy and ferroptosis are further covered in respect to their impact on inflammation and infection control and how they impact on our understanding of the interaction of host and pathogen.
Collapse
|
43
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
44
|
Goll R, Johnsen PH, Hjerde E, Diab J, Valle PC, Hilpusch F, Cavanagh JP. Effects of fecal microbiota transplantation in subjects with irritable bowel syndrome are mirrored by changes in gut microbiome. Gut Microbes 2020; 12:1794263. [PMID: 32991818 PMCID: PMC7583512 DOI: 10.1080/19490976.2020.1794263] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common disorder of the lower gastrointestinal tract. The pathophysiology is far from settled, but a gut microbial dysbiosis is hypothesized to be a contributing factor. We earlier published a randomized double-blind placebo-controlled clinical trial on fecal microbiota transplantation (FMT) for IBS - the REFIT trial. The present data set describes the engraftment and includes participants from the study who received active FMT; 14 participants with effect of FMT (Effect) and 8 without (No effect). Samples were collected at baseline, after 6 and 12 months. Samples from the transplants (Donor) served as a comparator. In total 66 recipient samples and 17 donor samples were subjected to deep metagenomic sequencing, and taxonomic and functional analyses were performed. Alpha diversity measures showed a significantly increased diversity and evenness in the IBS groups compared to the donors. Taxonomic profiles showed higher relative abundance of phylum Firmicutes, and lower relative abundance of phylum Bacteroidetes, compared to donors at baseline. This profile was shifted toward the donor profile following FMT. Imputed growth rates showed that the resulting growth pattern was a conglomerate of donor and recipient activity. Thirty-four functional subclasses showed distinct differences between baseline samples and donors, most of which were shifted toward a donor-like profile after FMT. All of these changes were less pronounced in the No effect group. We conclude that FMT induces long-term changes in gut microbiota, and these changes mirror the clinical effect of the treatment. The study was registered in ClinicalTrials.gov (NCT02154867).
Collapse
Affiliation(s)
- Rasmus Goll
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway,Department of Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway,CONTACT Rasmus Goll Department of Gastroenterology, Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Peter Holger Johnsen
- Research Group of Gastroenterology and Nutrition, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway,Department of Internal Medicine, University Hospital of North Norway, Harstad, Norway
| | - Erik Hjerde
- Institute of Chemistry, UiT the Arctic University of Norway, Tromsø, Norway
| | - Joseph Diab
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, UiT the Arctic University of Norway, Tromsø, Norway
| | - Per Christian Valle
- Department of Internal Medicine, University Hospital of North Norway, Harstad, Norway
| | | | - Jorunn Pauline Cavanagh
- Pediatric Infections Group. Department of Pediatrics, University Hospital of North Norway, Tromsø, Norway,Pediatric Infections Group. Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
45
|
Valente de Souza L, Hoffmann A, Weiss G. Impact of bacterial infections on erythropoiesis. Expert Rev Anti Infect Ther 2020; 19:619-633. [PMID: 33092423 DOI: 10.1080/14787210.2021.1841636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The importance of iron is highlighted by the many complex metabolic pathways in which it is involved. A sufficient supply is essential for the effective production of 200 billion erythrocytes daily, a process called erythropoiesis. AREAS COVERED During infection, the human body can withhold iron from pathogens, mechanism termed nutritional immunity. The subsequent disturbances in iron homeostasis not only impact on immune function and infection control, but also negatively affect erythropoiesis. The complex interplay between iron, immunity, erythropoiesis and infection control on the molecular and clinical level are highlighted in this review. Diagnostic algorithms for correct interpretation and diagnosis of the iron status in the setting of infection are presented. Therapeutic concepts are discussed regarding effects on anemia correction, but also toward their role on the course of infection. EXPERT OPINION In the setting of infection, anemia is often neglected and its impact on the course of diseases is incompletely understood. Clinical expertise can be improved in correct diagnosing of anemia and disturbances of iron homeostasis. Systemic studies are needed to evaluate the impact of specific therapeutic interventions on anemia correction on the course of infection, but also on patients' cardiovascular performance and quality of life.
