1
|
Guan P, Ming Z, Liu X, Shao Y, Pan H, Ding Y, Wang X. Expression and characterization of a novel endolysin LysPFX32 as potential biological antimicrobial agent against Pseudomonas fluorescens for pork preservation. Int J Biol Macromol 2025; 294:139448. [PMID: 39756768 DOI: 10.1016/j.ijbiomac.2024.139448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
In this study, a novel phage endolysin LysPFX32 was successfully expressed and characterized to investigate its antibacterial activity against P. fluorescens and its biofilm. The molecular docking results identified endolysin LysPFX32 showed an effective binding to peptidoglycan fragment. The minimum inhibitory concentration of LysPFX32 (95 μg/mL) exhibited strong lytic activity against P. fluorescens after EDTA pretreatment. The permeability of cell outer and inner membrane treated with LysPFX32 was increased. Scanning electron microscope analysis revealed that the cell membrane of P. fluorescens was disrupted by LysPFX32, leading to leakage of intracellular contents. Notably, LysPFX32 effectively inhibited biofilm formation and removed mature biofilm of P. fluorescens by inhibiting exopolysaccharides and total protein. LysPFX32 displayed excellent biological safety with negligible hemolysis in mouse red blood cells and lack of cytotoxicity against NIH 3T3 cells. LysPFX32 effectively eradicated P. fluorescens in pork at 28 °C after 24 h. The texture and color difference of pork with added LysPFX32 did not exhibit significant alterations. During 8 d storage, the LysPFX32-treated group exhibited a reduction in amine production and maintained meat quality. This study highlighted the remarkable effectiveness and diverse potential applications of phage endolysin, offering a promising approach for controlling P. fluorescens contamination in food.
Collapse
Affiliation(s)
- Peng Guan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixin Ming
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Pan
- Jingzhou Institute for Food and Drug Control, Jingzhou 434000, China
| | - Yifeng Ding
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Ali Z, Abdelkader K, Abdel-Fattah MM, Azmy AF, El-Gendy AO, Dishisha T. Therapeutic potential of a newly isolated bacteriophage against multi-drug resistant Enterococcus faecalis infections: in vitro and in vivo characterization. BMC Microbiol 2025; 25:80. [PMID: 39979834 PMCID: PMC11841226 DOI: 10.1186/s12866-025-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND In nosocomial settings, vancomycin-resistant Enterococcus faecalis is a major health threat leading to increased morbidities, mortalities, and treatment costs. Nowadays, several approaches are under investigation to enhance the activity of or replace the traditional antibiotics. Bacteriophage therapy was sought as a potential approach for combating E. faecalis infections. The present study focuses on isolating and characterizing bacteriophage against clinical multi-drug resistant (MDR) E. faecalis strain Lb-1492. The phage stability, lytic activity, host-range, latent period, burst size, the ability to detach the pre-formed biofilm and destroy entrapped cells were investigated. The phage genome was purified, sequenced, and subjected to bioinformatics analysis for identifying and characterizing its features, as well as, the suitability for clinical application. Finally, the ability of the phage to rescue mice from deadly, experimentally induced E. faecalis bacteremia was evaluated. RESULTS A virulent phage was isolated from sewage water against a clinical MDR E. faecalis isolate. Morphological and genomic studies indicated that the phage belongs to the Efquatrovirus genus, with a long tail, icosahedral head and a linear double-stranded DNA genome of approximately 42.9 kbp. The phage was named vB_Efa_ZAT1 (shortly ZAT1). It demonstrated a shorter latent period and larger burst size than regular-tailed phages, and a characteristic stability over a wide range of pH and temperatures, with the optimum activity at pH 7.4 and 37 °C, respectively. Phage ZAT1 showed a narrow spectrum of activity and a characteristic biofilm disruption ability. The phage managed successfully to control E. faecalis-induced bacteremia in mice models, which was lethal within 48 h in the control group. An intraperitoneal injection of 3 × 108 PFU of the phage solution given 1 h after the bacterial challenge was sufficient to save all the animals, completely reversing the trend of 100% mortality caused by this bacterium. CONCLUSIONS Phage therapy can be a promising alternative to traditional antibiotics in the post-antibiotic era with a significant antimicrobial and antibiofilm activities against MDR E. faecalis.
Collapse
Affiliation(s)
- Zienab Ali
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Karim Abdelkader
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Farag Azmy
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed O El-Gendy
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
3
|
Ghaznavi G, Vosough P, Ghasemian A, Tabar MMM, Tayebi L, Taghizadeh S, Savardashtaki A. Engineering bacteriophages for targeted superbug eradication. Mol Biol Rep 2025; 52:221. [PMID: 39934535 DOI: 10.1007/s11033-025-10332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The rise of antibiotic-resistant bacteria, termed "superbugs," presents a formidable challenge to global health. These pathogens, often responsible for persistent nosocomial infections, threaten the effectiveness of conventional antibiotic therapies. This review delves into the potential of bacteriophages, viruses specifically targeting bacteria, as a powerful tool to combat superbugs. We examined the latest developments in genetic engineering that improve the efficacy of bacteriophages, focusing on modifications in host range, lysis mechanisms, and their ability to overcome bacterial defense systems. This review article highlights the CRISPR-Cas system as a promising method for precisely manipulating phage genomes, enabling the development of novel phage therapies with enhanced efficacy and specificity. Furthermore, we discussed developing novel phage-based strategies, such as phage cocktails and phage-antibiotic combinations. We also analyzed the challenges and ethical considerations associated with phage engineering, emphasizing the need for responsible and rigorous research to ensure this technology's safe and effective deployment to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Ghazal Ghaznavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Almatroudi A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. BIOLOGY 2025; 14:165. [PMID: 40001933 PMCID: PMC11852148 DOI: 10.3390/biology14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Healthcare-associated infections pose a significant global health challenge, negatively impacting patient outcomes and burdening healthcare systems. A major contributing factor to healthcare-associated infections is the formation of biofilms, structured microbial communities encased in a self-produced extracellular polymeric substance matrix. Biofilms are critical in disease etiology and antibiotic resistance, complicating treatment and infection control efforts. Their inherent resistance mechanisms enable them to withstand antibiotic therapies, leading to recurrent infections and increased morbidity. This review explores the development of biofilms and their dual roles in health and disease. It highlights the structural and protective functions of the EPS matrix, which shields microbial populations from immune responses and antimicrobial agents. Key molecular mechanisms of biofilm resistance, including restricted antibiotic penetration, persister cell dormancy, and genetic adaptations, are identified as significant barriers to effective management. Biofilms are implicated in various clinical contexts, including chronic wounds, medical device-associated infections, oral health complications, and surgical site infections. Their prevalence in hospital environments exacerbates infection control challenges and underscores the urgent need for innovative preventive and therapeutic strategies. This review evaluates cutting-edge approaches such as DNase-mediated biofilm disruption, RNAIII-inhibiting peptides, DNABII proteins, bacteriophage therapies, antimicrobial peptides, nanoparticle-based solutions, antimicrobial coatings, and antimicrobial lock therapies. It also examines critical challenges associated with biofilm-related healthcare-associated infections, including diagnostic difficulties, disinfectant resistance, and economic implications. This review emphasizes the need for a multidisciplinary approach and underscores the importance of understanding biofilm dynamics, their role in disease pathogenesis, and the advancements in therapeutic strategies to combat biofilm-associated infections effectively in clinical settings. These insights aim to enhance treatment outcomes and reduce the burden of biofilm-related diseases.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Xia Y, Hu Z, Jin Q, Chen Q, Zhao C, Qiang R, Xie Z, Li L, Zhang H. Structural characteristics, functions, and counteracting strategies of biofilms in Staphylococcus aureus. Comput Struct Biotechnol J 2025; 27:488-500. [PMID: 39916696 PMCID: PMC11799891 DOI: 10.1016/j.csbj.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Background Staphylococcus aureus (S. aureus) is a prevalent pathogen associated with a wide range of infections, exhibiting significant antibiotic resistance and posing therapeutic challenges in clinical settings. The formation of biofilms contributes to the emergence of resistant strains, further diminishing the efficacy of antibiotics. This, in turn, leads to chronic and recurrent infections, ultimately increasing the healthcare burden. Consequently, preventing and eliminating biofilms has become a critical focus in clinical management and research. Aim of review This review systematically examines the mechanisms underlying biofilm formation in S. aureus and its contribution to antibiotic resistance, emphasizing the essential roles biofilms play in maintaining structural integrity and enhancing resistance. It also analyses the protective mechanisms that fortify S. aureus biofilms against antimicrobial treatments. Furthermore, the review provides a comprehensive overview of recent therapeutic innovations, including enzymatic therapy, nanotechnology, gene editing, and phage therapy. Key scientific concepts of review Emerging therapeutic strategies present novel approaches to combat S. aureus biofilm-associated infections through various mechanisms. This review discusses recent advancements in these therapies, their practical challenges in clinical application, and provides an in-depth analysis of each strategy's mechanisms and therapeutic potential. By mapping future research directions, this review aims to refine anti-biofilm strategies to control infection progression and effectively mitigate recurrence.
