1
|
Singh SK, Rashid M, Chaturvedi S, Agarwal A, Chauhan D, Gayen JR, Wahajuddin M. Preclinical pharmacokinetics, absolute bioavailability and dose proportionality evaluation of bioactive phytochemical Withanone in rats. Bioorg Chem 2025; 155:108128. [PMID: 39793220 DOI: 10.1016/j.bioorg.2025.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Withanone (WN), a bioactive phytochemical isolated from the medicinal herb Withania somnifera, has shown multiple pharmacological and therapeutic successes, including neuroprotective and anti-cancer activities. However, detailed pharmacokinetic (PK) properties of pure WN were not well defined. Pharmacokinetic (PK) characteristics, dose proportionality, and absolute bioavailability of pure WN were explored in rats using an efficient, reliable, and sensitive LC-MS/MS assay to address this gap. The method shows excellent linearity over 0.5-500 ng/mL (r2 ≥ 0.99), is accurate, and requires less analysis time. A dose proportionality and absolute bioavailability of pure WN were determined in Sprague-Dawley (SD) rats through three ascending oral (10, 20, and 40 mg/kg) and single intravenous (5 mg/kg) PK studies. The peak concentration (Cmax) of WN was 60.53 ± 20.33, 116.30 ± 16.89, and 91.62 ± 6.20 ng/mL, corresponding to oral dosage of 10, 20, and 40 mg/kg, respectively. WN shows poor systemic exposure upon oral administration, leading to low oral bioavailability (<15 %). Additionally, the dose proportionality studies of WN revealed its saturable bioavailability and non-proportional systemic exposure over the dosage range of 10-40 mg/kg in rats. The obtained PK findings of this study would be valuable for better understanding the pharmacological effects of WN, dose regimen optimization for future studies, and relevance for clinical reference to support its future development as a potential therapeutic molecule.
Collapse
Affiliation(s)
- Sandeep K Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mamunur Rashid
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Swati Chaturvedi
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Agarwal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Drug Metabolism and Pharmacokinetics, Aragen Life Sciences Limited, Hyderabad 500078, Telangana, India
| | - Divya Chauhan
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Wahajuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
2
|
Gul P, Khan J, Li Q, Liu K. Moringa oleifera in a modern time: A comprehensive review of its nutritional and bioactive composition as a natural solution for managing diabetes mellitus by reducing oxidative stress and inflammation. Food Res Int 2025; 201:115671. [PMID: 39849793 DOI: 10.1016/j.foodres.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications. MO is a multi-purpose plant that has an impressive range of nutritional components including proteins, amino acids (Essential and non-essential amino acids), carbs, fats, fiber, vitamins, and phenolic compounds. In the modern era, scientists have paid close attention to the anti-diabetic, anti-oxidative and anti-inflammatory attributes and other medicinal properties, of MO leaves and seeds. MO leaves and seeds have modulatory effects on DM that are likely influenced by multiple mechanisms. Some of these mechanisms include direct effects, but other mechanisms involve inhibition the production of inflammatory markers, modulation of the gut microbiome, reduction of OS, enhancement of glucose metabolism through hexokinase and glucose 6-phosphate dehydrogenase, improve insulin sensitivity and glucose uptake in the liver and muscles. Overall, these findings suggest that MO may play a role in lowering the risk of DM and its related outcomes. The purpose of this review is to provide a comprehensive overview of the nutritional and bioactive profiles of MO leaves and seeds, as well as to investigate their possible anti-diabetic effects by modulating oxidative stress and inflammation. Our results indicate that MO may be a beneficial natural resource for management of DM and related issues by lowering oxidative stress and inflammation. Furthermore, studies on MO has yielded promising findings in diabetic animal models, indicating antioxidant and anti-inflammatory properties. However, human trials have shown less solid results, most likely due to a lack of studies, different techniques, and dosages. More clinical research is needed to fully understand MO's anti-diabetic potential, notably in lowering oxidative stress and inflammation, both of which are critical in controlling diabetes complications.
