1
|
Alhassan SO, Abd Elmageed ZY, Errami Y, Wang G, Abi‐Rached JA, Kandil E, Zerfaoui M. BRAF V600E-PROTAC versus inhibitors in melanoma cells: Deep transcriptomic characterization. Clin Transl Med 2025; 15:e70251. [PMID: 40045459 PMCID: PMC11882472 DOI: 10.1002/ctm2.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
AIMS This study compares the suppression of Mitogen-activated protein kinase (MAPK) signalling and early resistance potential between a proteolysis-targeting chimera (PROTAC) and inhibitors targeting BRAFV600E. METHODS We performed a detailed in silico analysis of the transcriptomic landscape of the A375 melanoma cell line treated with a PROTAC and BRAFV600E inhibitors from RNA sequencing data. The study assessed gene dysregulation, MAPK and Phosphoinositide-3-kinase (PI3K/AKT) pathway inhibition, and cell survival. Key genes uniquely dysregulated by PROTAC treatment were validated by qPCR. Furthermore, analysis was performed to evaluate dedifferentiation and early resistance signatures to understand melanoma drug-induced plasticity. RESULTS PROTAC-treated cells showed significantly lower MAPK pathway activity, strong cell cycle arrest and elevated apoptotic gene expression compared to inhibitor-treated cells, with no effect on the PI3K/AKT pathway. A high microphtalmia-associated transcription factor (MITF)/Tyrosine-Protein Kinase Receptor (AXL) ratio in PROTAC-treated cells indicated reduced early drug resistance. BRAF degradation induced a melanocytic-transitory phenotype. Although PROTAC and inhibitor treatments caused overlapping transcriptomic changes, key differences were observed. PROTAC treatment enriched processes such as epithelial‒mesenchymal transition, inflammatory responses, and Tumor necrosis factor-Alpha (TNF-α) and IL2/STAT5 signalling. CONCLUSION PROTAC-targeting BRAFV600E demonstrates enhanced MAPK suppression, reduced early resistance and distinct transcriptional effects compared to traditional inhibitors. It represents a promising strategy for overcoming resistance in melanoma treatment.
Collapse
Affiliation(s)
- Solomon O. Alhassan
- Department of Gastrointestinal OncologyMoffitt Cancer Center Magnolia CampusTampaFloridaUSA
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic MedicineUniversity of LouisianaMonroeLouisianaUSA
| | - Youssef Errami
- Department of MicrobiologyImmunology and Molecular GeneticsLa JollaCaliforniaUSA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of ChemistryXavier University of LouisianaNew OrleansLouisianaUSA
| | | | - Emad Kandil
- Tulane University School of MedicineNew OrleansLouisianaUSA
| | - Mourad Zerfaoui
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical PharmacologyEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Thines L, Jang H, Li Z, Sayedyahossein S, Maloney R, Nussinov R, Sacks DB. Disruption of Ca 2+/calmodulin:KSR1 interaction lowers ERK activation. Protein Sci 2024; 33:e4982. [PMID: 38591710 PMCID: PMC11002989 DOI: 10.1002/pro.4982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
KSR1, a key scaffold protein for the MAPK pathway, facilitates ERK activation upon growth factor stimulation. We recently demonstrated that KSR1 binds the Ca2+-binding protein calmodulin (CaM), thereby providing an intersection between KSR1-mediated and Ca2+ signaling. In this study, we set out to generate a KSR1 point mutant with reduced Ca2+/CaM binding in order to unravel the functional implications of their interaction. To do so, we solved the structural determinants of complex formation. Using purified fragments of KSR1, we showed that Ca2+/CaM binds to the CA3 domain of KSR1. We then used in silico molecular modeling to predict contact residues for binding. This approach identified two possible modes of interaction: (1) binding of extended Ca2+/CaM to a globular conformation of KSR1-CA3 via electrostatic interactions or (2) binding of collapsed Ca2+/CaM to α-helical KSR1-CA3 via hydrophobic interactions. Experimentally, site-directed mutagenesis of the predicted contact residues for the two binding models favored that where collapsed Ca2+/CaM binds to the α-helical conformation of KSR1-CA3. Importantly, replacing KSR1-Phe355 with Asp reduces Ca2+/CaM binding by 76%. The KSR1-F355D mutation also significantly impairs the ability of EGF to activate ERK, which reveals that Ca2+/CaM binding promotes KSR1-mediated MAPK signaling. This work, by uncovering structural insight into the binding of KSR1 to Ca2+/CaM, identifies a KSR1 single-point mutant as a bioreagent to selectively study the crosstalk between Ca2+ and KSR1-mediated signaling.
Collapse
Affiliation(s)
- Louise Thines
- Department of Laboratory MedicineNational Institutes of HealthBethesdaMarylandUSA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Zhigang Li
- Department of Laboratory MedicineNational Institutes of HealthBethesdaMarylandUSA
| | - Samar Sayedyahossein
- Department of Laboratory MedicineNational Institutes of HealthBethesdaMarylandUSA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
- Department of Human Molecular Genetics and BiochemistrySackler School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - David B. Sacks
- Department of Laboratory MedicineNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
3
|
Mendiratta G, Stites E. Theoretical analysis reveals a role for RAF conformational autoinhibition in paradoxical activation. eLife 2023; 12:e82739. [PMID: 37823369 PMCID: PMC10627510 DOI: 10.7554/elife.82739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
RAF kinase inhibitors can, under certain conditions, increase RAF kinase signaling. This process, which is commonly referred to as 'paradoxical activation' (PA), is incompletely understood. We use mathematical and computational modeling to investigate PA and derive rigorous analytical expressions that illuminate the underlying mechanism of this complex phenomenon. We find that conformational autoinhibition modulation by a RAF inhibitor could be sufficient to create PA. We find that experimental RAF inhibitor drug dose-response data that characterize PA across different types of RAF inhibitors are best explained by a model that includes RAF inhibitor modulation of three properties: conformational autoinhibition, dimer affinity, and drug binding within the dimer (i.e., negative cooperativity). Overall, this work establishes conformational autoinhibition as a robust mechanism for RAF inhibitor-driven PA based solely on equilibrium dynamics of canonical interactions that comprise RAF signaling and inhibition.
Collapse
Affiliation(s)
- Gaurav Mendiratta
- Integrative Biology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Edward Stites
- Department of Laboratory Medicine, Yale UniversityNew HavenUnited States
- Yale Cancer Center, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
4
|
Rohrer L, Spohr C, Beha C, Griffin R, Braun S, Halbach S, Brummer T. Analysis of RAS and drug induced homo- and heterodimerization of RAF and KSR1 proteins in living cells using split Nanoluc luciferase. Cell Commun Signal 2023; 21:136. [PMID: 37316874 DOI: 10.1186/s12964-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The dimerization of RAF kinases represents a key event in their activation cycle and in RAS/ERK pathway activation. Genetic, biochemical and structural approaches provided key insights into this process defining RAF signaling output and the clinical efficacy of RAF inhibitors (RAFi). However, methods reporting the dynamics of RAF dimerization in living cells and in real time are still in their infancy. Recently, split luciferase systems have been developed for the detection of protein-protein-interactions (PPIs), incl. proof-of-concept studies demonstrating the heterodimerization of the BRAF and RAF1 isoforms. Due to their small size, the Nanoluc luciferase moieties LgBiT and SmBiT, which reconstitute a light emitting holoenzyme upon fusion partner promoted interaction, appear as well-suited to study RAF dimerization. Here, we provide an extensive analysis of the suitability of the Nanoluc system to study the homo- and heterodimerization of BRAF, RAF1 and the related KSR1 pseudokinase. We show that KRASG12V promotes the homo- and heterodimerization of BRAF, while considerable KSR1 homo- and KSR1/BRAF heterodimerization already occurs in the absence of this active GTPase and requires a salt bridge between the CC-SAM domain of KSR1 and the BRAF-specific region. We demonstrate that loss-of-function mutations impairing key steps of the RAF activation cycle can be used as calibrators to gauge the dynamics of heterodimerization. This approach identified the RAS-binding domains and the C-terminal 14-3-3 binding motifs as particularly critical for the reconstitution of RAF mediated LgBiT/SmBiT reconstitution, while the dimer interface was less important for dimerization but essential for downstream signaling. We show for the first time that BRAFV600E, the most common BRAF oncoprotein whose dimerization status is controversially portrayed in the literature, forms homodimers in living cells more efficiently than its wildtype counterpart. Of note, Nanoluc activity reconstituted by BRAFV600E homodimers is highly sensitive to the paradox-breaking RAFi PLX8394, indicating a dynamic and specific PPI. We report the effects of eleven ERK pathway inhibitors on RAF dimerization, incl. third-generation compounds that are less-defined in terms of their dimer promoting abilities. We identify Naporafenib as a potent and long-lasting dimerizer and show that the split Nanoluc approach discriminates between type I, I1/2 and II RAFi. Video Abstract.