Collapse
Affiliation(s)
- Yanze Xia
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenghui Hu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiyuan Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rui Qiang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zonggang Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liubing Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Dams D, Pas C, Latka A, Drulis-Kawa Z, Fieseler L, Briers Y. A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of Escherichia coli and Klebsiella pneumoniae. Antibiotics (Basel) 2025; 14:104. [PMID: 39858389 PMCID: PMC11762384 DOI: 10.3390/antibiotics14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Phage tail-like bacteriocins, or tailocins, provide a competitive advantage to producer cells by killing closely related bacteria. Morphologically similar to headless phages, their narrow target specificity is determined by receptor-binding proteins (RBPs). While RBP engineering has been used to alter the target range of a selected R2 tailocin from Pseudomonas aeruginosa, the process is labor-intensive, limiting broader application. Methods: We introduce a VersaTile-driven R2 tailocin engineering and screening platform to scale up RBP grafting. Results: This platform achieved three key milestones: (I) engineering R2 tailocins specific to Escherichia coli serogroups O26, O103, O104, O111, O145, O146, and O157; (II) reprogramming R2 tailocins to target, for the first time, the capsule and a new species, specifically the capsular serotype K1 of E. coli and K11 and K63 of Klebsiella pneumoniae; (III) creating the first bivalent tailocin with a branched RBP and cross-species activity, effective against both E. coli K1 and K. pneumoniae K11. Over 90% of engineered tailocins were effective, with clear pathways for further optimization identified. Conclusions: This work lays the groundwork for a scalable platform for the development of engineered tailocins, marking an important step towards making R2 tailocins a practical therapeutic tool for targeted bacterial infections.
Collapse
Affiliation(s)
- Dorien Dams
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Célia Pas
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| | - Agnieszka Latka
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Lars Fieseler
- Institute of Food and Beverage Innovation, Food Microbiology Research Group, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland;
| | - Yves Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; (D.D.); (C.P.); (A.L.)
| |
Collapse
|
7
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
8
|
Peng J, Guo C, Yang C, Zhang L, Yang F, Huang X, Yu Y, Zhang T, Peng J. Phage therapy for bone and joint infections: A comprehensive exploration of challenges, dynamics, and therapeutic prospects. J Glob Antimicrob Resist 2024; 39:12-21. [PMID: 39168373 DOI: 10.1016/j.jgar.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVES Bone and joint infections (BJI) pose formidable challenges in orthopaedics due to antibiotic resistance and the complexities of biofilm, complicating treatment. This comprehensive exploration addresses the intricate challenges posed by BJI and highlights the significant role of phage therapy as a non-antibiotic strategy. METHODS BJI, which encompass prosthetic joint infections, osteomyelitis, and purulent arthritis, are exacerbated by biofilm formation on bone and implant surfaces, hindering treatment efficacy. Gram-negative bacterial infections, characterized by elevated antibiotic resistance, further contribute to the clinical challenge. Amidst this therapeutic challenge, phage therapy emerges as a potential strategy, showing unique characteristics such as strict host specificity and biofilm disruption capabilities. RESULTS The review unveils the dynamics of phages, including their origins, lifecycle outcomes, and genomic characteristics. Animal studies, in vitro investigations, and clinical research provide compelling evidence of the efficacy of phages in treating Staphylococcus aureus infections, particularly in osteomyelitis cases. Phage lysins exhibit biofilm-disrupting capabilities, offering a meaningful method for addressing BJI. Recent statistical analyses reveal high clinical relief rates and a favourable safety profile for phage therapy. CONCLUSIONS Despite its promise, phage therapy encounters limitations, including a narrow host range and potential immunogenicity. The comprehensive analysis navigates these challenges and charts the future of phage therapy, emphasizing standardization, pharmacokinetics, and global collaboration. Anticipated strides in phage engineering and combination therapy hold promise for combating antibiotic-resistant BJI.
Collapse
Affiliation(s)
- Jiaze Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Caopei Guo
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Chengbing Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Lin Zhang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Fuyin Yang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Xianpeng Huang
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Yang Yu
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiachen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center, Zunyi, China; Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China.
| |
Collapse
|
9
|
Chen N, Li Y, Liang X, Qin K, Zhang Y, Wang J, Wu Q, Gupta TB, Ding Y. Bacterial extracellular vesicle: A non-negligible component in biofilm life cycle and challenges in biofilm treatments. Biofilm 2024; 8:100216. [PMID: 39184814 PMCID: PMC11341940 DOI: 10.1016/j.bioflm.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Bacterial biofilms, especially those formed by pathogens, have been increasingly impacting human health. Bacterial extracellular vesicle (bEV), a kind of spherical membranous structure released by bacteria, has not only been reported to be a component of the biofilm matrix but also plays a non-negligible role in the biofilm life cycle. Nevertheless, a comprehensive overview of the bEVs functions in biofilms remains elusive. In this review, we summarize the biogenesis and distinctive features characterizing bEVs, and consolidate the current literature on their functions and proposed mechanisms in the biofilm life cycle. Furthermore, we emphasize the formidable challenges associated with vesicle interference in biofilm treatments. The primary objective of this review is to raise awareness regarding the functions of bEVs in the biofilm life cycle and lay the groundwork for the development of novel therapeutic strategies to control or even eliminate bacterial biofilms.
Collapse
Affiliation(s)
- Nuo Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yangfu Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xinmin Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Keyuan Qin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tanushree B. Gupta
- Food System Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
10
|
Teymouri S, Pourhajibagher M, Bahador A. A review of the fighting Acinetobacter baumannii on three fronts: antibiotics, phages, and nanoparticles. Mol Biol Rep 2024; 51:1044. [PMID: 39377967 DOI: 10.1007/s11033-024-09979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/30/2024] [Indexed: 02/06/2025]
Abstract
In the current era of antibiotic resistance, researchers are exploring alternative ways to treat bacterial infections that are resistant to multiple drugs. Acinetobacter baumannii (A. baumannii) is a bacterium that is commonly encountered in clinical settings and is known to be resistant to several drugs. Due to the increase in drug-resistant infections caused by this bacteria, there is an urgent need to investigate alternative treatment options such as phage therapy and combination therapy. Despite the success of phages in some cases, there are some limitations in their clinical application that can be overcome by combining phages with other substrates such as nanoparticles to improve their function. The integration of nanotechnology with phage therapy against A. baumannii promises to overcome antibiotic resistance. By exploiting the targeted delivery and controlled release capabilities of nanoparticles, we can enhance the therapeutic potential of phages while minimizing their limitations. Continued research in this field will undoubtedly pave the way for more effective and precise treatments against A. baumannii infections and provide hope in the fight against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
11
|
Del Pozo M, Aguanell A, García-Junceda E, Revuelta J. Lysozyme-Responsive Hydrogels of Chitosan-Streptomycin Conjugates for the On-Demand Release of Biofilm-Dispersing Enzymes for the Efficient Eradication of Oral Biofilms. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9860-9873. [PMID: 39398375 PMCID: PMC11468777 DOI: 10.1021/acs.chemmater.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Hydrogels with controlled degradation and sustained antibiofilm activity are promising biomaterials for the treatment of oral infections such as periodontitis or caries. In this article, an in situ forming chitosan-streptomycin hydrogel is developed that can target established bacterial biofilms in response to lysozyme, an enzyme that is overexpressed in saliva during oral infections. When the new hydrogel is applied to simulated oral biofilms, the overexpressed lysozyme degrades the hydrogel and releases chitosan-streptomycin oligosaccharides that can eradicate the biofilm. This work has shown that the coupling of chitosan and streptomycin can have a synergistic effect and that the new hydrogel based on chitosan-streptomycin conjugate can effectively combat biofilms of E. coli, S. aureus, and P. aeruginosa formed in vitro achieving a significant reduction in the biomass of the biofilm and a substantial reduction in the population of viable bacteria in established biofilms. Finally, the CS-Str hydrogel loaded with biofilm-disrupting enzymes, in particular, DNase I and/or DspB, showed a significantly increased ability to reduce the biofilm biomass of P. aeruginosa and S. aureus (by over 84% and up to 92%, respectively), resulting in a drastic reduction in cell viability, which fell below 4% for P. aeruginosa and below 5% for S. aureus.