Collapse
Affiliation(s)
- Lara Valente de Souza
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Abstract
Staphylococcus aureus is a leading agent of antibiotic-resistant bacterial infections in the world. S. aureus tightly controls metal homeostasis during infection, and disruption of metal uptake systems impairs staphylococcal virulence. We identified small molecules that interfere with metal handling in S. aureus to develop chemical probes to investigate metallobiology in this organism. Compound VU0026921 was identified as a small molecule that kills S. aureus both aerobically and anaerobically. The activity of VU0026921 is modulated by metal supplementation, is enhanced by genetic inactivation of Mn homeostasis genes, and correlates with increased cellular reactive oxygen species. Treatment with VU0026921 causes accumulation of multiple metals within S. aureus cells and concomitant upregulation of genes involved in metal detoxification. This work defines a small-molecule probe for further defining the role of metal toxicity in S. aureus and validates future antibiotic development targeting metal toxicity pathways. Metals are essential nutrients that all living organisms acquire from their environment. While metals are necessary for life, excess metal uptake can be toxic; therefore, intracellular metal levels are tightly regulated in bacterial cells. Staphylococcus aureus, a Gram-positive bacterium, relies on metal uptake and metabolism to colonize vertebrates. Thus, we hypothesized that an expanded understanding of metal homeostasis in S. aureus will lead to the discovery of pathways that can be targeted with future antimicrobials. We sought to identify small molecules that inhibit S. aureus growth in a metal-dependent manner as a strategy to uncover pathways that maintain metal homeostasis. Here, we demonstrate that VU0026921 kills S. aureus through disruption of metal homeostasis. VU0026921 activity was characterized through cell culture assays, transcriptional sequencing, compound structure-activity relationship, reactive oxygen species (ROS) generation assays, metal binding assays, and metal level analyses. VU0026921 disrupts metal homeostasis in S. aureus, increasing intracellular accumulation of metals and leading to toxicity through mismetalation of enzymes, generation of reactive oxygen species, or disruption of other cellular processes. Antioxidants partially protect S. aureus from VU0026921 killing, emphasizing the role of reactive oxygen species in the mechanism of killing, but VU0026921 also kills S. aureus anaerobically, indicating that the observed toxicity is not solely oxygen dependent. VU0026921 disrupts metal homeostasis in multiple Gram-positive bacteria, leading to increased reactive oxygen species and cell death, demonstrating the broad applicability of these findings. Further, this study validates VU0026921 as a probe to further decipher mechanisms required to maintain metal homeostasis in Gram-positive bacteria.
Collapse
|
47
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
48
|
Brandtner A, Tymoszuk P, Nairz M, Lehner GF, Fritsche G, Vales A, Falkner A, Schennach H, Theurl I, Joannidis M, Weiss G, Pfeifhofer-Obermair C. Linkage of alterations in systemic iron homeostasis to patients' outcome in sepsis: a prospective study. J Intensive Care 2020; 8:76. [PMID: 33014378 PMCID: PMC7528491 DOI: 10.1186/s40560-020-00495-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sepsis, a dysregulated host response following infection, is associated with massive immune activation and high mortality rates. There is still a need to define further risk factors and laboratory parameters predicting the clinical course. Iron metabolism is regulated by both, the body's iron status and the immune response. Iron itself is required for erythropoiesis but also for many cellular and metabolic functions. Moreover, iron availability is a critical determinant in infections because it is an essential nutrient for most microbes but also impacts on immune function and intravascular oxidative stress. Herein, we used a prospective study design to investigate the putative impact of serum iron parameters on the outcome of sepsis. METHODS Serum markers of iron metabolism were measured in a prospective cohort of 61 patients (37 males, 24 females) with sepsis defined by Sepsis-3 criteria in a medical intensive care unit (ICU) and compared between survivors and non-survivors. Regulation of iron parameters in patients stratified by focus of infection and co-medication as well as association of the markers with sepsis severity scores and survival were investigated with linear and logistic regression corrected for sex and age effects. RESULTS Positive correlations of increased serum iron and ferritin concentrations upon ICU admission with the severity of organ failure (SOFA score) and with mortality were observed. Moreover, high TF-Sat, elevated ferritin and serum iron levels and low transferrin concentrations were associated with reduced survival. A logistic regression model consisting of SOFA and transferrin saturation (SOFA-TF-Sat) had the best predictive power for survival in septic ICU patients. Of note, administration of blood transfusions prior to ICU admission resulted in increased TF-Sat and reduced survival of septic patients. CONCLUSIONS Our study could show an important impact of serum iron parameters on the outcome of sepsis. Furthermore, we identified transferrin saturation as a stand-alone predictor of sepsis survival and as a parameter of iron metabolism which may in a combined model improve the prediction power of the SOFA score. TRIAL REGISTRATION The study was carried out in accordance with the recommendations of the Declaration of Helsinki on biomedical research. The study was approved by the institutional ethics review board of the Medical University Innsbruck (study AN2013-0006).
