1
|
He Z, Wang Y, Fu Y, Qin X, Lan W, Shi D, Tang Y, Yu F, Li Y. Potential impacts of polyethylene microplastics and heavy metals on Bidens pilosa L. growth: Shifts in root-associated endophyte microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137698. [PMID: 40020290 DOI: 10.1016/j.jhazmat.2025.137698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study investigates the impact of polyethylene (PE) microplastics of varying particle sizes and concentrations on the growth of Bidens pilosa L. and its root-associated microbial communities in cadmium (Cd) and lead (Pb) co-contaminated soil. PE microplastics had a significant impact on plant growth. Notably, at the P05-10 level, root length, root weight, and total biomass exhibited the greatest reductions by 48.9 %, 44.1 %, and 45.2 %, respectively. Furthermore, PE microplastics reduced photosynthetic pigment levels and promoted the accumulation of reactive oxygen species, as indicated by a 264.8 % and 57.2 % increase in H2O2 content in roots and leaves. High-throughput sequencing revealed substantial alterations in the composition of bacterial and fungal communities, with stress-resilient taxa such as Actinobacteria, Verrucomicrobiota, and Rhizophagus exhibiting increased relative abundance. Correlation analyses indicated that variations in soil pH and enzymatic activity influenced microbial community structure, which in turn affected plant physiological responses. Functional predictions using PICRUSt2 and BugBase suggested enhanced oxidative stress tolerance, increased secondary metabolite biosynthesis, and a higher prevalence of stress-resistant phenotypes under conditions of elevated PE concentrations and smaller particle sizes. Overall, this study provides novel insights into the potential effects of microplastics on Bidens pilosa L., particularly in its role as a hyperaccumulator, highlighting its capacity for heavy metal uptake under microplastic exposure.
Collapse
Affiliation(s)
- Ziang He
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yanxue Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yiyun Fu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Xiaoxiao Qin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Wei Lan
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Dongyi Shi
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Yingxuan Tang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China.
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China.
| |
Collapse
|
2
|
Wang X, Zou T, Lian J, Chen Y, Cheng L, Hamid Y, He Z, Jeyakumar P, Yang X, Wang H. Simultaneous mitigation of cadmium contamination and greenhouse gas emissions in paddy soil by iron-modified biochar. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137430. [PMID: 39892149 DOI: 10.1016/j.jhazmat.2025.137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Cadmium (Cd) contamination in agricultural soils is one of the major environmental challenges globally. Biochar is a promising material for mitigating Cd pollution, but it carries the risk of increasing greenhouse gas emissions. Herein, we incorporate iron-based materials into biochar to simultaneously enhance soil nutrients, mitigate heavy metal contamination, and reduce greenhouse gas emissions. The results showed that the iron-modified biochar (FeBC) increased soil available potassium, alkali-hydrolyzable nitrogen and soil organic carbon. All materials promoted the formation of strongly bound Cd (FMO-Cd), with FeBC outperforming standalone iron or biochar by reducing soil Cd bioavailability by 17.0-44.9 %. And the goethite-modified biochar (GBC) further enhanced iron plaque [FeO(OH)] formation, achieving the highest Cd reduction (80.4 %) in rice grains. In addition, except for biochar and zero-valent iron, the other treatments significantly suppressed CH4 emission and stabilized CO2 and N2O. Among them, GBC treatment reduced the relative abundance of the mcrA gene, a CH4 emission-related gene, by 22.7 %, ultimately leading to the highest reduction in CH4 emissions (26.3 %). These findings suggest the potential of FeBC as soil amendments to improve soil nutrients and food safety, while reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Xin Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tong Zou
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; Nanchang Bureau of Ecology and Environment, Nanchang 330038, China.
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning, Guangxi 530004, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liping Cheng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenli He
- Department of Soil, Water and Ecosystem Sciences, Indian River Research and Education Center, University of Florida-IFAS, Fort Pierce, FL 34945, USA
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Ashraf H, Ghouri F, Sun L, Xia W, Ashraf S, Ashraf MZ, Fu X, Ali S, Shahid MQ. Energy metabolism, antioxidant defense system, metal transport, and ion homeostasis are key contributors to Cd tolerance in SSSL derived from wild rice. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137009. [PMID: 39862775 DOI: 10.1016/j.jhazmat.2024.137009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74). Both genotypes were also treated with calcium oxide nanoparticles (np-CaO). Results showed that Cd exposure disrupts reactive oxygen species (ROS) metabolism in both lines, such as malondialdehyde (MDA) increases by 57 % in HJX74 compared to SG004. Moreover, SG004 exhibited a 26 % reduction in shoot length compared to 41 % in HJX74 and a 42 % decline in chlorophyll ab content versus 53 % in HJX74. Antioxidant activity such as glutathione (GSH) decreased 25 % more in HJX74 than SG004 under Cd toxicity. Additionally, SG004 had lower Cd accumulation in roots (70 %) and shoots (85 %) than HJX74, indicating its enhanced tolerance to Cd toxicity. The root cell cytology reveals several deformations in different organelles of HJX74 but less in SG004. RNAseq analysis identifies key pathways, including energy metabolism, antioxidant defense, metal transport, and ion homeostasis, which may be critical for SG004 enhanced tolerance. Notably, two distinct metallothionein-like genes (BGIOSGA019338, BGIOSGA035982), a peroxidase (BGIOSGA019133), ammonium (BGIOSGA008640, BGIOSGA008641, and potassium transporters (BGIOSGA030867), NRAMP1 (BGIOSGA025476), and an aluminum-activated malate transporter (BGIOSGA014531), showed differential expressions in SG004 under Cd stress. Genes within the substituted fragment, including those for peroxidase 25 (BGIOSGA002866), metallothionein (BGIOSGA002389), and reductase (BGIOSGA002387), are also upregulated in SG004, reinforcing the role of antioxidant and ion homeostasis pathways. The utilization of np-CaO alleviates Cd-induced stress in both genotypes, hence reinforcing the application of wild rice and nanoparticles to improve Cd tolerance.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Sawaira Ashraf
- Graduate school of Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Muhammad Zahid Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xuelin Fu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Zhang Z, Li L, Qiu S, Sun Y, Zhang R, Chen D, Chen P, Song Y, Zeng R, Lu L. BAHD acyltransferase OsSLG mediates rice cadmium tolerance by integrating the brassinosteroid and salicylic acid pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112503. [PMID: 40222390 DOI: 10.1016/j.plantsci.2025.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Cadmium (Cd) is a highly toxic element that significantly threatens plant growth and human health. Brassinosteroids (BRs) and salicylic acid (SA) are crucial phytohormones involved in plant growth and defense. While the mechanisms by which BRs and SA individually regulate various plant biological processes have been extensively studied, their interaction with Cd in rice (Oryza sativa L.) remains poorly understood. In this study, we demonstrated that SLENDER GRAIN (OsSLG), a BR biosynthesis-related gene, plays a critical role in regulating in rice. Overexpression of OsSLG enhanced Cd tolerance, whereas OsSLG RNA interference (RNAi) lines (OsSLG-Ri) exhibited hypersensitivity to Cd stress. Exogenous BR treatment improved the Cd tolerance of the wild type and rescued the Cd-sensitive phenotype of OsSLG-Ri. Furthermore, OsSLG overexpression significantly reduced reactive oxygen species (ROS) and Cd accumulation, this reduction was attributed to the downregulation of genes involved in Cd absorption and transport, as well as the upregulation of genes associated with Cd detoxification and ROS scavenging. In addition, OsSLG enhanced the photosynthetic capacity and mineral element content in rice plants, improving their ability to cope with Cd stress. Gene expression analysis showed that OsSLG promoted the expression of the SA pathway genes, and phenotypic analysis confirmed that SA positively regulates Cd tolerance in rice. Notably, BR-induced Cd tolerance was diminished in SA biosynthesis-deficient rice plants overexpressing SA hydroxylase genes OsS5H1 and OsS5H2, suggesting that the SA pathway is necessary for BR-mediated Cd tolerance. In conclusion, our findings highlight OsSLG as a key player in elucidating the interplay between BR and SA under Cd stress.
Collapse
Affiliation(s)
- Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Long Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shunjiao Qiu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rongjun Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Pinghua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
5
|
Rahman SU, Han JC, Zhou Y, Li B, Huang Y, Farman A, Zhao X, Riaz L, Yasin G, Ullah S. Eco-resilience of China's mangrove wetlands: The impact of heavy metal pollution and dynamics. ENVIRONMENTAL RESEARCH 2025; 277:121552. [PMID: 40194676 DOI: 10.1016/j.envres.2025.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Mangrove forests in China have significantly degraded over the past several decades primarily due to rapid economic growth and land reclamation for aquaculture and infrastructure development. Among various threats, heavy metal pollution, primarily from urbanization, agricultural runoff, and industrial runoff, poses a substantial risk to mangroves in China. It impairs their ecological functions, limiting biodiversity and reducing their natural ability to sequester carbon and detoxify coastal areas. Despite these challenges, the mangrove ecosystem's resilience in China has not been completely compromised. Natural adaptations and phytoremediation mechanisms, such as limiting metal uptake, excreting metal binding proteins, upregulating antioxidants, forming Fe plague, excreting metals through salt glands, and tolerance to specific metal concentrations, help mitigate heavy metal toxicity. However, these adaptive strategies are limited by the extent of pollutants and the speed at which these pollution factors arise. This review highlights a need to shift restoration efforts from expanding mangrove areas to enhancing ecosystem integrity, with a specific focus on reducing heavy metal pollution through phytoremediation. It also examines how heavy metal interactions at the sediment-water interface impact microbial communities and local fauna, contributing to climate change. Addressing these challenges is critical to improving mangrove conservation in China and ensuring the long-term health and resilience of these critical ecosystems for future generations.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bing Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuefei Huang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, School of Civil Engineering and Water Resources, Qinghai University, Xining, 810016, China.
| | - Ali Farman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan.
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakaryia University, Multan, Pakistan.
| | - Sami Ullah
- Department of Forestry & Range Management, Kohsar University Murree, Murree, 47150, Pakistan.
| |
Collapse
|
6
|
Inci HS. Chromium (VI) accumulation in different plant organs of Lacy Phacelia (Phacelia tanacetifolia Benth.): Implications for phytoremediation. BMC PLANT BIOLOGY 2025; 25:414. [PMID: 40175928 PMCID: PMC11963611 DOI: 10.1186/s12870-025-06471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Lacy Phacelia (Phacelia tanacetifolia Benth.) is a very beneficial nectar source for honeybees, contributing to their foraging activities and honey production. Chromium (Cr) is a toxic metal that may be taken up by plants through roots and accumulates in different organs. The accumulation of Cr in nectars can affect nectar production and subsequently bee health. This study investigated whether Lacy Phacelia accumulates Cr in different plant organs. A pot experiment was conducted under controlled conditions with five different Cr concentrations (0, 5, 10, 20 and 40 mg kg- 1). The plants were grown for 110 days, and Cr, manganese (Mn) and iron (Fe) contents accumulated in different plant organs (root, leaf, stem, flower and stamen) were examined. Similalry, the impact of different Cr concentrations on plant height, stem diameter, and dry weights of root, stem, leaf, and flower was also recorded. The highest and lowest Cr(VI) accumulation was recorded in roots and flowers respectively. The mean Cr concentration in different organs was, i.e., root (7.13 mg kg- 1) > leaf (3.25 mg kg- 1) > stem (2.53 mg kg- 1) > flower (1.62 mg kg- 1) = stamen (1.54 mg kg- 1). Translocation factor was < 1 in all Cr concentrations, indicating that it is not a suitable candidate for phytoremediaiton. The Mn concentration in different organs generally increased with increasing Cr concentrations, while Fe concentration, plant height, and dry weights of root, stem, and flower decreased. Lacy Phacelia should not be grown on Cr-contaminated soils for agricultural purposes or phytoremediation. The accumulation of Cr in the stamens may possibily contaminate bee products obtained through the bees collecting nectar from Lacy Phacelia grown on Cr-contaminated soils. The transfer of Cr from Lacy Phacelia plants grown on Cr-contaminated soils to honeybee and honey products should be investigated in future studies to safeguard honeybee health.