Collapse
Affiliation(s)
- Lino Rohrer
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Corinna Spohr
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Carina Beha
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Ricarda Griffin
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, 79104, Germany.
| |
Collapse
|
5
|
Iglesias-Martinez LF, Rauch N, Wynne K, McCann B, Kolch W, Rauch J. Interactome dynamics of RAF1-BRAF kinase monomers and dimers. Sci Data 2023; 10:203. [PMID: 37045861 PMCID: PMC10097620 DOI: 10.1038/s41597-023-02115-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
RAF kinases play major roles in cancer. BRAFV600E mutants drive ~6% of human cancers. Potent kinase inhibitors exist but show variable effects in different cancer types, sometimes even inducing paradoxical RAF kinase activation. Both paradoxical activation and drug resistance are frequently due to enhanced dimerization between RAF1 and BRAF, which maintains or restores the activity of the downstream MEK-ERK pathway. Here, using quantitative proteomics we mapped the interactomes of RAF1 monomers, RAF1-BRAF and RAF1-BRAFV600E dimers identifying and quantifying >1,000 proteins. In addition, we examined the effects of vemurafenib and sorafenib, two different types of clinically used RAF inhibitors. Using regression analysis to compare different conditions we found a large overlapping core interactome but also distinct condition specific differences. Given that RAF proteins have kinase independent functions such dynamic interactome changes could contribute to their functional diversification. Analysing this dataset may provide a deeper understanding of RAF signalling and mechanisms of resistance to RAF inhibitors.
Collapse
Affiliation(s)
| | - Nora Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Brendan McCann
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Voscuris Ltd., Jefferson House 42 Queen Street, Belfast, BT1 6HL, United Kingdom
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | - Jens Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Martín-Vega A, Ruiz-Peinado L, García-Gómez R, Herrero A, de la Fuente-Vivas D, Parvathaneni S, Caloto R, Morante M, von Kriegsheim A, Bustelo XR, Sacks DB, Casar B, Crespo P. Scaffold coupling: ERK activation by trans-phosphorylation across different scaffold protein species. SCIENCE ADVANCES 2023; 9:eadd7969. [PMID: 36791195 PMCID: PMC9931222 DOI: 10.1126/sciadv.add7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
RAS-ERK (extracellular signal-regulated kinase) pathway signals are modulated by scaffold proteins that assemble the components of different kinase tiers into a sequential phosphorylation cascade. In the prevailing model scaffold proteins function as isolated entities, where the flux of phosphorylation events progresses downstream linearly, to achieve ERK phosphorylation. We show that different types of scaffold proteins, specifically KSR1 (kinase suppressor of Ras 1) and IQGAP1 (IQ motif-containing guanosine triphosphatase activating protein 1), can bind to each other, forming a complex whereby phosphorylation reactions occur across both species. MEK (mitogen-activated protein kinase kinase) bound to IQGAP1 can phosphorylate ERK docked at KSR1, a process that we have named "trans-phosphorylation." We also reveal that ERK trans-phosphorylation participates in KSR1-regulated adipogenesis, and it also underlies the modest cytotoxicity exhibited by KSR-directed inhibitors. Overall, we identify interactions between scaffold proteins and trans-phosphorylation as an additional level of regulation in the ERK cascade, with broad implications in signaling and the design of scaffold protein-aimed therapeutics.
Collapse
Affiliation(s)
- Ana Martín-Vega
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Laura Ruiz-Peinado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Dalia de la Fuente-Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rubén Caloto
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Xosé R. Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medicine, Georgetown University, 3700 O St NW, Washington, DC 20057, USA
- Department of Pathology, George Washington University, 2121 I St NW, Washington, DC 20052, USA
- University of Cape Town, UCT Faculty of Health Sciences, Barnard Fuller Building, Anzio Rd, Observatory, Cape Town, 7935 South Africa
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
7
|
Fröhlich F, Gerosa L, Muhlich J, Sorger PK. Mechanistic model of MAPK signaling reveals how allostery and rewiring contribute to drug resistance. Mol Syst Biol 2023; 19:e10988. [PMID: 36700386 PMCID: PMC9912026 DOI: 10.15252/msb.202210988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
BRAF is prototypical of oncogenes that can be targeted therapeutically and the treatment of BRAFV600E melanomas with RAF and MEK inhibitors results in rapid tumor regression. However, drug-induced rewiring generates a drug adapted state thought to be involved in acquired resistance and disease recurrence. In this article, we study mechanisms of adaptive rewiring in BRAFV600E melanoma cells using an energy-based implementation of ordinary differential equation (ODE) modeling in combination with proteomic, transcriptomic and imaging data. We develop a method for causal tracing of ODE models and identify two parallel MAPK reaction channels that are differentially sensitive to RAF and MEK inhibitors due to differences in protein oligomerization and drug binding. We describe how these channels, and timescale separation between immediate-early signaling and transcriptional feedback, create a state in which the RAS-regulated MAPK channel can be activated by growth factors under conditions in which the BRAFV600E -driven channel is fully inhibited. Further development of the approaches in this article is expected to yield a unified model of adaptive drug resistance in melanoma.
Collapse
Affiliation(s)
- Fabian Fröhlich
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Luca Gerosa
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA,Present address:
Genentech, Inc.South San FranciscoCAUSA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
8
|
Paniagua G, Jacob HKC, Brehey O, García-Alonso S, Lechuga CG, Pons T, Musteanu M, Guerra C, Drosten M, Barbacid M. KSR induces RAS-independent MAPK pathway activation and modulates the efficacy of KRAS inhibitors. Mol Oncol 2022; 16:3066-3081. [PMID: 35313064 PMCID: PMC9441002 DOI: 10.1002/1878-0261.13213] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
The kinase suppressor of rat sarcoma (RAS) proteins (KSR1 and KSR2) have long been considered as scaffolding proteins required for optimal mitogen‐activated protein kinase (MAPK) pathway signalling. However, recent evidence suggests that they play a more complex role within this pathway. Here, we demonstrate that ectopic expression of KSR1 or KSR2 is sufficient to activate the MAPK pathway and to induce cell proliferation in the absence of RAS proteins. In contrast, the ectopic expression of KSR proteins is not sufficient to induce cell proliferation in the absence of either rapidly accelerated fibrosarcoma (RAF) or MAPK‐ERK kinase proteins, indicating that they act upstream of RAF. Indeed, KSR1 requires dimerization with at least one member of the RAF family to stimulate proliferation, an event that results in the translocation of the heterodimerized RAF protein to the cell membrane. Mutations in the conserved aspartic acid–phenylalanine–glycine motif of KSR1 that affect ATP binding impair the induction of cell proliferation. We also show that increased expression levels of KSR1 decrease the responsiveness to the KRASG12C inhibitor sotorasib in human cancer cell lines, thus suggesting that increased levels of expression of KSR may make tumour cells less dependent on KRAS oncogenic signalling.
Collapse
Affiliation(s)
- Guillem Paniagua
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Harrys K C Jacob
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Florida, 33136, USA
| | - Oksana Brehey
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Sara García-Alonso
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Carmen G Lechuga
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Tirso Pons
- Department of Immunology and Oncology, National Center for Biotechnology (CNB-CSIC), Spanish National Research Council, 28049, Madrid, Spain
| | - Monica Musteanu
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.,Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| |
Collapse
|
9
|
Parvathaneni S, Li Z, Sacks DB. Calmodulin influences MAPK signaling by binding KSR1. J Biol Chem 2021; 296:100577. [PMID: 33766558 PMCID: PMC8079274 DOI: 10.1016/j.jbc.2021.100577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 03/21/2021] [Indexed: 11/24/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is a fundamental signaling pathway that regulates cell fate decisions in response to external stimuli. Several scaffold proteins bind directly to kinase components of this pathway and regulate their activation by growth factors. One of the best studied MAPK scaffolds is kinase suppressor of Ras1 (KSR1), which is induced by epidermal growth factor (EGF) to translocate to the plasma membrane where it activates extracellular signal-regulated kinase (ERK). While Ca2+ has been shown to modulate MAPK signaling, the molecular mechanisms by which this occurs are incompletely understood. Here we tested the hypothesis that Ca2+ alters MAPK activity at least in part via KSR1. Using several approaches, including fusion proteins, immunoprecipitation, confocal microscopy, and a cell-permeable chemical inhibitor, we investigated the functional interaction between KSR1 and calmodulin. In vitro analysis with pure proteins reveals that calmodulin binds directly to KSR1. Moreover, endogenous calmodulin and KSR1 co-immunoprecipitate from mammalian cell lysates. Importantly, Ca2+ is required for the association between calmodulin and KSR1, both in vitro and in cells. The cell-permeable calmodulin antagonist CGS9343B significantly reduced activation of ERK by EGF in mouse embryo fibroblasts that overexpress KSR1, but not in control cells. Moreover, CGS9343B impaired the ability of EGF to induce KSR1 translocation to the plasma membrane and to stimulate formation of KSR1-ERK and KSR1-pERK (phosphorylated ERK) complexes in cells. Collectively, our data identify a previously unrecognized mechanism by which the scaffold protein KSR1 couples Ca2+ and calmodulin signaling to the MAPK cascade.
