1
|
Misra B, Hughes KA, Pentz WH, Surface M, Geldenhuys WJ, Bobbala S. TLR7-Adjuvanted Ionizable Lipid Nanoparticles for mRNA Vaccine Delivery. AAPS J 2025; 27:80. [PMID: 40281311 DOI: 10.1208/s12248-025-01073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Ionizable lipid nanoparticles (LNPs) are clinically relevant non-viral vectors that allow intracellular delivery of mRNA vaccines to immune cells. To fight against notorious pathogens and cancer, mRNA vaccines necessitate the addition of an adjuvant to induce strong and durable cell-mediated immune responses. Adjuvants that stimulate Toll-like receptor 7 (TLR7) induce the secretion of type I interferons and proinflammatory cytokines, vital for generating strong immune responses. However, the intracellular delivery of TLR7 adjuvants to precisely stimulate the endosomal TLR7 receptor remains a huge challenge. This issue can be addressed by exploiting ionizable LNP platforms, which can encapsulate and carry mRNA vaccines and small molecule hydrophobic adjuvants to immune cells. CL347 is a potent lipid-based adjuvant that selectively stimulates the TLR7 receptor. In this study, we developed ionizable LNPs incorporating SM102 and CL347 adjuvant as the ionizable lipid and TLR7 adjuvant, respectively. CL347-SM102 LNPs exhibited particle sizes of less than 150 nm with spherical morphology and mRNA encapsulation efficiency of greater than 95%. In vivo studies showed a two-fold increase in IFN-γ producing CD4 and CD8 T cells in the lymphoid organs of the mice immunized with adjuvanted LNPs compared to the non-adjuvanted LNPs. Human PBMCs treated with adjuvanted LNPs exhibited significantly higher CD40 expression and pro-inflammatory cytokine (IL-6 and IFN-γ) secretion than non-adjuvanted LNPs. Together, these results suggest the potential of ionizable LNPs as a platform for concurrent delivery of mRNA and adjuvants for prophylactic and therapeutic vaccine applications.
Collapse
Affiliation(s)
- Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Krystal A Hughes
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - William H Pentz
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA
- School of Medicine, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Morgan Surface
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA.
| |
Collapse
|
2
|
Hegmann TE, Walter EB, Smith MJ, Campbell J, El Sahly HM, Whitaker JA, Creech CB, Ustyugova IV, Goncalvez AP, Pandey A, Alefantis T, Sridhar S, Honda-Okubo Y, Petrovsky N, Frey SE, Abate G, Paulsen G, Anderson EJ, Rostad CA, Rouphael N, Makhene M, Roberts PC, Tuyishimire B, Bryant C, Winokur P. A phase I study of the safety, reactogenicity and immunogenicity of two quadrivalent seasonal influenza vaccines (Fluzone® or Flublok®) with or without one of two adjuvants (AF03 or Advax-CpG55.2) in healthy adults 18-45 years of age. Vaccine 2025; 54:126991. [PMID: 40107003 DOI: 10.1016/j.vaccine.2025.126991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/31/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Seasonal influenza continues to cause significant morbidity and mortality, particularly for the elderly and immunocompromised. Current licensed influenza vaccines provide only partial protection even for immunocompetent hosts. Vaccine adjuvants can improve the magnitude and breadth of immune responses and there is considerable interest in identifying new adjuvants that can improve immune responses to seasonal influenza vaccines. This phase I, randomized, double-blind trial evaluated the safety and immunogenicity of one dose of 2018/2019 quadrivalent influenza vaccine (either Fluzone® or Flublok®) administered intramuscularly with or without one of two adjuvants (AF03 or Advax-CpG55.2). A total of 241 healthy adults aged 18-45 years were enrolled and randomized to 1 of 6 groups. Groups 1-3 received one dose of Fluzone® QIV 2018/2019 administered alone or with AF03 or Advax-CpG55.2 and Groups 4-6 received one dose of Flublok® QIV 2018/2019 alone or with one of these two adjuvants. All participants received Fluzone® or Flublok® QIV 2019/2020 ninety days later. Primary objectives were to evaluate safety and reactogenicity along with changes in hemagglutinin inhibition (HAI), neuraminidase inhibition (NAI) and neutralizing antibodies to 2018/2019 seasonal influenza antigens, comparing Day 1 and Day 29 titers. Secondary objectives evaluated the impact of adjuvants on immune responses after subsequent doses of unadjuvanted seasonal influenza vaccine and immunologic responses to heterologous influenza H1 and H3 antigens. Overall, the adjuvanted vaccines were safe and generated robust immune responses against both homologous and heterologous strains. Similar responses were seen across all six study arms. Both adjuvants were associated with qualitatively improved immune responses against some strains at varying timepoints, but results were inconsistent. There were no substantial differences in safety or reactogenicity identified between the study groups and all vaccine formulations were well tolerated. In this highly immunologically-experienced cohort, neither AF03 nor Advax-CpG55.2 demonstrated notable benefit when added to the seasonal influenza vaccine. (ClinicalTrials.gov ID# NCT03945825).
Collapse
Affiliation(s)
- Theresa E Hegmann
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 200 Hawkins Dr, Iowa City, IA, USA.
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC, USA.
| | - Michael J Smith
- Duke Human Vaccine Institute, Department of Pediatrics, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC, USA.
| | - James Campbell
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St, Baltimore, MD, USA.
| | - Hana M El Sahly
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| | - Jennifer A Whitaker
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| | - C Buddy Creech
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, USA.
| | | | | | | | | | | | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd and Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, Australia.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd and Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, Australia.
| | - Sharon E Frey
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO, USA.
| | - Getahun Abate
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO, USA.
| | - Grant Paulsen
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Evan J Anderson
- Emory Children's Center Departments of Pediatrics and Medicine, Emory University, Atlanta, GA, USA
| | - Christina A Rostad
- Emory Children's Center Department of Pediatrics Vaccine Research Clinic, Emory University, Atlanta, GA, USA.
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Emory University, Atlanta, GA, USA.
| | - Mamodikoe Makhene
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | | | | | - Patricia Winokur
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 200 Hawkins Dr, Iowa City, IA, USA.
| |
Collapse
|
3
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
5
|
Wu R, Sun F, Zhang W, Ren J, Liu GH. Targeting aging and age-related diseases with vaccines. NATURE AGING 2024; 4:464-482. [PMID: 38622408 DOI: 10.1038/s43587-024-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Aging is a major risk factor for numerous chronic diseases. Vaccination offers a promising strategy to combat these age-related diseases by targeting specific antigens and inducing immune responses. Here, we provide a comprehensive overview of recent advances in vaccine-based interventions targeting these diseases, including Alzheimer's disease, type II diabetes, hypertension, abdominal aortic aneurysm, atherosclerosis, osteoarthritis, fibrosis and cancer, summarizing current approaches for identifying disease-associated antigens and inducing immune responses against these targets. Further, we reflect on the recent development of vaccines targeting senescent cells, as a strategy for more broadly targeting underlying causes of aging and associated pathologies. In addition to highlighting recent progress in these areas, we discuss important next steps to advance the therapeutic potential of these vaccines, including improving and robustly demonstrating efficacy in human clinical trials, as well as rigorously evaluating the safety and long-term effects of these vaccine strategies.
Collapse
Affiliation(s)
- Ruochen Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Rattan A, Malemnganba T, Sagar, Prajapati VK. Exploring structural engineering approach to formulate and characterize next-generation adjuvants. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:59-90. [PMID: 38762280 DOI: 10.1016/bs.apcsb.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.
Collapse
Affiliation(s)
- Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sagar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
7
|
Wang N, Wang T. Innovative translational platforms for rapid developing clinical vaccines against COVID-19 and other infectious disease. Biotechnol J 2024; 19:e2300658. [PMID: 38403469 DOI: 10.1002/biot.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
A vaccine is a biological preparation that contains the antigen capable of stimulating the immune system to form the defense against pathogens. Vaccine development often confronts big challenges, including time/energy-consuming, low efficacy, lag to pathogen emergence and mutation, and even safety concern. However, these seem now mostly conquerable through constructing the advanced translational platforms that can make innovative vaccines, sometimes, potentiated with a distinct multifunctional VADS (vaccine adjuvant delivery system), as evidenced by the development of various vaccines against the covid-19 pandemic at warp speed. Particularly, several covid-19 vaccines, such as the viral-vectored vaccines, mRNA vaccines and DNA vaccines, regarded as the innovative ones that are rapidly made via the high technology-based translational platforms. These products have manifested powerful efficacy while showing no unacceptable safety profile in clinics, allowing them to be approved for massive vaccination at also warp speed. Now, the proprietary translational platforms integrated with the state-of-the-art biotechnologies, and even the artificial intelligence (AI), represent an efficient mode for rapid making innovative clinical vaccines against infections, thus increasingly attracting interests of vaccine research and development. Herein, the advanced translational platforms for making innovative vaccines, together with their design principles and immunostimulatory efficacies, are comprehensively elaborated.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
8
|
Kumar SJ, Shukla S, Kumar S, Mishra P. Immunosenescence and Inflamm-Aging: Clinical Interventions and the Potential for Reversal of Aging. Cureus 2024; 16:e53297. [PMID: 38435871 PMCID: PMC10906346 DOI: 10.7759/cureus.53297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Inflammation is often associated with the impairment of the ability to sustain the consequences of the physical, chemical, nutritional, and antigenic triggers of inflammation. The process of immunosenescence may only partially be explained by the senescence of cells, tissues, or the organism, and, hence, the hallmarks of immunosenescence may be markedly and differentially affected by the history of an individual's pathogenic encounter. Inflammation is a key component of immunosenescence, which itself is a direct consequence of aging. This review article highlights the therapeutic interventions for slowing the processes of inflamm-aging and immunosenescence and the possible reversal of aging and includes domains of immunomodulatory interventions, vaccination strategies, nutritional interventions, stem cell therapies, personalized medicine, microbiome interventions, and the positive effects of physical activity and exercise.