Collapse
Affiliation(s)
- Hava Seyma Inci
- Department of Crop and Animal Production, Vocational School of Food, Agriculture and Livestock, University of Bingol, Bingol, Türkiye.
| |
Collapse
|
7
|
Panda A, Fatnani D, Parida AK. Uptake, impact, adaptive mechanisms, and phytoremediation of heavy metals by plants: Role of transporters in heavy metal sequestration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109578. [PMID: 39913980 DOI: 10.1016/j.plaphy.2025.109578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/01/2025] [Accepted: 01/28/2025] [Indexed: 03/11/2025]
Abstract
Heavy metals (HMs) pose severe threats to both the environment and its inhabitants, leading to reduced crop productivity and hazardous impacts on human and animal health. Metallurgical activities in peri-urban areas are major contributors to the terrestrial deposition of various HMs. Upon entering plant the cells, HMs disrupt structural and physiological processes, inducing stress responses and triggering metabolic pathways for stress adaptations. The plants have evolved specialized transport systems to regulate the uptake, transport, and cellular concentrations of these metals. HMs often exploit transporters of essential nutrients, such as phosphate, hexose, and sulfate to gain entry into plant cells. Key players include zinc receptor transporter (ZRT1) and iron receptor transporter (IRT1), both part of the ZIP (Zinc Iron Permease) family, as well as heavy metal-associated ATPases (HMAs) and ATP binding cassette transporter C (ABCC-type transporters). Hyperaccumulating plants thrive in harsh environments with elevated concentrations of toxic ions, such as sodium, chloride, and heavy metals including arsenic (As), mercury (Hg), cadmium (Cd), lead (Pb), silicon (Si), boron (B), antimony (Sb), germanium (Ge), and tellurium (Te), by compartmentalizing these ions into vacuoles. The accumulation of heavy metals or metalloids like cadmium (Cd), lead (Pb), arsenic (As), chromium (Cr), nickel (Ni), manganese (Mn), zinc (Zn), thallium (Tl), cobalt (Co), cupper (Cu), and selenium (Se) has been extensively reported in various hyperaccumulating plant species. The halophytes, known for their inherent salinity tolerance, exhibit superior resilience to HM stress due to overlapping mechanisms of ion compartmentatlization and detoxification. This review provides an in-depth analysis on the effects of heavy metals on the metabolic processes, growth, and development of plants, emphasizing heavy tolerance mechanisms with a particular focus on halophytes. The role of HM transporters in metal sequestration and detoxification is discussed, along with the potential of hyperaccumulating halophytes for phytoremediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Zeng G, Dai J, Jian J, Yan C, Peng D, Liu H, Xu H. The effect of phosphate solubilizing bacteria on the fate of cadmium immobilized by microbial induced phosphate precipitation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125125. [PMID: 40158393 DOI: 10.1016/j.jenvman.2025.125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Microbial induced phosphate precipitation (MIPP) is an environmentally friendly method for Cd immobilization. MIPP precipitates were mainly insoluble phosphates which were inevitably affected by phosphate solubilizing bacteria (PSB). However, effect of PSB on the fate of Cd immobilized by MIPP still remained unclear. Here, we investigated the transformation of Cd and MIPP precipitates with PSB strain Enterobacter sp. QY1. The results showed that Enterobacter sp. QY1 could secrete D-gluconic acid and acetic acid to release Cd, Ca and phosphorus from MIPP precipitates. The concentration of released Cd reached a peak on 5-7 d, then decreased, indicating that some of released Cd was re-immobilized. Sorption of Enterobacter sp. QY1 and substitution of CaxCd10-x(PO4)6(OH)2 played a major role in re-immobilization of released Cd. Finally, about 7.0-8.7 % Cd immobilized by MIPP was released after 28 d. The fate of Cd immobilized by MIPP in soil was also explored, Sphingomonas might dissolve MIPP precipitates and release Cd, then the concentration of exchangeable Cd increased. Overall, PSB mobilized Cd immobilized by MIPP, posing a threat to the long-term effectiveness of MIPP technology. Our findings are beneficial to understand the effect of phosphorus biogeochemical cycle on durability of MIPP in Cd remediation.
Collapse
Affiliation(s)
- Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jingtong Dai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiannan Jian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
9
|
Wang S, Cui H, Lin Y, Zhang S, Li Y, Yan M, Wang Q, Zhou C, Zhang H. Glandular trichome heads confer cadmium tolerance in Nicotiana tabacum L. via the co-regulation of JA and ABA signaling. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138034. [PMID: 40157193 DOI: 10.1016/j.jhazmat.2025.138034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/25/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Cadmium (Cd) is a highly toxic heavy metal (HV) that poses significant threats to plant growth and development. Plant trichomes serve as critical sequestration organs for HVs; however, the different roles of glandular trichomes (GTs) and non-glandular trichomes (NGTs) in the process of detoxification remain elusive. In this study, two interacting proteins (NtHD9 and NtJAZ10) with opposite effects on glandular head formation in GTs were individually targeted for knockout in Nicotiana tabacum cv. K326: NtJAZ10 mutants (LK326) had dominant long-stalk glandular trichomes (LGTs), whereas NtHD9 mutants (NK326) had dominant NGTs. Phytohormone content measurements and subsequent hormone supplementation assays in LK326 and NK326 suggested that the NtJAZ10-NtHD9 module regulated LGT head formation via jasmonate signaling. Both LGTs and NGTs were Cd sequestration sites, but showed different Cd detoxification mechanisms; NGTs compartmentalized Cd in the vacuole, whereas LGTs promoted the cytosol-to-cell wall translocation of Cd, facilitating Cd excretion. LK326 further exhibited strong Cd stress tolerance, which was confirmed by elevated abscisic acid (ABA) levels, strengthened antioxidant systems, and heightened photosynthetic abilities. To understand the molecular mechanisms underlying Cd detoxification in trichomes, LK326 and NK326 trichomes were used for comparative RNA sequencing analysis, which revealed 18 genes that may be involved in Cd absorption and transport. Our findings suggest that JAZ10 is an ideal candidate gene for enhancing Cd stress tolerance by promoting the development of LGT glandular heads and increasing ABA levels in plants. These findings provide novel insights into improving Cd tolerance in plants and exploring the mechanism of trichome-mediated Cddetoxification.
Collapse
Affiliation(s)
- Shuai Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Lin
- Fujian Province Nanping Branch Company, China National Tobacco Corporation, Nanping 353000, China
| | - Shiqiang Zhang
- Jilin Province Tobacco Industry Co. Ltd., China National Tobacco Corporation, Changchun 130000, China
| | - Yue Li
- Jilin Province Tobacco Industry Co. Ltd., China National Tobacco Corporation, Changchun 130000, China
| | - Meiqi Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Qi Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyi Zhou
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Vasudhevan P, Suresh A, Singh S, Sharma K, Sridevi G, Dixit S, Thangavel P. Cadmium accumulation, sub-cellular distribution and interactions with trace metals (Cu, Zn, Fe, Mn) in different rice varieties under Cd stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:130. [PMID: 40123020 DOI: 10.1007/s10653-025-02438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Rice (Oryza sativa L.) is a staple food in most Asian countries, although it serves as a significant carrier of cadmium (Cd) accumulation. Developing low-Cd accumulating rice varieties is crucial for minimizing Cd contamination in soil and rice grains while also mitigating harmful health consequences. In the present study examined the Cd accumulation and sub-cellular distribution of both high Cd (IR-50) and low Cd (White Ponni) rice varieties under Cd-treated hydroponic nutrient solutions. The results showed that under all Cd treatments, overall plant height, plant fresh and dry biomass reduced substantially in both rice varieties compared to the control. Both rice varieties accumulated more Cd in their roots than shoots, with IR-50 accumulating higher Cd levels. Iron (Fe) concentrations were higher in both roots and shoots of both rice varieties compared to other trace elements. Translocation factor (TF) values were < 1, indicating limited Cd translocation from roots to shoots. Cd was mainly distributed in the epidermis, cortex, and bulliform cells of both rice varieties roots, and shoots. The peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes activity significantly increased in both IR-50 and WP rice varieties when exposed to Cd treatment. The current study concluded that the IR-50 rice variety accumulated and distributed more Cd than the WP rice variety under different Cd treatments. As a result, WP exhibited higher Cd tolerance, while IR-50 became more susceptible to Cd stress.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
- Soil Ecology and Phytoremediation Laboratory, Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636 011, India.
| | - Aparna Suresh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, 174 103, India
- Division of Research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Kamal Sharma
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura, 281 406, India
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| | - Saurav Dixit
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140 401, India
- Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Palaniswamy Thangavel
- Soil Ecology and Phytoremediation Laboratory, Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636 011, India.
| |
Collapse
|
11
|
Zhang X, Zhao Y, Huang L, Luo X, Zhang C, Mao Z, Yang H, Wang X. Zinc oxide nanoparticles alleviated Cd toxicity in Hibiscus syriacus L. by reducing Cd translocation and improving plant growth and root cellular ultrastructure. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137920. [PMID: 40086238 DOI: 10.1016/j.jhazmat.2025.137920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Soil cadmium (Cd) contamination threatens plant growth and agricultural productivity. Hibiscus syriacus L., valued for its ornamental, edible, and medicinal properties, is widely cultivated in Cd-contaminated areas of southern China.This study aimed to evaluate the effectiveness of nano-zinc oxide (nZnO) in alleviating Cd toxicity in H. syriacus, examining plant phenotypes, physiological and biochemical responses, root ultrastructure, and the accumulation and distribution of Cd and Zn within the soil-H. syriacus system. Pot experiments included Cd treatment (100 mg/kg) and combined soil or foliar applications of nZnO (50 and 100 mg/L), with plants harvested after 45 days. Compared to Cd treatment alone, the combined application of nZnO significantly increased biomass in roots, stems, and leaves, improved photosynthetic performance, osmotic regulation, and antioxidant levels, and mitigated root cell damage; Cd concentrated mainly in roots, and nZnO reduced root Cd levels by 0.24 %-9.06 %. SEM-EDS observations revealed that Cd predominantly accumulated in the root epidermis and cortex, with Cd stress leading to increased levels and localized aggregation of Cd in the xylem. By contrast, nZnO treatment alleviated this disruption. Leaf application of 50 mg/L nZnO showed the best results. These findings highlight nZnO as a promising nano fertilizer for alleviating Cd stress in plants.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yazhi Zhao
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Liqun Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoning Luo
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chen Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zihao Mao
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongfen Yang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaohong Wang
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China.
| |
Collapse
|
12
|
Yu S, Wang S, Tang M, Pan S, Wang M. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154419. [PMID: 39864245 DOI: 10.1016/j.jplph.2025.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻1) were analyzed. The results showed that: (1) As the Cd treatment levels increased, the total biomass of B. sinica gradually decreased, while L. × vicaryi exhibited a stimulation effect at low Cd concentrations but inhibition at high Cd concentrations. (2) The Cd content in different tissues of both shrubs increased with rising Cd levels. The bioconcentration factor (BCF) and translocation factor (TF) indicated that L. × vicaryi has the potential for Cd phytostabilization. (3) Cd in the roots of both shrubs was primarily present in NaCl-extractable form, and was mostly bound to the cell wall. (4) Excessive Cd caused damage to the cellular structure of B. sinica, while the cells of L. × vicaryi maintained normal morphology. (5) In both shrubs, Cd primarily bound to the cell wall through hydroxyl and amino functional groups, as well as soluble sugars. In summary, converting Cd to less active forms, immobilizing Cd in the cell wall, and providing binding sites through functional groups may be crucial resistance mechanisms for both shrubs in response to Cd stress.
