1
|
Guo JL, Griffin M, Yoon JK, Lopez DM, Zhu Y, Lu JM, Mikos G, Parker JBL, Mascharak S, Brenac C, Guardino NJ, Abbas DB, Li DJ, Valencia C, Liang NE, Januszyk M, Chang HY, Wan DC, Desai TJ, Longaker MT. Histological signatures map anti-fibrotic factors in mouse and human lungs. Nature 2025:10.1038/s41586-025-08727-3. [PMID: 40108456 DOI: 10.1038/s41586-025-08727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
Fibrosis, the replacement of healthy tissue with collagen-rich matrix, can occur following injury in almost every organ1,2. Mouse lungs follow a stereotyped sequence of fibrogenesis-to-resolution after bleomycin injury3, and we reasoned that profiling post-injury histological stages could uncover pro-fibrotic versus anti-fibrotic features with functional value for human fibrosis. Here we quantified spatiotemporally resolved matrix transformations for integration with multi-omic data. First, we charted stepwise trajectories of matrix aberration versus resolution, derived from a high-dimensional set of histological fibre features, that denoted a reversible transition in uniform-to-disordered histological architecture. Single-cell sequencing along these trajectories identified temporally enriched 'ECM-secreting' (Csmd1-expressing) and 'pro-resolving' (Cd248-expressing) fibroblasts at the respective post-injury stages. Visium-based spatial analysis further suggested divergent matrix architectures and spatial-transcriptional neighbourhoods by fibroblast subtype, identifying distinct fibrotic versus non-fibrotic biomolecular milieu. Critically, pro-resolving fibroblast instillation helped to ameliorate fibrosis in vivo. Furthermore, the fibroblast neighbourhood-associated factors SERPINE2 and PI16 functionally modulated human lung fibrosis ex vivo. Spatial phenotyping of idiopathic pulmonary fibrosis at protein level additionally uncovered analogous fibroblast subtypes and neighbourhoods in human disease. Collectively, these findings establish an atlas of pro- and anti-fibrotic factors that underlie lung matrix architecture and implicate fibroblast-associated biological features in modulating fibrotic progression versus resolution.
Collapse
Affiliation(s)
- Jason L Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jung-Ki Yoon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Internal Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Lopez
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yili Zhu
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA, USA
| | - John M Lu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Mikos
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer B L Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Camille Brenac
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas J Guardino
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Darren B Abbas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dayan J Li
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb Valencia
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Norah E Liang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Derrick C Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tushar J Desai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Internal Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Kanzaki R, Reid S, Bolivar P, Sjölund J, Staaf J, Larsson S, Shintani Y, Pietras K. FHL2 expression by cancer-associated fibroblasts promotes metastasis and angiogenesis in lung adenocarcinoma. Int J Cancer 2025; 156:431-446. [PMID: 39244734 DOI: 10.1002/ijc.35174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Cancer-associated fibroblasts (CAFs) contribute to the progression of lung cancer. Four and a half LIM domain protein-2 (FHL2) is a component of focal adhesion structures. We analyzed the function of FHL2 expressed by CAFs in lung adenocarcinoma. Expression of FHL2 in fibroblast subtypes was investigated using database of single-cell RNA-sequencing of lung cancer tissue. The role of FHL2 in the proliferation and migration of CAFs was assessed. The effects of FHL2 knockout on the migration and invasion of human lung adenocarcinoma cells and tube formation of endothelial cells induced by CAF-conditioned medium (CM) were evaluated. The effect of FHL2 knockout in CAFs on metastasis was determined using a murine orthotopic lung cancer model. The prognostic significance of stromal FHL2 was assessed by immunohistochemistry in human adenocarcinoma specimens. FHL2 is highly expressed in myofibroblasts in cancer tissue. TGF-β1 upregulated FHL2 expression in CAFs and FHL2 knockdown attenuated CAF proliferation. FHL2 knockout reduced CAF induced migration of A110L and H23 human lung adenocarcinoma cell lines, and the induction of tube formation of endothelial cells. FHL2 knockout reduced CAF-induced metastasis of lung adenocarcinomas in an orthotopic model in vivo. The concentration of Osteopontin (OPN) in CM from CAF was downregulated by FHL2 knockout. siRNA silencing and antibody blocking of OPN reduced the pro-migratory effect of CM from CAF on lung cancer cells. In resected lung adenocarcinoma specimens, positive stromal FHL2 expression was significantly associated with higher microvascular density and worse prognosis. In conclusion, FHL2 expression by CAFs enhances the progression of lung adenocarcinoma by promoting angiogenesis and metastasis.
Collapse
Affiliation(s)
- Ryu Kanzaki
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Steven Reid
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Paulina Bolivar
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Sara Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Kasprovic DA, Jaggers RM, Tranter M, Kanisicak O. Cardiac macrophages and fibroblasts: A synergistic partnership without cellular transition. J Mol Cell Cardiol 2024; 196:168-170. [PMID: 39303853 PMCID: PMC12015549 DOI: 10.1016/j.yjmcc.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Daniel A Kasprovic
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Robert M Jaggers
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Michael Tranter
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Molecular Medicine and Therapeutics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Onur Kanisicak
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Dowaidar M. Drug delivery based exosomes uptake pathways. Neurochem Int 2024; 179:105835. [PMID: 39147203 DOI: 10.1016/j.neuint.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Most cells secrete a material called extracellular vesicles (EVs), which play a crucial role in cellular communication. Exosomes are one of the most studied types of EVs. Recent research has shown the many functions and substrates of cellular exosomes. Multiple studies have shown the efficacy of exosomes in transporting a wide variety of cargo to their respective target cells. As a result, they are often utilized to transport medicaments to patients. Natural exosomes as well as exosomes modified with other compounds to enhance transport capabilities have been employed. In this article, we take a look at how different types of exosomes and modified exosomes may transport different types of cargo to their respective targets. Exosomes have a lot of potential as drug delivery vehicles for many synthetic compounds, proteins, nucleic acids, and gene repair specialists because they can stay in the body for a long time, are biocompatible, and can carry natural materials. A good way to put specific protein particles into exosomes is still not clear, though, and the exosomes can't be used in many situations yet. The determinants for exosome production, as well as ways for loading certain therapeutic molecules (proteins, nucleic acids, and small compounds), were covered in this paper. Further study and the development of therapeutic exosomes may both benefit from the information collected in this review.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
5
|
Sutter SO, Tobler K, Seyffert M, Lkharrazi A, Zöllig J, Schraner EM, Vogt B, Büning H, Fraefel C. Interferon-γ inducible factor 16 (IFI16) restricts adeno-associated virus type 2 (AAV2) transduction in an immune-modulatory independent way. J Virol 2024; 98:e0011024. [PMID: 38837381 PMCID: PMC11338077 DOI: 10.1128/jvi.00110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
We determined the transcription profile of adeno-associated virus type 2 (AAV2)-infected primary human fibroblasts. Subsequent analysis revealed that cells respond to AAV infection through changes in several significantly affected pathways, including cell cycle regulation, chromatin modulation, and innate immune responses. Various assays were performed to validate selected differentially expressed genes and to confirm not only the quality but also the robustness of the raw data. One of the genes upregulated in AAV2-infected cells was interferon-γ inducible factor 16 (IFI16). IFI16 is known as a multifunctional cytosolic and nuclear innate immune sensor for double-stranded as well as single-stranded DNA, exerting its effects through various mechanisms, such as interferon response, epigenetic modifications, or transcriptional regulation. IFI16 thereby constitutes a restriction factor for many different viruses among them, as shown here, AAV2 and thereof derived vectors. Indeed, the post-transcriptional silencing of IFI16 significantly increased AAV2 transduction efficiency, independent of the structure of the virus/vector genome. We also show that IFI16 exerts its inhibitory effect on AAV2 transduction in an immune-modulatory independent way by interfering with Sp1-dependent transactivation of wild-type AAV2 and AAV2 vector promoters. IMPORTANCE Adeno-associated virus (AAV) vectors are among the most frequently used viral vectors for gene therapy. The lack of pathogenicity of the parental virus, the long-term persistence as episomes in non-proliferating cells, and the availability of a variety of AAV serotypes differing in their cellular tropism are advantageous features of this biological nanoparticle. To deepen our understanding of virus-host interactions, especially in terms of antiviral responses, we present here the first transcriptome analysis of AAV serotype 2 (AAV2)-infected human primary fibroblasts. Our findings indicate that interferon-γ inducible factor 16 acts as an antiviral factor in AAV2 infection and AAV2 vector-mediated cell transduction in an immune-modulatory independent way by interrupting the Sp1-dependent gene expression from viral or vector genomes.