Collapse
Affiliation(s)
- Samayak J Kumar
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Samarth Shukla
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Preeti Mishra
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Guo M, Xiong M, Peng J, Guan T, Su H, Huang Y, Yang CG, Li Y, Boraschi D, Pillaiyar T, Wang G, Yi C, Xu Y, Chen C. Multi-omics for COVID-19: driving development of therapeutics and vaccines. Natl Sci Rev 2023; 10:nwad161. [PMID: 37936830 PMCID: PMC10627145 DOI: 10.1093/nsr/nwad161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 11/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli 80131, Italy
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Guanbo Wang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
10
|
Sacconnay L, De Smedt J, Rocha-Perugini V, Ong E, Mascolo R, Atas A, Vanden Abeele C, de Heusch M, De Schrevel N, David MP, Bouzya B, Stobbelaar K, Vanloubbeeck Y, Delputte PL, Mallett CP, Dezutter N, Warter L. The RSVPreF3-AS01 vaccine elicits broad neutralization of contemporary and antigenically distant respiratory syncytial virus strains. Sci Transl Med 2023; 15:eadg6050. [PMID: 37611082 DOI: 10.1126/scitranslmed.adg6050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
The RSVPreF3-AS01 vaccine, containing the respiratory syncytial virus (RSV) prefusion F protein and the AS01 adjuvant, was previously shown to boost neutralization responses against historical RSV strains and to be efficacious in preventing RSV-associated lower respiratory tract diseases in older adults. Although RSV F is highly conserved, variation does exist between strains. Here, we characterized variations in the major viral antigenic sites among contemporary RSV sequences when compared with RSVPreF3 and showed that, in older adults, RSVPreF3-AS01 broadly boosts neutralization responses against currently dominant and antigenically distant RSV strains. RSV-neutralizing responses are thought to play a central role in preventing RSV infection. Therefore, the breadth of RSVPreF3-AS01-elicited neutralization responses may contribute to vaccine efficacy against contemporary RSV strains and those that may emerge in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kim Stobbelaar
- Department of Biomedical Sciences and Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Peter L Delputte
- Department of Biomedical Sciences and Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | | |
Collapse
|
11
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Lykins WR, Fox CB. Practical Considerations for Next-Generation Adjuvant Development and Translation. Pharmaceutics 2023; 15:1850. [PMID: 37514037 PMCID: PMC10385070 DOI: 10.3390/pharmaceutics15071850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Over the last several years, there has been increased interest from academia and the pharmaceutical/biotech industry in the development of vaccine adjuvants for new and emerging vaccine modalities. Despite this, vaccine adjuvant development still has some of the longest timelines in the pharmaceutical space, from discovery to clinical approval. The reasons for this are manyfold and range from complexities in translation from animal to human models, concerns about safety or reactogenicity, to challenges in sourcing the necessary raw materials at scale. In this review, we will describe the current state of the art for many adjuvant technologies and how they should be approached or applied in the development of new vaccine products. We postulate that there are many factors to be considered and tools to be applied earlier on in the vaccine development pipeline to improve the likelihood of clinical success. These recommendations may require a modified approach to some of the common practices in new product development but would result in more accessible and practical adjuvant-containing products.
Collapse
|
13
|
Oh S, Seo H. Dietary intervention with functional foods modulating gut microbiota for improving the efficacy of COVID-19 vaccines. Heliyon 2023; 9:e15668. [PMID: 37124341 PMCID: PMC10121067 DOI: 10.1016/j.heliyon.2023.e15668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Dysbiosis of the gut microbiota with aging contributes to a reduction in important cross-feeding bacterial reactions in the gut and immunosenescence, which could contribute to a decrease in vaccine efficacy. Fever, cough, and fatigue are the main signs of coronavirus disease 2019 (COVID-19); however, some patients with COVID-19 present with gastrointestinal symptoms. COVID-19 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best measures to reduce SARS-CoV-2 infection rates and the severity of COVID-19. The immunogenicity of COVID-19 vaccines is influenced by the composition of the gut microbiota, and the immune response to COVID-19 vaccines decreases with age. In this review, we discuss gut microbiota dysbiosis and immunosenescence in the older adults, the role of gut microbiota in improving the efficacy of COVID-19 vaccines, and dietary interventions to improve the efficacy of COVID-19 vaccines in the older adults.
Collapse
Affiliation(s)
- Soyoung Oh
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| | - Haesook Seo
- Infectious Disease Research Center, Citizen's Health Bureau, Seoul Metropolitan Government, 110, Sejong-daero, Jung-gu, Seoul, 04524, Republic of Korea
| |
Collapse
|
14
|
Soegiarto G, Purnomosari D. Challenges in the Vaccination of the Elderly and Strategies for Improvement. PATHOPHYSIOLOGY 2023; 30:155-173. [PMID: 37218912 DOI: 10.3390/pathophysiology30020014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
In recent years, the elderly has become a rapidly growing proportion of the world's population as life expectancy is extending. Immunosenescence and inflammaging contribute to the increased risk of chronic non-communicable and acute infectious diseases. Frailty is highly prevalent in the elderly and is associated with an impaired immune response, a higher propensity to infection, and a lower response to vaccines. Additionally, the presence of uncontrolled comorbid diseases in the elderly also contributes to sarcopenia and frailty. Vaccine-preventable diseases that threaten the elderly include influenza, pneumococcal infection, herpes zoster, and COVID-19, which contribute to significant disability-adjusted life years lost. Previous studies had shown that conventional vaccines only yielded suboptimal protection that wanes rapidly in a shorter time. This article reviews published papers on several vaccination strategies that were developed for the elderly to solve these problems: more immunogenic vaccine formulations using larger doses of antigen, stronger vaccine adjuvants, recombinant subunit or protein conjugated vaccines, newly developed mRNA vaccines, giving booster shots, and exploring alternative routes of administration. Included also are several publications on senolytic medications under investigation to boost the immune system and vaccine response in the elderly. With all those in regard, the currently recommended vaccines for the elderly are presented.
Collapse
Affiliation(s)
- Gatot Soegiarto
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Dr. Soetomo Academic General Hospital, Faculty of Medicine, Universitas Airlangga, Surabaya 60286, Indonesia
- Master Program in Immunology, Postgraduate School, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Dewajani Purnomosari
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gajah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
15
|
Yang J, Kim J, Kwak C, Poo H. Poly-γ-glutamic acid/Alum adjuvanted pH1N1 vaccine-immunized aged mice exhibit a significant increase in vaccine efficacy with a decrease in age-associated CD8+ T cell proportion in splenocytes. Immun Ageing 2022; 19:22. [PMID: 35606855 PMCID: PMC9124744 DOI: 10.1186/s12979-022-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Background Highly contagious respiratory diseases caused by viral infections are a constantly emerging threat, particularly the elderly with the higher risk of developing serious complications. Vaccines are the best strategy for protection against influenza-related diseases. However, the elderly has lower vaccine efficacy than young population and the age-driven decline of the influenza vaccine efficacy remains unresolved. Objectives This study investigates the effect of an adjuvant, poly-γ-glutamic acid and alum (PGA/Alum) on vaccine efficacy in aged mice (18-months) and its mechanism is investigated using ovalbumin as a model antigen and a commercial pandemic H1N1 (pH1N1) flu vaccine. Antigen trafficking, dendritic cell (DC) activation, and the DC-mediated T cell activation were analyzed via in vivo imaging and flow cytometry. Antigen-specific humoral and cellular immune responses were evaluated in sera and splenocytes from the vaccinated mice. Also, we analyzed gene expression profiles of splenocytes from the vaccinated mice via single-cell transcriptome sequencing and evaluated the protective efficacy against pH1N1 virus challenge. Results Aged mice had lower antigen trafficking and DC activation than younger mice (6-weeks), which was ameliorated by PGA/Alum with increased antigen uptake and DC activation leading to improved antigen-specific IFN-γ+CD8+ T lymphocyte frequencies higher in the vaccinated aged mice, to a similar extent as PGA/Alum adjuvanted vaccine-immunized young mice. The results of single-cell transcriptome sequencing display that PGA/Alum also reduced the proportion of age-associated CD8+ T cell subsets and gene levels of inhibitory regulators in CD8+ T cells, which may play a role in the recovery of CD8+ T cell activation. Finally, PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice were completely protected (100% survival) compared to aged mice immunized with vaccine only (0% survival) after pH1N1 virus challenge, akin to the efficacy of the vaccinated young mice (100% survival). Conclusions PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice showed a significant increase in vaccine efficacy compared to aged mice administered with vaccine only. The enhanced vaccine efficacy by PGA/Alum is associated with significant increases of activation of DCs and effector CD8+ T cells and a decrease in age-associated CD8+ T cell proportion of splenocytes. Collectively, PGA/Alum adjuvanted flu vaccine may be a promising vaccine candidate for the elderly. Supplementary information The online version contains supplementary material available at 10.1186/s12979-022-00282-z.