Collapse
Affiliation(s)
- Shiyin Yu
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shan Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Min Tang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shuzhen Pan
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Meixian Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
13
|
Wang Y, Li X, Zhuang K, Peng Y, Huang X, Lu Q, Qian M, Liu Y, Chen X, Peng K, Shen Z, Xia Y. Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean (Vigna radiata L.) and potential mitigation strategy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109458. [PMID: 39862459 DOI: 10.1016/j.plaphy.2024.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.) cultivar Sulu (SL) and its three mutant lines (20#, 09#, and 06#) were used to compare the difference in Cd absorption, accumulation, and tolerance through pot and field experiments. 20#, 09#, and 06# are Cd-tolerant germplasms of mung bean but exist in different Cd tolerance mechanisms, 20# exhibited the lowest Cd absorption capacity, 09# possessed lower Cd translocation capacity, while 06# accumulated more Cd in protoplasts. Mung bean germplasms with higher Cd tolerance generally showed lower absorption capacity and intracellular accumulation of Cd. Besides, Cd accumulation in mung bean seeds is mainly depended on the absorption and translocation of Cd in roots and the Cd concentration in leaves, exogenous Mn supply inhibited the Cd2+ net influx of roots and Cd accumulation in seeds, this trend was more pronounced in mung bean germplasms with higher Cd accumulation and absorption. Moreover, we characterized a Cd transporter gene VrNramp5, which was differentially expressed in different mung bean lines, overexpression of VrNramp5 increased Cd accumulation and was accompanied by Cd-sensitive phenotype in transgenic mung bean seedlings, and the Cd concentration of mung bean was significantly positively correlated with the expression levels of VrNramp5. Taken together, our findings demonstrated that different Cd tolerance mechanisms exist in mung bean. 20# is the new Cd-tolerant germplasm with low Cd absorption capacity and Cd accumulation in seeds, and has great potential for the safe production of mung bean in Cd-contaminated soils and the breeding of low Cd accumulation crop cultivars.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xin Li
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Kai Zhuang
- Jinpu Landscape Architecture Limited Company, Nanjing, 211100, PR China
| | - Yizhe Peng
- College of Civil Engineering, Hunan University, Changsha, 410006, PR China
| | - Xueying Huang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qian Lu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Meng Qian
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanli Liu
- Jinpu Landscape Architecture Limited Company, Nanjing, 211100, PR China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Kejian Peng
- Hunan Research Academy of Environmental Sciences, Changsha, 410128, PR China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
14
|
Ren R, Cao Z, Ma X, Li Z, Zhao K, Cao D, Ma Q, Hou M, Zhao K, Zhang L, Qiu D, Gong F, Zhang X, Liu H, Yin D. Multi-Omics Analysis Reveals That AhNHL Contributes to Melatonin-Mediated Cadmium Tolerance in Peanut Plants. J Pineal Res 2025; 77:e70035. [PMID: 39940063 PMCID: PMC11822082 DOI: 10.1111/jpi.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Cadmium (Cd) pollution significantly hampers cleaner production of peanut (Arachis hypogaea L.). Therefore, exploring of tolerance mechanisms to Cd stress and breeding of low-Cd peanut cultivars are urgently needed and require intense efforts. Herein, multi-omics and physiological studies reveal that multiple biological processes, including melatonin (MT) biosynthesis, are involved in the Cd tolerance in peanut plants. Exogenous MT was applied to peanut plants under Cd stress, which decreased Cd accumulation in roots, shoots and seeds for 40%-60%, and promoted the antioxidant capacity. Integrated investigation reveals that MT-mediated Cd tolerance is mainly attributed to the enhanced metabolism of linolenic acid, glutathione (GSH), and phenylpropanoid (lignin), and development of casparian strip in root cell wall. Defense genes, such as non-race-specific disease resistance gene 1/harpininduced gene 1 (NDR1/HIN1)-like in peanut (AhNHL), were also significantly upregulated by MT under Cd stress. Overexpression of the AhNHL gene in tobacco reduced Cd accumulation for 37%-46%, and alleviated photosynthesis-inhibition induced by Cd stress. Transcriptomic analysis suggested that AhNHL confers the Cd tolerance mainly through promoting phenylpropanoid biosynthesis and GSH metabolism. Additionally, exogenous GSH effectively alleviated the Cd stress through improving Cd sequestration and antioxidant capacity in peanut plants, while apply of the GSH biosynthesis inhibitor (buthionine sulfoximine) exacerbated the Cd phytotoxicity. Transcriptomic analysis reveals that exogenous GSH improves Cd tolerance through affecting the expression of genes involved in transcription regulation, and metal ion binding and transport. Our findings provide novel insights into molecular mechanisms underlying Cd tolerance in plants, which would facilitate breeding of low-Cd peanut cultivars.
Collapse
Affiliation(s)
- Rui Ren
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Zenghui Cao
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Xingli Ma
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Zhongfeng Li
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Kunkun Zhao
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Di Cao
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Qian Ma
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Mengtian Hou
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Kai Zhao
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Lin Zhang
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Ding Qiu
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Fangping Gong
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Xingguo Zhang
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Haitao Liu
- College of Resources and EnvironmentHenan Agricultural UniversityZhengzhouChina
| | - Dongmei Yin
- College of Agronomy & Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
15
|
Liao S, Ling Y, Gao Y, Ma G, Li X, Chen L, Hu L, Xie Y. Enhanced cadmium tolerance in perennial ryegrass via exogenous application of Enterobacter hormaechei strain X20. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117905. [PMID: 39986050 DOI: 10.1016/j.ecoenv.2025.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Cadmium (Cd) contamination in soils poses a critical environmental challenge, jeopardizing both agricultural productivity and food safety. The utilization of plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy for mitigating the adverse effects of heavy metal stress on plant health and development. This study investigates the effectiveness of Enterobacter hormaechei X20 in enhancing Cd tolerance in perennial ryegrass, a species renowned for its phytoremediation potential. Strain X20 demonstrated multiple PGPR traits, including phosphate solubilization, indole-3-acetic acid (IAA) production, and siderophore secretion. Under Cd stress, X20 significantly stimulated plant growth, elevated canopy height, and preserved leaf water content. Additionally, X20 inoculation enhanced Cd uptake and reestablished ion homeostasis by augmenting Fe2+, Cu2+, Zn2+, and Mn2+ levels. It also improved photosynthetic efficiency, particularly by optimizing PSII activity, and strengthened antioxidant defense, alleviating oxidative stress. Metabolomic analysis revealed significant modulations in amino acid and sugar metabolism, marked by increased in serine and glycine levels under Cd stress. Furthermore, fructose and glucose levels rose, while sucrose levels declined, reflecting metabolic reprogramming that facilitates stress adaptation. These findings suggest that Enterobacter hormaechei X20 holds great promise as a bioinoculant for enhancing phytoremediation efficiency and plant resilience in Cd-contaminated soils, providing a sustainable strategy for managing heavy metal pollution in agriculture.
Collapse
Affiliation(s)
- Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Ling
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Acadamician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong 257300, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Acadamician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong 257300, China.
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
16
|
Mercado SAS, Parada CZ. Bioassay of toxicity of acid mine drainage treated and untreated with lime ash using the bioindicator Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8547-8554. [PMID: 40088383 DOI: 10.1007/s11356-025-36247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Acid mine drainage (AMD) is an important source of environmental pollution that affects water quality and biodiversity in areas near mining activities. This study evaluated the efficiency of the treatment of AMD with lime ash, through physicochemical analysis and toxicity tests on the bioindicator Pisum sativum L. Samples of AMD were collected in a mining area of Norte de Santander and characterized physicochemically in terms of Al, Cu, Fe, Mn, Zn, and Pb concentrations, as well as pH. The AMD was treated with lime ash to evaluate its ability to neutralize pH (2.3 ± 0.1-7.2 ± 0.7) and remove metals. Toxicity tests showed that the lime ash treatment was able to neutralize pH and significantly reduce metal concentrations, with removal efficiencies greater than 97.2%. In addition, P. sativum showed improved germination, root growth, mitotic index, and a reduction in the frequency of chromosomal abnormalities after treatment. This approach proves to be an effective strategy to reduce AMD contamination, improving physicochemical parameters and decreasing toxicity in model organisms. Further long-term studies are recommended to optimize the process and ensure its effectiveness in the restoration of ecosystems affected by mining.
Collapse
|
17
|
Shahzad M, Bibi A, Khan A, Shahzad A, Xu Z, Maruza TM, Zhang G. Utilization of Antagonistic Interactions Between Micronutrients and Cadmium (Cd) to Alleviate Cd Toxicity and Accumulation in Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:707. [PMID: 40094627 PMCID: PMC11901666 DOI: 10.3390/plants14050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The presence of cadmium (Cd) in agricultural soils poses a serious risk to crop growth and food safety. Cadmium uptake and transport in plants occur through the various transporters of nutrient ions that have similar physical and chemical properties to Cd, indicating that the genetic manipulation of these transporters and agronomic improvement in the Cd-antagonistic nutrients could be a good approach for reducing Cd uptake and accumulation in crops. In this review, we discuss the interactions between Cd and some micronutrients, including zinc (Zn) and manganese (Mn), focusing on their influence on the expression of genes encoding Cd-related transporters, including ZIP7, NRAMP3, and NRAMP4. Genetic improvements in enhancing the specificity and efficiency of transporters and agronomic improvements in optimizing micronutrient nutrition can inhibit the Cd uptake and transport by these transporters. This comprehensive review provides a deep insight into genetic and agronomic improvement for fighting against Cd contamination and enhancing sustainable agricultural production.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ayesha Bibi
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ali Shahzad
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Zhengyuan Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Tagarika Munyaradzi Maruza
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Seifikalhor M, Latifi M, Nasiri Almanghadim N, Akbar-Tajari Z, Ahangir A, Hassani SB, Soltani N, Sadeghi H, Eghbal E, Fallahi Z, Gruda NS. The synergistic impact of Spirulina and Sulfate reducing bacteria on lettuce growth in Cadmium contaminated soil. Sci Rep 2025; 15:6280. [PMID: 39979332 PMCID: PMC11842664 DOI: 10.1038/s41598-025-85996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025] Open
Abstract
Cadmium (Cd) contamination is a critical environmental issue, adversely affecting plant growth and agricultural productivity. While numerous studies have explored the role of various bacteria in mitigating heavy metal toxicity, the specific impacts of sulfate-reducing bacteria ( Desulfovibrio desulfuricans, SRB) and the cyanobacterium Spirulina (Arthrospira platensis, SP), both individually and in combination, on Cd-contaminated plants remain underexplored. This study investigates the effects of SRB and SP on lettuce plants exposed to Cd contamination, aiming to enhance our understanding of their potential in alleviating Cd toxicity and promoting plant health. Results revealed that Cd contamination significantly reduced root growth in all treatments except for the combined application of SRB and SP. This combination also led to a marked decrease in leaf Cd content and improved leaf area, particularly under Cd stress. Furthermore, SP and SRB together increased the relative water content in contaminated soils, and SRB alone induced hydrogen peroxide production in non-contaminated soils. The co-application of SRB and SP significantly boosted catalase and superoxide dismutase activities, enhancing photosynthetic capacity and overall plant growth under Cd stress. These findings underscore the promising potential of using SRB and SP synergistically to mitigate Cd-induced challenges in lettuce cultivation, offering a viable strategy to improve crop productivity in contaminated environments.
Collapse
Affiliation(s)
- Maryam Seifikalhor
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mojgan Latifi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Nasiri Almanghadim
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Akbar-Tajari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Anahita Ahangir
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyedeh Batool Hassani
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Neda Soltani
- Department of Petroleum Microbiology, Research Institute of Applied Science, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hossein Sadeghi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid beheshti University, Tehran, Iran
| | - Elyas Eghbal
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Zahra Fallahi
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Nazim S Gruda
- Institute of Plant Sciences and Resource Conservation, Division of Horticultural Sciences, University of Bonn, 53113, Bonn, Germany.
| |
Collapse
|
19
|
Du H, Tan L, Wei C, Li S, Xu Z, Wang Q, Yu Q, Ryan PR, Li H, Wang A. Transcriptomic and metabolomic analyses of Tartary buckwheat roots during cadmium stress. Sci Rep 2025; 15:5100. [PMID: 39934262 PMCID: PMC11814136 DOI: 10.1038/s41598-025-89462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Cadmium (Cd) can adversely damage plant growth. Therefore, understanding the control molecular mechanisms of Cd accumulation will benefit the development of strategies to reduce Cd accumulation in plants. This study performed transcriptomic and metabolomic analyses on the roots of a Cd-tolerant Tartary buckwheat cultivar following 0 h (CK), 6 h (T1), and 48 h (T2) of Cd treatment. The fresh weight and root length were not significantly inhibited under the T1 treatment but they were in the T2 treatment. The root's ultrastructure was seriously damaged in T2 but not in T1 treatment. This was evidenced by deformed cell walls, altered shape and number of organelles. A total of 449, 999 differentially expressed genes (DEGs) and eight, 37 differentially expressed metabolites (DEMs) were identified in the CK versus T1 and CK versus T2 comparison, respectively. DEGs analysis found that the expression of genes related to cell wall function, glutathione (GSH) metabolism, and phenylpropanoid biosynthesis changed significantly during Cd stress. Several WRKY, MYB, ERF, and bHLH transcription factors and transporters also responded to Cd treatment. Our results indicate that Cd stress affects cell wall function and GSH metabolism and that changes in these pathways might contribute to mechanisms of Cd tolerance in Tartary buckwheat.