Collapse
Affiliation(s)
- Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001 China.
| |
Collapse
|
3
|
He Y, Zhao X, Yu M, Yang D, Chen L, Tang C, Zhang Y. Affinity Ultrafiltration Mass Spectrometry for Screening Active Ingredients in Traditional Chinese Medicine: A Review of the Past Decade (2014-2024). Molecules 2025; 30:608. [PMID: 39942712 PMCID: PMC11820328 DOI: 10.3390/molecules30030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Discovering targets in natural products is a critical and challenging task in new drug development. Rapid and efficient screening of active ingredients from complex systems like traditional Chinese medicine (TCM) is now crucial in drug research. Affinity ultrafiltration (AUF) technology is widely used to screen active ingredients in natural medicines. AUF-liquid chromatography-mass spectrometry (AUF-LC-MS) leverages the affinity between natural medicine extracts and targets to isolate active ingredients from complex matrices, employing LC-MS for detection and activity assessment. This review discusses the developments in employing AUF-LC-MS to analyze TCM and TCM compound preparations over the last decade. This review succinctly presents the advantages and limitations of AUF-LC-MS, illustrating its benefits through the example of screening for active ingredients in natural pharmaceuticals.
Collapse
Affiliation(s)
- Yuqi He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Xinyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Muze Yu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Di Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
| | - Lian Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.Z.); (D.Y.)
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.Y.); (L.C.)
| |
Collapse
|
4
|
Wang X, She Z, Zhou H, An T, Teng J, Xia N, Zhu P, Liu W, Dong H, Tang L, You S, Wei L, Li K, Wang L, Huang L, Zhang Q. Characterisation of the phytochemical and bioactivity profiles of raw tea, stale-aroma, and betelnut-aroma type of Liupao tea through GC/LC-MS-based metabolomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:562-575. [PMID: 39668786 DOI: 10.1039/d4ay01672f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Liupao tea (LPT) is a Chinese dark tea known to possess a unique flavour. Microbial fermentation plays a crucial role in flavour development and enrichment. Currently, the phytochemical profiles and bioactivities of LPT with and without fermentation are not fully known. In this study, we compared the chemical composition of raw tea (SF), stale-aroma (SA), and betelnut-aroma (BA) type LPT through the application of GC/LC-MS-based metabolomics, and experimentally investigated their bioactivities via antioxidant, anti-inflammatory, hypolipidemic, and hypoglycemic assays in vitro. The results indicated that fermentation enhanced the flavour of LPT as evidenced by the sweetness-producing substances, decreased bitterness and astringency-related compounds and enriched abundance of aroma-generating compounds. Two and four volatiles were detected to be major contributors to the aroma in SA and BA, respectively. Fatty acids and phosphatidylcholines were the primary lipids, among which the lysing diacylglycerol trimethyl homoserines were found to be a new class of lipids in LPT. Notably, the fermentation resulted in the degradation of compounds, particularly glycerophospholipids and saccharolipids. SF had the highest level of bioactivity, followed by BA and SA. These findings expand the present understanding regarding the development of flavour, nutrition, and medicinal value of LPT. Moreover, they provide a theoretical basis for the identification of BA and SA and serve as a reference value for consumers in their selection of LPT products.
Collapse
Affiliation(s)
- Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Hailin Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingting An
- Urumqi Youai Hospital, Urumqi, Xinjiang 830000, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenhui Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Huanxiao Dong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Limin Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Shulan You
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lu Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Kongying Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lingli Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Liu Y, Li F, Fei T, Lin X, Wang L, Liu Z. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism. Food Chem 2025; 463:141329. [PMID: 39305674 DOI: 10.1016/j.foodchem.2024.141329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 11/06/2024]
Abstract
Aquilaria sinensis leaves have long been consumed as a popular replacement tea for lowering postprandial blood glucose levels, but their specific functional components remain unclear. In this study, Aquilaria sinensis leaf-tea 70 % ethanol extract (ALTE) exhibited excellent anti-α-glucosidase activity (IC50 = 6.93 ± 1.91 μg/mL) and promoted glucose consumption ability in 3 T3-L1 preadipocyte cells. Subsequently phenolic compositions of ALTE were identified for the first time. After that, five potential α-glucosidase inhibitors (α-GIs) including cynaroside-3,5-diglucose, malvidin 3-glucose, epicatechin, epigallocatechin gallate, and dihydromyricetin in ALTE were screened using a targeted bio-affinity ultrafiltration-HPLC/MS method. Moreover, these five α-GIs all showed good anti-α-glucosidase effects and glucose consumption-promoting ability. Furthermore, the binding properties and inhibition mechanisms of five α-GIs to α-glucosidase were further analyzed via enzyme inhibition kinetics, molecular docking, and molecular dynamics simulation. This study confirms that Aquilaria sinensis leaf-tea is effective in preventing post-hyperglycemia in vitro models, suggesting potential for future research in human trials.