Collapse
|
16
|
Martín Martín S, Morató Agustí ML, Javierre Miranda AP, Sánchez Hernández C, Schwarz Chavarri G, Aldaz Herce P, García Iglesias C, Gómez Marco JJ, Gutiérrez Pérez MI. [Infectious Disease Prevention Group: Update on vaccines, 2022]. Aten Primaria 2022; 54 Suppl 1:102462. [PMID: 36435581 PMCID: PMC9682159 DOI: 10.1016/j.aprim.2022.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
The update of the preventive activities for this year 2022 in the field of infectious diseases is of special relevance due to the importance that prevention has gained and more specifically, vaccination as a tool to control the pandemic caused by the SARS-CoV-2 virus declared on March 11, 2020. The pandemic has focused much of the prevention efforts on its containment, but the importance of maintaining high vaccination coverage of the rest of the recommended vaccines to maintain good control of vaccine-preventable diseases and avoid complications in particularly vulnerable patients should not be forgotten. In this year's review we present a practical document with the aim of providing tools to primary care professionals who work with adults, to make the indication of each vaccine whether it is systematically recommended or if it is because the patient belongs to some risk group due to their condition or underlying pathology. In this way, throughout the document, we will comment on the most innovative aspects of systematic vaccination (flu, pneumococcus, meningococcal vaccines and vaccines against the human papillomavirus [HPV]), the new vaccines (pandemic vaccines against COVID-19, vaccines against herpes zoster of subunits, vaccines against monkeypox) and the recommended vaccines according to risk condition (pregnancy and lactation, travelers, patients with immunosuppression or underlying pathology).
Collapse
Affiliation(s)
- Susana Martín Martín
- Medicina Familiar y Comunitaria, Centro de Salud de Balmaseda, OSI Ezkerraldea Enkarterri Cruces, Balmaseda, Vizcaya, España.
| | - M Luisa Morató Agustí
- Medicina Familiar y Comunitaria, Consultor Senior del Grupo de Prevención en las Enfermedades Infecciosas PAPPS-semFyC
| | | | - Coro Sánchez Hernández
- Medicina Familiar y Comunitaria, Centro de Salud Virgen Peregrina, SERGAS, Pontevedra, España
| | - Germán Schwarz Chavarri
- Medicina Familiar y Comunitaria, Centro de Salud San Blas. Conselleria de Sanitat, Generalitat Valenciana, Alicante, España
| | - Pablo Aldaz Herce
- Medicina Familiar y Comunitaria, Centro de Salud San Juan, SNS, Pamplona, España
| | | | | | | |
Collapse
|
17
|
McMillan JKP, O’Donnell P, Chang SP. Pattern recognition receptor ligand-induced differentiation of human transitional B cells. PLoS One 2022; 17:e0273810. [PMID: 36040923 PMCID: PMC9426890 DOI: 10.1371/journal.pone.0273810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022] Open
Abstract
B cells represent a critical component of the adaptive immune response whose development and differentiation are determined by antigen-dependent and antigen-independent interactions. In this study, we explored the effects of IL-4 and pattern-recognition receptor (PRR) ligands on B cell development and differentiation by investigating their capacity to drive the in vitro maturation of human transitional B cells. In the presence of IL-4, ligands for TLR7/8, TLR9, and NOD1 were effective in driving the in vitro maturation of cord blood transitional B cells into mature, naïve B cells as measured by CD23 expression, ABCB1 transporter activation and upregulation of sIgM and sIgD. In addition, several stimulation conditions, including TLR9 ligand alone, favored an expansion of CD27+ IgM memory B cells. Transitional B cells stimulated with TLR7/8 ligand + IL-4 or TLR9 ligand, with or without IL-4, induced a significant subpopulation of CD23+CD27+ B cells expressing high levels of sIgM and sIgD, a minor B cell subpopulation found in human peripheral blood. These studies illustrate the heterogeneity of the B cell populations induced by cytokine and PRR ligand stimulation. A comparison of transitional and mature, naïve B cells transcriptomes to identify novel genes involved in B cell maturation revealed that mature, naïve B cells were less transcriptionally active than transitional B cells. Nevertheless, a subset of differentially expressed genes in mature, naïve B cells was identified including genes associated with the IL-4 signaling pathway, PI3K signaling in B lymphocytes, the NF-κB signaling pathway, and the TNFR superfamily. When transitional B cells were stimulated in vitro with IL-4 and PRR ligands, gene expression was found to be dependent on the nature of the stimulants, suggesting that exposure to these stimulants may alter the developmental fate of transitional B cells. The influence of IL-4 and PRR signaling on transitional B cell maturation illustrates the potential synergy that may be achieved when certain PRR ligands are incorporated as adjuvants in vaccine formulations and presented to developing B cells in the context of an inflammatory cytokine environment. These studies demonstrate the potential of the PRR ligands to drive transitional B cell differentiation in the periphery during infection or vaccination independently of antigen mediated BCR signaling.
Collapse
Affiliation(s)
- Jourdan K. P. McMillan
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States of America
- * E-mail:
| | - Patrick O’Donnell
- Kapiolani Medical Center for Women and Children, Hawaii Pacific Health, Honolulu, HI, United States of America
| | - Sandra P. Chang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
18
|
Garnica M, Aiello A, Ligotti ME, Accardi G, Arasanz H, Bocanegra A, Blanco E, Calabrò A, Chocarro L, Echaide M, Kochan G, Fernandez-Rubio L, Ramos P, Pojero F, Zareian N, Piñeiro-Hermida S, Farzaneh F, Candore G, Caruso C, Escors D. How Can We Improve the Vaccination Response in Older People? Part II: Targeting Immunosenescence of Adaptive Immunity Cells. Int J Mol Sci 2022; 23:9797. [PMID: 36077216 PMCID: PMC9456031 DOI: 10.3390/ijms23179797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence. The adaptive immune system is constituted by two types of lymphocytes, T and B cells, and the function and fitness of these cell populations are affected during ageing. Here, we review the impact of ageing on T and B cells and discuss the approaches that have been described or proposed to modulate and reverse the decline of the ageing adaptive immune system.
Collapse
Affiliation(s)
- Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Nahid Zareian
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
19
|
Dowling DJ, Levy O. A Precision Adjuvant Approach to Enhance Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines Optimized for Immunologically Distinct Vulnerable Populations. Clin Infect Dis 2022; 75:S30-S36. [PMID: 35512145 PMCID: PMC9129145 DOI: 10.1093/cid/ciac342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 01/19/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused significant mortality, especially among older adults whose distinct immune system reflects immunosenescence. Multiple SARS-CoV-2 vaccines have received emergency use authorization and/or licensure from the US Food and Drug Administration and throughout the world. However, their deployment has heighted significant limitations, such by age-dependent immunogenicity, requirements for multiple vaccine doses, refrigeration infrastructure that is not universally available, as well as waning immunity. Thus, there was, and continues to be a need for continued innovation during the pandemic given the desire for dose-sparing, formulations stable at more readily achievable temperatures, need for robust immunogenicity in vulnerable populations, and development of safe and effective pediatric vaccines. In this context, optimal SARS-CoV-2 vaccines may ultimately rely on inclusion of adjuvants as they can potentially enhance protection of vulnerable populations and provide dose-sparing effects enabling single shot protection.
Collapse
Affiliation(s)
- David J Dowling
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Levy
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Nanishi E, Angelidou A, Rotman C, Dowling DJ, Levy O, Ozonoff A. Precision Vaccine Adjuvants for Older Adults: A Scoping Review. Clin Infect Dis 2022; 75:S72-S80. [PMID: 35439286 PMCID: PMC9376277 DOI: 10.1093/cid/ciac302] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Older adults, defined as those ≥60 years of age, are a growing population vulnerable to infections including severe acute respiratory syndrome coronavirus 2. Although immunization is a key to protecting this population, immunosenescence can impair responses to vaccines. Adjuvants can increase the immunogenicity of vaccine antigens but have not been systematically compared in older adults. We conducted a scoping review to assess the comparative effectiveness of adjuvants in aged populations. Adjuvants AS01, MF59, AS03, and CpG-oligodeoxynucleotide, included in licensed vaccines, are effective in older human adults. A growing menu of investigational adjuvants, such as Matrix-M and CpG plus alum, showed promising results in early phase clinical trials and preclinical studies. Most studies assessed only 1 or 2 adjuvants and no study has directly compared >3 adjuvants among older adults. Enhanced preclinical approaches enabling direct comparison of multiple adjuvants including human in vitro modeling and age-specific animal models may derisk and accelerate vaccine development for older adults.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital,Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Asimenia Angelidou
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital,Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Chloe Rotman
- Medical Library, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital,Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital,Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital,Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
van Haren SD, Pedersen GK, Kumar A, Ruckwardt TJ, Moin S, Moore IN, Minai M, Liu M, Pak J, Borriello F, Doss-Gollin S, Beijnen EMS, Ahmed S, Helmel M, Andersen P, Graham BS, Steen H, Christensen D, Levy O. CAF08 adjuvant enables single dose protection against respiratory syncytial virus infection in murine newborns. Nat Commun 2022; 13:4234. [PMID: 35918315 PMCID: PMC9346114 DOI: 10.1038/s41467-022-31709-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation. In a murine in vivo model a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protects newborn mice from RSV infection by induction of antigen-specific CD8+ T-cells and Th1 cells. Overall, we describe a pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other respiratory viral pathogens.
Collapse
Affiliation(s)
- Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Azad Kumar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Syed Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Simon Doss-Gollin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Elisabeth M S Beijnen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Saima Ahmed
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michaela Helmel
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Andersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
22
|
Eshraghi Y, Vahdani Y, Karimi P, Abdollahpour-Alitappeh M, Abdoli A, Taghizadeh M, Mahdavi M. Immunomodulatory Effects of α-Tocopherol on the H1N1 Influenza Vaccine: Improving the Potency and Efficacy of the Influenza Vaccine in Aged Mice. Viral Immunol 2022; 35:244-253. [PMID: 35467429 DOI: 10.1089/vim.2021.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Declined immune response is the main cause of decreased potency of the influenza vaccine in the elderly, regardless of virus mutations. Herein, we hypothesized that the addition of α-tocopherol to the influenza vaccine formulation might increase vaccine potency and efficacy. Hemagglutinin of the H1N1 virus was formulated in Alum and α-tocopherol, and then aged (16-20-month-old) and young (6-8-week-old) mice were immunized subcutaneously two times with 2-week intervals with 5 μg of different vaccine formulations. Two weeks after the final boosting, IFN-γ and IL-4 cytokines were assessed by using ELISA. Humoral immune responses were assessed by hemagglutination inhibition (HI). In addition, vaccine efficacy was determined by intranasal viral challenge of mice using mouse-adapted H1N1 virus. Our results showed that the new vaccine formulation improved IFN-γ and IL-4 responses in the experimental mice. However, the increase was evident mainly in the aged group and, to some extent, in the young group. Results from the HI assay showed that α-tocopherol in the vaccine formulation could increase HI activity in both young and aged mice. Furthermore, α-tocopherol, as an adjuvant, increased the protectivity of the influenza vaccine in both aged and young groups through the decreased lung viral load and increased survival rate of the experimental mice. In conclusion, it seems that α-tocopherol can not only be used as an appropriate adjuvant for aged people, but also empower old and worn out cells to increase the effectiveness of the vaccine in the elderly.