Collapse
Affiliation(s)
- Hanmei Du
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| | - Lu Tan
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Changhe Wei
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Shengchun Li
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Zhou Xu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qinghai Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Qiuzhu Yu
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China
| | - Peter R Ryan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - An'hu Wang
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, No. 1 Xuefu Road, An'ning, Xichang, 615000, People's Republic of China.
| |
Collapse
|
20
|
Wang X, Huang JH, Meng B, Mao K, Zheng M, Tan A, Yang G, Feng X. LmGSTF3 Overexpression Enhances Cadmium Tolerance in Lemna minor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2711-2721. [PMID: 39723912 DOI: 10.1021/acs.est.4c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Glutathione S-transferase (GST) has been established to play an important role in regulating the responses of plants to stress, although its function and mechanisms of action in the cadmium (Cd)-tolerant Lemna minor remain unclear. In this study, we sought to identify a Cd-responsive GST gene from Lemna minor for functional analysis and mechanistic characterization. We accordingly identified a member of the GST gene family, LmGSTF3, which plays a positive role in adaptation of Lemna minor to Cd. Having successfully obtained overexpressing (OE) strains via genetic transformation, we established that these strains were characterized by elevated Cd tolerance compared with the wild-type strain, as evidenced by significant increases in growth rate, chlorophyll content, antioxidant enzyme activities, and Cd removal rate. At the transcriptome level, the OE strains were found to have a stronger regulatory ability in response to Cd, particularly with respect to photoprotection, antioxidant defense, and glycolytic metabolism, which may be key factors contributing to the Cd tolerance of Lemna minor. Our findings provide a basis for further elucidating the biochemical and molecular mechanisms underlying the Cd tolerance conferred by GST genes in Lemna minor and will potentially contribute to the utilization of Lemna minor in remediating aquatic pollution.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jen-How Huang
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Bo Meng
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Kang Mao
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Mengmeng Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Aijuan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Guili Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Xinbin Feng
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| |
Collapse
|
21
|
Tennakoon A, Galahitigama H, Samarakoon SMABK, Perera IJJUN, Thakshila GPGI, Thiruketheeswaranathan S, Roshana MR, Sandamal S, Sewwandi GPGSM, Bellanthudawa BKA. Remediating contaminated environmental systems: the role of plants in cadmium removal. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-20. [PMID: 39912381 DOI: 10.1080/15226514.2025.2456095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Cadmium (Cd) is one of the most harmful heavy metals in the environment, negatively impacting plant growth and development. However, phytoremediation which is an environmentally friendly and cost-effective technique can be used to treat Cd contaminated environments. It effectively removes Cd from polluted soil and water through processes, such as phytoextraction, phytostabilization, phytostimulation, phytofiltration, and phytotransformation. Numerous research has shown evidences that biological, physical, chemical, agronomic, and genetic methods are being utilized to improve phytoremediation. A special group of plants known as hyperaccumulator plants further enhance Cd removal, turning polluted areas into productive land. These plants accumulate Cd in root cell vacuoles and aerial parts. Despite the morphological and genetic variations, different plant species remediate Cd at different rates using either one or multiple mechanisms. To improve the effectiveness of phytoremediation, it is essential to thoroughly understand the mechanisms that control the accumulation and persistence of Cd in plants, including absorption, translocation, and elimination processes. However, what missing in understanding is in depth of idea on how the limitations of phytoremediation can be overcome. The limitations of phytoremediation can be addressed through various strategies, including natural and chemical amendments, genetic engineering, and natural microbial stimulation, broadly categorized into soil amelioration and plant capacity enhancement approaches. This review presents a concise overview of the latest research on various plants utilized in Cd phytoremediation and the different methods employed to enhance this process. Moreover, this review also underscores the creditability of phytoremediation technique to remediate Cd pollution as it offers a promising approach for eliminating Cd from contaminated sites and restoring their productivity. Additionally, we recommend directing future research toward enhancing the biochemical capabilities of plants for remediation purposes, elucidating the molecular mechanisms underlying the damage caused by Cd in plants, and understanding the fundamental principles regulating the enrichment of Cd in plants.
Collapse
Affiliation(s)
- Asanka Tennakoon
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Harshana Galahitigama
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - S M A B K Samarakoon
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - I J J U N Perera
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - G P G I Thakshila
- Department of Applied Sciences, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
- University of Chinese Academy of Sciences, Beijing, China
| | - Suthajini Thiruketheeswaranathan
- School of Environment, Tsinghua University, Beijing, China
- Department of Biosystems Technology, Faculty of Technology, Eastern University, Chenkalady, Sri Lanka
| | - M R Roshana
- Department of Biosystems Technology, Faculty of Technology, Eastern University, Chenkalady, Sri Lanka
| | - Salinda Sandamal
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - B K A Bellanthudawa
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
- University of Chinese Academy of Sciences, Beijing, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Huang Z, Song X, Song J, Su L, Meng S, Yu X, Liang K, Huang H, Zhang F, Li H, Tang Y, Sun B. Physiological and transcriptomic analysis of purple flowering stalks (Brassica campestris var. purpurea) under cadmium stress and exogenous glutathione application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109424. [PMID: 39721184 DOI: 10.1016/j.plaphy.2024.109424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Glutathione (GSH) has a beneficial effect on the response of plants to cadmium (Cd) stress. The physiological and molecular processes by which glutathione influences Cd tolerance in purple flowering stalks (a Brassica vegetable) remain unclear. The aim of this study was to investigate the role of exogenous GSH in alleviating Cd toxicity in purple flowering stalks. On day 10 of the Cd stress treatment, spraying of GSH resulted in an increase in the net photosynthetic rate by 18.48%; enhanced antioxidant enzyme activities and the endogenous GSH and ascorbic acid contents; reduced the malondialdehyde and proline content 32.45% and 24.65%, respectively; and reduced the Cd content in the roots by 2.93%. On day 5, the transcriptome analysis showed that the application of GSH up-regulated the expression of 27 genes in the photosynthetic pathway. In contrast, GSH application led to the down-regulation of most genes involved in GSH metabolism, sulfur metabolism, and arginine and proline metabolism. These findings will aid future studies of the response of purple flowering stalks to Cd stress.
Collapse
Affiliation(s)
- Zhi Huang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoli Song
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China; Dongpo District Agriculture and Rural Bureau, 620000, Meishan, China
| | - Junyan Song
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Liping Su
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shiling Meng
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xuena Yu
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Kehao Liang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, Taastrup, 2630, Denmark
| | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, 611130, Chengdu, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China.
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
23
|
Liu M, Du X, Wang M, Huo Y, Zeng Y, Wu J, Ying X, Wei F, Liu L, Tang J. The Hormesis effect of cadmium on Panax notoginseng and corresponding impact on the rhizosphere microorganism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117839. [PMID: 39914078 DOI: 10.1016/j.ecoenv.2025.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Panax notoginseng is a famous Chinese traditional medicinal. However, soil cadmium pollution seriously affected the yield and quality of notoginseng. This study systematically investigated the effects of soil Cd stress at different concentrations on the growth of one-year-old notoginseng. The results indicate that Cd exhibits a typical low-dose stimulation and high-dose inhibition effect on the development of notoginseng. At low concentrations (1 mg/kg), Cd promotes the growth of plants, including increased biomass (∼40 % of root dry weight) and higher saponin contents (∼30 % of total saponins). At high concentrations, Cd inhibits the overall growth and metabolism of notoginseng. Meanwhile, the impact of Cd on the rhizospheric micro-environment shows dose dependency. In a low Cd stress environment, the total and unique microbial populations increase, including Rhizobiaceae, Streptomycetaceae, and Mesorhizobium. Conversely, under strong Cd stress, the richness and diversity of the rhizospheric microbial community decrease, while the abundance of cadmium-tolerant species increases, such as Deinococcus and Rhodanobacter.
Collapse
Affiliation(s)
- Mingpeng Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Xuanxiang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Mulan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Yuewen Huo
- College of Resources and Environment, China Agricultural University, Beijing 100193, China
| | - Yanbo Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Jingheng Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Xin Ying
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China
| | - Fugang Wei
- Miaoxiang Notoginseng Company with Limited Liability, Wenshan, Yunnan 66300, China
| | - Li Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China.
| | - Jianguo Tang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Ministry of Education Yunnan Minzu University, Kunming, Yunnan 650031, China.
| |
Collapse
|
24
|
Zhou W, Fan Y, Jin C, Wang Y, Yan F, Wang T, Liu Q, Chen Y, Deng F, Lei X, Hu J, Tao Y, Cheng H, Ren W. High-yield rice with rich nutrition and low toxicity can be obtained under potato-rice cropping system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1799-1808. [PMID: 39387437 DOI: 10.1002/jsfa.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Rice is often rotated with dryland crops to produce sufficient foodstuff, as rice is the main food crop of humans. In order to verify whether under the intensive rice-based cropping system, high yield and good quality of rice can be achieved simultaneously to ensure food security. Five long-term paddy-upland rotations - wheat-rice (WR), rapeseed-rice (RR), garlic-rice (GR), broad beans-rice (BR) and potato-rice (PR) - were conducted from 2014 to investigate rice yield, along with the profiling of 24 elements in rice grain. RESULTS Mg, Zn, Cu, As, Mo and Sb concentrations were highest in the aleurone layer, and Ag and Cd concentrations showed little variation among different parts of the rice grain. Al, Ti, V, Si, Fe and Tl concentrations in the endosperm under GR were higher, while the Se concentration under PR was the highest. Furthermore, the yield of GR and PR were higher than the other three rotations with N supplementation, and the sustainable yield index of PR and WR were larger than 0.8. CONCLUSION When we consider the concentration of toxic (As, Cd and Pb) and nutrient elements (Ca, Fe, Zn, Se, Cu and Mg) in the endosperm and grain yields, PR can simultaneously achieve high yield, high nutrition and low toxicity with different nitrogen treatments. Here we provide novel insights regarding the selection of rice-based cropping systems, focused on producing nutritious and safe rice with high grain yield. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Yu Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Chunlian Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Yajun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Fengjun Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Qi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Yong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Fei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Xiaolong Lei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Jianfeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Youfeng Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Hong Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Wanjun Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Zhang G, Chen G, Yang R, Bai C, Yang W, Zhang J, Yin X, Yang F, Seth CS, Liu H. Concentration-dependent interactive toxicity of cadmium and mercury: Non-negligible effects on phytoremediation by indigenous Artemisia lavandulaefolia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117803. [PMID: 39889474 DOI: 10.1016/j.ecoenv.2025.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
The indigenous species Artemisia lavandulaefolia, widespread in areas co-contaminated with Cd and Hg, has the potential for phytoremediation. However, the mechanisms that underlie these plants' resistance to combined Hg and Cd stress are unelucidated. The influence of the dosage of one metal on another has also not been adequately quantified. We investigated the combined and interactive effects of varying doses of Cd and Hg on this species' growth, heavy metal accumulation, and physiological responses. We found that increased Hg and Cd in the co-contaminants inhibited biomass by 16-59 %. The interaction between these heavy metals on growth was concentration-dependent, with an antagonistic effect (concentration addition index (CAI) and effect addition index (EAI) < 0) at low concentrations and an additive effect at high concentrations. An increase in one metal had a beneficial effect on the aboveground accumulation of the other metal, reaching bioconcentrations of 20.16 and 2.25 for Cd and Hg, respectively. Furthermore, the elevation of Cd in the solution increased the proportion of Hg in the cell walls to 31.5 %; however, increasing the Hg dose did not change the Cd concentration in this substructure. Our results also demonstrate that different physiological responses occurred with increased Hg and Cd in the co-contaminants. The elevation of Hg in the mixture had a greater effect on photosynthetic systems than the increased Cd levels. The antioxidant systems of roots and leaves play important roles in attenuating Hg and Cd stress, respectively. Principal component analysis (PCA) revealed concentration-dependent trade-offs between heavy metal accumulation and plant growth and between the above- and belowground antioxidant activities of Artemisia lavandulaefolia for the first time. With increasing Hg, plants preferred to stimulate belowground antioxidant activity, whereas high concentrations of Cd followed the opposite trend. This study provides a theoretical basis for the phytoremediation of this species under combined heavy metal pollution. It highlights that the concentration-dependent interaction between Hg and Cd on plant toxicity should not be ignored during phytoextraction in co-contaminated environments.