Collapse
Affiliation(s)
- Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Colomba A, Fitzek M, George R, Weitsman G, Roberts S, Zanetti-Domingues L, Hirsch M, Rolfe DJ, Mehmood S, Madin A, Claus J, Kjaer S, Snijders AP, Ng T, Martin-Fernandez M, Smith DM, Parker PJ. A small molecule inhibitor of HER3: a proof-of-concept study. Biochem J 2020; 477:3329-3347. [PMID: 32815546 PMCID: PMC7489893 DOI: 10.1042/bcj20200496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.
Collapse
Affiliation(s)
- Audrey Colomba
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Martina Fitzek
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield, U.K
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Selene Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Laura Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Shahid Mehmood
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Jeroen Claus
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
- CRUK KHP Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| |
Collapse
|
11
|
Zaballos MA, Acuña-Ruiz A, Morante M, Crespo P, Santisteban P. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer 2019; 26:R319-R344. [PMID: 30978703 DOI: 10.1530/erc-19-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Claus J, Patel G, Autore F, Colomba A, Weitsman G, Soliman TN, Roberts S, Zanetti-Domingues LC, Hirsch M, Collu F, George R, Ortiz-Zapater E, Barber PR, Vojnovic B, Yarden Y, Martin-Fernandez ML, Cameron A, Fraternali F, Ng T, Parker PJ. Inhibitor-induced HER2-HER3 heterodimerisation promotes proliferation through a novel dimer interface. eLife 2018; 7:e32271. [PMID: 29712619 PMCID: PMC5929906 DOI: 10.7554/elife.32271] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
While targeted therapy against HER2 is an effective first-line treatment in HER2+ breast cancer, acquired resistance remains a clinical challenge. The pseudokinase HER3, heterodimerisation partner of HER2, is widely implicated in the resistance to HER2-mediated therapy. Here, we show that lapatinib, an ATP-competitive inhibitor of HER2, is able to induce proliferation cooperatively with the HER3 ligand neuregulin. This counterintuitive synergy between inhibitor and growth factor depends on their ability to promote atypical HER2-HER3 heterodimerisation. By stabilising a particular HER2 conformer, lapatinib drives HER2-HER3 kinase domain heterocomplex formation. This dimer exists in a head-to-head orientation distinct from the canonical asymmetric active dimer. The associated clustering observed for these dimers predisposes to neuregulin responses, affording a proliferative outcome. Our findings provide mechanistic insights into the liabilities involved in targeting kinases with ATP-competitive inhibitors and highlight the complex role of protein conformation in acquired resistance.
Collapse
Affiliation(s)
- Jeroen Claus
- Protein Phosphorylation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Gargi Patel
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer StudiesKings College LondonLondonUnited Kingdom
- Sussex Cancer CentreBrighton and Sussex University HospitalsBrightonUnited States
| | - Flavia Autore
- Randall Division of Cell & Molecular BiophysicsKings College LondonLondonUnited Kingdom
| | - Audrey Colomba
- Protein Phosphorylation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer StudiesKings College LondonLondonUnited Kingdom
| | - Tanya N Soliman
- Protein Phosphorylation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Selene Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities CouncilRutherford Appleton LaboratoryDidcotUnited Kingdom
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities CouncilRutherford Appleton LaboratoryDidcotUnited Kingdom
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities CouncilRutherford Appleton LaboratoryDidcotUnited Kingdom
| | - Francesca Collu
- Randall Division of Cell & Molecular BiophysicsKings College LondonLondonUnited Kingdom
| | - Roger George
- The Structural Biology Science Technology PlatformThe Francis Crick InstituteLondonUnited Kingdom
| | - Elena Ortiz-Zapater
- Department of Asthma, Allergy and Respiratory ScienceKing’s College London, Guy’s HospitalLondonUnited Kingdom
| | - Paul R Barber
- Randall Division of Cell & Molecular BiophysicsKings College LondonLondonUnited Kingdom
- UCL Cancer InstituteUniversity College LondonLondonUnited Kingdom
| | - Boris Vojnovic
- Randall Division of Cell & Molecular BiophysicsKings College LondonLondonUnited Kingdom
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyOxfordUnited Kingdom
| | - Yosef Yarden
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities CouncilRutherford Appleton LaboratoryDidcotUnited Kingdom
| | - Angus Cameron
- Protein Phosphorylation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
- Barts Cancer InstituteQueen Mary University of LondonLondonUnited Kingdom
| | - Franca Fraternali
- Randall Division of Cell & Molecular BiophysicsKings College LondonLondonUnited Kingdom
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer StudiesKings College LondonLondonUnited Kingdom
- UCL Cancer InstituteUniversity College LondonLondonUnited Kingdom
- Breast Cancer Now Research Unit, Department of Research OncologyGuy’s Hospital King’s College London School of MedicineLondonUnited Kingdom
| | - Peter J Parker
- Protein Phosphorylation LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
- School of Cancer and Pharmaceutical SciencesKing’s College London, Guy’s CampusLondonUnited Kingdom
| |
Collapse
|
13
|
Basu SK, Lee S, Salotti J, Basu S, Sakchaisri K, Xiao Z, Walia V, Westlake CJ, Morrison DK, Johnson PF. Oncogenic RAS-Induced Perinuclear Signaling Complexes Requiring KSR1 Regulate Signal Transmission to Downstream Targets. Cancer Res 2017; 78:891-908. [PMID: 29259016 DOI: 10.1158/0008-5472.can-17-2353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/27/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
The precise characteristics that distinguish normal and oncogenic RAS signaling remain obscure. Here, we show that oncogenic RAS and BRAF induce perinuclear relocalization of several RAS pathway proteins, including the kinases CK2 and p-ERK1/2 and the signaling scaffold KSR1. This spatial reorganization requires endocytosis, the kinase activities of MEK-ERK and CK2, and the presence of KSR1. CK2α colocalizes with KSR1 and Rab11, a marker of recycling endosomes, whereas p-ERK associates predominantly with a distinct KSR1-positive endosomal population. Notably, these perinuclear signaling complexes (PSC) are present in tumor cell lines, mouse lung tumors, and mouse embryonic fibroblasts undergoing RAS-induced senescence. PSCs are also transiently induced by growth factors (GF) in nontransformed cells with delayed kinetics (4-6 hours), establishing a novel late phase of GF signaling that appears to be constitutively activated in tumor cells. PSCs provide an essential platform for RAS-induced phosphorylation and activation of the prosenescence transcription factor C/EBPβ in primary MEFs undergoing senescence. Conversely, in tumor cells, C/EBPβ activation is suppressed by 3'UTR-mediated localization of Cebpb transcripts to a peripheral cytoplasmic domain distinct from the PSC region. Collectively, our findings indicate that sustained PSC formation is a critical feature of oncogenic RAS/BRAF signaling in cancer cells that controls signal transmission to downstream targets by regulating selective access of effector kinases to substrates such as C/EBPβ.Significance: In addressing the long-standing question of the difference between normal and oncogenic RAS pathway signaling, this study shows that oncogenic RAS specifically triggers constitutive endocytosis-dependent movement of effector kinases to a perinuclear region, thereby creating connections to unique downstream targets such as the core prosenescence and the inflammatory regulatory transcription factor C/EBPβ. Cancer Res; 78(4); 891-908. ©2017 AACR.
Collapse
Affiliation(s)
- Sandip K Basu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Sook Lee
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Srikanta Basu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Krisada Sakchaisri
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Vijay Walia
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland.
| |
Collapse
|
14
|
Targeting the Raf kinases in human cancer: the Raf dimer dilemma. Br J Cancer 2017; 118:3-8. [PMID: 29235562 PMCID: PMC5765234 DOI: 10.1038/bjc.2017.399] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
The Raf protein kinases are key intermediates in cellular signal transduction, functioning as direct effectors of the Ras GTPases and as the initiating kinases in the ERK cascade. In human cancer, Raf activity is frequently dysregulated due to mutations in the Raf family member B-Raf or to alterations in upstream Raf regulators, including Ras and receptor tyrosine kinases. First-generation Raf inhibitors, such as vemurafenib and dabrafenib, have yielded dramatic responses in malignant melanomas containing B-Raf mutations; however, their overall usefulness has been limited by both intrinsic and acquired drug resistance. In particular, issues related to the dimerisation of the Raf kinases can impact the efficacy of these compounds and are a primary cause of drug resistance. Here, we will review the importance of Raf dimerisation in cell signalling as well as its effects on Raf inhibitor therapy, and we will present the new strategies that are being pursued to overcome the 'Raf Dimer Dilemma'.