Collapse
Affiliation(s)
- Yasaman Eshraghi
- Department of Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasaman Vahdani
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pegah Karimi
- Department of Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meghdad Abdollahpour-Alitappeh
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran.,Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Taghizadeh
- Department of Human Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mahdavi
- Department of Advanced Therapy Medicinal Product (ATMP), Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran.,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
23
|
Fulop T, Larbi A, Pawelec G, Cohen AA, Provost G, Khalil A, Lacombe G, Rodrigues S, Desroches M, Hirokawa K, Franceschi C, Witkowski JM. Immunosenescence and Altered Vaccine Efficiency in Older Subjects: A Myth Difficult to Change. Vaccines (Basel) 2022; 10:vaccines10040607. [PMID: 35455356 PMCID: PMC9030923 DOI: 10.3390/vaccines10040607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
- Correspondence: (T.F.); (S.R.)
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore;
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72072 Tübingen, Germany;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Alan A. Cohen
- Groupe de Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada;
| | | | - Abedelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Guy Lacombe
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, 48009 Bilbao, Spain;
- BCAM—The Basque Center for Applied Mathematics, 48009 Bilbao, Spain
- Correspondence: (T.F.); (S.R.)
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, CEDEX, 06902 Sophia Antipolis, France;
- The Jean Alexandre Dieudonné Laboratory, Université Côte d’Azur, CEDEX 2, 06108 Nice, France
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- Department of Applied Mathematics and Laboratory of Systems Biology of Healthy Aging, Lobachevsky State University, 603000 Nizhny Novgorod, Russia
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
24
|
Tretiakova DS, Vodovozova EL. Liposomes as Adjuvants and Vaccine Delivery Systems. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:1-20. [PMID: 35194485 PMCID: PMC8853224 DOI: 10.1134/s1990747822020076] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
The review considers liposomes as systems of substantial interest as adjuvant carriers in vaccinology due to their versatility and maximal biocompatibility. Research and development on the use of liposomes and lipid nanoparticles to create subunit vaccines for the prevention and treatment of infectious diseases has been going on for several decades. In recent years, the area has seen serious progress due to the improvement of the technology of industrial production of various high-grade lipids suitable for parenteral administration and the emergence of new technologies and equipment for the production of liposomal preparations. When developing vaccines, it is necessary to take into account how the body’s immune system (innate and adaptive immunity) functions. The review briefly describes some of the fundamental mechanisms underlying the mobilization of immunity when encountering an antigen, as well as the influence of liposome carriers on the processes of internalization of antigens by immunocompetent cells and ways of immune response induction. The results of the studies on the interactions of liposomes with antigen-presenting cells in function of the liposome size, charge, and phase state of the bilayer, which depends on the lipid composition, are often contradictory and should be verified in each specific case. The introduction of immunostimulant components into the composition of liposomal vaccine complexes—ligands of the pathogen-associated molecular pattern receptors—permits modulation of the strength and type of the immune response. The review briefly discusses liposome-based vaccines approved for use in the clinic for the treatment and prevention of infectious diseases, including mRNA-loaded lipid nanoparticles. Examples of liposomal vaccines that undergo various stages of clinical trials are presented.
Collapse
Affiliation(s)
- D S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - E L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
25
|
Sandionigi A, De Giani A, Tursi F, Michelotti A, Cestone E, Giardina S, Zampolli J, Di Gennaro P. Effectiveness of Multistrain Probiotic Formulation on Common Infectious Disease Symptoms and Gut Microbiota Modulation in Flu-Vaccinated Healthy Elderly Subjects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3860896. [PMID: 35127941 PMCID: PMC8814717 DOI: 10.1155/2022/3860896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The decline of the immune system with aging leads elderly people to be more susceptible to infections, posing high risk for their health. Vaccination is thus important to cope with this risk, even though not always effective. As a strategy to improve protection, adjuvants are used in concomitance with vaccines, however, occasionally producing important side effects. The use of probiotics has been proposed as an alternative to adjuvants due to their efficacy in reducing the risk of common infections through the interactions with the immune system and the gut microbiota. A placebo-controlled, randomized, double-blind, clinical trial was carried out on fifty elderly subjects, vaccinated for influenza, to determine the efficacy of a probiotic mixture in reducing common infection symptoms. The incidence of symptoms was evaluated after 28 days of probiotic intake (namely, T28) and after further 28 days of follow-up (namely, T56). The number of subjects, as well as the number of days with symptoms, was remarkably reduced at T28, and even more at T56 in the probiotic group. Furthermore, the influence of probiotics on immunological parameters was investigated, showing a significant positive improvement of total antioxidant capacity and β-defensin2 levels. Finally, faecal samples collected from participants were used to assess variations in the gut microbiota composition during the study, showing that probiotic intake enhanced the presence of genera related to a healthy status. Therefore, the collected results suggested that the treatment with the selected probiotic mixture could help in reducing common infectious disease symptom incidence through the stimulation of the immune system, improving vaccine efficacy, and modulating the composition of the resident gut microbiota by enhancing beneficial genera.
Collapse
Affiliation(s)
- Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | | | - Enza Cestone
- Complife Italia Srl, San Martino Siccomario (PV), Italy
| | | | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
26
|
Cheong Y, Kim M, Ahn J, Oh H, Lim J, Chae W, Yang SW, Kim MS, Yu JE, Byun S, Jang YH, Seong BL. Epigallocatechin-3-Gallate as a Novel Vaccine Adjuvant. Front Immunol 2021; 12:769088. [PMID: 34868027 PMCID: PMC8632720 DOI: 10.3389/fimmu.2021.769088] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Vaccine adjuvants from natural resources have been utilized for enhancing vaccine efficacy against infectious diseases. This study examined the potential use of catechins, polyphenolic materials derived from green tea, as adjuvants for subunit and inactivated vaccines. Previously, catechins have been documented to have irreversible virucidal function, with the possible applicability in the inactivated viral vaccine platform. In a mouse model, the coadministration of epigallocatechin-3-gallate (EGCG) with influenza hemagglutinin (HA) antigens induced high levels of neutralizing antibodies, comparable to that induced by alum, providing complete protection against the lethal challenge. Adjuvant effects were observed for all types of HA antigens, including recombinant full-length HA and HA1 globular domain, and egg-derived inactivated split influenza vaccines. The combination of alum and EGCG further increased neutralizing (NT) antibody titers with the corresponding hemagglutination inhibition (HI) titers, demonstrating a dose-sparing effect. Remarkably, EGCG induced immunoglobulin isotype switching from IgG1 to IgG2a (approximately >64-700 fold increase), exerting a more balanced TH1/TH2 response compared to alum. The upregulation of IgG2a correlated with significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) function (approximately 14 fold increase), providing a potent effector-mediated protection in addition to NT and HI. As the first report on a novel class of vaccine adjuvants with built-in virucidal activities, the results of this study will help improve the efficacy and safety of vaccines for pandemic preparedness.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Vaccine/administration & dosage
- Alum Compounds/administration & dosage
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Catechin/administration & dosage
- Catechin/analogs & derivatives
- Catechin/immunology
- Dogs
- Drug Synergism
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Mice
Collapse
Affiliation(s)
- Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Minjin Kim
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jina Ahn
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon, South Korea
| | - Hana Oh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seung Won Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Min Seok Kim
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong, South Korea
- Vaccine Industry Research Institute, Andong National University, Andong, South Korea
| | - Baik Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, South Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
27
|
Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun Ageing 2021; 18:38. [PMID: 34627326 PMCID: PMC8501352 DOI: 10.1186/s12979-021-00249-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Preserving good health in old age is of utmost importance to alleviate societal, economic and health care-related challenges caused by an aging society. The prevalence and severity of many infectious diseases is higher in older adults, and in addition to the acute disease, long-term sequelae, such as exacerbation of underlying chronic disease, onset of frailty or increased long-term care dependency, are frequent. Prevention of infections e.g. by vaccination is therefore an important measure to ensure healthy aging and preserve quality of life. Several vaccines are specifically recommended for older adults in many countries, and in the current SARS-CoV-2 pandemic older adults were among the first target groups for vaccination due to their high risk for severe disease. This review highlights clinical data on the influenza, Streptococcus pneumoniae and herpes zoster vaccines, summarizes recent developments to improve vaccine efficacy, such as the use of adjuvants or higher antigen dose for influenza, and gives an overview of SARS-CoV-2 vaccine development for older adults. Substantial research is ongoing to further improve vaccines, e.g. by developing universal influenza and pneumococcal vaccines to overcome the limitations of the current strain-specific vaccines, and to develop novel vaccines against pathogens, which cause considerable morbidity and mortality in older adults, but for which no vaccines are currently available. In addition, we need to improve uptake of the existing vaccines and increase awareness for life-long vaccination in order to provide optimal protection for the vulnerable older age group.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| |
Collapse
|
28
|
Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J, Piplani S, Bebin-Blackwell AG, Forgacs D, Sakamoto K, Stella A, Turville S, Chataway T, Colella A, Triccas J, Ross TM, Petrovsky N. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 2021; 39:5940-5953. [PMID: 34420786 PMCID: PMC8328570 DOI: 10.1016/j.vaccine.2021.07.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
The development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombinant spike protein vaccine (Covax-19™). A synthetic gene encoding the spike extracellular domain (ECD) was inserted into a baculovirus backbone to express the protein in insect cell cultures. The spike ECD was formulated with Advax-SM adjuvant and first tested for immunogenicity in C57BL/6 and BALB/c mice. Covax-19 vaccine induced high spike protein binding antibody levels that neutralised the original lineage B.1.319 virus from which the vaccine spike protein was derived, as well as the variant B.1.1.7 lineage virus. Covax-19 vaccine also induced a high frequency of spike-specific CD4 + and CD8 + memory T-cells with a dominant Th1 phenotype associated with the ability to kill spike-labelled target cells in vivo. Ferrets immunised with Covax-19 vaccine intramuscularly twice 2 weeks apart made spike receptor binding domain (RBD) IgG and were protected against an intranasal challenge with SARS-CoV-2 virus given two weeks after the last immunisation. Notably, ferrets that received the two higher doses of Covax-19 vaccine had no detectable virus in their lungs or in nasal washes at day 3 post-challenge, suggesting that in addition to lung protection, Covax-19 vaccine may have the potential to reduce virus transmission. This data supports advancement of Covax-19 vaccine into human clinical trials.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Jeremy Baldwin
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia
| | - Sakshi Piplani
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | | | - David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, GA, USA
| | - Alberto Stella
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Stuart Turville
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Tim Chataway
- College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Alex Colella
- College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Jamie Triccas
- School of Medical Sciences and Marie Bashir Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
29
|
Kennedy RB, Ovsyannikova IG, Poland GA. Update on Influenza Vaccines: Needs and Progress. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3599-3603. [PMID: 34416408 DOI: 10.1016/j.jaip.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
Influenza is an annual seasonal epidemic, and occasionally pandemic, respiratory disease that causes considerable morbidity and mortality worldwide. Despite the widespread availability of safe and effective vaccines since the 1950s, this virus continues to pose a significant public health threat. Variable and often weak vaccine effectiveness, antigenic drift and shift, and vaccine hesitancy are some of the obstacles that must be overcome to control this disease. In this article, we briefly review current influenza vaccines, address safety concerns and the need for newer influenza vaccines of higher efficacy, and discuss efforts to create broadly protective, universal influenza vaccines.