Collapse
Affiliation(s)
- Yingxin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Fangliang Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Tea Science of Ministry of Education and National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China; Baoting Research Institute of Hainan University, Baoting 572300, Hainan, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education and National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals and Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
6
|
Wang J, Du Y, Jiang L, Li J, Yu B, Ren C, Yan T, Jia Y, He B. LC-MS/MS-based chemical profiling of water extracts of Moringa oleifera leaves and pharmacokinetics of their major constituents in rat plasma. Food Chem X 2024; 23:101585. [PMID: 39027684 PMCID: PMC11255104 DOI: 10.1016/j.fochx.2024.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Moringa oleifera leaves (MOL) are native to India and have high biological activities. To better understand the basic pharmacodynamic materials, the chemical components in MOL and their pharmacokinetic properties were studied and quantitated using UPLC-Q-Exactive Orbitrap-MS. Forty-two compounds were identified, including phenolic acids and their derivatives, flavonoids, isothiocyanates, nucleosides, alkaloids, and other compounds. Two phenolic acids and six flavonoids were studied for their pharmacokinetic properties using UHPLC-MS/MS. Precision, accuracy, stability, matrix effects, and extraction recovery were verified. All substances that were measured reached their maximum within 0.5 h. Vicenin-2 had a high peak concentration and bioavailability. Kaempferol-3-O-rutinoside had a longer biological half-life than other components. The results from this study provide the data basis for subsequent comprehensive qualitative evaluation and potential MOL use in clinical applications.
Collapse
Affiliation(s)
- Jiahong Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Li Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jiahe Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bing Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Chuang Ren
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
7
|
Le DD, Kim E, Dang T, Lee J, Shin CH, Park JW, Lee SG, Seo JB, Lee M. Chemical Investigation and Regulation of Adipogenic Differentiation of Cultivated Moringa oleifera. Pharmaceuticals (Basel) 2024; 17:1310. [PMID: 39458951 PMCID: PMC11510418 DOI: 10.3390/ph17101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Moringa oleifera is a matrix plant with the high potential to cure several diseases with its medicinal and ethnopharmacological value and nutraceutical properties. In this study, we investigated the chemical and biological properties of this plant cultivated in our local region. Methods: Leaves, roots, seeds, stem bark, and twigs of oleifera were extracted and evaluated bioactivities targeting intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes, and UHPLC-ESI-Orbitrap-MS/MS-Based molecular networking guided isolation and dereplication of metabolites from these extracts. Results: Five extracts of different organs of M. oleifera significantly stimulated intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes in a concentration-dependent manner. These extracts markedly increased the expression of genes related to adipogenesis and lipogenesis. Notably, these extracts promoted peroxisome proliferator-activated receptor γ (PPARγ) activity and the expression of its target genes, including phosphoenolpyruvate carboxykinase, fatty acid-binding protein 4, and perilipin-2. These adipogenic and lipogenic effects of Moringa extracts through the regulation of PPARγ activity suggests their potential efficacy in preventing or treating type 2 diabetes. Furthermore, chemical investigation revealed high contents of phytonutrients as rich sources of secondary metabolites including glycosides, flavones, fatty acids, phenolics, and other compounds. In addition, in silico studies on major components of these extracts revealed the bioavailability of major components through their binding affinity to respective proteins targeting adipocyte differentiation.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
| | - Eunbin Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Thinhulinh Dang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
| | - Jiseok Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Choon Ho Shin
- Suncheonman Moringa Union, Suncheon 57922, Jeonnam, Republic of Korea;
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Seul-gi Lee
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea;
- Glocal University Project Team, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea
| | - Jong Bae Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
- Department of Biosciences, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea;
| |
Collapse
|
8
|