Collapse
|
15
|
Neiswender JV, Kortum RL, Bourque C, Kasheta M, Zon LI, Morrison DK, Ceol CJ. KIT Suppresses BRAF V600E-Mutant Melanoma by Attenuating Oncogenic RAS/MAPK Signaling. Cancer Res 2017; 77:5820-5830. [PMID: 28947418 DOI: 10.1158/0008-5472.can-17-0473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/17/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
The receptor tyrosine kinase KIT promotes survival and migration of melanocytes during development, and excessive KIT activity hyperactivates the RAS/MAPK pathway and can drive formation of melanomas, most notably of rare melanomas that occur on volar and mucosal surfaces of the skin. The much larger fraction of melanomas that occur on sun-exposed skin is driven primarily by BRAF- or NRAS-activating mutations, but these melanomas exhibit a surprising loss of KIT expression, which raises the question of whether loss of KIT in these tumors facilitates tumorigenesis. To address this question, we introduced a kit(lf) mutation into a strain of Tg(mitfa:BRAFV600E); p53(lf) melanoma-prone zebrafish. Melanoma onset was accelerated in kit(lf); Tg(mitfa:BRAFV600E); p53(lf) fish. Tumors from kit(lf) animals were more invasive and had higher RAS/MAPK pathway activation. KIT knockdown also increased RAS/MAPK pathway activation in a BRAFV600E-mutant human melanoma cell line. We found that pathway stimulation upstream of BRAFV600E could paradoxically reduce signaling downstream of BRAFV600E, and wild-type BRAF was necessary for this effect, suggesting that its activation can dampen oncogenic BRAFV600E signaling. In vivo, expression of wild-type BRAF delayed melanoma onset, but only in a kit-dependent manner. Together, these results suggest that KIT can activate signaling through wild-type RAF proteins, thus interfering with oncogenic BRAFV600E-driven melanoma formation. Cancer Res; 77(21); 5820-30. ©2017 AACR.
Collapse
Affiliation(s)
- James V Neiswender
- Program in Molecular Medicine, Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Robert L Kortum
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, Maryland.,Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Caitlin Bourque
- Howard Hughes Medical Institute, Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Melissa Kasheta
- Program in Molecular Medicine, Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Leonard I Zon
- Howard Hughes Medical Institute, Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, Maryland
| | - Craig J Ceol
- Program in Molecular Medicine, Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
16
|
Quadri HS, Aiken TJ, Allgaeuer M, Moravec R, Altekruse S, Hussain SP, Miettinen MM, Hewitt SM, Rudloff U. Expression of the scaffold connector enhancer of kinase suppressor of Ras 1 (CNKSR1) is correlated with clinical outcome in pancreatic cancer. BMC Cancer 2017; 17:495. [PMID: 28732488 PMCID: PMC5522593 DOI: 10.1186/s12885-017-3481-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/12/2017] [Indexed: 01/28/2023] Open
Abstract
Background Despite the near universal occurrence of activating codon 12 KRAS somatic variants in pancreatic cancer, there is considerable heterogeneity in the molecular make-up, MAPK/ERK pathway activation states, and clinical outcome in this disease. We analyzed the expression levels of CNKSR1, a scaffold that influences MAPK/ERK pathway activity, in clinical pancreas cancer specimens and their impact on survival of patients with pancreatic cancer. Methods Immunohistochemical staining for CNKSR1 expression was performed on 120 specimens from three independent pancreatic cancer tissue registries, phospho-ERK levels were measured in 86 samples. Expression was divided into CNKSR1 low and CNKSR1 high and correlated with clinicopathological variables including overall survival using multivariate Cox proportional hazard ratio models. Results CNKSR1 expression was increased in tumors compared to matched normal uninvolved resection specimens (p = 0.004). 28.3% (34/120) of patient specimens stained as CNKSR1 low compared to 71.7% (86/120) of specimens which stained as CNKSR1 high. High CNKSR1 expression was more prevalent in low grade tumors (p = 0.04). In multivariate analysis, low CNKSR1 expression status was independently correlated with decreased overall survival (HR = 2.146; 95% CI 1.34 to 3.43). When stratifying primary, non-metastatic tumor biopsies by CNKSR1 expression, resection was associated with improved survival in patients with high CNKSR1 expression (p < 0.0001) but not low CNKSR1 expression (p = 0.3666). Pancreatic tumors with nuclear in addition to cytoplasmic CNKSR1 staining (32/107) showed increased nuclear phospho-ERK expression compared to tumor with cytoplasmic CNKSR1 staining only (p = 0.017). Conclusion CNKSR1 expression is increased in pancreatic tissue specimens and was found to be an independent prognostic marker of overall survival. CNKSR1 may help to identify patient subgroups with unfavorable tumor biology in order to improve risk stratification and treatment selection. Cellular distribution of CNKSR1 was correlated with nuclear pERK expression.
Collapse
Affiliation(s)
- Humair S Quadri
- Thoracic and Gastrointestinal Oncology Branch, Gastrointestinal Oncology Section, Investigator Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Room 4-5950, Bethesda, MD, 20892, USA
| | - Taylor J Aiken
- Thoracic and Gastrointestinal Oncology Branch, Gastrointestinal Oncology Section, Investigator Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Room 4-5950, Bethesda, MD, 20892, USA
| | - Michael Allgaeuer
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Radim Moravec
- Surveillance Informatics Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sean Altekruse
- Surveillance Informatics Branch, National Cancer Institute, Bethesda, MD, USA
| | - S Perwez Hussain
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | | | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Udo Rudloff
- Thoracic and Gastrointestinal Oncology Branch, Gastrointestinal Oncology Section, Investigator Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Room 4-5950, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Takahashi M, Li Y, Dillon TJ, Stork PJS. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP. J Biol Chem 2016; 292:1449-1461. [PMID: 28003362 DOI: 10.1074/jbc.m116.768986] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Indexed: 12/31/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is an important mediator of hormonal stimulation of cell growth and differentiation through its activation of the extracellular signal-regulated kinase (ERK) cascade. Two small G proteins, Ras and Rap1 have been proposed to mediate this activation. Using HEK293 cells as a model system, we have recently shown that both Ras and Rap1 are required for cAMP signaling to ERKs. However, cAMP-dependent Ras signaling to ERKs is transient and rapidly terminated by PKA phosphorylation of the Raf isoforms C-Raf and B-Raf. In contrast, cAMP-dependent Rap1 signaling to ERKs and Rap1 is potentiated by PKA. We show that this is due to sustained binding of B-Raf to Rap1. One of the targets of PKA is Rap1 itself, directly phosphorylating Rap1a on serine 180 and Rap1b on serine 179. We show that these phosphorylations create potential binding sites for the adaptor protein 14-3-3 that links Rap1 to the scaffold protein KSR. These results suggest that Rap1 activation of ERKs requires PKA phosphorylation and KSR binding. Because KSR and B-Raf exist as heterodimers within the cell, this binding also brings B-Raf to Rap1, allowing Rap1 to couple to ERKs through B-Raf binding to Rap1 independently of its Ras-binding domain.
Collapse
Affiliation(s)
- Maho Takahashi
- From the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Yanping Li
- From the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Tara J Dillon
- From the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Philip J S Stork
- From the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| |
Collapse
|
18
|
Rose JC, Huang PS, Camp ND, Ye J, Leidal AM, Goreshnik I, Trevillian BM, Dickinson MS, Cunningham-Bryant D, Debnath J, Baker D, Wolf-Yadlin A, Maly DJ. A computationally engineered RAS rheostat reveals RAS-ERK signaling dynamics. Nat Chem Biol 2016; 13:119-126. [PMID: 27870838 PMCID: PMC5161653 DOI: 10.1038/nchembio.2244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 09/08/2016] [Indexed: 01/07/2023]
Abstract
Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here, we report a computationally-guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop Chemically Inducible Activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS/ERK signaling dynamics compared to growth factor stimulation, and that these dynamics differ between cell types. We also found that the clinically-approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach to design intramolecularly-regulated protein tools by applying this methodology to the Rho Family GEFs.
Collapse
Affiliation(s)
- John C Rose
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Nathan D Camp
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Miles S Dickinson
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | | | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Kung JE, Jura N. Structural Basis for the Non-catalytic Functions of Protein Kinases. Structure 2016; 24:7-24. [PMID: 26745528 DOI: 10.1016/j.str.2015.10.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 01/07/2023]
Abstract
Protein kinases are known primarily for their ability to phosphorylate protein substrates, which constitutes an essential biological process. Recently, compelling evidence has accumulated that the functions of many protein kinases extend beyond phosphorylation and include an impressive spectrum of non-catalytic roles, such as scaffolding, allosteric regulation, or even protein-DNA interactions. How the conserved kinase fold shared by all metazoan protein kinases can accomplish these diverse tasks in a specific and regulated manner is poorly understood. In this review, we analyze the molecular mechanisms supporting phosphorylation-independent signaling by kinases and attempt to identify common and unique structural characteristics that enable kinases to perform non-catalytic functions. We also discuss how post-translational modifications, protein-protein interactions, and small molecules modulate these non-canonical kinase functions. Finally, we highlight current efforts in the targeted design of small-molecule modulators of non-catalytic kinase functions, a new pharmacological challenge for which structural considerations are more important than ever.
Collapse
Affiliation(s)
- Jennifer E Kung
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Baljuls A, Dobrzyński M, Rauch J, Rauch N, Kolch W. Stabilization of C-RAF:KSR1 complex by DiRas3 reduces availability of C-RAF for dimerization with B-RAF. Cell Signal 2016; 28:1451-62. [DOI: 10.1016/j.cellsig.2016.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 06/18/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
|
21
|
Dhawan NS, Scopton AP, Dar AC. Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling. Nature 2016; 537:112-116. [PMID: 27556948 PMCID: PMC5161575 DOI: 10.1038/nature19327] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/22/2016] [Indexed: 12/05/2022]
Abstract
Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies1. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes2. Kinase suppressor of Ras (KSR) is a MAPK scaffold3–5 that is subject to allosteric regulation through dimerization with RAF6,7. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers.