Collapse
Affiliation(s)
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minn
| |
Collapse
|
30
|
Sims MD, Maine GN, Childers KL, Podolsky RH, Voss DR, Berkiw-Scenna N, Oh J, Heinrich KE, Keil H, Kennedy RH, Homayouni R. Coronavirus Disease 2019 (COVID-19) Seropositivity and Asymptomatic Rates in Healthcare Workers Are Associated with Job Function and Masking. Clin Infect Dis 2021; 73:S154-S162. [PMID: 33150375 PMCID: PMC7665441 DOI: 10.1093/cid/ciaa1684] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Background Although the risk of exposure to SARS-CoV-2 is higher for frontline healthcare workers, not all personnel have similar risks. Determining infection rate is difficult due to the limits on testing and the high rate of asymptomatic individuals. Detection of antibodies against SARS-CoV-2 may be useful for determining prior exposure to the virus and assessing mitigation strategies, such as isolation, masks, and other protective equipment. Methods An online assessment that included demographic, clinical, and exposure information and a blood sample was collected from 20,614 participants out of ~43,000 total employees at Beaumont Health, which includes eight hospitals distributed across the Detroit metropolitan area in southeast Michigan. The presence of anti-SARS-CoV-2 IgG was determined using the EUROIMMUN assay. Results A total of 1,818 (8.8%) participants were seropositive between April 13 and May 28, 2020. Among the seropositive individuals, 44% reported that they were asymptomatic during the month prior to blood collection. Healthcare roles such as phlebotomy, respiratory therapy, and nursing/nursing support exhibited significantly higher seropositivity. Among participants reporting direct exposure to a COVID-19 positive individual, those wearing an N95/PAPR mask had a significantly lower seropositivity rate (10.2%) compared to surgical/other masks (13.1%) or no mask (17.5%). Conclusions Direct contact with COVID-19 patients increased the likelihood of seropositivity among employees but study participants who wore a mask during COVID-19 exposures were less likely to be seropositive. Additionally, a large proportion of seropositive employees self-reported as asymptomatic. (Funded by Beaumont Health and by major donors through the Beaumont Health Foundation) ClinicalTrials.gov number NCT04349202
Collapse
Affiliation(s)
- Matthew D Sims
- Section of Infectious Diseases and International Medicine, Department of Internal Medicine, Beaumont Royal Oak, Royal Oak, MI, USA.,Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.,Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Gabriel N Maine
- Pathology and Laboratory Medicine, Beaumont Royal Oak, Royal Oak, MI, USA.,Department of Pathology, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | | | | | - Daniel R Voss
- Research Computing, Beaumont Research Institute, Royal Oak, MI, USA
| | | | - Joyce Oh
- Information Technology, Beaumont Health, Southfield, MI, USA
| | | | - Hans Keil
- Information Technology, Beaumont Health, Southfield, MI, USA
| | - Richard H Kennedy
- Beaumont Research Institute, Royal Oak, MI, USA.,Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Ramin Homayouni
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
31
|
Pulendran B, S Arunachalam P, O'Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov 2021; 20:454-475. [PMID: 33824489 PMCID: PMC8023785 DOI: 10.1038/s41573-021-00163-y] [Citation(s) in RCA: 763] [Impact Index Per Article: 190.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines ('systems vaccinology') are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the 'known knowns' and 'known unknowns' of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Chemistry, Engineering & Medicine for Human Health, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
32
|
Palacios-Pedrero MÁ, Osterhaus ADME, Becker T, Elbahesh H, Rimmelzwaan GF, Saletti G. Aging and Options to Halt Declining Immunity to Virus Infections. Front Immunol 2021; 12:681449. [PMID: 34054872 PMCID: PMC8149791 DOI: 10.3389/fimmu.2021.681449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosenescence is a process associated with aging that leads to dysregulation of cells of innate and adaptive immunity, which may become dysfunctional. Consequently, older adults show increased severity of viral and bacterial infections and impaired responses to vaccinations. A better understanding of the process of immunosenescence will aid the development of novel strategies to boost the immune system in older adults. In this review, we focus on major alterations of the immune system triggered by aging, and address the effect of chronic viral infections, effectiveness of vaccination of older adults and strategies to improve immune function in this vulnerable age group.
Collapse
Affiliation(s)
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
33
|
Vivekanandhan K, Shanmugam P, Barabadi H, Arumugam V, Daniel Raj Daniel Paul Raj D, Sivasubramanian M, Ramasamy S, Anand K, Boomi P, Chandrasekaran B, Arokiyaraj S, Saravanan M. Emerging Therapeutic Approaches to Combat COVID-19: Present Status and Future Perspectives. Front Mol Biosci 2021; 8:604447. [PMID: 33763450 PMCID: PMC7983051 DOI: 10.3389/fmolb.2021.604447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/22/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) has emerged as a fast-paced epidemic in late 2019 which is disrupting life-saving immunization services. SARS-CoV-2 is a highly transmissible virus and an infectious disease that has caused fear among people across the world. The worldwide emergence and rapid expansion of SARS-CoV-2 emphasizes the need for exploring innovative therapeutic approaches to combat SARS-CoV-2. The efficacy of some antiviral drugs such as remdesivir, favipiravir, umifenovir, etc., are still tested against SARS-CoV-2. Additionally, there is a large global effort to develop vaccines for the protection against COVID-19. Because vaccines seem the best solution to control the pandemic but time is required for its development, pre-clinical/clinical trials, approval from FDA and scale-up. The nano-based approach is another promising approach to combat COVID-19 owing to unique physicochemical properties of nanomaterials. Peptide based vaccines emerged as promising vaccine candidates for SARS-CoV-2. The study emphasizes the current therapeutic approaches against SARS-CoV-2 and some of the potential candidates for SARS-CoV-2 treatment which are still under clinical studies for their effectiveness against SARS-CoV-2. Overall, it is of high importance to mention that clinical trials are necessary for confirming promising drug candidates and effective vaccines and the safety profile of the new components must be evaluated before translation of in vitro studies for implementation in clinical use.
Collapse
Affiliation(s)
- Karthik Vivekanandhan
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu, India
| | - Poornima Shanmugam
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu, India
| | - Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vigneshwaran Arumugam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Manikandan Sivasubramanian
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Subbaiya Ramasamy
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Zambia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, India
| | | | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - Muthupandian Saravanan
- Department of Microbiology and Immunology, Division of Biomedical Science, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
34
|
Perciani CT, Liu LY, Wood L, MacParland SA. Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System. ACS NANO 2021; 15:7-20. [PMID: 33346646 DOI: 10.1021/acsnano.0c08913] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The failure of immune responses to vaccines and dysfunctional immune responses to viral infection, tumor development, or neoantigens lead to chronic viral infection, tumor progression, or incomplete immune protection after vaccination. Thus, strategies to boost host immunity are a topic of intense research and development. Engineered nanoparticles (NPs) possess immunological properties and can be modified to promote improved local immune responses. Nanoparticle-based approaches have been employed to enhance vaccine efficacy and host immune responses to viral and tumor antigens, with impressive results. In this Perspective, we present an overview of studies, such as the one reported by Alam et al. in this issue of ACS Nano, in which virus-like particles have been employed to enhance immunity. We review the cellular cornerstones of effective immunity and discuss how NPs can harness these interactions to overcome the current obstacles in vaccinology and oncology. We also discuss the barriers to effective NP-mediated immune priming including (1) NP delivery to the site of interest, (2) the quality of response elicited, and (3) the potential of the response to overcome immune escape. Through this Perspective, we aim to highlight the value of nanomedicine not only in delivering therapies but also in coordinating the enhancement of host immune responses. We provide a forward-looking outlook for future NP-based approaches and how they could be tailored to promote this outcome.