Collapse
Affiliation(s)
- María
Luisa Del Pozo
- BioGlycoChem Group, Departamento
de Química Bio-Orgánica, Instituto
de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Antonio Aguanell
- BioGlycoChem Group, Departamento
de Química Bio-Orgánica, Instituto
de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Eduardo García-Junceda
- BioGlycoChem Group, Departamento
de Química Bio-Orgánica, Instituto
de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| | - Julia Revuelta
- BioGlycoChem Group, Departamento
de Química Bio-Orgánica, Instituto
de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
12
|
Lach K, Skrzyniarz K, Takvor-Mena S, Łysek-Gładysińska M, Furmańczyk P, Barrios-Gumiel O, Sanchez-Nieves J, Ciepluch K. Endolysin CHAP domain-carbosilane metallodendrimer complexes with triple action on Gram-negative bacteria: Membrane destabilization, reactive oxygen species production and peptidoglycan degradation. Int J Biol Macromol 2024; 278:134634. [PMID: 39128760 DOI: 10.1016/j.ijbiomac.2024.134634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Bacterial resistance to antibiotics is a significant challenge that is associated with increased morbidity and mortality. Gram-negative bacteria are particularly problematic due to an outer membrane (OM). Current alternatives to antibiotics include antimicrobial peptides or proteins and multifunctional systems such as dendrimers. Antimicrobial proteins such as lysins can degrade the bacterial cell wall, whereas dendrimers can permeabilize the OM, enhancing the activity of endolysins against gram-negative bacteria. In this study, we present a three-stage action of endolysin combined with two different carbosilane (CBS) silver metallodendrimers, in which the periphery is modified with N-heterocyclic carbene (NHC) ligands coordinating a silver atom. The different NHC ligands contained hydrophobic methyl or N-donor pyridyl moieties. The effects of these endolysin/dendrimer combinations are based on OM permeabilization, peptidoglycan degradation, and reactive oxygen species production. The results showed that CBS possess a permeabilization effect (first action), significantly reduced bacterial growth at higher concentrations alone and in the presence of endolysin, increased ROS production (second action), and led to bacterial cell damage (third action). The complex formed between the CHAP domain of endolysin and a CBS silver metallodendrimer, with a triple mechanism of action, may represent an excellent alternative to other antimicrobials with only one resistance mechanism.
Collapse
Affiliation(s)
- Karolina Lach
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Samuel Takvor-Mena
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain
| | | | - Piotr Furmańczyk
- Department of Machine Design, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland
| | - Oscar Barrios-Gumiel
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain
| | - Javier Sanchez-Nieves
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá (UAH), 28805 Alcalá de Henares, Madrid. Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research (IRYCIS), Ctra. de Colmenar Viejo, Km. 9, 28034 Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland.
| |
Collapse
|
13
|
Wang C, Su Y, Shahriar SMS, Li Y, Xie J. Emerging strategies for treating medical device and wound-associated biofilm infections. Microb Biotechnol 2024; 17:e70035. [PMID: 39431971 PMCID: PMC11492805 DOI: 10.1111/1751-7915.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Bacterial infections represent a significant global threat to human health, leading to considerable economic losses through increased healthcare costs and reduced productivity. One major challenge in treating these infections is the presence of biofilms - structured bacterial communities that form protective barriers, making traditional treatments less effective. Additionally, the rise of antibiotic-resistant bacteria has exacerbated treatment difficulties. To address these challenges, researchers are developing and exploring innovative approaches to combat biofilm-related infections. This mini-review highlights recent advancements in the following key areas: surface anti-adhesion technologies, electricity, photo/acoustic-active materials, endogenous mimicking agents, and innovative drug delivery systems. These strategies aim to prevent biofilm formation, disrupt existing biofilms, and enhance the efficacy of antimicrobial treatments. Currently, these approaches show great potential for applications in medical fields such as medical device and wound - associated biofilm infections. By summarizing these developments, this mini-review provides a comprehensive resource for researchers seeking to advance the management and treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Chenlong Wang
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Yu Li
- Department of Emergency MedicineCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of Medicine, University of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Mechanical and Materials EngineeringUniversity of Nebraska LincolnLincolnNebraskaUSA
| |
Collapse
|
14
|
Lewis JM, Williams J, Sagona AP. Making the leap from technique to treatment - genetic engineering is paving the way for more efficient phage therapy. Biochem Soc Trans 2024; 52:1373-1384. [PMID: 38716972 PMCID: PMC11346441 DOI: 10.1042/bst20231289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Bacteriophages (phages) are viruses specific to bacteria that target them with great efficiency and specificity. Phages were first studied for their antibacterial potential in the early twentieth century; however, their use was largely eclipsed by the popularity of antibiotics. Given the surge of antimicrobial-resistant strains worldwide, there has been a renaissance in harnessing phages as therapeutics once more. One of the key advantages of phages is their amenability to modification, allowing the generation of numerous derivatives optimised for specific functions depending on the modification. These enhanced derivatives could display higher infectivity, expanded host range or greater affinity to human tissues, where some bacterial species exert their pathogenesis. Despite this, there has been a noticeable discrepancy between the generation of derivatives in vitro and their clinical application in vivo. In most instances, phage therapy is only used on a compassionate-use basis, where all other treatment options have been exhausted. A lack of clinical trials and numerous regulatory hurdles hamper the progress of phage therapy and in turn, the engineered variants, in becoming widely used in the clinic. In this review, we outline the various types of modifications enacted upon phages and how these modifications contribute to their enhanced bactericidal function compared with wild-type phages. We also discuss the nascent progress of genetically modified phages in clinical trials along with the current issues these are confronted with, to validate it as a therapy in the clinic.
Collapse
Affiliation(s)
| | - Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, U.K
| | | |
Collapse
|
15
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
16
|
Manohar P, Loh B, Nachimuthu R, Leptihn S. Phage-antibiotic combinations to control Pseudomonas aeruginosa-Candida two-species biofilms. Sci Rep 2024; 14:9354. [PMID: 38653744 DOI: 10.1038/s41598-024-59444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Phage-antibiotic combinations to treat bacterial infections are gaining increased attention due to the synergistic effects often observed when applying both components together. Most studies however focus on a single pathogen, although in many clinical cases multiple species are present at the site of infection. The aim of this study was to investigate the anti-biofilm activity of phage-antibiotic/antifungal combinations on single- and dual-species biofilms formed by P. aeruginosa and the fungal pathogen Candida albicans. The Pseudomonas phage Motto in combination with ciprofloxacin had significant anti-biofilm activity. We then compared biofilms formed by P. aeruginosa alone with the dual-species biofilms formed by bacteria and C. albicans. Here, we found that the phage together with the antifungal fluconazole was active against 6-h-old dual-species biofilms but showed only negligible activity against 24-h-old biofilms. This study lays the first foundation for potential therapeutic approaches to treat co-infections caused by bacteria and fungi using phage-antibiotic combinations.
Collapse
Affiliation(s)
- Prasanth Manohar
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, India
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77843, USA
| | - Belinda Loh
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
| | - Ramesh Nachimuthu
- School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Sebastian Leptihn
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany.
- Department of Biochemistry, Health and Medical University, Erfurt, Anger 66/73, 99084, Erfurt, Germany.