Collapse
Affiliation(s)
- Neil S Dhawan
- Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Alex P Scopton
- Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Arvin C Dar
- Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
22
|
Kim JY, Welsh EA, Fang B, Bai Y, Kinose F, Eschrich SA, Koomen JM, Haura EB. Phosphoproteomics Reveals MAPK Inhibitors Enhance MET- and EGFR-Driven AKT Signaling in KRAS-Mutant Lung Cancer. Mol Cancer Res 2016; 14:1019-1029. [PMID: 27422710 DOI: 10.1158/1541-7786.mcr-15-0506] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Abstract
Pathway inhibition of the RAS-driven MAPK pathway using small-molecule kinase inhibitors has been a key focus for treating cancers driven by oncogenic RAS, yet significant clinical responses are lacking. Feedback reactivation of ERK driven by drug-induced RAF activity has been suggested as one of the major drug resistance mechanisms, especially in the context of oncogenic RAS. To determine whether additional adaptive resistance mechanisms may coexist, we characterized global phosphoproteomic changes after MEK inhibitor selumetinib (AZD6244) treatment in KRAS-mutant A427 and A549 lung adenocarcinoma cell lines employing mass spectrometry-based phosphoproteomics. We identified 9,075 quantifiable unique phosphosites (corresponding to 3,346 unique phosphoproteins), of which 567 phosphosites were more abundant and 512 phosphosites were less abundant after MEK inhibition. Selumetinib increased phosphorylation of KSR-1, a scaffolding protein required for assembly of MAPK signaling complex, as well as altered phosphorylation of GEF-H1, a novel regulator of KSR-1 and implicated in RAS-driven MAPK activation. Moreover, selumetinib reduced inhibitory serine phosphorylation of MET at Ser985 and potentiated HGF- and EGF-induced AKT phosphorylation. These results were recapitulated by pan-RAF (LY3009120), MEK (GDC0623), and ERK (SCH772984) inhibitors, which are currently under early-phase clinical development against RAS-mutant cancers. Our results highlight the unique adaptive changes in MAPK scaffolding proteins (KSR-1, GEF-H1) and in RTK signaling, leading to enhanced PI3K-AKT signaling when the MAPK pathway is inhibited. IMPLICATIONS This study highlights the unique adaptive changes in MAPK scaffolding proteins (KSR-1, GEF-H1) and in RTK signaling, leading to enhanced PI3K/AKT signaling when the MAPK pathway is inhibited. Mol Cancer Res; 14(10); 1019-29. ©2016 AACR.
Collapse
Affiliation(s)
- Jae-Young Kim
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A Welsh
- Cancer Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bin Fang
- Proteomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Steven A Eschrich
- Department of Bioinformatics & Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
23
|
Rinaldi L, Delle Donne R, Sepe M, Porpora M, Garbi C, Chiuso F, Gallo A, Parisi S, Russo L, Bachmann V, Huber RG, Stefan E, Russo T, Feliciello A. praja2 regulates KSR1 stability and mitogenic signaling. Cell Death Dis 2016; 7:e2230. [PMID: 27195677 PMCID: PMC4917648 DOI: 10.1038/cddis.2016.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Abstract
The kinase suppressor of Ras 1 (KSR1) has a fundamental role in mitogenic signaling by scaffolding components of the Ras/MAP kinase pathway. In response to Ras activation, KSR1 assembles a tripartite kinase complex that optimally transfers signals generated at the cell membrane to activate ERK. We describe a novel mechanism of ERK attenuation based on ubiquitin-dependent proteolysis of KSR1. Stimulation of membrane receptors by hormones or growth factors induced KSR1 polyubiquitination, which paralleled a decline of ERK1/2 signaling. We identified praja2 as the E3 ligase that ubiquitylates KSR1. We showed that praja2-dependent regulation of KSR1 is involved in the growth of cancer cells and in the maintenance of undifferentiated pluripotent state in mouse embryonic stem cells. The dynamic interplay between the ubiquitin system and the kinase scaffold of the Ras pathway shapes the activation profile of the mitogenic cascade. By controlling KSR1 levels, praja2 directly affects compartmentalized ERK activities, impacting on physiological events required for cell proliferation and maintenance of embryonic stem cell pluripotency.
Collapse
Affiliation(s)
- L Rinaldi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - R Delle Donne
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - M Sepe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - M Porpora
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - C Garbi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - F Chiuso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - A Gallo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - S Parisi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - L Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - V Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - R G Huber
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - E Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore 138671, Singapore
| | - T Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| | - A Feliciello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, IEOS-CNR, CEINGE University Federico II, Naples 80131, Italy
| |
Collapse
|
24
|
Wellbrock C, Arozarena I. The Complexity of the ERK/MAP-Kinase Pathway and the Treatment of Melanoma Skin Cancer. Front Cell Dev Biol 2016; 4:33. [PMID: 27200346 PMCID: PMC4846800 DOI: 10.3389/fcell.2016.00033] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
The central role played by the ERK/MAPK pathway downstream of RAS in human neoplasias is best exemplified in the context of melanoma skin cancer. Signaling through the MAPK pathway is crucial for the proliferation of melanocytes, the healthy pigment cells that give rise to melanoma. However, hyper-activation of the MAPK-pathway is found in over 90% of melanomas with approximately 50% of all patients displaying mutations in the kinase BRAF, and approximately 28% of all patients harboring mutations in the MAPK-pathway up-stream regulator NRAS. This finding has led to the development of BRAF and MEK inhibitors whose application in the clinic has shown unprecedented survival responses. Unfortunately the responses to MAPK pathway inhibitors are transient with most patients progressing within a year and a median progression free survival of 7-10 months. The disease progression is due to the development of drug-resistance based on various mechanisms, many of them involving a rewiring of the MAPK pathway. In this article we will review the complexity of MAPK signaling in melanocytic cells as well as the mechanisms of action of different MAPK-pathway inhibitors and their correlation with clinical response. We will reflect on mechanisms of innate and acquired resistance that limit patient's response, with a focus on the MAPK signaling network. Because of the resurgence of antibody-based immune-therapies there is a growing feeling of failure in the targeted therapy camp. However, recent studies have revealed new windows of therapeutic opportunity for melanoma sufferers treated with drugs targeting the MAPK pathway, and these opportunities will be discussed.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of ManchesterManchester, UK
| | - Imanol Arozarena
- School of Applied Sciences, University of HuddersfieldHuddersfield, UK
| |
Collapse
|
25
|
Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, Gupta YK, Reddy MVR, Ueno L, Hart JR, Vogt PK, Mulholland D, Guha C, Aggarwal AK, Reddy EP. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling. Cell 2016; 165:643-55. [PMID: 27104980 PMCID: PMC5006944 DOI: 10.1016/j.cell.2016.03.045] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 12/09/2015] [Accepted: 03/28/2016] [Indexed: 02/07/2023]
Abstract
Oncogenic activation of RAS genes via point mutations occurs in 20%-30% of human cancers. The development of effective RAS inhibitors has been challenging, necessitating new approaches to inhibit this oncogenic protein. Functional studies have shown that the switch region of RAS interacts with a large number of effector proteins containing a common RAS-binding domain (RBD). Because RBD-mediated interactions are essential for RAS signaling, blocking RBD association with small molecules constitutes an attractive therapeutic approach. Here, we present evidence that rigosertib, a styryl-benzyl sulfone, acts as a RAS-mimetic and interacts with the RBDs of RAF kinases, resulting in their inability to bind to RAS, disruption of RAF activation, and inhibition of the RAS-RAF-MEK pathway. We also find that ribosertib binds to the RBDs of Ral-GDS and PI3Ks. These results suggest that targeting of RBDs across multiple signaling pathways by rigosertib may represent an effective strategy for inactivation of RAS signaling.
Collapse
Affiliation(s)
- Sai Krishna Athuluri-Divakar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Rodrigo Vasquez-Del Carpio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Kaushik Dutta
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - Stacey J Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Stephen C Cosenza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Indranil Basu
- Department of Radiation Oncology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yogesh K Gupta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - M V Ramana Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Lynn Ueno
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jonathan R Hart
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter K Vogt
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Mulholland
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Aneel K Aggarwal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
26
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. A-Raf: A new star of the family of raf kinases. Crit Rev Biochem Mol Biol 2015; 50:520-31. [PMID: 26508523 DOI: 10.3109/10409238.2015.1102858] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ras-Raf-MEK-MAPK (mitogen-activated protein kinase)-signaling pathway plays a key role in the regulation of many cellular functions, including cell proliferation, differentiation and transformation, by transmitting signals from membrane receptors to various cytoplasmic and nuclear targets. One of the key components of this pathway is the serine/threonine protein kinase, Raf. The Raf family kinases (A-Raf, B-Raf and C-Raf) have been intensively studied since being identified in the early 1980s as retroviral oncogenes, especially with respect to the discovery of activating mutations of B-Raf in a large number of tumors which led to intensified efforts to develop drugs targeting Raf kinases. This also resulted in a rapid increase in our knowledge of the biological functions of the B-Raf and C-Raf isoforms, which may in turn be contrasted with the little that is known about A-Raf. The biological functions of A-Raf remain mysterious, although it appears to share some of the basic properties of the other two isoforms. Recently, emerging evidence has begun to reveal the functions of A-Raf, of which some are kinase-independent. These include the inhibition of apoptosis by binding to MST2, acting as safeguard against oncogenic transformation by suppressing extracellular signal-regulated kinases (ERK) activation and playing a role in resistance to Raf inhibitors. In this review, we discuss the regulation of A-Raf protein expression, and the roles of A-Raf in apoptosis and cancer, with a special focus on its role in resistance to Raf inhibitors. We also describe the scaffold functions of A-Raf and summarize the unexpected complexity of Raf signaling.