Collapse
Affiliation(s)
| | - Kurt Tobler
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Michael Seyffert
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Anouk Lkharrazi
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Joël Zöllig
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | | | - Bernd Vogt
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Hildegard Büning
- Institute of
Experimental Hematology, Hannover Medical
School, Hannover,
Germany
| | - Cornel Fraefel
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| |
Collapse
|
6
|
Rachedi NS, Tang Y, Tai YY, Zhao J, Chauvet C, Grynblat J, Akoumia KKF, Estephan L, Torrino S, Sbai C, Ait-Mouffok A, Latoche JD, Al Aaraj Y, Brau F, Abélanet S, Clavel S, Zhang Y, Guillermier C, Kumar NVG, Tavakoli S, Mercier O, Risbano MG, Yao ZK, Yang G, Ouerfelli O, Lewis JS, Montani D, Humbert M, Steinhauser ML, Anderson CJ, Oldham WM, Perros F, Bertero T, Chan SY. Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness. Cell Metab 2024; 36:1335-1350.e8. [PMID: 38701775 PMCID: PMC11152997 DOI: 10.1016/j.cmet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.
Collapse
Affiliation(s)
- Nesrine S Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Julien Grynblat
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Pôle Thoracique, Vasculaire et Transplantations, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Kouamé Kan Firmin Akoumia
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Leonard Estephan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Stéphanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Amel Ait-Mouffok
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Joseph D Latoche
- Hillman Cancer Center, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Yingze Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen V G Kumar
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Olaf Mercier
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Michael G Risbano
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Zhong-Ke Yao
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guangli Yang
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouathek Ouerfelli
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason S Lewis
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Montani
- Pôle Thoracique, Vasculaire et Transplantations, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | | | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, 69310 Pierre-Bénite, France
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France.
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Kuan CH, Tai KY, Lu SC, Wu YF, Wu PS, Kwang N, Wang WH, Mai-Yi Fan S, Wang SH, Chien HF, Lai HS, Lin MH, Plikus MV, Lin SJ. Delayed Collagen Production without Myofibroblast Formation Contributes to Reduced Scarring in Adult Skin Microwounds. J Invest Dermatol 2024; 144:1124-1133.e7. [PMID: 38036291 DOI: 10.1016/j.jid.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
In adult mammals, wound healing predominantly follows a fibrotic pathway, culminating in scar formation. However, cutaneous microwounds generated through fractional photothermolysis, a modality that produces a constellation of microthermal zones, exhibit a markedly different healing trajectory. Our study delineates the cellular attributes of these microthermal zones, underscoring a temporally limited, subclinical inflammatory milieu concomitant with rapid re-epithelialization within 24 hours. This wound closure is facilitated by the activation of genes associated with keratinocyte migration and differentiation. In contrast to macrothermal wounds, which predominantly heal through a robust myofibroblast-mediated collagen deposition, microthermal zones are characterized by absence of wound contraction and feature delayed collagen remodeling, initiating 5-6 weeks after injury. This distinct wound healing is characterized by a rapid re-epithelialization process and a muted inflammatory response, which collectively serve to mitigate excessive myofibroblast activation. Furthermore, we identify an initial reparative phase characterized by a heterogeneous extracellular matrix protein composition, which precedes the delayed collagen remodeling. These findings extend our understanding of cutaneous wound healing and may have significant implications for the optimization of therapeutic strategies aimed at mitigating scar formation.
Collapse
Affiliation(s)
- Chen-Hsiang Kuan
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Shao-Chi Lu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nellie Kwang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Han Wang
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Miao-Hsia Lin
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Sung-Jan Lin
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Gao KM, Chiang K, Jiang Z, Korkmaz FT, Janardhan HP, Trivedi CM, Quinton LJ, Gingras S, Fitzgerald KA, Marshak-Rothstein A. Endothelial cell expression of a STING gain-of-function mutation initiates pulmonary lymphocytic infiltration. Cell Rep 2024; 43:114114. [PMID: 38625791 PMCID: PMC11108094 DOI: 10.1016/j.celrep.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.
Collapse
Affiliation(s)
- Kevin MingJie Gao
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kristy Chiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Filiz T Korkmaz
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Harish P Janardhan
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lee J Quinton
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ann Marshak-Rothstein
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
10
|
Matsumoto Y, Ikeda S, Kimura T, Ono K, Ashida N. Col1α2-Cre-mediated recombination occurs in various cell types due to Cre expression in epiblasts. Sci Rep 2023; 13:22483. [PMID: 38110549 PMCID: PMC10728165 DOI: 10.1038/s41598-023-50053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
The Cre-LoxP system has been commonly used for cell-specific genetic manipulation. However, many Cre strains exhibit excision activity in unexpected cell types or tissues. Therefore, it is important to identify the cell types in which recombination takes place. Fibroblasts are a cell type that is inadequately defined due to a lack of specific markers to detect the entire cell lineage. Here, we investigated the Cre recombination induced by Col1α2-iCre, one of the most common fibroblast-mesenchymal Cre driver lines, by using a double-fluorescent Cre reporter line in which GFP is expressed when recombination occurs. Our results indicated that Col1α2-iCre activity was more extensive across cell types than previously reported: Col1α2-iCre-mediated recombination was found in not only cells of mesenchymal origin but also those of other lineages, including haematopoietic cells, myocardial cells, lung and intestinal epithelial cells, and neural cells. In addition, study of embryos revealed that recombination by Col1α2-iCre was observed in the early developmental stage before gastrulation in epiblasts, which would account for the recombination across various cell types in adult mice. These results offer more insights into the activity of Col1α2-iCre and suggest that experimental results obtained using Col1α2-iCre should be carefully interpreted.
Collapse
Affiliation(s)
- Yuzuru Matsumoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinya Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Hirakata Kohsai Hospital, Osaka, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
11
|
Lyu QR, Fu K. Tissue-specific Cre driver mice to study vascular diseases. Vascul Pharmacol 2023; 153:107241. [PMID: 37923099 DOI: 10.1016/j.vph.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Vascular diseases, including atherosclerosis and abdominal aneurysms, are the primary cause of mortality and morbidity among the elderly worldwide. The life quality of patients is significantly compromised due to inadequate therapeutic approaches and limited drug targets. To expand our comprehension of vascular diseases, gene knockout (KO) mice, especially conditional knockout (cKO) mice, are widely used for investigating gene function and mechanisms of action. The Cre-loxP system is the most common method for generating cKO mice. Numerous Cre driver mice have been established to study the main cell types that compose blood vessels, including endothelial cells, smooth muscle cells, and fibroblasts. Here, we first discuss the characteristics of each layer of the arterial wall. Next, we provide an overview of the representative Cre driver mice utilized for each of the major cell types in the vessel wall and their most recent applications in vascular biology. We then go over Cre toxicity and discuss the practical methods for minimizing Cre interference in experimental outcomes. Finally, we look into the future of tissue-specific Cre drivers by introducing the revolutionary single-cell RNA sequencing and dual recombinase system.
Collapse
Affiliation(s)
- Qing Rex Lyu
- Medical Research Center, Chongqing General Hospital, Chongqing 401147, China; Chongqing Academy of Medical Sciences, Chongqing 401147, China.
| | - Kailong Fu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
12
|
Gao KM, Chiang K, Korkmaz FT, Janardhan HP, Trivedi CM, Quinton LJ, Gingras S, Fitzgerald KA, Marshak-Rothstein A. Expression of a STING Gain-of-function Mutation in Endothelial Cells Initiates Lymphocytic Infiltration of the Lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550897. [PMID: 37547024 PMCID: PMC10402179 DOI: 10.1101/2023.07.27.550897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Patients afflicted with STING gain-of-function mutations frequently present with debilitating interstitial lung disease ( ILD ) that is recapitulated in mice expressing the STING V154M mutation ( VM ). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in the initiation of ILD. To identify STING-expressing non-hematopoietic cell types relevant to ILD, we generated a conditional knock-in ( CKI ) model in which expression of the VM allele was directed to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted expression of the mutant allele resulted in the recruitment of immune cells to the lung and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of SAVI patients or patients afflicted with other ILD-related disorders. Summary Patients with STING gain-of-function (GOF) mutations develop life-threatening lung autoinflammation. In this study, Gao et al. utilize a mouse model of conditional STING GOF to demonstrate a role for endothelial STING GOF in initiating immune cell recruitment into lung tissues of SAVI mice.
Collapse
|
13
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Okuno K, Torimoto K, Cicalese SM, Preston K, Rizzo V, Hashimoto T, Coffman TM, Sparks MA, Eguchi S. Angiotensin II Type 1A Receptor Expressed in Smooth Muscle Cells is Required for Hypertensive Vascular Remodeling in Mice Infused With Angiotensin II. Hypertension 2023; 80:668-677. [PMID: 36628961 PMCID: PMC9931681 DOI: 10.1161/hypertensionaha.122.20601] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Ang II (angiotensin II) type 1 (AT1) receptors play a critical role in cardiovascular diseases such as hypertension. Rodents have 2 types of AT1 receptor (AT1A and AT1B) of which knock-in Tagln-mediated smooth muscle AT1A silencing attenuated Ang II-induced hypertension. Although vascular remodeling, a significant contributor to organ damage, occurs concurrently with hypertension in Ang II-infused mice, the contribution of smooth muscle AT1A in this process remains unexplored. Accordingly, it is hypothesized that smooth muscle AT1A receptors exclusively contribute to both medial thickening and adventitial fibrosis regardless of the presence of hypertension. METHODS About 1 µg/kg per minute Ang II was infused for 2 weeks in 2 distinct AT1A receptor silenced mice, knock-in Tagln-mediated constitutive smooth muscle AT1A receptor silenced mice, and Myh11-mediated inducible smooth muscle AT1A together with global AT1B silenced mice for evaluation of hypertensive cardiovascular remodeling. RESULTS Medial thickness, adventitial collagen deposition, and immune cell infiltration in aorta were increased in control mice but not in both smooth muscle AT1A receptor silenced mice. Coronary arterial perivascular fibrosis in response to Ang II infusion was also attenuated in both AT1A receptor silenced mice. Ang II-induced cardiac hypertrophy was attenuated in constitutive smooth muscle AT1A receptor silenced mice. However, Ang II-induced cardiac hypertrophy and hypertension were not altered in inducible smooth muscle AT1A receptor silenced mice. CONCLUSIONS Smooth muscle AT1A receptors mediate Ang II-induced vascular remodeling including medial hypertrophy and inflammatory perivascular fibrosis regardless of the presence of hypertension. Our data suggest an independent etiology of blood pressure elevation and hypertensive vascular remodeling in response to Ang II.