Collapse
Affiliation(s)
- Gangyang Zhang
- College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Guo Chen
- College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China; Tianfu Yongxing Laboratory, #619 Jicuijie, Tianfuxinqu, Chengdu 610213, Sichuan Province, PR China.
| | - Rui Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Chunlian Bai
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Weiyuhao Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Juan Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Xuyang Yin
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, PR China
| | - Fang Yang
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | | | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| |
Collapse
|
26
|
Hayat U, Ul Din K, Ahmad M, Zulfiqar U, Sajjad M, Maqsood MF, Soufan W, Prasad PVV, Djalovic I. Salicylic acid confers cadmium tolerance in wheat by regulating photosynthesis, yield and ionic homeostasis. Sci Rep 2025; 15:3698. [PMID: 39880835 PMCID: PMC11779808 DOI: 10.1038/s41598-025-87236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants. Hence, an experiment was conducted to explore the roles of foliar application of SA in ameliorating Cd toxicity in two wheat varieties. The treatments comprised of, a) Cd stress: i) Cd0 = control (No Cd), Cd1 = 500 µM Cd stress at 30 days after sowing (DAS); SA applications: (i) SA0 = control (No SA) (ii) SA1 = 0.5 mM SA at 32 DAS, and c) Wheat varieties: (i) Anaj-17 and (ii) Akbar-19. The experiment was carried out with three replicates in a completely randomized design (CRD). The findings of the study have revealed that Cd stress prominently reduced the plant growth and yield, gaseous exchange attributes, and relative water content of both wheat varieties, and more reduction was observed in Anaj-17 as compared to Akbar-19. Plant height, economic yield, photosynthetic rate, and relative water content were decreased by (9.80 and 8.20%), (12.2 and 6.58%), (20 and 11.32%), and (12.5 and 10%) in Anaj-17 and Akbar-19 respectively. Further, SPAD value and chlorophyll fluorescence decreased under Cd toxicity in both wheat cultivars as compared to non-stress conditions. Contrarily, electrolyte leakage and Cd contents were increased in the plants as compared to the control. However, the foliar applications of SA in Cd-stressed plants significantly improved the plant growth and yield attributes, relative water content, gas exchange attributes, and chlorophyll content in both wheat varieties as compared to control-no SA applied. In addition, chlorophyll fluorescence and nutrient uptake were also improved under SA applications as compared to control. However, SA played an ameliorative role in reducing Cd-toxicity by reducing the electrolyte leakage and Cd uptake by the plants. Among the varieties, Akbar-19 outperformed the Anaj-17 to impart Cd toxicity under SA applications based on plant morphophysiological attributes. Hence, the outcomes of the experiment recommended that the foliar treatment of SA amended the Cd tolerance of wheat varieties by improving plant physiological and biochemical attributes.
Collapse
Affiliation(s)
- Umer Hayat
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Maryium Sajjad
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Walid Soufan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, 30, Novi Sad, 21000, Serbia.
| |
Collapse
|
27
|
Begum A, Rabbane MG, Moniruzzaman M, Hasan MR, Chang X. Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity. Biol Trace Elem Res 2025:10.1007/s12011-025-04524-1. [PMID: 39881065 DOI: 10.1007/s12011-025-04524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.00 (control), 0.05, and 0.40 mg/L for 30 days and assessed fish health, muscle quality, and intestinal bacterial diversity. We observed significant Cd bioaccumulation in the fish muscle and intestine at 0.40 mg/L treatment, adversely impacting fish health with lower growth indices, higher mortality, behavioral aberrations, and clinical anomalies. More interestingly, Cd exposure decreased muscle quality by reducing nutrient levels, including fat, protein, iron, zinc, mono and polyunsaturated fatty acids, and increasing free amino acids and saturated fatty acids. Elevated oxidative stress markers, including total superoxide dismutase (T-SOD), catalase (CAT), and hydrogen peroxide (H2O2), were detected in the muscles, indicating degraded quality as a result of damage to cellular structures including proteins, lipids, and DNA. Simultaneously, we found Cd exposure altered fish intestinal microbial diversity, impairing muscle nutrient assimilation, thereby influencing muscle quality. Functional predictions suggested a decrease in pathways related to fermentation and chemoheterotrophy in the exposed groups. Overall, this study highlights how Cd toxicity jeopardizes fish health and deteriorates muscle quality which needs to be addressed for human benefit.
Collapse
Affiliation(s)
- Ayesha Begum
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, People's Republic of China
- Department of Applied Food Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Md Golam Rabbane
- Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Rakibul Hasan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
28
|
Gatasheh MK, Abbas T, Shaffique S, Kang SM, Lee IJ, Shah AA. Comparative analysis of biodiversity, physiology, and anatomical adaptations in riparian flora exposed to industrial pollution stress. Sci Rep 2025; 15:3006. [PMID: 39849168 PMCID: PMC11757715 DOI: 10.1038/s41598-025-87396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025] Open
Abstract
Anthropogenic activities such as industrial pollution of water bodies possess threat to floras leading to extinction and endangerment. This study investigates the impact of industrial pollution on vegetation along River Chenab and its associated drains. Rivers and channels transporting industrial effluents have been determined to be significantly contaminated. The contamination was evidenced by the acidic and alkaline nature of industrial effluents, salinity, total dissolved solids, and the sodium absorption ratio. The research revealed that the pollution in the region severely impacts the native vegetation, resulting in a marked decline in density, frequency, relative density, and relative frequency across 10 sites, including three drain sites and one non-polluted site. Four plant species, Calotropis procera, Eclipta alba, Phyla nodiflora, and Ranunculus sceleratus exhibited tolerance to pollution and were present at all sites during all seasons. Anatomical modifications, such as increased root aerenchyma and vascular bundles, enabled these plants to thrive in polluted environments. The study highlights the importance of these species in phytoremediation and their potential for use in restoring degraded ecosystems.
Collapse
Affiliation(s)
- Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Toqeer Abbas
- Department of Botany, University of Sargodha, Sargodha, Pakistan.
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Seoul, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Seoul, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Seoul, South Korea
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| |
Collapse
|
29
|
Hačkuličová D, Labancová E, Vivodová Z, Danchenko M, Holeková K, Bajus M, Kučerová D, Baráth P, Kollárová K. Modification of peroxidase activity and proteome in maize exposed to cadmium in the presence of galactoglucomannan oligosaccharides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117732. [PMID: 39823677 DOI: 10.1016/j.ecoenv.2025.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/19/2025]
Abstract
We tested the effects of galactoglucomannan oligosaccharides (GGMOs) and/or cadmium (Cd) on peroxidase activity and the proteome in maize (Zea mays L.) roots and leaves. Our previous work confirmed that GGMOs ameliorate the symptoms of Cd stress in seedlings. Here, the plants were hydroponically cultivated for 7 days, and the protein content and peroxidase activity were estimated in intracellular, neutral cell wall, and acidic cell wall protein fractions. The peroxidase activity varied between the plant organs as well as among the fractions and treatments. The GGMOs in the presence of Cd did not significantly influence content of peroxidases but modulated their activity, which implies posttranslational regulation. The changes in the content of various proteins (e.g., related to the defence reactions, cell wall structure/metabolism, and activation of plant hormones) caused by GGMOs and Cd indicate possible protective mechanisms that improve the vitality of maize seedlings exposed to metal stress. GGMOs partially reverted Cd-induced protein disbalance, which was a reoccurring phenomenon of mitigation in leaves.
Collapse
Affiliation(s)
- Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Kristína Holeková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Marko Bajus
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Danica Kučerová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia.
| |
Collapse
|
30
|
Wang M, Zhao J, Gu Y, Wu Y, Liu Y, Tang Z, Xu Y, Mao X, Zhang J, Tian W. Deciphering the mechanism of rhizosphere microecosystem in modulating rice cadmium accumulation via integrating metabolomics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178181. [PMID: 39729842 DOI: 10.1016/j.scitotenv.2024.178181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Cadmium (Cd) accumulation in rice poses significant risks to human health. The Cd accumulation levels vary widely among cultivars and are strongly associated with the rhizosphere microecosystem. However, the underlying mechanisms remain poorly understood. Here, we conducted a field experiment in Cd-contaminated areas with 24 popular regional cultivars. These cultivars were categorized into high Cd accumulation (HA) and low Cd accumulation (LA) groups based on their grain Cd content. Rhizosphere soil physicochemical properties were monitored, and key metabolites, microbiomes, and their interaction contributing to Cd accumulation were analyzed using omics-sequencing technologies and bioinformatics analysis. Metabolomic analysis identified distinct rhizosphere metabolite profiles between the HA and LA groups, with key metabolites showing strong correlations with Cd accumulation. Key metabolites in the LA group were linked to reduced Cd uptake and enhanced antioxidant defense mechanisms, while those in the HA group were associated with increased Cd mobility and uptake. Metagenomic analysis of the rhizosphere soil showed that the LA group harbored a more diverse and interconnected microbial community, with tax such as Syntrophaceae, Anaerolineae, Thermoflexales, and Syntrophales, along with metabolite such as disopyramide, playing central roles in Cd immobilization and detoxification. Additionally, the enhanced carbon, nitrogen, and phosphorus cycling in the LA group suggests a more robust nutrient assimilation process that supports plant growth and reduces Cd uptake. This study highlights the critical role of the rhizosphere microecosystem in regulating Cd accumulation and underscores the potential of selecting rice cultivars with favorable rhizosphere traits as a strategy for reducing Cd uptake.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yongjing Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Zhaoyang Tang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yu Xu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang 050021, China.; Hebei Provincial Academy of Ecological and Environmental Sciences, 30 Yaqing Road, Yuhua District, Shijiazhuang 050037, China
| | - Xinyu Mao
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| |
Collapse
|
31
|
Tahira S, Bahadur S, Lu X, Liu J, Wang Z. ZnONPs alleviate cadmium toxicity in pepper by reducing oxidative damage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123796. [PMID: 39721396 DOI: 10.1016/j.jenvman.2024.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15 mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq. under Cd (CdCl2; 50 μM/L) stress. The pepper plants were treated with Cd stress for 14 days, and the treatment was given directly into the hydroponic solution, while ZnONPs were applied as foliar spray two times a day (9 a.m. - 3 p.m.). The results revealed that Cd stress inhibited plant growth and biomass by impairing photosynthesis in photosystem function, gas exchange parameters, root activity, and morphology. In contrast, ZnONPs application notably reinforced the plant growth traits, increased photosynthesis efficiency in terms of chlorophyll content, SPAD index, gas exchange parameters and PSII maximum efficiency (Fv/Fm) and decreased Cd accumulation in leaf and root by 30% and 75%. Furthermore, ZnONPs efficiently restricted the hydrogen peroxide, superoxide ion (H2O2, O2•-). They restored cellular integrity (less MDA production) by triggering the antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), protein content, sugar level and proline content. Besides, ZnONPs treatment enhanced secondary metabolites (phenols and flavonoids) contents and these metabolites potentially restricted excess H2O2 accumulation. In conclusion, our findings deciphered the potential functions of ZnONPs in alleviating Cd-induced phytotoxicity in pepper plants by boosting biomass production, photosynthesis, secondary metabolism and reducing oxidative stress.