Collapse
Affiliation(s)
- Su An
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Yang Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Richard Ward
- b Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Scotland , UK
| | - Ying Liu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Xiao-Xi Guo
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Tian-Rui Xu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| |
Collapse
|
27
|
Chen J, Jin R, Zhao J, Liu J, Ying H, Yan H, Zhou S, Liang Y, Huang D, Liang X, Yu H, Lin H, Cai X. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2015; 367:1-11. [PMID: 26170167 DOI: 10.1016/j.canlet.2015.06.019] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Renan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghua Liu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Yan
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Senjun Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Diyu Huang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Di Michele M, Stes E, Vandermarliere E, Arora R, Astorga-Wells J, Vandenbussche J, van Heerde E, Zubarev R, Bonnet P, Linders JTM, Jacoby E, Brehmer D, Martens L, Gevaert K. Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules. J Proteome Res 2015; 14:4179-93. [PMID: 26293246 DOI: 10.1021/acs.jproteome.5b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E). The ATP-competitive type I B-Raf inhibitor vemurafenib and the type II inhibitor sorafenib stabilized the kinase domain (KD) but had distinct effects on the Ras-binding domain. Stabilization of the B-Raf(WT) KD was confirmed by hydrogen/deuterium exchange MS and molecular dynamics simulations. Our results are further supported by cellular assays in which we assessed cell viability and phosphorylation profiles in cells expressing B-Raf(WT) or B-Raf(V600E) in response to vemurafenib or sorafenib. Our data indicate that an overall stabilization of the B-Raf structure by specific inhibitors activates MAPK signaling and increases cell survival, helping to explain clinical treatment failure. We also applied our method to monitor conformational changes upon nucleotide binding of the pseudokinase KSR1, which holds high potential for inhibition in human diseases.
Collapse
Affiliation(s)
- Michela Di Michele
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elien Vandermarliere
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Rohit Arora
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans , Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | | | - Jonathan Vandenbussche
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Erika van Heerde
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheelelaberatoriet Scheeles väg 2, SE-171 77 Stockholm, Sweden
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans , Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | - Joannes T M Linders
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Edgar Jacoby
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Dirk Brehmer
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Abstract
RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.
Collapse
|
30
|
Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, Lombardo Y, Periyasamy M, Blighe K, Zhang W, Shaw JA, Ellis IO, Lenz HJ, Giamas G. KSR1 regulates BRCA1 degradation and inhibits breast cancer growth. Oncogene 2015; 34:2103-14. [PMID: 24909178 DOI: 10.1038/onc.2014.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/02/2014] [Accepted: 04/12/2014] [Indexed: 12/16/2022]
Abstract
Kinase suppressor of Ras-1 (KSR1) facilitates signal transduction in Ras-dependent cancers, including pancreatic and lung carcinomas but its role in breast cancer has not been well studied. Here, we demonstrate for the first time it functions as a tumor suppressor in breast cancer in contrast to data in other tumors. Breast cancer patients (n>1000) with high KSR1 showed better disease-free and overall survival, results also supported by Oncomine analyses, microarray data (n=2878) and genomic data from paired tumor and cell-free DNA samples revealing loss of heterozygosity. KSR1 expression is associated with high breast cancer 1, early onset (BRCA1), high BRCA1-associated ring domain 1 (BARD1) and checkpoint kinase 1 (Chk1) levels. Phospho-profiling of major components of the canonical Ras-RAF-mitogen-activated protein kinases pathway showed no significant changes after KSR1 overexpression or silencing. Moreover, KSR1 stably transfected cells formed fewer and smaller size colonies compared to the parental ones, while in vivo mouse model also demonstrated that the growth of xenograft tumors overexpressing KSR1 was inhibited. The tumor suppressive action of KSR1 is BRCA1 dependent shown by 3D-matrigel and soft agar assays. KSR1 stabilizes BRCA1 protein levels by reducing BRCA1 ubiquitination through increasing BARD1 abundance. These data link these proteins in a continuum with clinical relevance and position KSR1 in the major oncoprotein pathways in breast tumorigenesis.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - Y Xu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - L C Lit
- 1] Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK [2] Faculty of Medicine, Department of Physiology, University of Malaya, Kuala, Lumpur, Malaysia
| | - A R Green
- Department of Cellular Pathology, Queen's Medical Centre, Nottingham University Hospital NHS Trust, Nottingham, UK
| | - A Grothey
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - Y Lombardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - M Periyasamy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - K Blighe
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - W Zhang
- Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Centre, Keck School of Medicine, Los Angeles, CA, USA
| | - J A Shaw
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - I O Ellis
- Faculty of Medicine, Department of Physiology, University of Malaya, Kuala, Lumpur, Malaysia
| | - H J Lenz
- Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Centre, Keck School of Medicine, Los Angeles, CA, USA
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
31
|
Abstract
Cellular responses to environmental cues involve the mobilization of GTPases, protein kinases and phosphoprotein phosphatases. The spatial organization of these signalling enzymes by scaffold proteins helps to guide the flow of molecular information. Allosteric modulation of scaffolded enzymes can alter their catalytic activity or sensitivity to second messengers in a manner that augments, insulates or terminates local cellular events. This Review examines the features of scaffold proteins and highlights examples of locally organized groups of signalling enzymes that drive essential physiological processes, including hormone action, heart rate, cell division, organelle movement and synaptic transmission.
Collapse
|
32
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. Raf-interactome in tuning the complexity and diversity of Raf function. FEBS J 2014; 282:32-53. [PMID: 25333451 DOI: 10.1111/febs.13113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022]
Abstract
Raf kinases have been intensely studied subsequent to their discovery 30 years ago. The Ras-Raf-mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase/mitogen-activated protein kinase (Ras-Raf-MEK-ERK/MAPK) signaling pathway is at the heart of the signaling networks that control many fundamental cellular processes and Raf kinases takes centre stage in the MAPK pathway, which is now appreciated to be one of the most common sources of the oncogenic mutations in cancer. The dependency of tumors on this pathway has been clearly demonstrated by targeting its key nodes; however, blockade of the central components of the MAPK pathway may have some unexpected side effects. Over recent years, the Raf-interactome or Raf-interacting proteins have emerged as promising targets for protein-directed cancer therapy. This review focuses on the diversity of Raf-interacting proteins and discusses the mechanisms by which these proteins regulate Raf function, as well as the implications of targeting Raf-interacting proteins in the treatment of human cancer.
Collapse
Affiliation(s)
- Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, China
| | | | | | | | | | | |
Collapse
|
33
|
Haling JR, Sudhamsu J, Yen I, Sideris S, Sandoval W, Phung W, Bravo BJ, Giannetti AM, Peck A, Masselot A, Morales T, Smith D, Brandhuber BJ, Hymowitz SG, Malek S. Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling. Cancer Cell 2014; 26:402-413. [PMID: 25155755 DOI: 10.1016/j.ccr.2014.07.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/15/2014] [Accepted: 07/11/2014] [Indexed: 01/07/2023]
Abstract
Numerous oncogenic mutations occur within the BRAF kinase domain (BRAF(KD)). Here we show that stable BRAF-MEK1 complexes are enriched in BRAF(WT) and KRAS mutant (MT) cells but not in BRAF(MT) cells. The crystal structure of the BRAF(KD) in a complex with MEK1 reveals a face-to-face dimer sensitive to MEK1 phosphorylation but insensitive to BRAF dimerization. Structure-guided studies reveal that oncogenic BRAF mutations function by bypassing the requirement for BRAF dimerization for activity or weakening the interaction with MEK1. Finally, we show that conformation-specific BRAF inhibitors can sequester a dormant BRAF-MEK1 complex resulting in pathway inhibition. Taken together, these findings reveal a regulatory role for BRAF in the MAPK pathway independent of its kinase activity but dependent on interaction with MEK.