Collapse
Affiliation(s)
- Keisuke Okuno
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., K.T., S.M.C., K.P., V.R., S.E.)
| | - Keiichi Torimoto
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., K.T., S.M.C., K.P., V.R., S.E.)
| | - Stephanie M Cicalese
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., K.T., S.M.C., K.P., V.R., S.E.)
| | - Kyle Preston
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., K.T., S.M.C., K.P., V.R., S.E.)
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., K.T., S.M.C., K.P., V.R., S.E.)
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center, Departments of Neurosurgery and Neurobiology, Barrow Neurological Institute, Phoenix, AZ (T.H.)
| | - Thomas M Coffman
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC (T.M.C., M.A.S.)
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore (T.M.C.)
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC (T.M.C., M.A.S.)
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., K.T., S.M.C., K.P., V.R., S.E.)
| |
Collapse
|
15
|
Comparative Evaluation of Inducible Cre Mouse Models for Fibroblast Targeting in the Healthy and Infarcted Myocardium. Biomedicines 2022; 10:biomedicines10102350. [PMID: 36289614 PMCID: PMC9598630 DOI: 10.3390/biomedicines10102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Several Cre recombinase transgenic mouse models have been generated for cardiac fibroblast (CF) tracking and heart regulation. However, there is still no consensus on the ideal mouse model to optimally identify and/or regulate these cells. Here, a comparative evaluation of the efficiency and specificity of the indirect reporter Cre-loxP system was carried out in three of the most commonly used fibroblast reporter transgenic mice (Pdgfra-CreERT2, Col1a1-CreERT2 and PostnMCM) under healthy and ischemic conditions, to determine their suitability in in vivo studies of cardiac fibrosis. We demonstrate optimal Cre recombinase activity in CF (but also, although moderate, in endothelial cells (ECs)) derived from healthy and infarcted hearts in the PDGFRa-creERT2 mouse strain. In contrast, no positive reporter signal was found in CF derived from the Col1a1-CreERT2 mice. Finally, in the PostnMCM line, fluorescent reporter expression was specifically detected in activated CF but not in EC, which leads us to conclude that it may be the most reliable model for future studies on cardiovascular disease. Importantly, no lethality or cardiac fibrosis were induced after tamoxifen administration at the established doses, either in healthy or infarcted mice of the three fibroblast reporter lineages. This study lays the groundwork for future efficient in vivo CF tracking and functional analyses.
Collapse
|
16
|
Smooth muscle protein 22α-Cre recombination in resting cardiac fibroblasts and hematopoietic precursors. Sci Rep 2022; 12:11564. [PMID: 35798848 PMCID: PMC9263136 DOI: 10.1038/s41598-022-15957-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
The Cre-loxP system has been widely used for cell- or organ-specific gene manipulation, but it is important to precisely understand what kind of cells the recombination takes place in. Smooth muscle 22α (SM22α)-Cre mice have been utilized to alter genes in vascular smooth muscle cells (VSMCs), activated fibroblasts or cardiomyocytes (CMs). Moreover, previous reports indicated that SM22α-Cre is expressed in adipocytes, platelets or myeloid cells. However, there have been no report of whether SM22α-Cre recombination takes place in nonCMs in hearts. Thus, we used the double-fluorescent Cre reporter mouse in which GFP is expressed when recombination occurs. Immunofluorescence analysis demonstrated that recombination occurred in resting cardiac fibroblasts (CFs) or macrophages, as well as VSMCs and CMs. Flow cytometry showed that some CFs, resident macrophages, neutrophils, T cells, and B cells were positive for GFP. These results prompted us to analyze bone marrow cells, and we observed GFP-positive hematopoietic precursor cells (HPCs). Taken together, these results indicated that SM22α-Cre-mediated recombination occurs in resting CFs and hematopoietic cell lineages, including HPCs, which is a cautionary point when using SM22α-Cre mice.
Collapse
|
17
|
Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. Nat Immunol 2022; 23:904-915. [PMID: 35618834 DOI: 10.1038/s41590-022-01213-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that although clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8+ T cells that negatively correlated with patient prognosis, chromophobe RCC (chRCC) had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival. Interleukin-15 (IL-15) promoted ILC1 granzyme A expression and cytotoxicity, and IL-15 expression in chRCC tumor tissue positively tracked with the ILC1 response. An ILC1 gene signature also predicted survival of a subset of breast cancer patients in association with IL-15 expression. Notably, ILC1s directly interacted with cancer cells, and IL-15 produced by cancer cells supported the expansion and anti-tumor function of ILC1s in a murine breast cancer model. Thus, ILC1 sensing of cancer cell IL-15 defines an immunosurveillance mechanism of epithelial malignancies.
Collapse
|
18
|
Kaneko K, Sato Y, Uchino E, Toriu N, Shigeta M, Kiyonari H, Endo S, Fukuma S, Yanagita M. Lineage tracing analysis defines erythropoietin-producing cells as a distinct subpopulation of resident fibroblasts with unique behaviors. Kidney Int 2022; 102:280-292. [DOI: 10.1016/j.kint.2022.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
|
19
|
Zhang K, Yao E, Chen B, Chuang E, Wong J, Seed RI, Nishimura SL, Wolters PJ, Chuang PT. Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. eLife 2022; 11:e68598. [PMID: 35384838 PMCID: PMC9183236 DOI: 10.7554/elife.68598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alveolar formation requires coordinated movement and interaction between alveolar epithelial cells, mesenchymal myofibroblasts, and endothelial cells/pericytes to produce secondary septa. These processes rely on the acquisition of distinct cellular properties to enable ligand secretion for cell-cell signaling and initiate morphogenesis through cellular contraction, cell migration, and cell shape change. In this study, we showed that mitochondrial activity and distribution play a key role in bestowing cellular functions on both alveolar epithelial cells and mesenchymal myofibroblasts for generating secondary septa to form alveoli in mice. These results suggest that mitochondrial function is tightly regulated to empower cellular machineries in a spatially specific manner. Indeed, such regulation via mitochondria is required for secretion of ligands, such as platelet-derived growth factor, from alveolar epithelial cells to influence myofibroblast proliferation and contraction/migration. Moreover, mitochondrial function enables myofibroblast contraction/migration during alveolar formation. Together, these findings yield novel mechanistic insights into how mitochondria regulate pivotal steps of alveologenesis. They highlight selective utilization of energy in cells and diverse energy demands in different cellular processes during development. Our work serves as a paradigm for studying how mitochondria control tissue patterning.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Erica Yao
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Biao Chen
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Ethan Chuang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Julia Wong
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| | - Robert I Seed
- Department of Pathology, University of CaliforniaSan FranciscoUnited States
| | | | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
20
|
Tsai CR, Martin JF. Hippo signaling in cardiac fibroblasts during development, tissue repair, and fibrosis. Curr Top Dev Biol 2022; 149:91-121. [PMID: 35606063 PMCID: PMC10898347 DOI: 10.1016/bs.ctdb.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The evolutionarily conserved Hippo signaling pathway plays key roles in regulating the balance between cell proliferation and apoptosis, cell differentiation, organ size control, tissue repair, and regeneration. Recently, the Hippo pathway has been shown to regulate heart fibrosis, defined as excess extracellular matrix (ECM) deposition and increased tissue stiffness. Cardiac fibroblasts (CFs) are the primary cell type that produces, degrades, and remodels the ECM during homeostasis, aging, inflammation, and tissue repair and regeneration. Here, we review the available evidence from the current literature regarding how the Hippo pathway regulates the formation and function of CFs during heart development and tissue repair.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, United States.
| |
Collapse
|
21
|
Forte E, Ramialison M, Nim HT, Mara M, Li JY, Cohn R, Daigle SL, Boyd S, Stanley EG, Elefanty AG, Hinson JT, Costa MW, Rosenthal NA, Furtado MB. Adult mouse fibroblasts retain organ-specific transcriptomic identity. eLife 2022; 11:71008. [PMID: 35293863 PMCID: PMC8959603 DOI: 10.7554/elife.71008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/15/2022] [Indexed: 01/18/2023] Open
Abstract
Organ fibroblasts are essential components of homeostatic and diseased tissues. They participate in sculpting the extracellular matrix, sensing the microenvironment, and communicating with other resident cells. Recent studies have revealed transcriptomic heterogeneity among fibroblasts within and between organs. To dissect the basis of interorgan heterogeneity, we compare the gene expression of murine fibroblasts from different tissues (tail, skin, lung, liver, heart, kidney, and gonads) and show that they display distinct positional and organ-specific transcriptome signatures that reflect their embryonic origins. We demonstrate that expression of genes typically attributed to the surrounding parenchyma by fibroblasts is established in embryonic development and largely maintained in culture, bioengineered tissues and ectopic transplants. Targeted knockdown of key organ-specific transcription factors affects fibroblast functions, in particular genes involved in the modulation of fibrosis and inflammation. In conclusion, our data reveal that adult fibroblasts maintain an embryonic gene expression signature inherited from their organ of origin, thereby increasing our understanding of adult fibroblast heterogeneity. The knowledge of this tissue-specific gene signature may assist in targeting fibrotic diseases in a more precise, organ-specific manner.