Collapse
Affiliation(s)
- Catia T Perciani
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Lewis Y Liu
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lawrence Wood
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Sonya A MacParland
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
35
|
Lu L, Fong CHY, Zhang AJ, Wu WL, Li IC, Lee ACY, Dissanayake TK, Chen L, Hung IFN, Chan KH, Chu H, Kok KH, Yuen KY, To KKW. Repurposing of Miltefosine as an Adjuvant for Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8040754. [PMID: 33322574 PMCID: PMC7768360 DOI: 10.3390/vaccines8040754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose of influenza virus 3 or 7 days after vaccination. Survival, body weight, antibody response, histopathological changes, viral loads, cytokine levels, and T cell frequencies were compared. The MTF-adjuvanted vaccine (MTF-VAC) group had a significantly better survival rate than the vaccine-only (VAC) group, when administered 3 days (80% vs. 26.7%, p = 0.0063) or 7 days (96% vs. 65%, p = 0.0041) before influenza virus challenge. Lung damage was significantly ameliorated in the MTF-VAC group. Antibody response was significantly augmented in the MTF-VAC group against both homologous and heterologous influenza strains. There was a greater T follicular helper cell (TFH) response and an enhanced germinal center (GC) reaction in the MTF-VAC group. MTF-VAC also induced both TH1 and TH2 antigen-specific cytokine responses. MTF improved the efficacy of the influenza vaccine against homologous and heterologous viruses by improving the TFH and antibody responses. Miltefosine may also be used for other vaccines, including the upcoming vaccines for COVID-19.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Wai-Lan Wu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Iris Can Li
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Andrew Chak-Yiu Lee
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Thrimendra Kaushika Dissanayake
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Linlei Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Hin Chu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Kin-Hang Kok
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; (L.L.); (C.H.-Y.F.); (A.J.Z.); (W.-L.W.); (I.C.L.); (A.C.-Y.L.); (T.K.D.); (L.C.); (K.-H.C.); (H.C.); (K.-H.K.); (K.-Y.Y.)
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- Correspondence:
| |
Collapse
|
36
|
Scanlon N, Saklawi Y, Rouphael N. The Role of Systems Vaccinology in Understanding the Immune Defects to Vaccination in Solid Organ Transplant Recipients. Front Immunol 2020; 11:582201. [PMID: 33324400 PMCID: PMC7723964 DOI: 10.3389/fimmu.2020.582201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
Solid organ transplant recipients (SOTRs) are at increased risk for many infections, whether viral, bacterial, or fungal, due to immunosuppressive therapy to prevent organ rejection. The same immune defects that render transplanted patients susceptible to infection dampen their immune response to vaccination. Therefore, it is vital to identify immune defects to vaccination in transplant recipients and methods to obviate them. These methods can include alternative vaccine composition, dosage, adjuvants, route of administration, timing, and re-vaccination strategies. Systems biology is a relatively new field of study, which utilizes high throughput means to better understand biological systems and predict outcomes. Systems biology approaches have been used to help obtain a global picture of immune responses to infections and vaccination (i.e. systems vaccinology), but little work has been done to use systems biology to improve vaccine efficacy in immunocompromised patients, particularly SOTRs, thus far. Systems vaccinology approaches may hold key insights to vaccination in this vulnerable population.
Collapse
Affiliation(s)
- Nicholas Scanlon
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States.,The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Emory University, Decatur, GA, United States
| | - Youssef Saklawi
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Emory University, Decatur, GA, United States
| | - Nadine Rouphael
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States.,The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Emory University, Decatur, GA, United States
| |
Collapse
|
37
|
Lanfermeijer J, Borghans JAM, Baarle D. How age and infection history shape the antigen-specific CD8 + T-cell repertoire: Implications for vaccination strategies in older adults. Aging Cell 2020; 19:e13262. [PMID: 33078890 PMCID: PMC7681067 DOI: 10.1111/acel.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults often show signs of impaired CD8+ T‐cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T‐cell numbers and repertoire diversity. If this is indeed the case, a strategy to prevent infectious diseases in older adults could be the induction of protective memory responses through vaccination at a younger age. However, this requires that the induced immune responses are maintained until old age. It is therefore important to obtain insights into the long‐term maintenance of the antigen‐specific T‐cell repertoire. Here, we review the literature on the maintenance of antigen‐experienced CD8+ T‐cell repertoires against acute and chronic infections. We describe the complex interactions that play a role in shaping the memory T‐cell repertoire, and the effects of age, infection history, and T‐cell avidity. We discuss the implications of these findings for the development of new vaccination strategies to protect older adults.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
| | - Debbie Baarle
- Center for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven the Netherlands
- Center for Translational Immunology University Medical Center Utrecht the Netherlands
- Virology & Immunology Research Department of Medical Microbiology and Infection prevention University Medical Center Groningen the Netherlands
| |
Collapse
|
38
|
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS NANO 2020; 14:7760-7782. [PMID: 32571007 PMCID: PMC7325519 DOI: 10.1021/acsnano.0c04006] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
The current global health threat by the novel coronavirus disease 2019 (COVID-19) requires an urgent deployment of advanced therapeutic options available. The role of nanotechnology is highly relevant to counter this "virus" nano enemy. Nano intervention is discussed in terms of designing effective nanocarriers to counter the conventional limitations of antiviral and biological therapeutics. This strategy directs the safe and effective delivery of available therapeutic options using engineered nanocarriers, blocking the initial interactions of viral spike glycoprotein with host cell surface receptors, and disruption of virion construction. Controlling and eliminating the spread and reoccurrence of this pandemic demands a safe and effective vaccine strategy. Nanocarriers have potential to design risk-free and effective immunization strategies for severe acute respiratory syndrome coronavirus 2 vaccine candidates such as protein constructs and nucleic acids. We discuss recent as well as ongoing nanotechnology-based therapeutic and prophylactic strategies to fight against this pandemic, outlining the key areas for nanoscientists to step in.
Collapse
Affiliation(s)
- Gaurav Chauhan
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| | - Marc J. Madou
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
- Department of Mechanical and Aerospace
Engineering, University of California
Irvine, Engineering Gateway 4200, Irvine,
California 92697, United States
| | - Sourav Kalra
- Department of Pharmaceutical Technology
(Process Chemistry), National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S. Nagar,
Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Deepa Ghosh
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| |
Collapse
|
39
|
Zhang K, Wu X, Shi Y, Gou X, Huang J. Immunogenicity of H5N1 influenza vaccines in elderly adults: a systematic review and meta-analysis. Hum Vaccin Immunother 2020; 17:475-484. [PMID: 32692606 PMCID: PMC7899698 DOI: 10.1080/21645515.2020.1777822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several different vaccines have been produced for human use to prevent the highly pathogenic H5N1 influenza. Some studies reported that the clinical effectiveness of influenza vaccines in older adults may be lower than in younger adults. In this study, a meta-analysis of the immunogenicity of H5N1 influenza vaccines in elderly adults was performed. Database search was conducted in EMBASE, PubMed, the Cochrane Library, Chinese VIP, Wanfang and CBM. A total of 3951 elderly adults from 10 articles were included in the meta-analysis. Compared to a single dose, two doses of H5N1 vaccines resulted in the higher seroconversion and seroprotection. For all groups treated with adjuvanted vaccines, there were significant increases (1.55- to 2.16-fold) in the seroconversion rates (SCRs) and seroprotection rates (SPRs) after two immunizations. Oil-in-water emulsion (OE)-adjuvanted 7.5 μg vaccine caused higher antibody responses than 3.75 μg of vaccine (SCR: risk ratio (RR) = 1.26 (1.19, 1.33); SPR: RR = 1.25 (1.14, 1.36)). Elderly adults exhibited slightly lower antibody responses only when given 7.5 μg of OE-adjuvanted vaccine (SCR: RR = 1.06 (1.01, 1.11)) than younger adults. After treatment with the 7.5 μg of OE-adjuvanted vaccines, the most commonly reported adverse events were injection site pain, swelling and erythema, with the incidence of 32%, 3% and 2%, respectively, and no serious adverse events were found. These data demonstrate that two doses of 7.5 µg of OE-adjuvanted H5N1 vaccine are well tolerated and induce a robust antibody response in elderly adults.