Collapse
Affiliation(s)
- Sidra Tahira
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Saraj Bahadur
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jiancheng Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
32
|
Ansari WA, Shahid M, Shafi Z, Farah MA, Ilyas T, Al-Anazi KM, Niyazi S. NO and melatonin interplay augment Cd-tolerance mechanism in eggplants: ROS detoxification and regulation of gene expression. PHYSIOLOGIA PLANTARUM 2025; 177:e70130. [PMID: 39956837 DOI: 10.1111/ppl.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Global crop productivity is consistently threatened by cadmium (Cd) soil contamination. Crosstalk between nitric oxide (NO) and melatonin (MT) in enhancing crop resilience to heavy metal stress has gained significant attention. Here, we evaluated the joint effect of sodium nitroprusside (SNP; 200 μM as NO donor) and MT (100 μM) on Cd-stressed eggplant (Solanum melongena L.). Cd stress significantly reduced plant growth, biomass yield, leaf pigments, and biochemical properties. Conversely, SNP, MT, and particularly their combined (SNP + MT) application reduced Cd toxicity and enhanced growth and physio-biochemical traits of eggplants. For instance, at 50 mg Cd kg-1 soil, SNP, MT, and SNP + MT increased root biomass (41.6, 30, and 47%), total chlorophyll (30.7, 26.3, and 46%), soluble protein (20.5, 17.6 and 37%) and RLWC (23, 17.5, and 29%) over their respective control. Furthermore, SNP + MT significantly (p ≤ 0.05) reduced levels of EL, H2O2, proline, and MDA by 54.5, 66, 61 and 70%, respectively, in Cd-stressed eggplants. SNP + MT interplay enhanced antioxidant defense responses in leaf tissues under Cd stress. Besides, SNP and MT upregulated transcript levels of POD, SOD, CAT, and GPX genes in eggplants under Cd stress. SNP and MT applications improved essential nutrient cation homeostasis in Cd-stressed shoot tissues of eggplants. Moreover, SNP + MT lessens metal-induced toxicity by decreasing Cd uptake, translocation (TF) and bioconcentration (BCF) factors. Conclusively, these findings validated the beneficial defensive interaction between SNP and MT in regulating Cd tolerance in eggplants. However, further research is needed to uncover the underlying defensive mechanisms of these synergistic effects.
Collapse
Affiliation(s)
- Waquar Akhter Ansari
- Marwadi University Research Center, Dept. of Agriculture, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, A.M.U, Aligarh, Uttar Pradesh, India
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Talat Ilyas
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Shareen Niyazi
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
33
|
Liu M, Wu S, Song Y, Shi M, Yi L. Physiological and transcriptome analysis of sex-specific responses to cadmium stress in poplars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117675. [PMID: 39788028 DOI: 10.1016/j.ecoenv.2025.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Soil cadmium (Cd) pollution is a serious ecological problem worldwide. Understanding Cd-detoxification mechanisms in woody plants will help to evaluate their tolerance ability and phytoremediation potential to Cd-polluted soils. This study investigated the growth, physiochemistry, Cd distribution, and transcriptome sequencing of male and female poplars under three Cd levels (0, 50, and 100 mg·kg-1). The results showed that Cd stress significantly inhibited the growth of aboveground parts. Over 70 % of the Cd was distributed in the cell wall fraction of roots, stems, and leaves, with the majority accumulating in the roots. Poplars can conjugate Cd with phytochelatins to reduce Cd damage, which is more evident in males than females. The antioxidant defense system of females is more effective than that of males at reducing the damage from Cd. Females demonstrated a stronger Cd-regulation ability than males under the 100 mg·kg-1 Cd treatment. Sex-specific responses to Cd were associated with differential gene expression. Under Cd stress, the genes related to oxidation-reduction processes, antioxidant enzyme activity and defense mechanisms, cell wall synthesis, and glutathione metabolism were mainly enriched and upregulated in females, whereas in males, genes related to photosynthesis and photosynthetic pigment biosynthesis were mainly enriched and downregulated, indicating greater damage to the photosynthetic system than in females. Our study provides novel insights into the mechanisms responding to Cd tolerance in poplars. Further studies should be carried out to assess the impact of soil Cd pollution on the wood quality of poplars.
Collapse
Affiliation(s)
- Meihua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Sumei Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yigang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Mengjiao Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Lita Yi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
34
|
Huang Y, Cao L, Chen T, Chang X, Fang Y, Wu L. Genome-wide identification of the ATP-dependent zinc metalloprotease (FtsH) in Triticeae species reveals that TaFtsH-1 regulates cadmium tolerance in Triticum aestivum. PLoS One 2024; 19:e0316486. [PMID: 39739686 DOI: 10.1371/journal.pone.0316486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members. Additionally, these proteins exhibit similar physicochemical characteristics as well as secondary and tertiary structures. The FtsH genes can be classified into eight groups, each characterized by similar structures and conserved motifs. Intraspecific and interspecific comparisons further revealed extensive gene duplications within the TaFtsH gene family, indicating a closer relationship to maize. Analysis of cis-acting elements in the promoter regions of TaFtsH genes revealed developmental and stress-responsive elements in most of the genes. Expression pattern analysis showed that TaFtsH genes are expressed in all wheat tissues, though with varying patterns. TaFtsH genes displayed differential responses to CdCl2, ZnSO4, and MnSO4 stress treatments. Gene Ontology (GO) enrichment analysis indicated that TaFtsH genes are involved in protein hydrolysis. Barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) technology confirmed the function of TaFtsH-1, indicating that silencing TaFtsH-1 enhances common wheat's resistance to cadmium (Cd) toxicity. In summary, this study offers an in-depth understanding of the FtsH gene family in wheat, establishing a solid basis for comprehending its functions, genetic mechanisms, and improving wheat's tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Yuxi Huang
- Henan Academy of Sciences, Zhengzhou, China
| | - Lifan Cao
- Henan Academy of Sciences, Zhengzhou, China
| | | | | | - Yumei Fang
- Henan Academy of Sciences, Zhengzhou, China
| | - Liuliu Wu
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
35
|
Xie Y, Wang S, Wan S, Chen L, Shen Q, Zhao K, Tao S, Zhou W, Zhang X, Tan X, Xie B, Tang B. The Stress Response of Aphids to the Accumulation of Heavy Metals Along Vicia faba L. Under Cadmium Treatment. INSECTS 2024; 15:999. [PMID: 39769601 PMCID: PMC11678626 DOI: 10.3390/insects15120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Due to the intensification of human activities, the ecosystems are being polluted by heavy metals. The pollution of heavy metals in agricultural systems has become a serious issue of global concern. This study detected the bioaccumulation of cadmium (Cd) in broad beans and aphids through continuous exposure to varying concentrations of Cd pollution (0, 3.125, 6.25, 12.5, 25, 50 mg/L) and subsequently examined its effects on aphid energy metabolism and reproductive ability. The results showed that Cd can be transmitted and accumulated between Vicia faba L. and aphids along the food chain, and the amount of accumulation was related to the Cd treatment concentration. Quantitative real-time PCR results showed that the expression levels of trehalase (TRE) and trehalose-6-phosphate synthase (TPS) in F1 were significantly upregulated, and those of vitellogenin (Vg) were varied across the five generations of aphids after Cd treatment, which were up-regulated, and others down-regulated. Compared with the control group, the glycogen content and two types of trehalase activities of the first-generation Cd-treatment aphids were decreased, while trehalose content increased; there was no significant change in the carbohydrate content and trehalase activity of the fourth and fifth generations of aphids. In addition, the reproduction of female aphids was inhibited. This research is helpful for studying the toxic effects of heavy metals on insects and the adaptation mechanisms of insects to extreme environments. It also provides a theoretical basis for further exploring the molecular mechanisms of Cd homeostasis in plants and insects under Cd stress.
Collapse
Affiliation(s)
- Yexin Xie
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Sijing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Liya Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Qintian Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Keting Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Shiyu Tao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Wenjing Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Xinyi Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Xiaoling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Binghua Xie
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (S.W.); (S.W.); (L.C.); (Q.S.); (K.Z.); (S.T.); (W.Z.); (X.Z.)
| |
Collapse
|
36
|
Wang X, Zheng WL, Wu CL, Han JJ, Xiang YP, Yang ML, He P, Yu FH, Li MH. Interactive effects of rhizospheric soil microbes and litter on the growth of the invasive hyperaccumulator Bidens pilosa in cadmium-contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1507089. [PMID: 39726418 PMCID: PMC11670255 DOI: 10.3389/fpls.2024.1507089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Both rhizospheric soil microbes and shoot litter input can have profound effects on plant performance; however, their interactive effects on plants in Cd-contaminated soils remain poorly understood. We grew an invasive hyperaccumulator, Bidens pilosa, in sterilized and unsterilized rhizosphere soil without litter or with a low (0.2%, dry weight ratio) or a high amount (1%) of litter from B. pilosa in soil with low (5 mg kg-1) or high (10 mg kg-1) concentrations of Cd. The total, shoot, and root biomass of B. pilosa increased significantly with litter addition, by an average of 27%, 28%, and 20%, respectively. The biomass of B. pilosa was significantly lower in unsterilized rhizosphere soil than in sterilized rhizosphere soil, decreasing by 19% for total, 18% for shoot, and 24% for root, respectively. Furthermore, the effects of different litter amounts (0.2% vs. 1%) on biomass did not vary in sterilized rhizosphere soils but significantly varied in unsterilized rhizosphere soils, showing that the biomass was significantly lower with 1% litter addition than with 0.2% litter addition in unsterilized rhizosphere soils, decreasing by 28% for total, 29% for shoot, and 21% for root, respectively. Tissue Cd concentrations were significantly higher in highly Cd-contaminated soils (+75% for shoot and +51% for root) than in low Cd-contaminated soils; however, higher tissue Cd concentrations did not cause a significant decrease in the biomass of B. pilosa. Soil fungal communities, particularly the dominant phyla, Ascomycota and Basidiomycota, play crucial roles in modulating the effects of rhizosphere soil microbes and litter on the growth of B. pilosa. Our results suggest that rhizosphere soil microbes and litter interact and affect the growth of B. pilosa: litter addition promoted growth by increasing the abundance of saprotrophs (especially Basidiomycota) and decreasing Cd accumulation in plant tissues, and rhizosphere soil inhibition was associated with a decreased abundance of Basidiomycota. Our findings highlight the importance of the interactive effects of rhizospheric soil microbes and litter on plant growth in Cd-contaminated soils.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Wei-Long Zheng
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Chun-Lan Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Jing-Jing Han
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yu-Peng Xiang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Ming-Lang Yang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Peng He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
37
|
Kanwal F, Riaz A, Khan A, Ali S, Zhang G. Manganese enhances cadmium tolerance in barley through mediating chloroplast integrity, antioxidant system, and HvNRAMP expression. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135777. [PMID: 39276745 DOI: 10.1016/j.jhazmat.2024.135777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that poses risks to crop production and food safety worldwide. This study evaluated whether manganese (Mn) addition could mitigate Cd toxicity and reduce Cd accumulation in barley seedlings. Hydroponically grown seedlings of Cd-tolerant (WSBZ) and Cd-sensitive (Dong17) barley cultivars were treated with 0.1 μM and 1 μM Cd as well as 0.2 mM Mn alone and in a combination with 0.1 or 1.0 μM Cd for 21 days. Cd exposure caused the dramatic alteration of growth and physiological parameters by disrupting chloroplast, and increased Cd accumulation in both genotypes. However, Mn addition markedly alleviated the negative impacts of all examined parameters caused by Cd stress. Cd addition enhanced expression of anti-oxidative enzyme related genes, including HvSOD, HvCAT, HvAPX, HvPOD in the two barley genotypes exposed to Cd stress. The expression analysis showed nearly all HvNRAMPs genes are dramatically up regulated by both Mn and Cd, with WSBZ having higher expression than Dong 17. Notably, HvNRAMP1 showed the highest expression due to Mn addition, highlighting its crucial role in Mn uptake and transportation in barley. Moreover, Cd stress and Mn addition increased and suppressed the expression of HvYSL5, HvHMA2 and HvHMA3, respectively. Conversely, the expression of HvYSL2, HvIRT1 and HvMTP8 was upregulated by both Mn and Cd treatments, with a further increase observed in the combined Cd and Mn treatments. It may be concluded that sufficient Mn supply is quite important for reducing Cd uptake and accumulation in plants.