Collapse
Affiliation(s)
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Hieu T Nim
- Faculty of Information Technology, Monash University, Clayton, Australia
| | | | - Jacky Y Li
- Murdoch Children's Research Institute, Parkville, Australia
| | - Rachel Cohn
- Jackson Laboratory, Farmington, United States
| | | | - Sarah Boyd
- Centre for Inflammatory Diseases, Monash University, Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol 2022; 24:940-953. [PMID: 35654839 PMCID: PMC9203279 DOI: 10.1038/s41556-022-00918-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.
Collapse
|
23
|
Glogowska E, Arhatte M, Chatelain FC, Lesage F, Xu A, Grashoff C, Discher DE, Patel A, Honoré E. Piezo1 and Piezo2 foster mechanical gating of K 2P channels. Cell Rep 2021; 37:110070. [PMID: 34852225 DOI: 10.1016/j.celrep.2021.110070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Mechanoelectrical transduction is mediated by the opening of different types of force-sensitive ion channels, including Piezo1/2 and the TREK/TRAAK K2P channels. Piezo1 curves the membrane locally into an inverted dome that reversibly flattens in response to force application. Moreover, Piezo1 forms numerous preferential interactions with various membrane lipids, including cholesterol. Whether this structural architecture influences the functionality of neighboring membrane proteins is unknown. Here, we show that Piezo1/2 increase TREK/TRAAK current amplitude, slow down activation/deactivation, and remove inactivation upon mechanical stimulation. These findings are consistent with a mechanism whereby Piezo1/2 cause a local depletion of membrane cholesterol associated with a prestress of TREK/TRAAK channels. This regulation occurs in mouse fibroblasts between endogenous Piezo1 and TREK-1/2, both channel types acting in concert to delay wound healing. In conclusion, we demonstrate a community effect between different structural and functional classes of mechanosensitive ion channels.
Collapse
Affiliation(s)
- Edyta Glogowska
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Malika Arhatte
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Franck C Chatelain
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Florian Lesage
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149 Münster, Germany
| | - Dennis E Discher
- Biophysical Engineering Laboratories, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda Patel
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France.
| |
Collapse
|
24
|
Umbarkar P, Ejantkar S, Tousif S, Lal H. Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells 2021; 10:cells10092412. [PMID: 34572061 PMCID: PMC8471002 DOI: 10.3390/cells10092412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality across the world. Cardiac fibrosis is associated with HF progression. Fibrosis is characterized by the excessive accumulation of extracellular matrix components. This is a physiological response to tissue injury. However, uncontrolled fibrosis leads to adverse cardiac remodeling and contributes significantly to cardiac dysfunction. Fibroblasts (FBs) are the primary drivers of myocardial fibrosis. However, until recently, FBs were thought to play a secondary role in cardiac pathophysiology. This review article will present the evolving story of fibroblast biology and fibrosis in cardiac diseases, emphasizing their recent shift from a supporting to a leading role in our understanding of the pathogenesis of cardiac diseases. Indeed, this story only became possible because of the emergence of FB-specific mouse models. This study includes an update on the advancements in the generation of FB-specific mouse models. Regarding the underlying mechanisms of myocardial fibrosis, we will focus on the pathways that have been validated using FB-specific, in vivo mouse models. These pathways include the TGF-β/SMAD3, p38 MAPK, Wnt/β-Catenin, G-protein-coupled receptor kinase (GRK), and Hippo signaling. A better understanding of the mechanisms underlying fibroblast activation and fibrosis may provide a novel therapeutic target for the management of adverse fibrotic remodeling in the diseased heart.
Collapse
Affiliation(s)
- Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| | - Suma Ejantkar
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Correspondence: (P.U.); (H.L.); Tel.: +1-205-996-4248 (P.U.); +1-205-996-4219 (H.L.); Fax: +1-205-975-5104 (H.L.)
| |
Collapse
|
25
|
Iwanaga N, Chen K, Yang H, Lu S, Hoffmann JP, Wanek A, McCombs JE, Song K, Rangel-Moreno J, Norton EB, Kolls JK. Vaccine-driven lung TRM cells provide immunity against Klebsiella via fibroblast IL-17R signaling. Sci Immunol 2021; 6:eabf1198. [PMID: 34516780 DOI: 10.1126/sciimmunol.abf1198] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Naoki Iwanaga
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haoran Yang
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shiping Lu
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Joseph P Hoffmann
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Alanna Wanek
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Janet E McCombs
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K Kolls
- Departments of Pediatrics and Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
27
|
Lagares D, Hinz B. Animal and Human Models of Tissue Repair and Fibrosis: An Introduction. Methods Mol Biol 2021; 2299:277-290. [PMID: 34028750 DOI: 10.1007/978-1-0716-1382-5_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reductionist cell culture systems are not only convenient but essential to understand molecular mechanisms of myofibroblast activation and action in carefully controlled conditions. However, tissue myofibroblasts do not act in isolation and the complexity of tissue repair and fibrosis in humans cannot be captured even by the most elaborate culture models. Over the past five decades, numerous animal models have been developed to study different aspects of myofibroblast biology and interactions with other cells and extracellular matrix. The underlying principles can be broadly classified into: (1) organ injury by trauma such as prototypical full thickness skin wounds or burns; (2) mechanical challenges, such as pressure overload of the heart by ligature of the aorta or the pulmonary vein; (3) toxic injury, such as administration of bleomycin to lungs and carbon tetrachloride to the liver; (4) organ infection with viruses, bacteria, and parasites, such as nematode infections of liver; (5) cytokine and inflammatory models, including local delivery or viral overexpression of active transforming growth factor beta; (6) "lifestyle" and metabolic models such as high-fat diet; and (7) various genetic models. We will briefly summarize the most widely used mouse models used to study myofibroblasts in tissue repair and fibrosis as well as genetic tools for manipulating myofibroblast repair functions in vivo.
Collapse
Affiliation(s)
- David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Bode MF, Schmedes CM, Egnatz GJ, Bharathi V, Hisada YM, Martinez D, Kawano T, Weithauser A, Rosenfeldt L, Rauch U, Palumbo JS, Antoniak S, Mackman N. Cell type-specific roles of PAR1 in Coxsackievirus B3 infection. Sci Rep 2021; 11:14264. [PMID: 34253819 PMCID: PMC8275627 DOI: 10.1038/s41598-021-93759-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Protease-activated receptor 1 (PAR1) is widely expressed in humans and mice, and is activated by a variety of proteases, including thrombin. Recently, we showed that PAR1 contributes to the innate immune response to viral infection. Mice with a global deficiency of PAR1 expressed lower levels of CXCL10 and had increased Coxsackievirus B3 (CVB3)-induced myocarditis compared with control mice. In this study, we determined the effect of cell type-specific deletion of PAR1 in cardiac myocytes (CMs) and cardiac fibroblasts (CFs) on CVB3-induced myocarditis. Mice lacking PAR1 in either CMs or CFs exhibited increased CVB3 genomes, inflammatory infiltrates, macrophages and inflammatory mediators in the heart and increased CVB3-induced myocarditis compared with wild-type controls. Interestingly, PAR1 enhanced poly I:C induction of CXCL10 in rat CFs but not in rat neonatal CMs. Importantly, activation of PAR1 reduced CVB3 replication in murine embryonic fibroblasts and murine embryonic cardiac myocytes. In addition, we showed that PAR1 reduced autophagy in murine embryonic fibroblasts and rat H9c2 cells, which may explain how PAR1 reduces CVB3 replication. These data suggest that PAR1 on CFs protects against CVB3-induced myocarditis by enhancing the anti-viral response whereas PAR1 on both CMs and fibroblasts inhibits viral replication.