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
17
|
Cucić S, Ells T, Guri A, Kropinski AM, Khursigara CM, Anany H. Degradation of Listeria monocytogenes biofilm by phages belonging to the genus Pecentumvirus. Appl Environ Microbiol 2024; 90:e0106223. [PMID: 38315006 PMCID: PMC10952537 DOI: 10.1128/aem.01062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024] Open
Abstract
Listeria monocytogenes is a pathogenic foodborne bacterium that is a significant cause of mortality associated with foodborne illness and causes many food recalls attributed to a bacteriological cause. Their ability to form biofilms contributes to the persistence of Listeria spp. in food processing environments. When growing as biofilms, L. monocytogenes are more resistant to sanitizers used in the food industry, such as benzalkonium chloride (BAC), as well as to physical stresses like desiccation and starvation. Lytic phages of Listeria are antagonistic to a broad range of Listeria spp. and may, therefore, have utility in reducing the occurrence of Listeria-associated food recalls by preventing food contamination. We screened nine closely related Listeria phages, including the commercially available Listex P100, for host range and ability to degrade microtiter plate biofilms of L. monocytogenes ATCC 19111 (serovar 1/2a). One phage, CKA15, was selected and shown to rapidly adsorb to its host under conditions relevant to applying the phage in dairy processing environments. Under simulated dairy processing conditions (SDPC), CKA15 caused a 2-log reduction in Lm19111 biofilm bacteria. This work supports the biosanitation potential of phage CKA15 and provides a basis for further investigation of phage-bacteria interactions in biofilms grown under SDPC. IMPORTANCE Listeria monocytogenes is a pathogenic bacterium that is especially dangerous for children, the elderly, pregnant women, and immune-compromised people. Because of this, the food industry takes its presence in their plants seriously. Food recalls due to L. monocytogenes are common with a high associated economic cost. In food-processing plants, Listeria spp. typically reside in biofilms, which are structures produced by bacteria that shield them from environmental stressors and are often attached to surfaces. The significance of our work is that we show a bacteriophage-a virus-infecting bacteria-can reduce Listeria counts by two orders of magnitude when the bacterial biofilms were grown under simulated dairy processing conditions. This work provides insights into how phages may be tested and used to develop biosanitizers that are effective but are not harmful to the environment or human health.
Collapse
Affiliation(s)
- Stevan Cucić
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Tim Ells
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada
| | - Anilda Guri
- Gay Lea Foods Co-operative, Research and Development Centre, Hamilton, Ontario, Canada
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
18
|
Moukendza Koundi L, Ekomi Moure UA, Boni FG, Hamdi I, Fan L, Xie J. Mycobacterium tuberculosis Rv2617c is involved in stress response and phage infection resistance. Heliyon 2024; 10:e27400. [PMID: 38495141 PMCID: PMC10943396 DOI: 10.1016/j.heliyon.2024.e27400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the pathogen of human tuberculosis (TB). Resistance to numerous in vivo stresses, including oxidative stress, is determinant for M. tuberculosis intracellular survival, and understanding associated mechanisms is crucial for developing new therapeutic strategies. M. tuberculosis Rv2617c has been associated with oxidative stress response when interacting with other proteins in M. tuberculosis; however, its functional promiscuity and underlying molecular mechanisms remain elusive. In this study, we investigated the phenotypic changes of Mycobacterium smegmatis (M. smegmatis) expressing Rv2617c (Ms_Rv2617c) and its behavior in the presence of various in vitro stresses and phage infections. We found that Rv2617c conferred resistance to SDS and diamide while sensitizing M. smegmatis to oxidative stress (H2O2) and altered mycobacterial phenotypic properties (single-cell clone and motility), suggestive of reprogrammed mycobacterial cell wall lipid contents exemplified by increased cell wall permeability. Interestingly, we also found that Rv2617c promoted M. smegmatis resistance to infection by phages (SWU1, SWU2, D29, and TM4) and kept phage TM4 from destroying mycobacterial biofilms. Our findings provide new insights into the role of Rv2617c in resistance to oxide and acid stresses and report for the first time on its role in phage resistance in Mycobacterium.
Collapse
Affiliation(s)
- Liadrine Moukendza Koundi
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Funmilayo Grâce Boni
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Insaf Hamdi
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
20
|
De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, Merabishvili M, De Vos D, Pirnay JP, Van Bambeke F. Exploiting phage-antibiotic synergies to disrupt Pseudomonas aeruginosa PAO1 biofilms in the context of orthopedic infections. Microbiol Spectr 2024; 12:e0321923. [PMID: 38084971 PMCID: PMC10783084 DOI: 10.1128/spectrum.03219-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.
Collapse
Affiliation(s)
- Steven De Soir
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Hortence Parée
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nur Hidayatul Nazirah Kamarudin
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Annabel Braem
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology (LabMCT), Queen Astrid Military Hospital, Neder-over-Heembeek, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Otun SO, Graca R, Achilonu I. Combating Aminoglycoside Resistance: From Structural and Functional Characterisation to Therapeutic Challenges with RKAAT. Curr Protein Pept Sci 2024; 25:454-468. [PMID: 38314602 DOI: 10.2174/0113892037278814231226104509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.
Collapse
Affiliation(s)
- Sarah Oluwatobi Otun
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Richard Graca
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Department of Molecular and Cell Biology, Protein Structure-function Unit, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Yang S, Li X, Cang W, Mu D, Ji S, An Y, Wu R, Wu J. Biofilm tolerance, resistance and infections increasing threat of public health. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:233-247. [PMID: 37933277 PMCID: PMC10625689 DOI: 10.15698/mic2023.11.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
Microbial biofilms can cause chronic infection. In the clinical setting, the biofilm-related infections usually persist and reoccur; the main reason is the increased antibiotic resistance of biofilms. Traditional antibiotic therapy is not effective and might increase the threat of antibiotic resistance to public health. Therefore, it is urgent to study the tolerance and resistance mechanism of biofilms to antibiotics and find effective therapies for biofilm-related infections. The tolerance mechanism and host reaction of biofilm to antibiotics are reviewed, and bacterial biofilm related diseases formed by human pathogens are discussed thoroughly. The review also explored the role of biofilms in the development of bacterial resistance mechanisms and proposed therapeutic intervention strategies for biofilm related diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Yuejia An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| |
Collapse
|
23
|
Jung SJ, Ashrafudoulla M, Kang I, Ha SD. Isolation and characterization of multidrug-resistant Salmonella-specific bacteriophages and their antibacterial efficiency in chicken breast. Poult Sci 2023; 102:103073. [PMID: 37774519 PMCID: PMC10550810 DOI: 10.1016/j.psj.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
The use of phages as biocontrol agents against antibiotic-resistant strains of Salmonella spp. is gaining attention. This study aimed to isolate lytic bacteriophages specific for multidrug-resistant Salmonella enterica serovars Typhimurium; it also evaluated the bactericidal effect of isolated phages (STP-1, STP-2, STP-3, and STP-4) from sewage sample against S. Typhimurium as host strains. Moreover, a current study evaluated the efficacy of a bacteriophage cocktail against S. Typhimurium cocktail in chicken breast meat. The 4 phages were classified under the Caudoviricetes class by morphology characterization. On host range testing, they exhibited lytic activities against S. Typhimurium, S. Enteritidis, and S. Thompson. In the stability test, the phages exhibited resistance to heat (above 70°C for 1 h) and pH (strongly alkaline for 24 h). Additionally, the phages had comparable adsorption rates (approximately 80% adsorption in under 5 min). Additionally, the latent periods ranged from 30 to 50 min, with respective burst sizes of 31, 218, 197, and 218 PFU/CFU. In vitro, bacterial challenge demonstrated that at a multiplicity of infection (MOI) of 10, each phage consistently inhibited S. Typhimurium growth at 37°C for 24 h. In the food test, the phage cocktail (MOI = 1,000) reduced S. Typhimurium in artificially contaminated chicken breast meat stored at 4°C by 0.9 and 1.2 log CFU/g after 1 and 7 d, respectively. The results point toward a promising avenue for addressing the challenge of multidrug-resistant S. Typhimurium in the food industry through the use of recently discovered phages. Notably, the exploration of phage cocktails holds significant potential for combating S. Typhimurium in chicken breast products in the times ahead.