Collapse
Affiliation(s)
- Farah Kanwal
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China.
| | - Asad Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Brisbane 4072, Australia; Centre of Excellence for Plant Success in Nature and Agriculture, Saint Lucia, Brisbane 4072, Australia
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China; Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China.
| |
Collapse
|
38
|
Dai MJ, Zhang LD, Li J, Zhu CQ, Song LY, Huang HZ, Xu CQ, Li QH, Chen L, Jiang CK, Lu HL, Ling QT, Jiang QH, Wei J, Shen GX, Zhu XY, Zheng HL, Hu WJ. Calcium regulates the physiological and molecular responses of Morus alba roots to cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136210. [PMID: 39437474 DOI: 10.1016/j.jhazmat.2024.136210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Heavy metal cadmium (Cd) is toxic to organisms. Mulberry (Morus alba L.) is a fast-growing perennial that is also an economical Cd phytoremediation material with large biomass. However, the molecular mechanisms underlying its Cd tolerance remain unclear. Here, we reveal the physiological and molecular mechanisms underlying Cd toxicity under varying calcium (Ca) treatments. First, under low-Ca treatment (0.1 mM Ca), mulberry growth was severely inhibited and the root surface structure was damaged by Cd stress. Second, electrophysiological data demonstrated that 0.1 mM Ca induced an increased Cd2+ influx, leading to its accumulation in the entire root and root cell walls. Third, high-Ca treatment (10 mM Ca) largely alleviated growth inhibition, activated antioxidant enzymes, increased Ca content, decreased Cd2+ flux, and inhibited Cd uptake by roots. Finally, 0.1 mM Ca resulted in the activation of metal transporters and the disruption of Ca signaling-related gene expression, which facilitated Cd accumulation in the roots, aggravating oxidative stress. These adverse effects were reversed by treatment with 10 mM Ca. This study preliminarily revealed the mechanism by which varying Ca levels regulate Cd uptake and accumulation in mulberry roots, provided an insight into the interrelationships between Ca and Cd in the ecological and economic tree mulberry and offered a theoretical basis for Ca application in managing Cd pollution.
Collapse
Affiliation(s)
- Ming-Jin Dai
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China; Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030000, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Chun-Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - He-Zi Huang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Qing-Hua Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Chen-Kai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Hong-Ling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qiu-Tong Ling
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qi-Hong Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Guo-Xin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China.
| | - Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
39
|
Musah BI. Effects of heavy metals and metalloids on plant-animal interaction and biodiversity of terrestrial ecosystems-an overview. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:12. [PMID: 39623084 DOI: 10.1007/s10661-024-13490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Heavy metals and metalloids are ubiquitous and persistent in the environment. Anthropogenic activities, including land use change, industrial emissions, mining, chrome plating, and smelting, escalate their distribution and accumulation in terrestrial ecosystems. Priority metals, including lead, chromium, arsenic, nickel, copper, cadmium, and mercury, pose enormous risks to public health, ecological safety, and biodiversity. The adverse effects of heavy metals on plant-animal interactions, pollen viability, species fitness, richness, and abundance are poorly understood. Hence, this review summarises the critical insights from primary investigations on the key sources of heavy metal pollution, distribution pathways, and their adverse effects on plants and pollinators. This study provides insights into how heavy metals compromise nectar quality, pollen viability, plant-pollinator growth, and reproduction. Biotic pollinators are responsible for approximately 90% of the reproduction of flowering plants. Heavy metals adversely affect pollinators that rely on angiosperms for nectar and pollen. Heavy metals interrupt pollinators' and plants' growth, reproduction, and survival. Evidence showed that bees near gold mines had their olfactory learning performances and head sizes reduced by 36% and 4% due to heavy metals exposure. Cadmium (Cd) interrupts the redox balance, causes oxidative stress, alters gut microbiota, and reduces the survival rate of Apis cerana cerana. Excess Cd exposure reduced the flight capacity, loss of mitochondria, and damaged muscle fibre of Bombus terrestris, while Zn stress reduced egg production and hatchability of Harmonia axyridis. Furthermore, heavy metals alter flower visitation, foraging behaviour, and pollination efficiency.
Collapse
Affiliation(s)
- Baba Imoro Musah
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Menglun, 666316, Yunnan Province, P.R. China.
| |
Collapse
|
40
|
Tong F, Xu L, Zhang Y, Wu D, Hu F. Earthworm mucus contributes significantly to the accumulation of soil cadmium in tomato seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176169. [PMID: 39260500 DOI: 10.1016/j.scitotenv.2024.176169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Whether earthworm mucus affects Cd transport behavior in soil-plant systems remains uncertain. Consequently, this study thoroughly assessed the impacts of earthworm mucus on plant growth and physiological responses, plant Cd accumulation, translocation, and distribution, as well as soil characteristics and Cd fractionation in a soil-plant (tomato seedling) system. Results demonstrated that the earthworm inoculation considerably enhanced plant Cd uptake and decreased plant Cd translocation, the effects of which were appreciably less significant than those of the earthworm mucus. This suggested that earthworm mucus may play a crucial role in the way earthworms influence plant Cd uptake and translocation. Moreover, the artificial mucus, which contained identical inorganic nitrogen contents to those in earthworm mucus, had no significant effect on plant Cd accumulation or translocation, implying that components other than inorganic nitrogen in the earthworm mucus may have contributed significantly to the overall effects of the mucus. Compared with the control, the earthworm mucus most substantially increased the root Cd content, the Cd accumulation amount of root and whole plant, and root Cd BCF by 93.7 %, 221.3 %, 72.2 %, and 93.7 %, respectively, while notably reducing the Cd TF by 48.2 %, which may be ascribed to the earthworm mucus's significant impacts on tomato seedling growth and physiological indicators, its considerable influences on the subcellular components and chemical species of root Cd, and its substantial effects on the soil characteristics and soil Cd fractionation, as revealed by correlation analysis. Redundancy analysis further suggested that the most prominent impacts of earthworm mucus may have been due to its considerable reduction of soil pH, improvement of soil DOC content, and enhancement of the exchangeable Cd fraction in soil. This work may help better understand how earthworm mucus influences the transport behavior of metals in soil-plant systems.
Collapse
Affiliation(s)
- Fei Tong
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs/National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Liao Y, Huang S, Hareem M, Hussain MB, Alarfaj AA, Alharbi SA, Alfarraj S. Addressing cadmium stress in rice with potassium-enriched biochar and Bacillus altitudinis rhizobacteria. BMC PLANT BIOLOGY 2024; 24:1084. [PMID: 39548402 PMCID: PMC11568540 DOI: 10.1186/s12870-024-05793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Cadmium (Cd) is a potentially harmful metal with significant biological toxicity that adversely affects plant growth and physiological metabolism. Excessive Cd exposure in plants leads to stunted plant growth owing to its negative impact on physiological functions such as photosynthesis, nutrient uptake, and water balance. Potassium-enriched biochar (KBC) and Bacillus altitudinis rhizobacteria (RB) can effectively overcome this problem. Potassium-enriched biochar (KBC) significantly enhances plant growth by improving the soil structure, encouraging water retention, and enhancing microbial activity as a slow-release nutrient. Rhizobacteria promote plant growth by improving root ion transport and nutrient availability while promoting soil health and water conservation through RB production. This study examined the effects of combining RB + KBC as an amendment to rice, both with and without Cd stress. Four treatments (control, KBC, RB, and RB + KBC) were applied using a completely randomized design (CRD) in four replications. The results showed that the combination of RB + KBC increased rice plant height (38.40%), shoot length (53.90%), and root length (12.49%) above the control under Cd stress. Additionally, there were notable improvements in chlorophyll a (15.31%), chlorophyll b (25.01%), and total chlorophyll (19.37%) compared to the control under Cd stress, which also showed the potential of RB + KBC treatment. Moreover, increased N, P, and K concentrations in the roots and shoots confirmed that RB + KBC could improve rice plant growth under Cd stress. Consequently, these findings suggest that RB + KBC is an effective amendment to alleviate Cd stress in rice. Farmers should use RB + KBC to achieve better rice growth under cadmium stress.
Collapse
Affiliation(s)
- Yonghui Liao
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi, 343009, China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, Muhammad Nawaz Sharif University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
42
|
Huo X, Wang C, Huang Y, Kong W, Wang X. Effect of S-Allyl-L-Cysteine on Nitric Oxide and Cadmium Processes in Rice ( Oryza sativa L. sp. Zhongzao35) Seedlings. TOXICS 2024; 12:805. [PMID: 39590985 PMCID: PMC11598062 DOI: 10.3390/toxics12110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Nitric oxide (NO) is an important signaling molecule involved in regulating plant processes to cope with abiotic stress. S-allyl-L-cysteine (SAC) is known to induce NO synthesis in animals. However, it is unknown whether SAC can trigger NO biosynthesis, regulate Cd transport, or alleviate Cd stress in plants. After being sprayed with 0.2 mM SAC, rice seedlings had a NO content that was 1.8 times higher than that of the control (ctrl) group at the ninth hour, which then gradually decreased. The expressions of Cd uptake and transport genes in the roots (including OsNRAMP5, OsNRAMP1, and OsHMA2) were markedly downregulated by 27.2%, 24.8%, and 49.1%, respectively, 72 h after SAC spraying treatment. The Cd content in seedling roots' cell wall (CW) components significantly increased by 43.5% compared to that of the ctrl group. The Cd content in the shoots and roots decreased by 49.0% and 29.8%, respectively. Cd stress in the seedlings was also substantially alleviated. In conclusion, spraying rice seedlings with SAC triggered an increase in NO synthesis, regulated the expression of genes related to Cd transport, increased Cd fixation in the root CW components, and reduced Cd accumulation in the roots and shoots.
Collapse
Affiliation(s)
| | | | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (X.H.); (C.W.); (W.K.); (X.W.)
| | | | | |
Collapse
|
43
|
Qiao Z, Fu M, Liang W, Zhou S, Han Y, Luo K, Peng C, Wang G, Zhang W, Zhan X. Effects of Decabromodiphenyl Ethane and Cadmium Coexposure on Their Bioaccumulation, Oxidative Stress, Root Metabolism, and Rhizosphere Soil Microorganisms in a Soil-Rice System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24246-24259. [PMID: 39440867 DOI: 10.1021/acs.jafc.4c05342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Decabromodiphenyl ethane (DBDPE) and cadmium (Cd) are typical pollutants in e-waste, seriously threatening crop growth. This study investigated the bioaccumulation and toxicity mechanisms of DBDPE and Cd in a soil-rice system. The results showed that 50 mg/kg DBDPE could reduce the level of accumulation of Cd in rice roots. DBDPE and Cd induced the antioxidant system (SOD, POD, and MDA) in rice seedlings. The combined exposure reduced the contents of carbohydrates, lipids, amino acids, and organic acids. Phenylalanine and phenylpropanoid metabolisms were identified as the key detoxification metabolic pathways under combined exposure. DBDPE and Cd disrupted the functional cycling of carbon and nitrogen in rhizosphere soil, while Gemmatimonadetes, Actinobacteria, and Bacteroidetes were the key bacterial groups responding to DBDPE and Cd stress. This work provides data for the toxicity risk evaluation of DBDPE and Cd combined exposure to food crops.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Extension and Service Center, Shanghai 201103, China
| |
Collapse
|
44
|
Yağcı A, Daler S, Kaya O. An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste. PHYSIOLOGIA PLANTARUM 2024; 176:e14624. [PMID: 39537427 DOI: 10.1111/ppl.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings. In our study, cadmium stress was induced by applying 10 mg/kg CdCl2 to the root area of the saplings, in conjunction with fertilizers. Our findings showed that exposure to Cd toxicity impeded the growth of grapevine saplings, adversely affecting shoot and root length, as well as fresh weight. Furthermore, it resulted in a reduction in chlorophyll content, stomatal conductance, and leaf water content while significantly increasing membrane damage and lipid peroxidation. Notably, the application of 0.5% SS enhanced grapevine sapling growth and alleviated Cd stress-induced damage by more effectively regulating physiological and biochemical responses compared to the control and other concentrations. Based on our results, under Cd stress conditions, the application of 0.5% SS effectively increased chlorophyll content, relative water content (RWC), stomatal conductance (1.79 mmol.m-2.sn-1), and total phenolic content (1.89 mg.g-1), whereas it significantly reduced malondialdehyde (MDA) levels and membrane damage (1.35 nmol.g-1). Additionally, it significantly elevated the activities of antioxidant enzymes, including superoxide dismutase (SOD) (2.16 U.mg-1), catalase (CAT) (1.55 U.mg-1), and ascorbate peroxidase (APX) (3.03 U.mg-1). The study demonstrated that plant-derived SS mitigates Cd stress in grapevines by enhancing antioxidative defence mechanisms.