Singha S, Das Gupta B, Sarkar A, Jana S, Bharadwaj PK, Sharma N, Haldar PK, Mukherjee PK, Kar A. Chemo-profiling and exploring therapeutic potential of Momordica dioica Roxb. ex Willd. for managing metabolic related disorders: In-vitro studies, and docking based approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118351. [PMID: 38759763 DOI: 10.1016/j.jep.2024.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Momordica dioica Roxb. ex Willd. (M. dioica Roxb.) a nutritious and therapeutic property rich crop of Cucurbitaceae plant family. In various folklore medicine including Ayurveda fruits are used to treat several metabolic related disorders i.e., hyperglycemia, hyperlipidemia, diabetes, obesity etc. Furthermore, traditionally it is used to treat fever, inflammation, ulcer, skin diseases, haemorrhoids, hypertension and also employed as cardioprotective, hepatoprotective, analgesic, diuretic. AIM OF THE STUDY This study focuses to explore the therapeutic potential of Momordica dioica Roxb. ex Willd. through in-vitro and in-silico approach for managing hyperlipidemia, hyperglycemia and related metabolic disorders along with its phytochemical profiling for quality evaluation and validation of traditional claim. MATERIALS AND METHODS The present study was carried out on hydroalcohol extract of dried leaf and fruit of Momordica dioica. In-vitro antioxidant potential using DPPH and Nitric oxide scavenging assay along with in-vitro enzyme inhibitory potential against α-amylase, α-glucosidase, and pancreatic lipase enzymes was studied. The bioactive metabolites were identified from the most potent bioactive extract by analysis with LC-QTOF-MS and also studied their role to lessen the metabolic related disorder through in-silico approaches. RESULTS The results confirmed that the fruit extract is more active to possess antioxidant and prominent enzyme inhibition potential compared to the leaf. Sixteen identified metabolites in M. dioica Roxb. fruits may be responsible for the therapeutic potential related to metabolic related disorder. The in-silico study of the identified phytomolecules against α-amylase, α-glucosidase and pancreatic lipase showed significant docking scores ranging from -9.8 to -5.5, -8.3 to -4.8 and -8.3 to -6 respectively. CONCLUSION The current study illustrated that M. dioica Roxb., a traditionally important plant is potential against metabolic related disorders. Phytocomponents present in the fruit extract may be responsible for antioxidant as well as the enzymes' inhibitory potential. Thus, fruits of M. dioica Roxb. will be useful as alternative therapeutics for treatment of hyperlipidemia, hyperglycemia and related metabolic disorders.
Collapse
Affiliation(s)
- Seha Singha
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Barun Das Gupta
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Sandipan Jana
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Pardeep K Bharadwaj
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Pulok Kumar Mukherjee
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India; Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| |
Collapse
|
9
|
Bian X, Wang L, Ma Y, Yu Y, Guo C, Gao W. A Flavonoid Concentrate from Moringa Oleifera Lam. Leaves Extends Exhaustive Swimming Time by Improving Energy Metabolism and Antioxidant Capacity in Mice. J Med Food 2024; 27:887-894. [PMID: 39052664 DOI: 10.1089/jmf.2023.k.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Moringa oleifera Lam. leaves contain various nutrients and bioactive compounds. The present study aimed to assess the anti-fatigue capacity of a flavonoids concentrate purified from M. oleifera Lam. leaves. The total flavonoids in the purified extract were analyzed by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS/MS). The mice were supplemented with purified M. oleifera Lam. leaf flavonoid-rich extract (MLFE) for 14 days. The weight-loaded forced swimming test was used for evaluating exercise endurance. The 90-min non-weight-bearing swimming test was carried out to assess biochemical biomarkers correlated to fatigue and energy metabolism. UPLC-MS/MS analysis identified 83 flavonoids from MLFE. MLFE significantly increased the swimming time by 60%. Serum lactate (9.9 ± 0.9 vs. 8.9 ± 0.7), blood urea nitrogen (BUN) (8.8 ± 0.8 vs. 7.2 ± 0.5), and nonesterified fatty acid (NEFA) (2.4 ± 0.2 vs. 1.7 ± 0.3) were significantly elevated; phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GCK), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression were significantly downregulated; and heme oxygenase 1 mRNA expression was significantly upregulated in muscle after swimming. MLFE supplement significantly decreased serum lactate (8.0 ± 1.0 vs. 9.9 ± 0.9), BUN (8.6 ± 0.4 vs. 8.9 ± 0.8), and NEFA (2.3 ± 0.4 vs. 2.4 ± 0.2) and increased the protein and mRNA expression of GCK, PEPCK, and Nrf2. The enhancement of glucose metabolism and antioxidant function by MLFE contributes partly to its anti-fatigue action.