Collapse
Affiliation(s)
- Soo-Jin Jung
- School of Food Science and Technology, Chung-Ang University, Ansung, Kyunggido 456-756, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Ansung, Kyunggido 456-756, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Ansung, Kyunggido 456-756, Republic of Korea.
| |
Collapse
|
24
|
Maciejewska B, Squeglia F, Latka A, Privitera M, Olejniczak S, Switala P, Ruggiero A, Marasco D, Kramarska E, Drulis-Kawa Z, Berisio R. Klebsiella phage KP34gp57 capsular depolymerase structure and function: from a serendipitous finding to the design of active mini-enzymes against K. pneumoniae. mBio 2023; 14:e0132923. [PMID: 37707438 PMCID: PMC10653864 DOI: 10.1128/mbio.01329-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Agnieszka Latka
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Mario Privitera
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Sebastian Olejniczak
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Paulina Switala
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wrocław, Wrocław, Poland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| |
Collapse
|
25
|
Gao Z, Chen X, Wang C, Song J, Xu J, Liu X, Qian Y, Suo H. New strategies and mechanisms for targeting Streptococcus mutans biofilm formation to prevent dental caries: A review. Microbiol Res 2023; 278:127526. [PMID: 39491258 DOI: 10.1016/j.micres.2023.127526] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Dental caries, a prevalent oral infectious disease, is intricately linked to the biofilm formation on the tooth surfaces by oral microbes. Among these, Streptococcus mutans plays a central role in the initiation and progression of caries due to its ability to produce glucosyltransferases, synthesize extracellular polysaccharides, and facilitate bacterial adhesion and aggregation. This leads to the formation of biofilms where the bacteria metabolize dietary carbohydrates to produce acids. Therefore, devising effective strategies to inhibit S. mutans biofilm formation is crucial for dental caries prevention and oral health promotion. Though preventive measures like mechanical removal and antibacterial drugs (fluoride, chlorhexidine) exist, they pose challenges such as time consumption, short-term effectiveness, antibiotic resistance, and disruption of oral flora balance. This review provides a comprehensive overview of emerging strategies such as antimicrobial peptides, probiotics, nanoparticles, and non-thermal plasma therapies for targeted inhibition of S. mutans biofilm formation. Moreover, current research insights into the regulatory mechanisms governing S. mutans biofilm formation are also elucidated. The objective is to foster the development of innovative, efficient and safe techniques for caries prevention and treatment, thereby expanding treatment options in clinical dentistry and promoting oral health.
Collapse
Affiliation(s)
- Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Qian
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
26
|
Cevallos-Urena A, Kim JY, Kim BS. Vibrio-infecting bacteriophages and their potential to control biofilm. Food Sci Biotechnol 2023; 32:1719-1727. [PMID: 37780594 PMCID: PMC10533469 DOI: 10.1007/s10068-023-01361-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 10/03/2023] Open
Abstract
The emergence and spread of antibiotic-resistant pathogenic bacteria have necessitated finding new control alternatives. Under these circumstances, lytic bacteriophages offer a viable and promising option. This review focuses on Vibrio-infecting bacteriophages and the characteristics that make them suitable for application in the food and aquaculture industries. Bacteria, particularly Vibrio spp., can produce biofilms under stress conditions. Therefore, this review summarizes several anti-biofilm mechanisms that phages have, such as stimulating the host bacteria to produce biofilm-degrading enzymes, utilizing tail depolymerases, and penetrating matured biofilms through water channels. Additionally, the advantages of bacteriophages over antibiotics, such as a lower probability of developing resistance and the ability to infect dormant cells, are discussed. Finally, this review presents future research prospects related to further utilization of phages in diverse fields.
Collapse
Affiliation(s)
- Ana Cevallos-Urena
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jeong Yeon Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
27
|
Kim SH, Lee H, Park MK. Isolation, characterization, and application of a novel, lytic phage vB_SalA_KFSST3 with depolymerase for the control of Salmonella and its biofilm on cantaloupe under cold temperature. Food Res Int 2023; 172:113062. [PMID: 37689855 DOI: 10.1016/j.foodres.2023.113062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the efficacy of a novel Salmonella phage with depolymerase activity to control S. Typhimurium (ST) and its biofilm on cantaloupes, for the first time, under simulated cold temperature. vB_SalA_KFSST3 forming a halo zone was isolated and purified from a slaughterhouse with a final concentration of 12.1 ± 0.1 log PFU/mL. Based on the morphological and bioinformatics analyses, vB_SalA_KFSST3 was identified as a novel phage belonging to the family Ackermannviridae. Before employing the phage on cantaloupe, its genetic characteristics, specificity, stability, and bactericidal effect were investigated. Genetic analyses confirmed its safety and identified endolysin and two depolymerase domains possessing antibiofilm potential. In addition, the phage exhibited a broad specificity with great efficiencies toward five Salmonella strains at 4 °C, 22 °C, and 37 °C, as well as stable lytic activity over a wide range of pHs (3 to 11) and temperatures (-20 °C to 60 °C). The optimal multiplicity of infection (MOI) and exposure time of phage were determined to be 100 and 2 h, respectively, based on the highest bacterial reduction of ∼2.7 log CFU/mL. Following the formation of ST biofilm on cantaloupe at 4 °C and 22 °C, the cantaloupe was treated with phage at an MOI of 100 for 2 h. The antibiofilm efficacy of phage was evaluated via the plate count method, confocal laser scanning microscopy, and scanning electron microscopy (SEM). The initial biofilm population at 22 °C was significantly greater and more condensed than that at 4 °C. After phage treatment, biofilm population and the percentage of viable ST in biofilm were reduced by ∼4.6 log CFU/cm2 and ∼90% within 2 h, respectively, which were significantly greater than those at 22 °C (∼2.0 log CFU/cm2 and ∼45%) (P < 0.05). SEM images also confirmed more drastic destruction of the cohesive biofilm architecture at 4 °C than at 22 °C. As a result of its cold temperature-robust lytic activity and the contribution of endolysin and two depolymerases, vB_SalA_KFSST3 demonstrated excellent antibiofilm efficacy at cold temperature, highlighting its potential as a promising practical biocontrol agent for the control of ST and its biofilm.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Heejeong Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
28
|
Skrzyniarz K, Kuc-Ciepluch D, Lasak M, Arabski M, Sanchez-Nieves J, Ciepluch K. Dendritic systems for bacterial outer membrane disruption as a method of overcoming bacterial multidrug resistance. Biomater Sci 2023; 11:6421-6435. [PMID: 37605901 DOI: 10.1039/d3bm01255g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The alarming rise of multi-drug resistant microorganisms has increased the need for new approaches through the development of innovative agents that are capable of attaching to the outer layers of bacteria and causing permanent damage by penetrating the bacterial outer membrane. The permeability (disruption) of the outer membrane of Gram-negative bacteria is now considered to be one of the main ways to overcome multidrug resistance in bacteria. Natural and synthetic permeabilizers such as AMPs and dendritic systems seem promising. However, due to their advantages in terms of biocompatibility, antimicrobial capacity, and wide possibilities for modification and synthesis, highly branched polymers and dendritic systems have gained much more interest in recent years. Various forms of arrangement, and structure of the skeleton, give dendritic systems versatile applications, especially the possibility of attaching other ligands to their surface. This review will focus on the mechanisms used by different types of dendritic polymers, and their complexes with macromolecules to enhance their antimicrobial effect, and to permeabilize the bacterial outer membrane. In addition, future challenges and potential prospects are illustrated in the hope of accelerating the advancement of nanomedicine in the fight against resistant pathogens.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | | | - Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | - Michał Arabski
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | - Javier Sanchez-Nieves
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH), Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química "Andrés M. del Río" (IQAR, UAH), Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Institute for Health Research Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| |
Collapse
|
29
|
Kim J, Wang J, Ahn J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella Typhimurium. BIOFOULING 2023; 39:763-774. [PMID: 37795651 DOI: 10.1080/08927014.2023.2265817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to evaluate the antimicrobial activity of phage-derived endolysin (LysPB32) and depolymerase (DpolP22) against planktonic and biofilm cells of Salmonella Typhimurium (STKCCM). Compared to the control, the numbers of STKCCM were reduced by 4.3 and 5.9 log, respectively, at LysPB32 and LysPB32 + DpolP22 in the presence of polymyxin B (PMB) after 48-h incubation at 37 °C. LysPB32 + DpolP22 decreased the relative fitness (0.8) and the cross-resistance of STKCCM to chloramphenicol (CHL), cephalothin (CEP), ciprofloxacin (CIP), and tetracycline (TET) in the presence of PMB. The MICtrt/MICcon ratios of CHL, CEP, CIP, PMB, and TET were between 0.25 and 0.50 for LysPB32 + DpolP22 in the presence of PMB. These results suggest that the application of phage-encoded enzymes with antibiotics can be a promising approach for controlling biofilm formation on medical and food-processing equipment. This is noteworthy in that the application of LysPB32 + DpolP22 could increase antibiotic susceptibility and decrease cross-resistance to other antibiotics.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