Collapse
Affiliation(s)
- Adem Yağcı
- Department of Horticulture, Faculty of Agriculture, Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Selda Daler
- Department of Horticulture, Faculty of Agriculture, Yozgat Bozok University, Yozgat, Türkiye
| | - Ozkan Kaya
- Republic of Türkiye Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, Türkiye
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
45
|
de Freitas F, Solera K, Lopes VJS, Córdova MO, Cavalheiro L, Moreno MIC, Battirola LD, de Andrade RLT. Native accumulator plants with a differential mercury phytoremediation potential in a region in Southern Amazon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63120-63135. [PMID: 39472373 DOI: 10.1007/s11356-024-35407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Mercury (Hg) is a non-essential trace metal, toxic to living beings and complex to quantify and mitigate in the environment. In this study, 25 plant species native to an Amazon-Cerrado transition area were tested for use in Hg remediation. Species identification, Hg quantification in plant biomass and soil at each sampling point, and evaluation of Hg compartmentalization in each plant were carried out. The results were subjected to statistical tests and evaluated using translocation coefficients (FT), bioconcentration (FBC), and bioaccumulation (FB). The results demonstrated that the distribution and accumulation of Hg differed between species and between the parts of the plant evaluated. Soil was the predominant source of Hg in the study area. The study highlighted seven species with Hg phytoremediation potential. Five translocator species were characterized, among these a preferentially bioaccumulating and bioconcentrating species, in addition to a bioconcentrating species and a preferentially bioconcentrating and bioaccumulating species of Hg. Potentially accumulating species stood out, Blechnum serrulatum Rich. (Blechnaceae), Mauritia flexuosa L.f. (Arecaceae), and Montrichardia arborescens (L.) Schott (Araceae), all widely distributed in tropical regions, characterized as rooted, terrestrial, or amphibious and associated with ruderal environments.
Collapse
Affiliation(s)
- Franciele de Freitas
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil.
| | - Kleber Solera
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| | - Vinícius José Santos Lopes
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
- Institute of Agricultural and Environmental Sciences, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| | - Milton Omar Córdova
- Postgraduate Program in Environmental Sciences, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, CEP 78557-267, Brazil
| | - Larissa Cavalheiro
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| | - Maria Inês Cruzeiro Moreno
- Department of Biological Science, Institute of Biotechnology, Federal University of Catalão, Campus I, Av. Dr. Lamartine Pinto de Avelar, 1120 Setor Universitário, Catalão, Goiás, CEP 75704-020, Brazil
| | - Leandro Dênis Battirola
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Postgraduate Program in Biotechnology and Biodiversity - Rede Pró-Centro-Oeste Network, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, University Campus of Sinop, Av. Alexandre Ferronato, 1200, Setor Industrial, Sinop, Mato Grosso, CEP 78557-267, Brazil
| |
Collapse
|
46
|
Tang X, Wang Y, Yin Y, Ding C, Zhou Z, He L, Li L, Guo Z, Li Z, Nie M, Zhang T, Wang X. Deciphering Cadmium Accumulation in Peanut Kernels through Growth Stages and Source Organs: A Multi-Stable Isotope Labeling Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24003-24012. [PMID: 39406201 DOI: 10.1021/acs.jafc.4c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mechanisms of cadmium (Cd) uptake and redistribution throughout the peanut lifecycle remain unclear. This study employed multi-isotope labeling techniques in hydroponic and soil-foliar systems, revealing that Cd uptake during podding (Cdp) constituted 73.7% of kernel Cd content, whereas contributions from the flowering (Cdf) and seedling (Cds) stages were 22.2 and 4.1%, respectively. Stem-stored Cd (Cdstem) contributes 53.2% to kernel Cd accumulation, while leaf-stored Cd (Cdleaf) contributes 46.8%. Prestored Cdf in shoots demonstrated the most efficient transport to pods, approximately twice that of Cds and Cdp. Cds and Cdf were predominantly stored in leaves (51.0%), while Cdp mainly in stems (46.3%), 2.8 times its presence in leaves (16.5%), indicating distinct root-stem-kernel translocation. In the transfer of shoot Cd from stems to pods, 29.3% of Cdleaf and 25.0% of Cdstem were exported. This study provides novel insights into Cd dynamics in peanuts, establishing a foundation for future Cd regulation strategies.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Guo
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Nie
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Kumar A, Mukherjee G, Ahuja V, Gupta S, Tarighat MA, Abdi G. Biosorption and transformation of cadmium and lead by Staphylococcus epidermidis AS-1 isolated from industrial effluent. BMC Microbiol 2024; 24:420. [PMID: 39433992 PMCID: PMC11492502 DOI: 10.1186/s12866-024-03568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Rapid utilization of natural resources and other anthropogenic activities intruded heavy metals into the food chain and raised alarming concern for all life forms. The available methods proved insufficient in handling waste and pollutants due to the high cost and generation of toxic residues. Bioremediation strategies have offered sustainable solutions for toxic pollutants. In the current study, cadmium and lead (Cd and Pb respectively) tolerant strains have been isolated from industrial effluent and characterized for tolerance towards target pollutants. The strain was identified by 16s rRNA gene and further used for metal removal from the industrial effluents. RESULTS Bacterial isolates were obtained from industrial discharge and evaluated for their tolerance towards Cd and Pb. AS-1 bacterial isolate exhibited maximum tolerance towards both the metals and hence was selected for further study. The isolate was identified as Staphylococcus epidermidis. ICP-MS and energy dispersive X-ray (EDX) analysis of biomass revealed that a significant proportion of cadmium (90.89%) and lead (94.87%) available in effluent were sequestered within bacterial biomass. Characteristic peaks at 2Ɵ (31.8637 and 45.6247 for cadmium) and (21.0397, 27.0127, 46.0537, 54.2707 and 75.6547 for lead) confirmed the crystalline nature of the sequestered metals. The selected strain was characterized on biochemical and molecular basis and was found to be Staphylococcus epidermidis. Based on 16 S rDNA sequence analysis, a phylogenetic dendrogram was created for the maximum likelihood of the bacterial strain. The sequence was deposited in the NCBI repository (accession number PP587422). CONCLUSION The work has shown the possible way out of heavy metal pollution sustainably. To the best of the author's knowledge, this is the first report on the sequestration and reduction of cadmium and lead by a nonpathogenic strain of Staphylococcus epidermidis AS-1 that may be useful for alleviating heavy metal contamination.
Collapse
Affiliation(s)
- Abhijit Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Vishal Ahuja
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Saurabh Gupta
- Department of Microbiology, Mata Gujri College, Fatehgarh Sahib, 140406, Punjab, India.
| | - Maryam Abbasi Tarighat
- Department of chemistry, Faculty of Nano and Bio Science and Technology,, Persian Gulf University, Bushehr, 75169, Iran
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
48
|
Zhang Z, Wu H, Zhang A, Tan M, Yan S, Jiang D. Transfer of heavy metals along the food chain: A review on the pest control performance of insect natural enemies under heavy metal stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135587. [PMID: 39186843 DOI: 10.1016/j.jhazmat.2024.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metal contamination represents a critical global environmental concern. The movement of heavy metals through the food chain inevitably subjects insect natural enemies to heavy metal stress, leading to various adverse effects. This review assesses the risks posed by heavy metal exposure to insect natural enemies, evaluates how such exposure impacts their pest control efficacy, and investigates the mechanisms affecting their fitness. Heavy metals transfer and accumulate from soil to plants, then to herbivorous insects, and ultimately to their natural enemies, impeding growth, development, and reproduction of insect natural enemies. Typically, diminished growth and reproduction directly compromise the pest control efficacy of these natural enemies. Nonetheless, within tolerable limits, increased feeding may occur as these natural enemies strive to meet the energy demands for detoxification, potentially enhancing their pest control capabilities. The production of reactive oxygen species and oxidative damage caused by heavy metals in insect natural enemies, combined with disrupted energy metabolism in host insects, are key factors contributing to the reduced fitness of insect natural enemies. In summary, heavy metal pollution emerges as a significant abiotic factor adversely impacting the pest control performance of these beneficial insects.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China; Forest conservation institute, Chinese Academy of Forestry, Harbin 150040, China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
49
|
Ali MA, Nafees M, Alomrani SO, Li Y, Wang Q, Alshehri MA, Al-Ghanim KA, Ali S, Li F. Novel nanocomposite and biochar insights to boost rice growth and alleviation of Cd toxicity. Sci Rep 2024; 14:23158. [PMID: 39367099 PMCID: PMC11452507 DOI: 10.1038/s41598-024-73635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Cadmium (Cd) is an unessential and pervasive contaminant in agricultural soil, eventually affecting the food and instigating health issues. The implication of nanocomposites in agriculture attained significant attention to drive food security. Nanocomposites possess exceptional characteristics to stun the challenges of chemical fertilizers that can enhance plant yield and better nutrient bioavailability. Similarly, biochar has the ability to immobilize Cd in soil by reducing mobility and bioavailability. Rice husk biochar is produced at high temperature pyrolysis under anoxic conditions and a stable carbon-rich material is formed. To strive against this issue, rice plants were subjected to Cd (15, 20 mg kg- 1) stress and treated with alone/combined Ca + Mg (25 mg L- 1) nanocomposite and rice husk biochar. In our study, growth and yield traits showed the nurturing influence of Ca + Mg nanocomposite and biochar to improve rice defence mechanism by reducing Cd stress. Growth parameters root length 28%, shoot length 34%, root fresh weight 19%, shoot fresh weight 16%, root dry weight 9%, shoot dry weight 8%, number of tillers 32%, number of grains 20%, and spike length 17% were improved with combined application of Ca + Mg and biochar, with Cd (20 mg kg- 1), rivalled to alone biochar. Combined Ca + Mg and biochar application increased the SPAD 23%, total chlorophyll 26%, a 19%, b 18%, and carotenoids 15%, with Cd (20 mg kg- 1), rivalled to alone biochar. MDA 15%, H2O2 13%, and EL 10% were significantly regulated in shoots with combined Ca + Mg and biochar application with Cd (20 mg kg- 1) compared to alone biochar. POD 22%, SOD 17%, APX 18%, and CAT 9% were increased in shoots with combined Ca + Mg and biochar application with Cd (20 mg kg- 1) compared to alone biochar. Cd uptake in roots 13%, shoots 14%, and grains 21% were minimized under Cd (20 mg kg- 1) with combined Ca + Mg and B. pumilus application, compared to alone biochar. Subsequently, combined Ca + Mg and biochar application is a sustainable solution to boost crop production under Cd stress.
Collapse
Affiliation(s)
- Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 21023, Jiangsu, China
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran, 66252, Saudi Arabia
| | - Yuanyuan Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao, 266100, China
| | - Qian Wang
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao, 266100, China
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan, People's Republic of China.
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institute, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
50
|
Dai J, Chen Y, Yang W, Liu Z, Deng X, Yang Y, Zeng Q. Field evaluation of oil crop rotations for cadmium remediation and safe vegetable oil production across five sites with varying contamination levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116897. [PMID: 39168085 DOI: 10.1016/j.ecoenv.2024.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Oil crops have the potential to remediate cadmium (Cd)-contaminated farmland while producing safe vegetable oil. However, it is currently unknown whether different oil crops can remediate varying levels of Cd contamination in farmland. This study assessed agricultural fields in southern China contaminated with Cd levels ranging from 0.42 to 10.3 mg/kg. Three representative oilseed crops winter rape, oil sunflower, and peanut were selected for field experiments under two rotation systems. The effects of different rotation systems on remediating various Cd contamination levels were compared to evaluate the feasibility and potential of a two oil crop rotation system. All three crops showed good tolerance to Cd without signs of biomass deficiency. The biomass produced by the rape-oil sunflower and rape-peanut rotation systems was 33.44-459.00 g/ha and 30.64-281.40 g/ha, respectively. The Cd concentration in the oil products obtained complied with existing national and international standards (0.05 mg/kg). The remediation efficiency of the rape-oil sunflower and rape-peanut rotation systems was 1.98-7.37 % and 1.21-4.94 %, respectively. However, the remediation efficiencies and enrichment capacities of both rotation systems were somewhat inhibited by heavy Cd contamination (10.3 mg/kg). Therefore, the agricultural model of rotating two oilseed crops can be implemented in Cd-contaminated farmland at all levels but is more suitable for light to moderate Cd contamination.
Collapse
Affiliation(s)
- Jingrong Dai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yiyang Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhaoyue Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Qingru Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|