Collapse
Affiliation(s)
- Jacob R Haling
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ivana Yen
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steve Sideris
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wendy Sandoval
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wilson Phung
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brandon J Bravo
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anthony M Giannetti
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ariana Peck
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexandre Masselot
- Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tony Morales
- Department of Structural Biology, Array BioPharma, Inc., 3200 Walnut Street, Boulder, CO 80301, USA
| | - Darin Smith
- Department of Structural Biology, Array BioPharma, Inc., 3200 Walnut Street, Boulder, CO 80301, USA
| | - Barbara J Brandhuber
- Department of Structural Biology, Array BioPharma, Inc., 3200 Walnut Street, Boulder, CO 80301, USA
| | - Sarah G Hymowitz
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Shiva Malek
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
34
|
Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 2014; 14:455-67. [PMID: 24957944 PMCID: PMC4250230 DOI: 10.1038/nrc3760] [Citation(s) in RCA: 619] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of mutationally activated BRAF in many cancers altered our conception of the part played by the RAF family of protein kinases in oncogenesis. In this Review, we describe the development of BRAF inhibitors and the results that have emerged from their analysis in both the laboratory and the clinic. We discuss the spectrum of RAF mutations in human cancer and the complex interplay between the tissue of origin and the response to RAF inhibition. Finally, we enumerate mechanisms of resistance to BRAF inhibition that have been characterized and postulate how strategies of RAF pathway inhibition may be extended in scope to benefit not only the thousands of patients who are diagnosed annually with BRAF-mutated metastatic melanoma but also the larger patient population with malignancies harbouring mutationally activated RAF genes that are ineffectively treated with the current generation of BRAF kinase inhibitors.
Collapse
Affiliation(s)
| | | | - Frank McCormick
- Corresponding Authors: Frank McCormick & Martin McMahon, Diller Family Cancer Research Bldg., 1450 Third Street, University of California, San Francisco, CA 94158, USA, &
| | - Martin McMahon
- Corresponding Authors: Frank McCormick & Martin McMahon, Diller Family Cancer Research Bldg., 1450 Third Street, University of California, San Francisco, CA 94158, USA, &
| |
Collapse
|
35
|
"RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett 2014; 588:2398-406. [PMID: 24937142 PMCID: PMC4099524 DOI: 10.1016/j.febslet.2014.06.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
The Raf/Mek/Erk signaling pathway, activated downstream of Ras primarily to promote proliferation, represents the best studied of the evolutionary conserved MAPK cascades. The investigation of the pathway has continued unabated since its discovery roughly 30 years ago. In the last decade, however, the identification of unexpected in vivo functions of pathway components, as well as the discovery of Raf mutations in human cancer, the ensuing quest for inhibitors, and the efforts to understand their mechanism of action, have boosted interest tremendously. From this large body of work, protein-protein interaction has emerged as a recurrent, crucial theme. This review focuses on the role of protein complexes in the regulation of the Raf/Mek/Erk pathway and in its cross-talk with other signaling cascades. Mapping these interactions and finding a way of exploiting them for therapeutic purposes is one of the challenges of future molecule-targeted therapy.
Collapse
|
36
|
Takács-Vellai K. The metastasis suppressor Nm23 as a modulator of Ras/ERK signaling. J Mol Signal 2014; 9:4. [PMID: 24829611 PMCID: PMC4020307 DOI: 10.1186/1750-2187-9-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/30/2014] [Indexed: 01/06/2023] Open
Abstract
NM23-H1 (also known as NME1) was the first identified metastasis suppressor, which displays a nucleoside diphosphate kinase (NDPK) and histidine protein kinase activity. NDPKs are linked to many processes, such as cell migration, proliferation, differentiation, but the exact mechanism whereby NM23-H1 inhibits the metastatic potential of cancer cells remains elusive. However, some recent data suggest that NM23-H1 may exert its anti-metastatic effect by blocking Ras/ERK signaling. In mammalian cell lines NDPK-mediated attenuation of Ras/ERK signaling occurs through phosphorylation (thus inactivation) of KSR (kinase suppressor of Ras) scaffolds. In this review I summarize our knowledge about KSR's function and its regulation in mammals and in C. elegans. Genetic studies in the nematode contributed substantially to our understanding of the function and regulation of the Ras pathway (i.e. KSR's discovery is also linked to the nematode). Components of the RTK/Ras/ERK pathway seem to be highly conserved between mammals and worms. NDK-1, the worm homolog of NM23-H1 affects Ras/MAPK signaling at the level of KSRs, and a functional interaction between NDK-1/NDPK and KSRs was first demonstrated in the worm in vivo. However, NDK-1 is a factor, which is necessary for proper MAPK activation, thus it activates rather than suppresses Ras/MAPK signaling in the worm. The contradiction between results in mammalian cell lines and in the worm regarding NDPKs' effect exerted on the outcome of Ras signaling might be resolved, if we better understand the function, structure and regulation of KSR scaffolds.
Collapse
Affiliation(s)
- Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
37
|
Reiterer V, Eyers PA, Farhan H. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Trends Cell Biol 2014; 24:489-505. [PMID: 24818526 DOI: 10.1016/j.tcb.2014.03.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
Abstract
Pseudophosphatases and pseudokinases are increasingly viewed as integral elements of signaling pathways, and there is mounting evidence that they have frequently retained the ability to interact with cellular 'substrates', and can exert important roles in different diseases. However, these pseudoenzymes have traditionally received scant attention compared to classical kinases and phosphatases. In this review we explore new findings in the emerging pseudokinase and pseudophosphatase fields, and discuss their different modes of action which include exciting new roles as scaffolds, anchors, spatial modulators, traps, and ligand-driven regulators of canonical kinases and phosphatases. Thus, it is now apparent that pseudokinases and pseudophosphatases both support and drive a panoply of signaling networks. Finally, we highlight recent evidence on their involvement in human pathologies, marking them as potential novel drug targets.
Collapse
Affiliation(s)
- Veronika Reiterer
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Hesso Farhan
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland; Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
38
|
Holderfield M, Nagel TE, Stuart DD. Mechanism and consequences of RAF kinase activation by small-molecule inhibitors. Br J Cancer 2014; 111:640-5. [PMID: 24642617 PMCID: PMC4134487 DOI: 10.1038/bjc.2014.139] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 02/06/2023] Open
Abstract
Despite the clinical success of RAF inhibitors in BRAF-mutated melanomas, attempts to target RAF kinases in the context of RAS-driven or otherwise RAF wild-type tumours have not only been ineffective, but RAF inhibitors appear to aggravate tumorigenesis in these settings. Subsequent preclinical investigation has revealed several regulatory mechanisms, feedback pathways and unexpected enzymatic quirks in the MAPK pathway, which may explain this paradox. In this review, we cover the various proposed molecular mechanisms for the RAF paradox, the clinical consequences and strategies to overcome it.
Collapse
Affiliation(s)
- M Holderfield
- UCSF Helen Diller Family Comprehensive Cancer Research, University of California San Francisco, San Francisco, CA 94143-0128, USA
| | - T E Nagel
- Novartis Institutes for Biomedical Research, Emeryville, CA 94523, USA
| | - D D Stuart
- Novartis Institutes for Biomedical Research, Emeryville, CA 94523, USA
| |
Collapse
|
39
|
Luan Z, He Y, Alattar M, Chen Z, He F. Targeting the prohibitin scaffold-CRAF kinase interaction in RAS-ERK-driven pancreatic ductal adenocarcinoma. Mol Cancer 2014; 13:38. [PMID: 24568222 PMCID: PMC3938031 DOI: 10.1186/1476-4598-13-38] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Robust ERK1/2 activity, which frequently results from KRAS mutation, invariably occurs in pancreatic ductal adenocarcinoma (PDAC). However, direct interference of KRAS signaling has not led to clinically successful drugs. Correct localization of RAF is regulated by the scaffold protein prohibitin (PHB) that ensures the spatial organization between RAS and RAF in plasma membranes, thus leading to activation of downstream effectors. Methods PHB expression was analyzed in human pancreatic cancer cell lines, normal pancreas, and PDAC tissue. Furthermore, genetic ablation or pharmacological inhibition of PHB was performed to determine its role in growth, migration, and signaling of pancreatic cancer cells in vitro and in vivo. Results The level of PHB expression was crucial for maintenance of oncogenic ERK-driven pancreatic tumorigenesis. Additionally, rocaglamide (RocA), a small molecular inhibitor, selectively bound to PHB with nanomolar affinity to disrupt the PHB-CRAF interaction by altering its localization to the plasma membrane. Consequently, there was an impairment of oncogenic RAS-ERK signaling, thereby blocking in vitro and in vivo growth and metastasis of pancreatic cancer cells that were addicted to RAS-ERK signaling. More importantly, RocA treatment resulted in a significant increase of the lifespan of tumor-bearing mice without any detectable toxicity. Conclusions Blockade of the PHB scaffold-CRAF kinase interaction, which is distinct from direct kinase inhibition, may be a new therapeutic strategy to target oncogenic ERK-driven pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | |
Collapse
|
40
|
Abstract
Kinases catalyse the phosphorylation of target substrates on hydroxy group-containing residues as a means to nucleate multi-component complexes or to stabilize unique conformational states. Through this biochemical activity, kinases play critical roles in many signal transduction and disease pathways. Pseudokinases constitute a subclass of these enzymes that were originally predicted as inactive on the basis of mutations of key conserved active-site residues. However, recent biochemical and structural analyses have revealed several enzymatically active pseudokinases, suggesting either that novel mechanisms of phosphorylation are at play or that the constraints for highly conserved active-site residues are looser than originally anticipated. The purpose of the present review is to summarize several of the active pseudokinases, and one in particular termed KSR (kinase suppressor of Ras), which was recently found to possess a kinase activity that can become accelerated through an allosteric mechanism. Utilization of catalytic activity or structural features of the kinase fold may be key to the function of many pseudokinases.