30
|
Ali A, Zahra A, Kamthan M, Husain FM, Albalawi T, Zubair M, Alatawy R, Abid M, Noorani MS. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023; 11:1934. [PMID: 37630494 PMCID: PMC10459820 DOI: 10.3390/microorganisms11081934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilms are complex communities of microorganisms that grow on surfaces and are embedded in a matrix of extracellular polymeric substances. These are prevalent in various natural and man-made environments, ranging from industrial settings to medical devices, where they can have both positive and negative impacts. This review explores the diverse applications of microbial biofilms, their clinical consequences, and alternative therapies targeting these resilient structures. We have discussed beneficial applications of microbial biofilms, including their role in wastewater treatment, bioremediation, food industries, agriculture, and biotechnology. Additionally, we have highlighted the mechanisms of biofilm formation and clinical consequences of biofilms in the context of human health. We have also focused on the association of biofilms with antibiotic resistance, chronic infections, and medical device-related infections. To overcome these challenges, alternative therapeutic strategies are explored. The review examines the potential of various antimicrobial agents, such as antimicrobial peptides, quorum-sensing inhibitors, phytoextracts, and nanoparticles, in targeting biofilms. Furthermore, we highlight the future directions for research in this area and the potential of phytotherapy for the prevention and treatment of biofilm-related infections in clinical settings.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Andaleeb Zahra
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Mohan Kamthan
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
31
|
Meneses L, Brandão AC, Coenye T, Braga AC, Pires DP, Azeredo J. A systematic review of the use of bacteriophages for in vitro biofilm control. Eur J Clin Microbiol Infect Dis 2023:10.1007/s10096-023-04638-1. [PMID: 37407800 DOI: 10.1007/s10096-023-04638-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Bacteriophages (phages) are very promising biological agents for the prevention and control of bacterial biofilms. However, little is known about the parameters that can influence the efficacy of phages on biofilms. This systematic review provides a summary and analysis of the published data about the use of phages to control pre-formed biofilms in vitro, suggesting recommendations for future experiments in this area. A total of 68 articles, containing data on 605 experiments addressing the efficacy of phages to control biofilms in vitro were included, after a search conducted in Web of Science, Embase, and Medline (PubMed). The data collected from each experiment included information about biofilm growth conditions, phage characteristics, treatment conditions and biofilm reduction. In most cases, biofilms were formed in the surface of microtiter plates (82.5%); the median time for biofilm formation was 24 h, as is the median treatment duration. Quantification of biofilm biomass (52.6%), viable cells (25.5%) and metabolic activity (17.9%) were the most common biofilm assessment methods. Correlation analysis revealed that some phage parameters can influence the treatment outcome: higher phage concentrations were strongly associated with improved biofilm control, leading to higher levels of biofilm reduction, and phages with higher burst sizes and shorter latent periods seem to be the best candidates to control biofilms in vitro. However, the great variability of the methodologies used prompts the need for the development of standardized in vitro methodologies to characterize phage/biofilm interactions and to assess the efficacy of phages to control biofilms.
Collapse
Affiliation(s)
- Luciana Meneses
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ana Catarina Brandão
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- ESCMID Study Group for Biofilms (ESGB), Basel, Switzerland
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms (ESGB), Basel, Switzerland
| | | | - Diana Priscila Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- ESCMID Study Group for Biofilms (ESGB), Basel, Switzerland.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- ESCMID Study Group for Biofilms (ESGB), Basel, Switzerland.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
32
|
Stojowska-Swędrzyńska K, Kuczyńska-Wiśnik D, Laskowska E. New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes. Antibiotics (Basel) 2023; 12:1044. [PMID: 37370363 DOI: 10.3390/antibiotics12061044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections.
Collapse
Affiliation(s)
- Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
33
|
Petrovic Fabijan A, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol 2023; 21:e3002119. [PMID: 37220114 PMCID: PMC10204993 DOI: 10.1371/journal.pbio.3002119] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Phage therapy is a medical form of biological control of bacterial infections, one that uses naturally occurring viruses, called bacteriophages or phages, as antibacterial agents. Pioneered over 100 years ago, phage therapy nonetheless is currently experiencing a resurgence in interest, with growing numbers of clinical case studies being published. This renewed enthusiasm is due in large part to phage therapy holding promise for providing safe and effective cures for bacterial infections that traditional antibiotics acting alone have been unable to clear. This Essay introduces basic phage biology, provides an outline of the long history of phage therapy, highlights some advantages of using phages as antibacterial agents, and provides an overview of recent phage therapy clinical successes. Although phage therapy has clear clinical potential, it faces biological, regulatory, and economic challenges to its further implementation and more mainstream acceptance.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Katarzyna Danis-Wlodarczyk
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Razieh Kebriaei
- P3 Research Laboratory, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, United States of America
| |
Collapse
|
34
|
Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnol Adv 2023; 64:108116. [PMID: 36773707 DOI: 10.1016/j.biotechadv.2023.108116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohan Yang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Xu
- Huazhong University of Science and Technology Hospital, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
35
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
36
|
Antimicrobial and Antibiofilm Potential of Thymus vulgaris and Cymbopogon flexuosus Essential Oils against Pure and Mixed Cultures of Foodborne Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12030565. [PMID: 36978432 PMCID: PMC10044171 DOI: 10.3390/antibiotics12030565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The spread of pathogenic and food spoilage microorganisms through the food chain still faces major mitigation challenges, despite modern advances. Although multiple cleaning and disinfection procedures are available for microbial load reduction in food-related settings, microbes can still remain on surfaces, equipment, or machinery, especially if they have the ability to form biofilms. The present study assessed the biofilm-forming properties of pure and mixed cultures of foodborne and spoilage bacteria (Listeria monocytogenes, Enterococcus faecalis, Aeromonas hydrophila, Brochothrix thermosphacta), using polystyrene and stainless steel contact surfaces. Subsequently, the antimicrobial and antibiofilm properties of Thymus vulgaris and Cymbopogon flexuosus essential oils—EOs—were evaluated against these bacteria. Moreover, in silico prediction of the absorption and toxicity values of the EOs’ major constituents was also performed, perceiving the putative application in food-related settings. Overall, biofilm formation was observed for all microbes under study, at different temperatures and both contact surfaces. In polystyrene, at 25 °C, when comparing pure with mixed cultures, the combination Listeria–Aeromonas achieved the highest biofilm biomass. Moreover, at 4 °C, increased biofilm formation was detected in stainless steel. Regarding thyme, this EO showed promising antimicrobial features (especially against A. hydrophila, with a MIC of 0.60 µg/µL) and antibiofilm abilities (MBEC of 110.79 µg/µL against L. monocytogenes, a major concern in food settings). As for lemongrass EO, the highest antimicrobial activity, with a MIC of 0.49 µg/µL, was also observed against L. monocytogenes. Overall, despite promising results, the in situ effectiveness of these essential oils, alone or in combination with other antimicrobial compounds, should be further explored.
Collapse
|
37
|
Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life (Basel) 2023; 13:life13020503. [PMID: 36836860 PMCID: PMC9959329 DOI: 10.3390/life13020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.
Collapse
|
38
|
Mohamad F, Alzahrani RR, Alsaadi A, Alrfaei BM, Yassin AEB, Alkhulaifi MM, Halwani M. An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation. Infect Drug Resist 2023; 16:19-49. [PMID: 36636380 PMCID: PMC9830422 DOI: 10.2147/idr.s380883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the efficacy of antibiotics and evade the host's immunity. Producing a biofilm is not limited to a specific group of bacteria; however, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi-targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques.