Collapse
Affiliation(s)
- Michael F Bode
- Division of Cardiology, Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiology, Department of Medicine, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Clare M Schmedes
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Grant J Egnatz
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Vanthana Bharathi
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Yohei M Hisada
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - David Martinez
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Tomohiro Kawano
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA
| | - Alice Weithauser
- CharitéCentrum 11 Cardiovascular Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Leah Rosenfeldt
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ursula Rauch
- CharitéCentrum 11 Cardiovascular Diseases, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Joseph S Palumbo
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, 116 Manning Drive CB 7035, 8004B Mary Ellen Jones Building, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
29
|
Liu Y, Xu N, Ji H. Reply to: "Myofibroblast YAP/TAZ is dispensable for liver fibrosis in mice". J Hepatol 2021; 75:241-243. [PMID: 33892005 DOI: 10.1016/j.jhep.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Yuan Liu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA; Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ning Xu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | - Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Wang S, Englund E, Kjellman P, Li Z, Ahnlide JK, Rodriguez-Cupello C, Saggioro M, Kanzaki R, Pietras K, Lindgren D, Axelson H, Prinz CN, Swaminathan V, Madsen CD. CCM3 is a gatekeeper in focal adhesions regulating mechanotransduction and YAP/TAZ signalling. Nat Cell Biol 2021; 23:758-770. [PMID: 34226698 DOI: 10.1038/s41556-021-00702-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
The YAP/TAZ transcriptional programme is not only a well-established driver of cancer progression and metastasis but also an important stimulator of tissue regeneration. Here we identified Cerebral cavernous malformations 3 (CCM3) as a regulator of mechanical cue-driven YAP/TAZ signalling, controlling both tumour progression and stem cell differentiation. We demonstrate that CCM3 localizes to focal adhesion sites in cancer-associated fibroblasts, where it regulates mechanotransduction and YAP/TAZ activation. Mechanistically, CCM3 and focal adhesion kinase (FAK) mutually compete for binding to paxillin to fine-tune FAK/Src/paxillin-driven mechanotransduction and YAP/TAZ activation. In mouse models of breast cancer, specific loss of CCM3 in cancer-associated fibroblasts leads to exacerbated tissue remodelling and force transmission to the matrix, resulting in reciprocal YAP/TAZ activation in the neighbouring tumour cells and dissemination of metastasis to distant organs. Similarly, CCM3 regulates the differentiation of mesenchymal stromal/stem cells. In conclusion, CCM3 is a gatekeeper in focal adhesions that controls mechanotransduction and YAP/TAZ signalling.
Collapse
Affiliation(s)
- Shan Wang
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emelie Englund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pontus Kjellman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Zhen Li
- Division of Solid State Physics and NanoLund, Lund University, Lund, Sweden
| | | | - Carmen Rodriguez-Cupello
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mattia Saggioro
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ryu Kanzaki
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, Sweden
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Chris D Madsen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Shen YC, Shami AN, Moritz L, Larose H, Manske GL, Ma Q, Zheng X, Sukhwani M, Czerwinski M, Sultan C, Chen H, Gurczynski SJ, Spence JR, Orwig KE, Tallquist M, Li JZ, Hammoud SS. TCF21 + mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice. Nat Commun 2021; 12:3876. [PMID: 34162856 PMCID: PMC8222243 DOI: 10.1038/s41467-021-24130-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Testicular development and function rely on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity declines in aging and disease. Whether the adult testis maintains a reserve progenitor population remains uncertain. Here, we characterize a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that TCF21lin cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury. In vitro, TCF21lin cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, TCF21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be potentially leveraged in development of future therapies for hypoandrogenism and/or infertility.
Collapse
Affiliation(s)
- Yu-Chi Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lindsay Moritz
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Hailey Larose
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel L Manske
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Czerwinski
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Haolin Chen
- Biochemistry and Molecular Biology, Bloomberg School of Public Health, John Hopkins, USA
| | | | - Jason R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Integrative Systems Biology Graduate Program, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Tallquist
- University of Hawaii, Center for Cardiovascular Research, Honolulu, HI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Shi SY, Luo X, Yamawaki TM, Li CM, Ason B, Furtado MB. Recent Advances in Single-Cell Profiling and Multispecific Therapeutics: Paving the Way for a New Era of Precision Medicine Targeting Cardiac Fibroblasts. Curr Cardiol Rep 2021; 23:82. [PMID: 34081224 PMCID: PMC8175296 DOI: 10.1007/s11886-021-01517-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Cardiac fibroblast activation contributes to fibrosis, maladaptive remodeling and heart failure progression. This review summarizes the latest findings on cardiac fibroblast activation dynamics derived from single-cell transcriptomic analyses and discusses how this information may aid the development of new multispecific medicines. RECENT FINDINGS Advances in single-cell gene expression technologies have led to the discovery of distinct fibroblast subsets, some of which are more prevalent in diseased tissue and exhibit temporal changes in response to injury. In parallel to the rapid development of single-cell platforms, the advent of multispecific therapeutics is beginning to transform the biopharmaceutical landscape, paving the way for the selective targeting of diseased fibroblast subpopulations. Insights gained from single-cell technologies reveal critical cardiac fibroblast subsets that play a pathogenic role in the progression of heart failure. Combined with the development of multispecific therapeutic agents that have enabled access to previously "undruggable" targets, we are entering a new era of precision medicine.
Collapse
Affiliation(s)
- Sally Yu Shi
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Xin Luo
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Tracy M. Yamawaki
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Brandon Ason
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| | - Milena B. Furtado
- Department of Cardiometabolic Disorders, Amgen Discovery Research, Amgen Inc., 1120 Veterans Blvd, South San Francisco, CA 94080 USA
| |
Collapse
|
33
|
Tsukasaki M, Asano T, Muro R, Huynh NCN, Komatsu N, Okamoto K, Nakano K, Okamura T, Nitta T, Takayanagi H. OPG Production Matters Where It Happened. Cell Rep 2021; 32:108124. [PMID: 32905763 DOI: 10.1016/j.celrep.2020.108124] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoprotegerin (OPG) is a circulating decoy receptor for RANKL, a multifunctional cytokine essential for the differentiation of tissue-specific cells in bone and immune systems such as osteoclasts, medullary thymic epithelial cells (mTECs), and intestinal microfold cells (M cells). However, it is unknown whether OPG functions only at the production site or circulates to other tissues acting in an endocrine fashion. Here we explore the cellular source of OPG by generating OPG-floxed mice and show that locally produced OPG, rather than circulating OPG, is crucial for bone and immune homeostasis. Deletion of OPG in osteoblastic cells leads to severe osteopenia without affecting serum OPG. Deletion of locally produced OPG increases mTEC and M cell numbers while retaining the normal serum OPG level. This study shows that OPG limits its functions within the tissue where it was produced, illuminating the importance of local regulation of the RANKL system.
Collapse
Affiliation(s)
- Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Tatsuo Asano
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Nam Cong-Nhat Huynh
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, 162-8655 Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, 162-8655 Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan.
| |
Collapse
|
34
|
Riffelmacher T, Giles DA, Zahner S, Dicker M, Andreyev AY, McArdle S, Perez-Jeldres T, van der Gracht E, Murray MP, Hartmann N, Tumanov AV, Kronenberg M. Metabolic activation and colitis pathogenesis is prevented by lymphotoxin β receptor expression in neutrophils. Mucosal Immunol 2021; 14:679-690. [PMID: 33568785 PMCID: PMC8075978 DOI: 10.1038/s41385-021-00378-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease is characterized by an exacerbated intestinal immune response, but the critical mechanisms regulating immune activation remain incompletely understood. We previously reported that the TNF-superfamily molecule TNFSF14 (LIGHT) is required for preventing severe disease in mouse models of colitis. In addition, deletion of lymphotoxin beta receptor (LTβR), which binds LIGHT, also led to aggravated colitis pathogenesis. Here, we aimed to determine the cell type(s) requiring LTβR and the mechanism critical for exacerbation of colitis. Specific deletion of LTβR in neutrophils (LTβRΔN), but not in several other cell types, was sufficient to induce aggravated colitis and colonic neutrophil accumulation. Mechanistically, RNA-Seq analysis revealed LIGHT-induced suppression of cellular metabolism, and mitochondrial function, that was dependent on LTβR. Functional studies confirmed increased mitochondrial mass and activity, associated with excessive mitochondrial ROS production and elevated glycolysis at steady-state and during colitis. Targeting these metabolic changes rescued exacerbated disease severity. Our results demonstrate that LIGHT signals to LTβR on neutrophils to suppress metabolic activation and thereby prevents exacerbated immune pathogenesis during colitis.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Sonja Zahner
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Alexander Y Andreyev
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | | | | | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, USA
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Snider JC, Riley LA, Mallory NT, Bersi MR, Umbarkar P, Gautam R, Zhang Q, Mahadevan-Jansen A, Hatzopoulos AK, Maroteaux L, Lal H, Merryman WD. Targeting 5-HT 2B Receptor Signaling Prevents Border Zone Expansion and Improves Microstructural Remodeling After Myocardial Infarction. Circulation 2021; 143:1317-1330. [PMID: 33474971 PMCID: PMC8009826 DOI: 10.1161/circulationaha.120.051517] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myocardial infarction (MI) induces an intense injury response that ultimately generates a collagen-dominated scar. Although required to prevent ventricular rupture, the fibrotic process is often sustained in a manner detrimental to optimal recovery. Cardiac myofibroblasts are the cells tasked with depositing and remodeling collagen and are a prime target to limit the fibrotic process after MI. Serotonin 2B receptor (5-HT2B) signaling has been shown to be harmful in a variety of cardiopulmonary pathologies and could play an important role in mediating scar formation after MI. METHODS We used 2 pharmacological antagonists to explore the effect of 5-HT2B inhibition on outcomes after MI and characterized the histological and microstructural changes involved in tissue remodeling. Inducible 5-HT2B ablation driven by Tcf21MCM and PostnMCM was used to evaluate resident cardiac fibroblast- and myofibroblast-specific contributions of 5-HT2B, respectively. RNA sequencing was used to motivate subsequent in vitro analyses to explore cardiac fibroblast phenotype. RESULTS 5-HT2B antagonism preserved cardiac structure and function by facilitating a less fibrotic scar, indicated by decreased scar thickness and decreased border zone area. 5-HT2B antagonism resulted in collagen fiber redistribution to thinner collagen fibers that were more anisotropic, enhancing left ventricular contractility, whereas fibrotic tissue stiffness was decreased, limiting the hypertrophic response of uninjured cardiomyocytes. Using a tamoxifen-inducible Cre, we ablated 5-HT2B from Tcf21-lineage resident cardiac fibroblasts and saw similar improvements to the pharmacological approach. Tamoxifen-inducible Cre-mediated ablation of 5-HT2B after onset of injury in Postn-lineage myofibroblasts also improved cardiac outcomes. RNA sequencing and subsequent in vitro analyses corroborate a decrease in fibroblast proliferation, migration, and remodeling capabilities through alterations in Dnajb4 expression and Src phosphorylation. CONCLUSIONS Together, our findings illustrate that 5-HT2B expression in either cardiac fibroblasts or activated myofibroblasts directly contributes to excessive scar formation, resulting in adverse remodeling and impaired cardiac function after MI.