Collapse
|
41
|
Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 2013; 154:1036-1046. [PMID: 23993095 DOI: 10.1016/j.cell.2013.07.046] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 07/31/2013] [Indexed: 01/07/2023]
Abstract
Although RAF kinases are critical for controlling cell growth, their mechanism of activation is incompletely understood. Recently, dimerization was shown to be important for activation. Here we show that the dimer is functionally asymmetric with one kinase functioning as an activator to stimulate activity of the partner, receiver kinase. The activator kinase did not require kinase activity but did require N-terminal phosphorylation that functioned allosterically to induce cis-autophosphorylation of the receiver kinase. Based on modeling of the hydrophobic spine assembly, we also engineered a constitutively active mutant that was independent of Ras, dimerization, and activation-loop phosphorylation. As N-terminal phosphorylation of BRAF is constitutive, BRAF initially functions to activate CRAF. N-terminal phosphorylation of CRAF was dependent on MEK, suggesting a feedback mechanism and explaining a key difference between BRAF and CRAF. Our work illuminates distinct steps in RAF activation that function to assemble the active conformation of the RAF kinase.
Collapse
|
42
|
Vin H, Ojeda SS, Ching G, Leung ML, Chitsazzadeh V, Dwyer DW, Adelmann CH, Restrepo M, Richards KN, Stewart LR, Du L, Ferguson SB, Chakravarti D, Ehrenreiter K, Baccarini M, Ruggieri R, Curry JL, Kim KB, Ciurea AM, Duvic M, Prieto VG, Ullrich SE, Dalby KN, Flores ER, Tsai KY. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. eLife 2013; 2:e00969. [PMID: 24192036 PMCID: PMC3814616 DOI: 10.7554/elife.00969] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001.
Collapse
Affiliation(s)
- Harina Vin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nickoloff BJ, Vande Woude G. Hepatocyte growth factor in the neighborhood reverses resistance to BRAF inhibitor in melanoma. Pigment Cell Melanoma Res 2013; 25:758-61. [PMID: 22974232 DOI: 10.1111/pcmr.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brian J Nickoloff
- Nicholas V. Perricone Division of Dermatology, Michigan State University College of Human Medicine, and Lab of Cutaneous Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | | |
Collapse
|
44
|
Baljuls A, Kholodenko BN, Kolch W. It takes two to tango--signalling by dimeric Raf kinases. MOLECULAR BIOSYSTEMS 2013; 9:551-8. [PMID: 23212737 DOI: 10.1039/c2mb25393c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Raf kinases function downstream of Ras proteins to activate the MEK-ERK pathway which is deregulated in a large number of human cancers. Raf inhibitors are clinically highly effective for the treatment of cancer and melanoma in particular, but have unexpected side effects that include a paradoxical activation of the ERK pathway. These effects seem to be related to the heterodimerization of Raf-1 and B-Raf kinases. Here, we discuss the role of Raf dimerization as part of the physiological activation mechanism of Raf kinases, the mechanism of Raf dimerization induced by drugs, and the implications of dimerization for drug therapies targeting Raf kinases.
Collapse
Affiliation(s)
- Angela Baljuls
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| | | | | |
Collapse
|
45
|
Claus J, Cameron AJM, Parker PJ. Pseudokinase drug intervention: a potentially poisoned chalice. Biochem Soc Trans 2013; 41:1083-8. [PMID: 23863183 DOI: 10.1042/bst20130078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pseudokinases, the catalytically impaired component of the kinome, have recently been found to share more properties with active kinases than previously thought. In many pseudokinases, ATP binding and even some activity is preserved, highlighting these proteins as potential drug targets. In both active kinases and pseudokinases, binding of ATP or drugs in the nucleotide-binding pocket can stabilize specific conformations required for activity and protein-protein interactions. We discuss the implications of locking particular conformations in a selection of (pseudo)kinases and the dual potential impact on the druggability of these proteins.
Collapse
Affiliation(s)
- Jeroen Claus
- Cancer Research UK, London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | | | |
Collapse
|
46
|
Zhang H, Koo CY, Stebbing J, Giamas G. The dual function of KSR1: a pseudokinase and beyond. Biochem Soc Trans 2013; 41:1078-82. [PMID: 23863182 DOI: 10.1042/bst20130042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein kinases play a pivotal role in regulating many aspects of biological processes, including development, differentiation and cell death. Within the kinome, 48 kinases (~10%) are classified as pseudokinases owing to the fact that they lack at least one conserved catalytic residue in their kinase domain. However, emerging evidence suggest that some pseudokinases, even without the ability to phosphorylate substrates, are regulators of multiple cellular signalling pathways. Among these is KSR1 (kinase suppressor of Ras 1), which was initially identified as a novel kinase in the Ras/Raf pathway. Subsequent studies showed that KSR1 mainly functions as a platform to assemble different cellular components thereby facilitating signal transduction. In the present article, we discuss recent findings regarding KSR1, indicating that it has dual activity as an active kinase as well as a pseudokinase/scaffolding protein. Moreover, the biological functions of KSR1 in human disorders, notably in malignancies, are also reviewed.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.
| | | | | | | |
Collapse
|
47
|
Li Y, Takahashi M, Stork PJS. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem 2013; 288:27646-27657. [PMID: 23893412 DOI: 10.1074/jbc.m113.463067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.
Collapse
Affiliation(s)
- Yanping Li
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Maho Takahashi
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Philip J S Stork
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
48
|
Rebocho AP, Marais R. ARAF acts as a scaffold to stabilize BRAF:CRAF heterodimers. Oncogene 2013; 32:3207-12. [PMID: 22926515 DOI: 10.1038/onc.2012.330] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/07/2012] [Accepted: 06/10/2012] [Indexed: 12/17/2022]
Abstract
The RAF proteins are cytosolic protein kinases that regulate cell responses to extracellular signals. There are three RAF proteins in cells, ARAF, BRAF and CRAF, and recent studies have shown that the formation of complexes by these different isoforms has an important role in their activation, particularly in response to RAF inhibitors. Here, we investigated the role of ARAF in cancer cell signaling and examined the role of ARAF in mediating paradoxical activation of the MAPK pathway in cells treated with RAF inhibitors. We show that two mutations that occur in ARAF in cancer inactivate the kinase. We also show that ARAF is not functionally redundant with CRAF and cannot substitute for CRAF downstream of RAS. We further show that ARAF binds to and is activated by BRAF and that ARAF also forms complexes with CRAF. Critically, ARAF seems to stabilize BRAF:CRAF complexes in cells treated with RAF inhibitors and thereby regulate cell signaling in a subtle manner to ensure signaling efficiency.
Collapse
Affiliation(s)
- A P Rebocho
- The Institute of Cancer Research, London, UK
| | | |
Collapse
|
49
|
Tsai KY, Nowroozi S, Kim KB. Drug safety evaluation of vemurafenib in the treatment of melanoma. Expert Opin Drug Saf 2013; 12:767-75. [DOI: 10.1517/14740338.2013.813017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Huang XY, Ke AW, Shi GM, Zhang X, Zhang C, Shi YH, Wang XY, Ding ZB, Xiao YS, Yan J, Qiu SJ, Fan J, Zhou J. αB-crystallin complexes with 14-3-3ζ to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology 2013; 57:2235-2247. [PMID: 23316005 DOI: 10.1002/hep.26255] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED The overall survival of patients with hepatocellular carcinoma (HCC) remains poor, and the molecular pathogenesis remains incompletely defined in HCC. Here we report that increased expression of αB-Crystallin in human HCC predicts poor survival and disease recurrence after surgery. Multivariate analysis identifies αB-Crystallin expression as an independent predictor for postoperative recurrence and overall survival. We show that elevated expression of αB-Crystallin promotes HCC progression in vivo and in vitro. We demonstrate that αB-Crystallin overexpression fosters HCC progression by inducing epithelial-mesenchymal transition (EMT) in HCC cells through activation of the extracellular-regulated protein kinase (ERK) cascade, which can counteract the effect of sorafenib. αB-Crystallin complexes with and elevates 14-3-3ζ protein, leading to up-regulation of ERK1/2 activity. Moreover, overexpression of αB-Crystallin in HCC cells induces EMT progression through an ERK1/2/Fra-1/slug signaling pathway. Clinically, our data reveal that overexpression of both αB-Crystallin and 14-3-3ζ correlates with the HCC poorest survival outcomes, and sorafenib response is impaired in patients with αB-Crystallin overexpression. CONCLUSION These data suggest that the αB-Crystallin-14-3-3ζ complex acts synergistically to promote HCC progression by constitutively activating ERK signaling. This study reveals αB-Crystallin as a potential therapeutic target for HCC and a biomarker for predicting sorafenib treatment response. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|