Collapse
Affiliation(s)
- F Mohamad
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Raghad R Alzahrani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia,Manal M Alkhulaifi, P.O. Box 55670, Riyadh, 11544, Tel +966 (11) 805-1685, Email
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Correspondence: Majed Halwani, P.O. Box 3660, Mail Code 1515 (KAIMRC), Riyadh, 11481, Tel +966 (11) 429-4433, Fax +966 (11) 429-4440, Email ;
| |
Collapse
|
39
|
Lisac A, Birsa E, Podgornik A. E. coli biofilm formation and its susceptibility towards T4 bacteriophages studied in a continuously operating mixing - tubular bioreactor system. Microb Biotechnol 2022; 15:2450-2463. [PMID: 35638465 PMCID: PMC9437887 DOI: 10.1111/1751-7915.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
A system consisting of a connected mixed and tubular bioreactor was designed to study bacterial biofilm formation and the effect of its exposure to bacteriophages under different experimental conditions. The bacterial biofilm inside silicone tubular bioreactor was formed during the continuous pumping of bacterial cells at a constant physiological state for 2 h and subsequent washing with a buffer for 24 h. Monitoring bacterial and bacteriophage concentration along the tubular bioreactor was performed via a piercing method. The presence of biofilm and planktonic cells was demonstrated by combining the piercing method, measurement of planktonic cell concentration at the tubular bioreactor outlet, and optical microscopy. The planktonic cell formation rate was found to be 8.95 × 10-3 h-1 and increased approximately four-fold (4×) after biofilm exposure to an LB medium. Exposure of bacterial biofilm to bacteriophages in the LB medium resulted in a rapid decrease of biofilm and planktonic cell concentration, to below the detection limit within < 2 h. When bacteriophages were supplied in the buffer, only a moderate decrease in the concentration of both bacterial cell types was observed. After biofilm washing with buffer to remove unadsorbed bacteriophages, its exposure to the LB medium (without bacteriophages) resulted in a rapid decrease in bacterial concentration: again below the detection limit in < 2 h.
Collapse
Affiliation(s)
- Ana Lisac
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
| | - Elfi Birsa
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
| | - Aleš Podgornik
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
- COBIKMirce 215270AjdovščinaSlovenia
| |
Collapse
|
40
|
Assefa M, Amare A. Biofilm-Associated Multi-Drug Resistance in Hospital-Acquired Infections: A Review. Infect Drug Resist 2022; 15:5061-5068. [PMID: 36068834 PMCID: PMC9441148 DOI: 10.2147/idr.s379502] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Biofilm-related multi-drug resistance (MDR) is a major problem in hospital-acquired infections (HAIs) that increase patient morbidity and mortality rates and economic burdens such as high healthcare costs and prolonged hospital stay. This review focuses on the burden of bacterial biofilm in the hospital settings, their impact on the emergence of MDR in the HAIs, biofilm detection methods, recent approaches against biofilms, and future perspectives. The prevalence of biofilm-associated MDR among HAIs ranges from 17.9% to 100.0% worldwide. The predominant bacterial isolates causing HAIs in recently published studies were S. aureus, A. baumannii, K. pneumoniae, and P. aeruginosa. In addition to the use of qualitative and quantitative methods to detect biofilm formation, advanced PCR-based techniques have been performed for detecting biofilm-associated genes. Although there are suggested therapeutic strategies against biofilms, further confirmation of their efficacy for in vivo application and antibiotics targeting biofilm-associated genes/proteins to minimize treatment failure is required for the future.
Collapse
Affiliation(s)
- Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Muluneh Assefa, Tel +251945572632, Email
| | - Azanaw Amare
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
41
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
42
|
Balcão VM, Moreli FC, Silva EC, Belline BG, Martins LF, Rossi FPN, Pereira C, Vila MMDC, da Silva AM. Isolation and Molecular Characterization of a Novel Lytic Bacteriophage That Inactivates MDR Klebsiella pneumoniae Strains. Pharmaceutics 2022; 14:pharmaceutics14071421. [PMID: 35890314 PMCID: PMC9324672 DOI: 10.3390/pharmaceutics14071421] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
The worldwide increase in serious infections caused by multidrug-resistant (MDR) K. pneumoniae emphasizes the urgent need of new therapeutic strategies for the control of this pathogen. There is growing interest in the use of bacteriophages (or phages) to treat K. pneumoniae infections, and newly isolated phages are needed. Here, we report the isolation and physical/biological/molecular characterization of a novel lytic phage and its efficacy in the control of MDR K. pneumoniae. The phage vB_KpnS_Uniso31, referred to hereafter as phage Kpn31, was isolated from hospital wastewater using K. pneumoniae CCCD-K001 as the host. Phage Kpn31 presents a siphovirus-like morphotype and was classified as Demerecviridae; Sugarlandvirus based on its complete genome sequence. The 113,444 bp Kpn31 genome does not encode known toxins or antimicrobial resistance genes, nor does it encode depolymerases related sequences. Phage Kpn31 showed an eclipse time of 15 min and a burst size of 9.12 PFU/host cell, allowing us to conclude it replicates well in K. pneumoniae CCCD-K001 with a latency period of 30 min. Phage Kpn31 was shown to be effective against at least six MDR K. pneumoniae clinical isolates in in vitro antibacterial activity assays. Based on its features, phage Kpn31 has potential for controlling infections caused by MDR K. pneumoniae.
Collapse
Affiliation(s)
- Victor M Balcão
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernanda C Moreli
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Erica C Silva
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Bianca G Belline
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Layla F Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernando P N Rossi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carla Pereira
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta M D C Vila
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
43
|
Small molecules as next generation biofilm inhibitors and anti-infective agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biofilms are consortia of microbes attached to surfaces that could be biotic or abiotic in nature. The bacterial cells are enclosed within a microbial synthesized extrapolymeric substances (EPS). The presence of a thick EPS matrix around the cells, protects it from antimicrobials. As the biofilms are difficult to be eradicated in the tissues and implants, the infections due to biofilms are chronic, persistent as well as recurrent in nature. Biofilm formation in multidrug resistant pathogens is a major public health concern. In this review, we have discussed traditional drug discovery approaches and high throughput screening assays involved in the discovery of small molecules for their application as biofilm inhibitory agents. The small molecules target different phases of biofilm growth in pathogenic bacteria. Here, we have focused on three specific application of small molecules, as anti-adhesion agents that prevent adherence and attachment of cells to surfaces; signal inhibitors that disrupt communication between cells resulting in hampered biofilm growth and development; and finally as agents that induce release of cells from mature biofilms. Some of the biofilm inhibitors have also potentiated the antibiotic efficacy leading to complete eradication of biofilms. It is highly pertinent now to focus on developing these as therapeutics and anti-biofilm agents for coating medical implants and devices in clinical settings.
Collapse
|
44
|
Lev K, Kunz Coyne AJ, Kebriaei R, Morrisette T, Stamper K, Holger DJ, Canfield GS, Duerkop BA, Arias CA, Rybak MJ. Evaluation of Bacteriophage-Antibiotic Combination Therapy for Biofilm-Embedded MDR Enterococcus faecium. Antibiotics (Basel) 2022; 11:antibiotics11030392. [PMID: 35326855 PMCID: PMC8944492 DOI: 10.3390/antibiotics11030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 02/03/2023] Open
Abstract
Multidrug-resistant (MDR) Enterococcus faecium is a challenging pathogen known to cause biofilm-mediated infections with limited effective therapeutic options. Lytic bacteriophages target, infect, and lyse specific bacterial cells and have anti-biofilm activity, making them a possible treatment option. Here, we examine two biofilm-producing clinical E. faecium strains, daptomycin (DAP)-resistant R497 and DAP-susceptible dose-dependent (SDD) HOU503, with initial susceptibility to E. faecium bacteriophage 113 (ATCC 19950-B1). An initial synergy screening was performed with modified checkerboard MIC assays developed by our laboratory to efficiently screen for antibiotic and phage synergy, including at very low phage multiplicity of infection (MOI). The data were compared by one-way ANOVA and Tukey (HSD) tests. In 24 h time kill analyses (TKA), combinations with phage-DAP-ampicillin (AMP), phage-DAP-ceftaroline (CPT), and phage-DAP-ertapenem (ERT) were synergistic and bactericidal compared to any single agent (ANOVA range of mean differences 3.34 to 3.84 log10 CFU/mL; p < 0.001). Furthermore, phage-DAP-AMP and phage-DAP-CPT prevented the emergence of DAP and phage resistance. With HOU503, the combination of phage-DAP-AMP showed the best killing effect, followed closely by phage-DAP-CPT; both showed bactericidal and synergistic effects compared to any single agent (ANOVA range of mean differences 3.99 to 4.08 log10 CFU/mL; p < 0.001).