Collapse
Affiliation(s)
- J. Caleb Snider
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Lance A. Riley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Noah T. Mallory
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Matthew R. Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Rekha Gautam
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Qinkun Zhang
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Antonis K. Hatzopoulos
- Division of Cardiovascular Medicine, Department of Medicine and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Luc Maroteaux
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Universités, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Hind Lal
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - W. David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
36
|
Burke RM, Burgos Villar KN, Small EM. Fibroblast contributions to ischemic cardiac remodeling. Cell Signal 2021; 77:109824. [PMID: 33144186 PMCID: PMC7718345 DOI: 10.1016/j.cellsig.2020.109824] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
The heart can respond to increased pathophysiological demand through alterations in tissue structure and function 1 . This process, called cardiac remodeling, is particularly evident following myocardial infarction (MI), where the blockage of a coronary artery leads to widespread death of cardiac muscle. Following MI, necrotic tissue is replaced with extracellular matrix (ECM), and the remaining viable cardiomyocytes (CMs) undergo hypertrophic growth. ECM deposition and cardiac hypertrophy are thought to represent an adaptive response to increase structural integrity and prevent cardiac rupture. However, sustained ECM deposition leads to the formation of a fibrotic scar that impedes cardiac compliance and can induce lethal arrhythmias. Resident cardiac fibroblasts (CFs) are considered the primary source of ECM molecules such as collagens and fibronectin, particularly after becoming activated by pathologic signals. CFs contribute to multiple phases of post-MI heart repair and remodeling, including the initial response to CM death, immune cell (IC) recruitment, and fibrotic scar formation. The goal of this review is to describe how resident fibroblasts contribute to the healing and remodeling that occurs after MI, with an emphasis on how fibroblasts communicate with other cell types in the healing infarct scar 1 –6 .
Collapse
Affiliation(s)
- Ryan M Burke
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America
| | - Kimberly N Burgos Villar
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States of America; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
37
|
Jelinek D, Zhang ER, Ambrus A, Haley E, Guinn E, Vo A, Le P, Kesaf AE, Nguyen J, Guo L, Frederick D, Sun Z, Guo N, Sevier P, Bilotta E, Atai K, Voisin L, Coller HA. A Mouse Model to Investigate the Role of Cancer-associated Fibroblasts in Tumor Growth. J Vis Exp 2020:10.3791/61883. [PMID: 33427239 PMCID: PMC8238354 DOI: 10.3791/61883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) can play an important role in tumor growth by creating a tumor-promoting microenvironment. Models to study the role of CAFs in the tumor microenvironment can be helpful for understanding the functional importance of fibroblasts, fibroblasts from different tissues, and specific genetic factors in fibroblasts. Mouse models are essential for understanding the contributors to tumor growth and progression in an in vivo context. Here, a protocol in which cancer cells are mixed with fibroblasts and introduced into mice to develop tumors is provided. Tumor sizes over time and final tumor weights are determined and compared among groups. The protocol described can provide more insight into the functional role of CAFs in tumor growth and progression.
Collapse
Affiliation(s)
- David Jelinek
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Ellen Ran Zhang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Department of Molecular Biology, Princeton University
| | - Aaron Ambrus
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Erin Haley
- Department of Molecular Biology, Princeton University
| | - Emily Guinn
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Austin Vo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Peter Le
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Ayse Elif Kesaf
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Jennifer Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Lily Guo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Destiny Frederick
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Zhengyang Sun
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Natalie Guo
- Department of Molecular Biology, Princeton University
| | - Parker Sevier
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Eric Bilotta
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Kaiser Atai
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Molecular Biology Institute, University of California, Los Angeles
| | - Laurent Voisin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Molecular Biology Institute, University of California, Los Angeles;
| |
Collapse
|
38
|
Andrés-Delgado L, Galardi-Castilla M, Münch J, Peralta M, Ernst A, González-Rosa JM, Tessadori F, Santamaría L, Bakkers J, Vermot J, de la Pompa JL, Mercader N. Notch and Bmp signaling pathways act coordinately during the formation of the proepicardium. Dev Dyn 2020; 249:1455-1469. [PMID: 33103836 PMCID: PMC7754311 DOI: 10.1002/dvdy.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The epicardium is the outer mesothelial layer of the heart. It encloses the myocardium and plays key roles in heart development and regeneration. It derives from the proepicardium (PE), cell clusters that appear in the dorsal pericardium (DP) close to the atrioventricular canal and the venous pole of the heart, and are released into the pericardial cavity. PE cells are advected around the beating heart until they attach to the myocardium. Bmp and Notch signaling influence PE formation, but it is unclear how both signaling pathways interact during this process in the zebrafish. RESULTS Here, we show that the developing PE is influenced by Notch signaling derived from the endothelium. Overexpression of the intracellular receptor of notch in the endothelium enhances bmp expression, increases the number of pSmad1/5 positive cells in the DP and PE, and enhances PE formation. On the contrary, pharmacological inhibition of Notch1 impairs PE formation. bmp2b overexpression can rescue loss of PE formation in the presence of a Notch1 inhibitor, but Notch gain-of-function could not recover PE formation in the absence of Bmp signaling. CONCLUSIONS Endothelial Notch signaling activates bmp expression in the heart tube, which in turn induces PE cluster formation from the DP layer.