Collapse
Affiliation(s)
- Ke Zhang
- Clinical Laboratory, Affiliated Hospital of Zunyi Medical University , Zunyi, Guizhou, China
| | - Xiaoxue Wu
- Clinical Laboratory, Affiliated Hospital of Zunyi Medical University , Zunyi, Guizhou, China
| | - Yu Shi
- Clinical Laboratory, People's Hospital of Dianjiang County , Chongqing, China
| | - Xiaoqin Gou
- Clinical Laboratory, Affiliated Hospital of Zunyi Medical University , Zunyi, Guizhou, China
| | - Junqiong Huang
- Clinical Laboratory, Affiliated Hospital of Zunyi Medical University , Zunyi, Guizhou, China
| |
Collapse
|
40
|
Adjuvant Activity of Synthetic Lipid A of Alcaligenes, a Gut-Associated Lymphoid Tissue-Resident Commensal Bacterium, to Augment Antigen-Specific IgG and Th17 Responses in Systemic Vaccine. Vaccines (Basel) 2020; 8:vaccines8030395. [PMID: 32698404 PMCID: PMC7565795 DOI: 10.3390/vaccines8030395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Alcaligenes spp. are identified as commensal bacteria and have been found to inhabit Peyer’s patches in the gut. We previously reported that Alcaligenes-derived lipopolysaccharides (LPS) exerted adjuvant activity in systemic vaccination, without excessive inflammation. Lipid A is one of the components responsible for the biological effect of LPS and has previously been applied as an adjuvant. Here, we examined the adjuvant activity and safety of chemically synthesized Alcaligenes lipid A. We found that levels of OVA-specific serum IgG antibodies increased in mice that were subcutaneously immunized with ovalbumin (OVA) plus Alcaligenes lipid A relative to those that were immunized with OVA alone. In addition, Alcaligenes lipid A promoted antigen-specific T helper 17 (Th17) responses in the spleen; upregulated the expression of MHC class II, CD40, CD80, and CD86 on bone marrow-derived dendritic cells (BMDCs); enhanced the production of Th17-inducing cytokines IL-6 and IL-23 from BMDCs. Stimulation with Alcaligenes lipid A also induced the production of IL-6 and IL-1β in human peripheral blood mononuclear cells. Moreover, Alcaligenes lipid A caused minor side effects, such as lymphopenia and thrombocytopenia. These findings suggest that Alcaligenes lipid A is a safe and effective Th17-type adjuvant by directly stimulating dendritic cells in systemic vaccination.
Collapse
|
41
|
Akamatsu MA, Sakihara VA, Carvalho BP, de Paiva Abrantes A, Takano MAS, Adami EA, Yonehara FS, dos Santos Carneiro P, Rico S, Schanoski A, Meros M, Simpson A, Phan T, Fox CB, Ho PL. Preparedness against pandemic influenza: Production of an oil-in-water emulsion adjuvant in Brazil. PLoS One 2020; 15:e0233632. [PMID: 32492039 PMCID: PMC7269237 DOI: 10.1371/journal.pone.0233632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing pandemic influenza vaccine manufacturing capacity is considered strategic by WHO. Adjuvant use is key in this strategy in order to spare the vaccine doses and by increasing immune protection. We describe here the production and stability studies of a squalene based oil-in-water emulsion, adjuvant IB160, and the immune response of the H7N9 vaccine combined with IB160. To qualify the production of IB160 we produced 10 consistency lots of IB160 and the average results were: pH 6.4±0.05; squalene 48.8±.0.03 mg/ml; osmolality 47.6±6.9 mmol/kg; Z-average 157±2 nm, with polydispersity index (PDI) of 0.085±0.024 and endotoxin levels <0.5 EU/mL. The emulsion particle size was stable for at least six months at 25°C and 24 months at 4–8°C. Two doses of H7N9 vaccine formulated at 7.5 μg/dose or 15 μg/dose with adjuvant IB160 showed a significant increase of hemagglutination inhibition (HAI) titers in sera of immunized BALB/c mice when compared to control sera from animals immunized with the H7N9 antigens without adjuvant. Thus the antigen-sparing capacity of IB160 can potentially increase the production of the H7N9 pandemic vaccine and represents an important achievement for preparedness against pandemic influenza and a successful North (IDRI) to South (Butantan Institute) technology transfer for the production of the adjuvant emulsion IB160.
Collapse
Affiliation(s)
- Milena Apetito Akamatsu
- Divisão BioIndustrial, Serviço de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- * E-mail: (MAA); (PLE)
| | | | | | | | | | - Eduardo Alfredo Adami
- Divisão BioIndustrial, Laboratório de Influenza, Instituto Butantan, São Paulo, Brazil
| | | | | | - Stefanni Rico
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | - Maurício Meros
- Divisão BioIndustrial, Instituto Butantan, São Paulo, Brazil
| | - Adrian Simpson
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Tony Phan
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Paulo Lee Ho
- Divisão BioIndustrial, Serviço de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- * E-mail: (MAA); (PLE)
| |
Collapse
|
42
|
Wagner A, Weinberger B. Vaccines to Prevent Infectious Diseases in the Older Population: Immunological Challenges and Future Perspectives. Front Immunol 2020; 11:717. [PMID: 32391017 PMCID: PMC7190794 DOI: 10.3389/fimmu.2020.00717] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are a major cause for morbidity and mortality in the older population. Demographic changes will lead to increasing numbers of older persons over the next decades. Prevention of infections becomes increasingly important to ensure healthy aging for the individual, and to alleviate the socio-economic burden for societies. Undoubtedly, vaccines are the most efficient health care measure to prevent infections. Age-associated changes of the immune system are responsible for decreased immunogenicity and clinical efficacy of most currently used vaccines in older age. Efficacy of standard influenza vaccines is only 30-50% in the older population. Several approaches, such as higher antigen dose, use of MF59 as adjuvant and intradermal administration have been implemented in order to specifically target the aged immune system. The use of a 23-valent polysaccharide vaccine against Streptococcus pneumoniae has been amended by a 13-valent conjugated pneumococcal vaccine originally developed for young children several years ago to overcome at least some of the limitations of the T cell-independent polysaccharide antigens, but still is only approximately 50% protective against pneumonia. A live-attenuated vaccine against herpes zoster, which has been available for several years, demonstrated efficacy of 51% against herpes zoster and 67% against post-herpetic neuralgia. Protection was lower in the very old and decreased several years after vaccination. Recently, a recombinant vaccine containing the viral glycoprotein gE and the novel adjuvant AS01B has been licensed. Phase III studies demonstrated efficacy against herpes zoster of approx. 90% even in the oldest age groups after administration of two doses and many countries now recommend the preferential use of this vaccine. There are still many infectious diseases causing substantial morbidity in the older population, for which no vaccines are available so far. Extensive research is ongoing to develop vaccines against novel targets with several vaccine candidates already being clinically tested, which have the potential to substantially reduce health care costs and to save many lives. In addition to the development of novel and improved vaccines, which specifically target the aged immune system, it is also important to improve uptake of the existing vaccines in order to protect the vulnerable, older population.
Collapse
Affiliation(s)
- Angelika Wagner
- Department of Pathophysiology, Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Gupta N, Regar H, Verma VK, Prusty D, Mishra A, Prajapati VK. Receptor-ligand based molecular interaction to discover adjuvant for immune cell TLRs to develop next-generation vaccine. Int J Biol Macromol 2020; 152:535-545. [PMID: 32112848 DOI: 10.1016/j.ijbiomac.2020.02.297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Human immune cell toll-like receptors (TLRs) provide a novel chance for the development of the vaccine adjuvant engaging TLR signaling. A library of peptides was developed and peptides structure was generated through homology modeling and refinement. Further, these peptides were subjected to receptor-ligand interaction study against human immune cell TLRs using Schrödinger-suite software. Here, we identified the most potent ligands for each human immune cell receptor and identified it as a potent adjuvant. This work portrays the ability of binding of different known protein adjuvants with human TLRs 1--10. The significance of the study deals with the identification of adjuvant (ligand) for human TLRs individually which assist in the development of the optimal highly immunogenic vaccine.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Hansa Regar
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Vijay Kumar Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342011, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India.
| |
Collapse
|
44
|
Yüksel S, Pekcan M, Puralı N, Esendağlı G, Tavukçuoğlu E, Rivero-Arredondo V, Ontiveros-Padilla L, López-Macías C, Şenel S. Development and in vitro evaluation of a new adjuvant system containing Salmonella Typhi porins and chitosan. Int J Pharm 2020; 578:119129. [PMID: 32045689 DOI: 10.1016/j.ijpharm.2020.119129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/17/2022]
Abstract
In order to improve the immunogenicity of the highly purified vaccine antigens, addition of an adjuvant to formulation, without affecting the safety of the vaccine, has been the key aim of the vaccine formulators. In recent years, adjuvants which are composed of a delivery system and immunopotentiators have been preferred to induce potent immune responses. In this study, we have combined Salmonella Typhi porins and chitosan to develop a new adjuvant system to enhance the immunogenicity of the highly purified antigens. Cationic gels, microparticle (1.69 ± 0.01 μm) and nanoparticles (337.7 ± 1.7 nm) based on chitosan were prepared with high loading efficiency of porins. Cellular uptake was examined by confocal laser scanning microscopy, and the macrophage activation was investigated by measuring the surface marker as well as the cytokine release in vitro in J774A.1 macrophage murine cells. Porins alone were not taken up by the macrophage cells whereas in combination with chitosan a significant uptake was obtained. Porins-chitosan combination systems were found to induce CD80, CD86 and MHC-II expressions at different levels by different formulations depending on the particle size. Similarly, TNF-α and IL-6 levels were found to increase with porins-chitosan combination. Our results demonstrated that combination of porins with chitosan as a particulate system exerts enhanced adjuvant effect, suggesting a promising adjuvant system for subunit vaccines with combined immunostimulating activity.