Collapse
Affiliation(s)
- Katherine Lev
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.L.); (A.J.K.C.); (R.K.); (K.S.); (D.J.H.)
| | - Ashlan J. Kunz Coyne
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.L.); (A.J.K.C.); (R.K.); (K.S.); (D.J.H.)
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.L.); (A.J.K.C.); (R.K.); (K.S.); (D.J.H.)
| | - Taylor Morrisette
- Department of Pharmacy and Clinical Services, Medical University of South Carolina College of Pharmacy, Charleston, SC 29208, USA;
| | - Kyle Stamper
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.L.); (A.J.K.C.); (R.K.); (K.S.); (D.J.H.)
| | - Dana J. Holger
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.L.); (A.J.K.C.); (R.K.); (K.S.); (D.J.H.)
| | - Gregory S. Canfield
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (G.S.C.); (B.A.D.)
- Department of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (G.S.C.); (B.A.D.)
| | - Cesar A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX 77030, USA;
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.L.); (A.J.K.C.); (R.K.); (K.S.); (D.J.H.)
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
45
|
Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022; 14:pharmaceutics14020427. [PMID: 35214158 PMCID: PMC8875263 DOI: 10.3390/pharmaceutics14020427] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial biofilms formed by pathogens are known to be hundreds of times more resistant to antimicrobial agents than planktonic cells, making it extremely difficult to cure biofilm-based infections despite the use of antibiotics, which poses a serious threat to human health. Therefore, there is an urgent need to develop promising alternative antimicrobial therapies to reduce the burden of drug-resistant bacterial infections caused by biofilms. As natural enemies of bacteria, bacteriophages (phages) have the advantages of high specificity, safety and non-toxicity, and possess great potential in the defense and removal of pathogenic bacterial biofilms, which are considered to be alternatives to treat bacterial diseases. This work mainly reviews the composition, structure and formation process of bacterial biofilms, briefly discusses the interaction between phages and biofilms, and summarizes several strategies based on phages and their derivatives against biofilms and drug-resistant bacterial infections caused by biofilms, serving the purpose of developing novel, safe and effective treatment methods against biofilm-based infections and promoting the application of phages in maintaining human health.
Collapse
Affiliation(s)
| | | | | | - Ying Shi
- Correspondence: (Y.S.); (Q.C.); Tel.: +86-139-6717-1522 (Y.S.)
| | - Qihe Chen
- Correspondence: (Y.S.); (Q.C.); Tel.: +86-139-6717-1522 (Y.S.)
| |
Collapse
|
46
|
Jernigan DA, Hart MC, Dodd KK, Jameson S, Farney T. Induced Native Phage Therapy for the Treatment of Lyme Disease and Relapsing Fever: A Retrospective Review of First 14 Months in One Clinic. Cureus 2021; 13:e20014. [PMID: 34873551 PMCID: PMC8636187 DOI: 10.7759/cureus.20014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
The overall failure rate of standard therapeutic options for late/chronic/persistent borreliosis emphasizes the need for novel therapeutic strategies. In this report, we are presenting a novel therapeutic option based on a new technology, Induced Native Phage Therapy (INPT; PhagenCorp, LLC, Sarasota, FL), and its ability to facilitate the elimination of infection more rapidly, efficiently, and with less harm to the patient than conventional treatments. Borrelia species in the environment are themselves always infected by their own type of Borrelia bacteriophages. Both the Borrelia spirochete and the Borrelia bacteriophages are transmitted into humans via the bite of a vector, such as ticks. The Borrelia bacteriophages (phages) are called native phages in that they coexist naturally within the human body, and only infect the specific bacteria host population. Native phages persist in humans only as long as there are host bacteria of the correct type to continue replicating more phages. The purposeful manipulation of native phages to kill their host bacteria is the basis of INPT. INPT is a patent-pending technology that uses a proprietary adjunctive assay called Biospectral Emission Sequencing to identify and isolate the specific complex electromagnetic signatures necessary to induce the native phages to epigenetically revert from their normal quiescent, lysogenic activity to virulent, lytic activity, thereby killing their host bacteria. The strategic subtle, low-frequency/low-energy signatures are imprinted into a proprietary oral formula, Inducen-LD, which serves as a carrier to introduce the signals therapeutically into the body. As a proof-of-concept method validation, a total of 26 patients with post-treatment (antibiotic) Lyme disease syndrome, who initially were found upon Phelix Borrelia-phage testing (R.E.D. Laboratories, Belgium) to have one or more Borrelia species, were submitted to INPT treatment. A total of 20 patients (77%) were found to be negative after two weeks of the total program of care. Six patients who remained positive after the initial therapy received an extended INPT treatment and were retested. Four were subsequently found to be negative for one or more of their previously diagnosed Borrelia strains. Thus a total of 24 out of 26 (92%) patients were successfully treated with INPT. Mild to substantial clinical improvements were reported by all participants without noticeable adverse reactions to the INPT treatments. We have demonstrated a possible mechanism in which native bacteriophages can be induced to epigenetically switch from lysogenic to lytic actions, thereby eliminating the targeted bacteria efficiently, with little to no harm to tissues or the microbiome.
Collapse
Affiliation(s)
- David A Jernigan
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Martin C Hart
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Keeley K Dodd
- Research and Development, PhagenCorp, LLC, Sarasota, USA
| | - Samuel Jameson
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Todd Farney
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| |
Collapse
|
47
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
48
|
Abedon ST, Danis-Wlodarczyk KM, Alves DR. Phage Therapy in the 21st Century: Is There Modern, Clinical Evidence of Phage-Mediated Efficacy? Pharmaceuticals (Basel) 2021; 14:1157. [PMID: 34832939 PMCID: PMC8625828 DOI: 10.3390/ph14111157] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Many bacteriophages are obligate killers of bacteria. That this property could be medically useful was first recognized over one hundred years ago, with 2021 being the 100-year anniversary of the first clinical phage therapy publication. Here we consider modern use of phages in clinical settings. Our aim is to answer one question: do phages serve as effective anti-bacterial infection agents when used clinically? An important emphasis of our analyses is on whether phage therapy-associated anti-bacterial infection efficacy can be reasonably distinguished from that associated with often coadministered antibiotics. We find that about half of 70 human phage treatment reports-published in English thus far in the 2000s-are suggestive of phage-mediated anti-bacterial infection efficacy. Two of these are randomized, double-blinded, infection-treatment studies while 14 of those studies, in our opinion, provide superior evidence of a phage role in observed treatment successes. Roughly three-quarters of these potentially phage-mediated outcomes are based on microbiological as well as clinical results, with the rest based on clinical success. Since many of these phage treatments are of infections for which antibiotic therapy had not been successful, their collective effectiveness is suggestive of a valid utility in employing phages to treat otherwise difficult-to-cure bacterial infections.
Collapse
Affiliation(s)
- Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA;
| | | | - Diana R. Alves
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA;
| |
Collapse
|
49
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
50
|
Amankwah S, Abdella K, Kassa T. Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents. Nanotechnol Sci Appl 2021; 14:161-177. [PMID: 34548785 PMCID: PMC8449863 DOI: 10.2147/nsa.s325594] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms are bacterial communities that live in association with biotic or abiotic surfaces and enclosed in an extracellular polymeric substance. Their formation on both biotic and abiotic surfaces, including human tissue and medical device surfaces, pose a major threat causing chronic infections. In addition, current antibiotics and antiseptic agents have shown limited ability to completely remove biofilms. In this review, the authors provide an overview on the formation of bacterial biofilms and its characteristics, burden and evolution with phages. Moreover, the most recent possible use of phages and phage-derived enzymes to combat bacteria in biofilm structures is elucidated. From the emerging results, it can be concluded that despite successful use of phages and phage-derived products in destroying biofilms, they are mostly not adequate to eradicate all bacterial cells. Nevertheless, a combined therapy with the use of phages and/or phage-derived products with other antimicrobial agents including antibiotics, nanoparticles, and antimicrobial peptides may be effective approaches to remove biofilms from medical device surfaces and to treat their associated infections in humans.
Collapse
Affiliation(s)
- Stephen Amankwah
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Accra Medical Centre, Accra, Ghana
| | - Kedir Abdella
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tesfaye Kassa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|