Collapse
Affiliation(s)
- Laura Andrés-Delgado
- Development of the Epicardium and its Role During Regeneration Laboratory, National Center of Cardiovascular Research Carlos III, Madrid, Spain.,Department of Anatomy, Histology, and Neuroscience, School of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - María Galardi-Castilla
- Development of the Epicardium and its Role During Regeneration Laboratory, National Center of Cardiovascular Research Carlos III, Madrid, Spain
| | - Juliane Münch
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, National Center of Cardiovascular Research Carlos III, Madrid, Spain.,Ciber CV, Madrid, Spain.,Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Marina Peralta
- Development of the Epicardium and its Role During Regeneration Laboratory, National Center of Cardiovascular Research Carlos III, Madrid, Spain.,Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,Australian Regenerative Institute, Monash University, Clayton, Victoria, Australia
| | | | - Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Luis Santamaría
- Department of Anatomy, Histology, and Neuroscience, School of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, Utrecht, The Netherlands.,Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands
| | - Julien Vermot
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,Department of Bioengineering, Imperial College London, London, UK
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, National Center of Cardiovascular Research Carlos III, Madrid, Spain.,Ciber CV, Madrid, Spain
| | - Nadia Mercader
- Development of the Epicardium and its Role During Regeneration Laboratory, National Center of Cardiovascular Research Carlos III, Madrid, Spain.,Institute of Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Aschner Y, Nelson M, Brenner M, Roybal H, Beke K, Meador C, Foster D, Correll KA, Reynolds PR, Anderson K, Redente EF, Matsuda J, Riches DWH, Groshong SD, Pozzi A, Sap J, Wang Q, Rajshankar D, McCulloch CAG, Zemans RL, Downey GP. Protein tyrosine phosphatase-α amplifies transforming growth factor-β-dependent profibrotic signaling in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2020; 319:L294-L311. [PMID: 32491951 PMCID: PMC7473933 DOI: 10.1152/ajplung.00235.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal, fibrosing lung disease for which treatment remains suboptimal. Fibrogenic cytokines, including transforming growth factor-β (TGF-β), are central to its pathogenesis. Protein tyrosine phosphatase-α (PTPα) has emerged as a key regulator of fibrogenic signaling in fibroblasts. We have reported that mice globally deficient in PTPα (Ptpra-/-) were protected from experimental pulmonary fibrosis, in part via alterations in TGF-β signaling. The goal of this study was to determine the lung cell types and mechanisms by which PTPα controls fibrogenic pathways and whether these pathways are relevant to human disease. Immunohistochemical analysis of lungs from patients with IPF revealed that PTPα was highly expressed by mesenchymal cells in fibroblastic foci and by airway and alveolar epithelial cells. To determine whether PTPα promotes profibrotic signaling pathways in lung fibroblasts and/or epithelial cells, we generated mice with conditional (floxed) Ptpra alleles (Ptpraf/f). These mice were crossed with Dermo1-Cre or with Sftpc-CreERT2 mice to delete Ptpra in mesenchymal cells and alveolar type II cells, respectively. Dermo1-Cre/Ptpraf/f mice were protected from bleomycin-induced pulmonary fibrosis, whereas Sftpc-CreERT2/Ptpraf/f mice developed pulmonary fibrosis equivalent to controls. Both canonical and noncanonical TGF-β signaling and downstream TGF-β-induced fibrogenic responses were attenuated in isolated Ptpra-/- compared with wild-type fibroblasts. Furthermore, TGF-β-induced tyrosine phosphorylation of TGF-β type II receptor and of PTPα were attenuated in Ptpra-/- compared with wild-type fibroblasts. The phenotype of cells genetically deficient in PTPα was recapitulated with the use of a Src inhibitor. These findings suggest that PTPα amplifies profibrotic TGF-β-dependent pathway signaling in lung fibroblasts.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Matthew Brenner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Helen Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Daniel Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelly A Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Paul R Reynolds
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelsey Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado
| | - Elizabeth F Redente
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
| | - Jennifer Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - David W H Riches
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Steve D Groshong
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jan Sap
- Epigenetics and Cell Fate, Université Paris, Paris, France
| | - Qin Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| |
Collapse
|
40
|
Santos DM, Pantano L, Pronzati G, Grasberger P, Probst CK, Black KE, Spinney JJ, Hariri LP, Nichols R, Lin Y, Bieler M, Seither P, Nicklin P, Wyatt D, Tager AM, Medoff BD. Screening for YAP Inhibitors Identifies Statins as Modulators of Fibrosis. Am J Respir Cell Mol Biol 2020; 62:479-492. [PMID: 31944822 DOI: 10.1165/rcmb.2019-0296oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. In this study, we developed a high-throughput small-molecule screen for YAP inhibitors in primary human lung fibroblasts. Multiple HMG-CoA (hydroxymethylglutaryl-coenzyme A) reductase inhibitors (statins) were found to inhibit YAP nuclear localization via induction of YAP phosphorylation, cytoplasmic retention, and degradation. We further show that the mevalonate pathway regulates YAP activation, and that simvastatin treatment reduces fibrosis markers in activated human lung fibroblasts and in the bleomycin mouse model of pulmonary fibrosis. Finally, we show that simvastatin modulates YAP in vivo in mouse lung fibroblasts. Our results highlight the potential of small-molecule screens for YAP inhibitors and provide a mechanism for the antifibrotic activity of statins in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Lorena Pantano
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Gina Pronzati
- Division of Pulmonary and Critical Care Medicine, and
| | | | | | | | | | - Lida P Hariri
- Division of Pulmonary and Critical Care Medicine, and.,Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Yufei Lin
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | - David Wyatt
- Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | | |
Collapse
|
41
|
Huang S, Chen B, Humeres C, Alex L, Hanna A, Frangogiannis NG. The role of Smad2 and Smad3 in regulating homeostatic functions of fibroblasts in vitro and in adult mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118703. [PMID: 32179057 PMCID: PMC7261645 DOI: 10.1016/j.bbamcr.2020.118703] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
The heart contains an abundant fibroblast population that may play a role in homeostasis, by maintaining the extracellular matrix (ECM) network, by regulating electrical impulse conduction, and by supporting survival and function of cardiomyocytes and vascular cells. Despite an explosion in our understanding of the role of fibroblasts in cardiac injury, the homeostatic functions of resident fibroblasts in adult hearts remain understudied. TGF-β-mediated signaling through the receptor-activated Smads, Smad2 and Smad3 critically regulates fibroblast function. We hypothesized that baseline expression of Smad2/3 in fibroblasts may play an important role in cardiac homeostasis. Smad2 and Smad3 were constitutively expressed in normal mouse hearts and in cardiac fibroblasts. In cultured cardiac fibroblasts, Smad2 and Smad3 played distinct roles in regulation of baseline ECM gene synthesis. Smad3 knockdown attenuated collagen I, collagen IV and fibronectin mRNA synthesis and reduced expression of the matricellular protein thrombospondin-1. Smad2 knockdown on the other hand attenuated expression of collagen V mRNA and reduced synthesis of fibronectin, periostin and versican. In vivo, inducible fibroblast-specific Smad2 knockout mice and fibroblast-specific Smad3 knockout mice had normal heart rate, preserved cardiac geometry, ventricular systolic and diastolic function, and normal myocardial structure. Fibroblast-specific Smad3, but not Smad2 loss modestly but significantly reduced collagen content. Our findings suggest that fibroblast-specific Smad3, but not Smad2, may play a role in regulation of baseline collagen synthesis in adult hearts. However, at least short term, these changes do not have any impact on homeostatic cardiac function.
Collapse
Affiliation(s)
- Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Linda Alex
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
42
|
Buijtendijk MF, Barnett P, van den Hoff MJ. Development of the human heart. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:7-22. [PMID: 32048790 PMCID: PMC7078965 DOI: 10.1002/ajmg.c.31778] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/01/2023]
Abstract
In 2014, an extensive review discussing the major steps of cardiac development focusing on growth, formation of primary and chamber myocardium and the development of the cardiac electrical system, was published. Molecular genetic lineage analyses have since furthered our insight in the developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Moreover, genetic, molecular and cell biological analyses have driven insights into the mechanisms underlying the development of the different cardiac components. Here, we build on our previous review and provide an insight into the molecular mechanistic revelations that have forwarded the field of cardiac development. Despite the enormous advances in our knowledge over the last decade, the development of congenital cardiac malformations remains poorly understood. The challenge for the next decade will be to evaluate the different developmental processes using newly developed molecular genetic techniques to further unveil the gene regulatory networks operational during normal and abnormal cardiac development.
Collapse
Affiliation(s)
| | - Phil Barnett
- Department of Medical BiologyAmsterdamUMC location AMCAmsterdamThe Netherlands
| | | |
Collapse
|
43
|
Weinberger M, Simões FC, Patient R, Sauka-Spengler T, Riley PR. Functional Heterogeneity within the Developing Zebrafish Epicardium. Dev Cell 2020; 52:574-590.e6. [PMID: 32084358 PMCID: PMC7063573 DOI: 10.1016/j.devcel.2020.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/07/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
The epicardium is essential during cardiac development, homeostasis, and repair, and yet fundamental insights into its underlying cell biology, notably epicardium formation, lineage heterogeneity, and functional cross-talk with other cell types in the heart, are currently lacking. In this study, we investigated epicardial heterogeneity and the functional diversity of discrete epicardial subpopulations in the developing zebrafish heart. Single-cell RNA sequencing uncovered three epicardial subpopulations with specific genetic programs and distinctive spatial distribution. Perturbation of unique gene signatures uncovered specific functions associated with each subpopulation and established epicardial roles in cell adhesion, migration, and chemotaxis as a mechanism for recruitment of leukocytes into the heart. Understanding which mechanisms epicardial cells employ to establish a functional epicardium and how they communicate with other cardiovascular cell types during development will bring us closer to repairing cellular relationships that are disrupted during cardiovascular disease. scRNA-seq uncovered 3 developmental epicardial subpopulations (Epi1-3) in the zebrafish Epi1-specific gene, tgm2b, regulates the cell numbers in the main epicardial sheet Epi2-specific gene, sema3fb, restricts the number of tbx18+ cells in the cardiac outflow tract Epi3-specific gene, cxcl12a, guides ptprc/CD45+ myeloid cells to the developing heart
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK; MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Roger Patient
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK.
| |
Collapse
|
44
|
Abstract
Cardiac fibrosis is a pathological condition that occurs after injury and during aging. Currently, there are limited means to effectively reduce or reverse fibrosis. Key to identifying methods for curbing excess deposition of extracellular matrix is a better understanding of the cardiac fibroblast, the cell responsible for collagen production. In recent years, the diversity and functions of these enigmatic cells have been gradually revealed. In this review, I outline current approaches for identifying and classifying cardiac fibroblasts. An emphasis is placed on new insights into the heterogeneity of these cells as determined by lineage tracing and single-cell sequencing in development, adult, and disease states. These recent advances in our understanding of the fibroblast provide a platform for future development of novel therapeutics to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA;
| |
Collapse
|
45
|
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 2019; 101:78-86. [PMID: 31791693 DOI: 10.1016/j.semcdb.2019.10.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.