Collapse
Affiliation(s)
- Selin Yüksel
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, 06100 Ankara, Turkey
| | - Mert Pekcan
- Faculty of Veterinary Medicine, Department of Biochemistry, Ankara University, Dışkapı, 06110 Ankara, Turkey
| | - Nuhan Puralı
- Faculty of Medicine, Department of Biophysics, Hacettepe University, 06100 Ankara, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Vanessa Rivero-Arredondo
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional 'Siglo XXI', Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Luis Ontiveros-Padilla
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional 'Siglo XXI', Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional 'Siglo XXI', Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico.
| | - Sevda Şenel
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, 06100 Ankara, Turkey.
| |
Collapse
|
45
|
Vassilieva EV, Taylor DW, Compans RW. Combination of STING Pathway Agonist With Saponin Is an Effective Adjuvant in Immunosenescent Mice. Front Immunol 2019; 10:3006. [PMID: 31921219 PMCID: PMC6935580 DOI: 10.3389/fimmu.2019.03006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to improve protective responses to influenza vaccination in the elderly population, which is at especially high risk for adverse outcomes from influenza infection. Currently available inactivated vaccines provide limited protection, even when a 4-fold higher dose of the vaccine is administered. Adjuvants are often added to vaccines to boost protective efficacy. Here we describe a novel combination of an activator of the STING pathway, 2′,3′-cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) with a saponin adjuvant, that we found to be highly effective in boosting protective immunity from vaccination in an aged mouse model. Using this combination with a subunit influenza vaccine, we observed that survival of vaccinated 20 month-old mice after lethal challenge increased from 0 to 20% with unadjuvanted vaccine to 80–100%, depending on the vaccination route. Compared to unadjuvanted vaccine, the levels of vaccine-specific IgG and IgG2a increased by almost two orders of magnitude as early as 2 weeks after a single immunization with the adjuvanted formulation. By analyzing phosphorylation of interferon regulatory factor 3 (IRF3) in cell culture, we provide evidence that the saponin component increases access of exogenous cGAMP to the intracellular STING pathway. Our findings suggest that combining a STING activator with a saponin-based adjuvant increases the effectiveness of influenza vaccine in aged hosts, without having to increase dose or perform additional vaccinations. This study reports a novel adjuvant combination that (a) is more effective than current methods of boosting vaccine efficacy, (b) can be used to enhance efficacy of licensed influenza vaccines, and (c) results in effective protection using a single vaccine dose.
Collapse
Affiliation(s)
- Elena V Vassilieva
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Dahnide W Taylor
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
46
|
Autran B. [Alterations in responses to vaccines in older people]. Rev Mal Respir 2019; 36:1047-1056. [PMID: 31522947 DOI: 10.1016/j.rmr.2019.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
The aging population raises a number of public health issues including a need to address the severity and frequency of infections observed in older people. Vaccines play an important role in prevention. However, immunosenescence alters the intensity and quality of vaccine responses, thus limiting the impact of recommendations directed after 65 years for vaccination against flu, pneumococci, pertussis, tetanus and zoster. Immunosenescence, aggravated by co-morbidities, varies with age, becoming apparent after 60-65 years and more profound after 85 years. All stages of vaccine responses are affected by immunosenescence, from the innate immunity required to activate these responses to the induction of protective antibody responses and immune memory. Nevertheless, the capacity to develop new responses to primary vaccination is more affected than the ability to respond to recalls, although this is also impaired. Responses to vaccines are differentially altered depending on vaccine and age. Influenza vaccines are modestly immunogenic and several meta-analyses agree an estimate for efficacy of about 50% against virologically-proven flu and 40% against flu-related deaths. The anti-pneumococcal 23-valent non-conjugated vaccine does not induce memory while the 13-valent conjugated one does, but their efficacy are likely to be similar between 70 to 52% before 75 years. A sequential vaccination program with the 13-valent primo-vaccination followed by the 23-valent, recommended in immune-suppressed patients, is currently being studied in France. The waning of immunity to pertussis makes recalls necessary in the elderly who develop good antibody responses. Several research avenues are currently being pursued to try improve the degree of protection conferred by these vaccines in elderly.
Collapse
Affiliation(s)
- B Autran
- Sorbonne-université, 75005 Paris, France; UMR-S Inserm/UPMC 1135), CIMI-Paris (centre de recherches immunité maladies infectieuses), 83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
47
|
Bimler L, Song AY, Le DT, Murphy Schafer A, Paust S. AuNP-M2e + sCpG vaccination of juvenile mice generates lifelong protective immunity to influenza A virus infection. IMMUNITY & AGEING 2019; 16:23. [PMID: 31507643 PMCID: PMC6720989 DOI: 10.1186/s12979-019-0162-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/21/2019] [Indexed: 11/10/2022]
Abstract
Background Influenza virus infection causes significant morbidity and mortality worldwide. Humans fail to make a universally protective memory response to influenza A because of high mutation rates in the immune-dominant influenza epitopes. We seek the development of a universal influenza A vaccine. The extracellular domain of the M2-ion channel (M2e) is an ideal antigenic target, as it is highly conserved, has a low mutation rate, and is essential for viral entry and replication. Considering the potential of a universal influenza vaccine for lifelong protection, we aimed to examine this potential using a recently published gold nanoparticle M2e vaccine with CpG as an adjuvant (AuNP-M2e + sCpG). Intranasal vaccination induces an M2e-specific memory response, which is protective against lethal infection with H1N1, H3N2, and H5N1 serotypes, in young BALB/c mice. Protection with AuNP-M2e + sCpG has been published up to 8 months after vaccination. However, the highest risk population during most influenza seasons is adults over 65 years old. Additionally, the efficacy of many vaccines decrease after aging and requiring booster vaccinations to remain effective. Results To determine if the AuNP-M2e + sCpG vaccine is a viable option as a universal vaccination capable of protection through geriatric age, we tested if the AuNP-M2e + sCpG vaccination loses efficacy after aging mice to geriatric age (over 18 months). Our data shows that mice aged 15 months after vaccination (~ 18-21 months old) retain significant M2e-specific antibody titers in total IgG, IgG1, IgG2a, and IgG2b. These mice are significantly protected from lethal influenza challenge (H1N1, 8.3 PFU). Further, these antibody titers increase upon infection with influenza A and remain elevated for 3 months, suggesting the elderly mice retain effective M2e-specific memory B cells. Conclusions Our results demonstrate that protective M2e-specific memory in mice developed at a young age can persist until geriatric age. Additionally, this memory is protective and M2e-specific B cells produced by vaccination with AuNP-M2e + sCpG are maintained and functional. If the results of this study persist in humans, they suggest that a universal influenza A vaccine could be administered early in life and maintain lifelong protection into geriatric age.
Collapse
Affiliation(s)
- Lynn Bimler
- 1Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030 USA.,2Graduate Program in Immunology, Baylor College of Medicine, Houston, TX 77030 USA.,3Developing Investigative Scholar's Program (DISP), Rice University, Houston, TX 77030 USA.,4Department of Immunology and Microbiology, The Scripps Research Institute, Immunology Building 313/114, 10466 North Torrey Pines Road, La Jolla, California, 92037 USA
| | - Amber Y Song
- 1Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030 USA.,3Developing Investigative Scholar's Program (DISP), Rice University, Houston, TX 77030 USA
| | - Duy T Le
- 1Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030 USA.,2Graduate Program in Immunology, Baylor College of Medicine, Houston, TX 77030 USA.,3Developing Investigative Scholar's Program (DISP), Rice University, Houston, TX 77030 USA
| | - Ashleigh Murphy Schafer
- 1Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030 USA.,5Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Silke Paust
- 1Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030 USA.,2Graduate Program in Immunology, Baylor College of Medicine, Houston, TX 77030 USA.,3Developing Investigative Scholar's Program (DISP), Rice University, Houston, TX 77030 USA.,4Department of Immunology and Microbiology, The Scripps Research Institute, Immunology Building 313/114, 10466 North Torrey Pines Road, La Jolla, California, 92037 USA.,5Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
48
|
Evaluation of aqueous extracts of Cistanche deserticola as a polysaccharide adjuvant for seasonal influenza vaccine in young adult mice. Immunol Lett 2019; 213:1-8. [DOI: 10.1016/j.imlet.2019.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
|
49
|
Andreano E, Seubert A, Rappuoli R. Human monoclonal antibodies for discovery, therapy, and vaccine acceleration. Curr Opin Immunol 2019; 59:130-134. [PMID: 31450054 DOI: 10.1016/j.coi.2019.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 07/18/2019] [Indexed: 01/24/2023]
Abstract
Screening of single B cells from convalescent or vaccinated people allows the discovery of novel targets for infectious diseases and rapid production of engineered human monoclonal antibodies (mAbs) that can prevent or control infections by passive immunization. Here we propose that the development of human mAbs can also significantly accelerate vaccine development by anticipating some of the key biological and regulatory questions.
Collapse
Affiliation(s)
| | | | - Rino Rappuoli
- vAMRes Lab, Toscana Life Sciences, Siena, Italy; GSK, Siena, Italy; Imperial College, London, United Kingdom.
| |
Collapse
|
50
|
[Composition and mode of action of adjuvants in licensed viral vaccines]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:462-471. [PMID: 30830257 DOI: 10.1007/s00103-019-02921-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The immunogenicity and efficacy of vaccines is largely governed by nature and the amount of antigen(s) included. Specific immune-stimulating substances, so-called adjuvants, are added to vaccine formulations to enhance and modulate the induced immune response.Adjuvants are very different in their physicochemical nature and are primarily characterized by their immune-enhancing effects. In this report, adjuvants that are components of vaccines licensed in the EU will be presented and their mode of action will be discussed.Aluminum salts have been used for almost a century as vaccine adjuvants. In recent years numerous novel immune-stimulating substances have been developed and integrated into licensed human vaccines. These novel adjuvants are not only intended to generally increase the vaccine-induced antibody titers, but are also aimed at modulating and triggering a specific immune response. The search for innovative adjuvants was considerably stimulated during development of pandemic influenza vaccines. By using squalene-containing oil-in-water adjuvants (namely AS03 and MF59), pandemic influenza vaccines were developed that were efficacious despite a significant reduction of the antigen content.The development of novel adjuvants is a highly dynamic and essential area in modern vaccine design. Some years ago, vaccines for prevention of HPV-induced cervix carcinoma and hepatitis B were licensed that contained the toll-like receptor 4 agonist 3‑O-desacyl-monophosphoryl lipid A (MPL), a detoxified LPS version, as the adjuvant. Quite recently, a herpes zoster vaccine was licensed in Europe with a combination of MPL and the saponin QS21 as adjuvant. This combination of immune enhancers is also used in the formulations of the same manufacturer's malaria and hepatitis B vaccine.
Collapse
|