Collapse
Affiliation(s)
- Anna Brandtner
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstr. 35, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstr. 35, Innsbruck, Austria
| | - Georg F. Lehner
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Gernot Fritsche
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstr. 35, Innsbruck, Austria
| | - Anja Vales
- Central Institute for Blood Transfusion and Immunology, Innsbruck, Austria
| | - Andreas Falkner
- Central Institute for Blood Transfusion and Immunology, Innsbruck, Austria
| | - Harald Schennach
- Central Institute for Blood Transfusion and Immunology, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstr. 35, Innsbruck, Austria
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstr. 35, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
49
|
Song R, Yu B, Friedrich D, Li J, Shen H, Krautscheid H, Huang SD, Kim MH. Naphthoquinone-derivative as a synthetic compound to overcome the antibiotic resistance of methicillin-resistant S. aureus. Commun Biol 2020; 3:529. [PMID: 32973345 PMCID: PMC7518446 DOI: 10.1038/s42003-020-01261-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The treatment of Staphylococcus aureus (S. aureus) infections has become more difficult due to the emergence of multidrug resistance in the bacteria. Here, we report the synthesis of a lawsone (2-hydroxy-1,4-naphthoquinone)-based compound as an antimicrobial agent against methicillin-resistant S. aureus (MRSA). A series of lawsone-derivative compounds were synthesized by means of tuning the lipophilicity of lawsone and screened for minimum inhibitory concentrations against MRSA to identify a candidate compound that possesses a potent antibacterial activity. The identified lawsone-derivative compound exhibited significantly improved drug resistance profiles against MRSA compared to conventional antibiotics. The therapeutic efficacy of the compound was validated using murine models of wound infection as well as non-lethal systemic infection induced by MRSA. Our study further revealed the multifaceted modes of action of the compound, mediated by three distinctive mechanisms: (1) cell membrane damage, (2) chelation of intracellular iron ions, and (3) generation of intracellular reactive oxygen species. Ronghui Song et al. demonstrate that a lawsone (2-hydroxy-1,4-naphthoquinone)-based compound decreases the drug resistance of methicillin-resistant Staphylococcus aureus much better than conventional antibiotics. This study provides insights into the design and action mechanism of effective antibiotics that overcome the antibiotic resistance of bacteria.
Collapse
Affiliation(s)
- Ronghui Song
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA
| | - Bing Yu
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| | - Dirk Friedrich
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA
| | - Junfeng Li
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA
| | - Harald Krautscheid
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
50
|
Abioye AI, Andersen CT, Sudfeld CR, Fawzi WW. Anemia, Iron Status, and HIV: A Systematic Review of the Evidence. Adv Nutr 2020; 11:1334-1363. [PMID: 32383731 PMCID: PMC7490171 DOI: 10.1093/advances/nmaa037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
People living with HIV (PLWHIV) are at high risk of anemia due to inadequate iron intake, HIV and opportunistic infections, and inflammation, and as a side effect of antiretroviral therapy. Though iron supplementation can reduce iron deficiency anemia (IDA) in the general population, its role in anemia and in the health of PLWHIV is unclear due to concerns that iron supplementation may increase HIV replication and risk of opportunistic infections. We systematically reviewed the evidence on indicators of iron status, iron intake, and clinical outcomes among adults and children with HIV. The evidence suggests that anemia is associated with an increased risk of all-cause mortality and incident tuberculosis among HIV-infected individuals, regardless of anemia type, and the magnitude of the risk is greater with more severe anemia. High serum ferritin is associated with adverse clinical outcomes, although it is unclear if this is due to high iron or inflammation from disease progression. One large observational study found an increased risk of all-cause mortality among HIV-infected adults if they received iron supplementation. Published randomized controlled trials of iron supplementation among PLWHIV tend to have small sample sizes and have been inconclusive in terms of effectiveness and safety. Large randomized trials exploring approaches to safely and effectively provide iron supplementation to PLWHIV are warranted.
Collapse
Affiliation(s)
- Ajibola I Abioye
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | | | - Christopher R Sudfeld
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Wafaie W Fawzi
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|