Collapse
Affiliation(s)
- Xuetao Sun
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada
| | - Blessing Nkennor
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Department of Biological Sciences, University of Toronto Scarborough, Canada
| | - Olya Mastikhina
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Kayla Soon
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Sara S Nunes
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
46
|
Forte E, Furtado MB, Rosenthal N. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nat Rev Cardiol 2019; 15:601-616. [PMID: 30181596 DOI: 10.1038/s41569-018-0077-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases.
Collapse
Affiliation(s)
| | | | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA. .,National Heart and Lung Institute, Imperial College London, Faculty of Medicine, Imperial Centre for Translational and Experimental Medicine, London, UK.
| |
Collapse
|
47
|
Contreras O, Rossi FM, Brandan E. Adherent muscle connective tissue fibroblasts are phenotypically and biochemically equivalent to stromal fibro/adipogenic progenitors. Matrix Biol Plus 2019; 2:100006. [PMID: 33543006 PMCID: PMC7852197 DOI: 10.1016/j.mbplus.2019.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular matrix (ECM) gives structure, support, and is the niche for several cells found in skeletal muscle. ECM is mainly produced by muscle connective tissue (CT) fibroblasts during development and regeneration. Stromal fibroadipogenic progenitors (FAPs) are CT fibroblasts-like mesenchymal progenitors (MPs) with important roles in regeneration and degeneration. Chronic damage restrains the normal regenerative behavior of muscle fibroblasts/FAPs. Thus, the isolation and study of these mesenchymal progenitors are of crucial importance for understanding their behavior and biology. We investigated whether adult muscle CT fibroblasts (hereafter referred to as adherent fibroblasts [aFbs]) cultured via pre-plating strategy belong to a heterogeneous population of FAPs. By combining microscopy, western blot analyses, flow cytometry, and FACS we determined that aFbs isolated from skeletal muscle largely overlap with FAPs. In addition, we used the PDGFRαEGFP mice in order to corroborate our results with EGFP+ FAPs. Moreover, our strategy allows the isolation of activated EGFP+ FAPs from the murine DMD model PDGFRαEGFP; mdx and PDGFRαEGFP denervated mice. Here we report that 1 h 30 min of pre-plating strategy allows the isolation and culture of a highly enriched population of aFbs. These cells are phenotypically and biochemically a FAPs-like population of adherent cells. In addition, aFbs respond in the same fashion as FAPs to Nilotinib, an inducer of FAPs apoptosis. Moreover, flow cytometry characterization of these aFbs suggests that 85% of them express the MP marker PDGFRα, and isolation of aFbs from the PDGFRαEGFP mice suggests that 75% of them show high EGFP expression. Furthermore, TGF-β1 induces aFbs proliferation, myofibroblast differentiation, and ECM production. We were also able to isolate activated aFbs from skeletal muscle of the DMD mice and from the PDGFRαEGFP mice 2-days after denervation. Our findings suggest that the in vitro pre-plating strategy allows the isolation and culture of a relatively pure aFbs population, which resembles FAPs in vitro.
Collapse
Key Words
- Adherent Fibroblasts, aFbs
- Connective tissue, CT
- Extracellular matrix, ECM
- FAPs
- Fibroadipogenic progenitors, FAPs
- Fibrosis
- Fluorescence-activated cell sorting, FACS
- Mesenchymal Progenitors, MPs
- Mesenchymal progenitors
- Muscle stem cells, MuSCs
- PDGFRα
- Platelet-derived growth factor receptor alpha, PDGFRα
- Skeletal muscle
- TGF-β signaling
- Transcription factor, TF
- Transforming growth factor type-beta, (TGF-β)
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. Rossi
- Biomedical Research Centre, Department of Medical Genetics, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
48
|
Felisbino MB, McKinsey TA. Epigenetics in Cardiac Fibrosis: Emphasis on Inflammation and Fibroblast Activation. JACC Basic Transl Sci 2018; 3:704-715. [PMID: 30456341 PMCID: PMC6234501 DOI: 10.1016/j.jacbts.2018.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022]
Abstract
Chemical modifications to nucleosomal DNA and histone tails greatly influence transcription of adjacent and distant genes, a mode of gene regulation referred to as epigenetic control. Here, the authors summarize recent findings that have illustrated crucial roles for epigenetic regulatory enzymes and reader proteins in the control of cardiac fibrosis. Particular emphasis is placed on epigenetic regulation of stress-induced inflammation and fibroblast activation in the heart. The potential of developing innovative small molecule "epigenetic therapies" to combat cardiac fibrosis is highlighted.
Collapse
Key Words
- Ang II, angiotensin II
- BET, bromodomain and extraterminal protein
- DNMT, DNA methyltransferase
- ECM, extracellular matrix
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- IL, interleukin
- KDM, lysine demethylase
- KMT, lysine methyltransferase
- LPS, lipopolysaccharide
- MI, myocardial infarction
- NF-κB, nuclear factor-κB
- SASP, senescent-associated secretory phenotype
- SE, super-enhancer
- SMA, smooth muscle actin
- TET, ten-eleven translocation
- TNF, tumor necrosis factor
- TSA, trichostatin A
- Treg, regulatory T cell
- VPA, valproic acid
- epigenetics
- fibroblast
- fibrosis
- inflammation
Collapse
Affiliation(s)
- Marina B Felisbino
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
49
|
Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 2018; 16:81. [PMID: 30326899 PMCID: PMC6190562 DOI: 10.1186/s12951-018-0403-9] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are the substances that are released by most types of cells and have an important role in cell to cell communication. Among the most highly researched EVs are exosome. Recent studies show that exosomes derived from cells have different roles and targets. Many studies show that exosome can efficiently deliver many different kinds of cargo to the target cell. Therefore, they are often used to deliver therapeutic cargo for treatment. The exosomes that have been used include both natural ones and those that have been modified with other substances to increase the delivery ability. This article provides a review of both exosomes derived from various cells and modified exosome and their ability in delivering the many kinds of cargo to the target cell.
Collapse
Affiliation(s)
- Edwin J. Bunggulawa
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, No 174 Shazheng Street, Shapingba District, Chongqing, 400044 People’s Republic of China
| | - Wei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, No 174 Shazheng Street, Shapingba District, Chongqing, 400044 People’s Republic of China
| | - Tieying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, No 174 Shazheng Street, Shapingba District, Chongqing, 400044 People’s Republic of China
| | - Nan Wang
- Nanoscience Centre, Department of Engineering, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0FF UK
| | - Colm Durkan
- Nanoscience Centre, Department of Engineering, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0FF UK
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, No 174 Shazheng Street, Shapingba District, Chongqing, 400044 People’s Republic of China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, No 174 Shazheng Street, Shapingba District, Chongqing, 400044 People’s Republic of China
| |
Collapse
|
50
|
Rodríguez-Castillo JA, Pérez DB, Ntokou A, Seeger W, Morty RE, Ahlbrecht K. Understanding alveolarization to induce lung regeneration. Respir Res 2018; 19:148. [PMID: 30081910 PMCID: PMC6090695 DOI: 10.1186/s12931-018-0837-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background Gas exchange represents the key physiological function of the lung, and is dependent upon proper formation of the delicate alveolar structure. Malformation or destruction of the alveolar gas-exchange regions are key histopathological hallmarks of diseases such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis; all of which are characterized by perturbations to the alveolo-capillary barrier structure. Impaired gas-exchange is the primary initial consequence of these perturbations, resulting in severe clinical symptoms, reduced quality of life, and death. The pronounced morbidity and mortality associated with malformation or destruction of alveoli underscores a pressing need for new therapeutic concepts. The re-induction of alveolarization in diseased lungs is a new and exciting concept in a regenerative medicine approach to manage pulmonary diseases that are characterized by an absence of alveoli. Main text Mechanisms of alveolarization first need to be understood, to identify pathways and mediators that may be exploited to drive the induction of alveolarization in the diseased lung. With this in mind, a variety of candidate cell-types, pathways, and molecular mediators have recently been identified. Using lineage tracing approaches and lung injury models, new progenitor cells for epithelial and mesenchymal cell types – as well as cell lineages which are able to acquire stem cell properties – have been discovered. However, the underlying mechanisms that orchestrate the complex process of lung alveolar septation remain largely unknown. Conclusion While important progress has been made, further characterization of the contributing cell-types, the cell type-specific molecular signatures, and the time-dependent chemical and mechanical processes in the developing, adult and diseased lung is needed in order to implement a regenerative therapeutic approach for pulmonary diseases.
Collapse
Affiliation(s)
- José Alberto Rodríguez-Castillo
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - David Bravo Pérez
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - Aglaia Ntokou
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany
| | - Werner Seeger
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany
| | - Rory E Morty
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany
| | - Katrin Ahlbrecht
- Member of the German Lung Research Center (DZL), Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Member of the German Lung Research Center (DZL), Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Klinistrasse 33, 35392, Giessen, Germany.
| |
Collapse
|