Collapse
Affiliation(s)
- Xiangyu Bian
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lingling Wang
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yuying Ma
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yijing Yu
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Changjiang Guo
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Weina Gao
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
10
|
Januskevice V, Gomes AM, Sousa S, Barbosa JC, Vedor R, Martusevice P, Liaudanskas M, Zvikas V, Viskelis P, Cesoniene L, Balciunaitiene A, Viskelis J, Szonn S, Urbonaviciene D. Phytochemical and Functional Diversity of Enzyme-Assisted Extracts from Hippophae rhamnoides L., Aralia cordata Thunb., and Cannabis sativa L. Antioxidants (Basel) 2024; 13:950. [PMID: 39199196 PMCID: PMC11351958 DOI: 10.3390/antiox13080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Plant leaves are a source of essential phenolic compounds, which have numerous health benefits and can be used in multiple applications. While various techniques are available for recovering bioactive compounds from by-products, more data are needed on enzyme-assisted extraction (EAE). The aim of this study was to compare EAE and solid-liquid extraction (SLE), to evaluate the impact on bioactive compounds' extraction yield, phytochemical composition, and the antioxidant, antimicrobial, and antidiabetic properties of Aralia cordata leaves and roots, sea buckthorn Hippophae rhamnoides, and hemp Cannabis sativa leaves. The results indicate that EAE with Viscozyme L enzyme (EAE_Visc) extracts of the tested plant leaves possess the highest yield, antioxidant activity, and total phenolic content. Moreover, the EAE_Visc extract increased by 40% the total sugar content compared to the control extract of A. cordata root. Interestingly, the sea buckthorn leaf extracts exhibited α-glucosidase inhibitory activity, which reached an almost 99% inhibition in all extracts. Furthermore, the sea buckthorn leaves SLE and EAE_Visc extracts possess antibacterial activity against Staphylococcus aureus. Additionally, scanning electron microscopy was used to examine changes in cell wall morphology after EAE. Overall, this study shows that EAE can be a promising method for increasing the yield and improving the functional properties of the resulting extracts in a fast and sustainable way compared to SLE.
Collapse
Affiliation(s)
- Viktorija Januskevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
| | - Ana Maria Gomes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.G.); (S.S.); (J.C.B.); (R.V.)
| | - Sérgio Sousa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.G.); (S.S.); (J.C.B.); (R.V.)
| | - Joana Cristina Barbosa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.G.); (S.S.); (J.C.B.); (R.V.)
| | - Rita Vedor
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.M.G.); (S.S.); (J.C.B.); (R.V.)
| | - Paulina Martusevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Mindaugas Liaudanskas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50166 Kaunas, Lithuania; (M.L.); (V.Z.); (S.S.)
| | - Vaidotas Zvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50166 Kaunas, Lithuania; (M.L.); (V.Z.); (S.S.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
| | - Laima Cesoniene
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Jonas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
| | - Sonata Szonn
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50166 Kaunas, Lithuania; (M.L.); (V.Z.); (S.S.)
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (P.M.); (A.B.); (J.V.); (D.U.)
| |
Collapse
|
11
|
Yang J, Shao J, Duan Y, Geng F, Jin W, Zhang H, Peng D, Deng Q. Insights into digestibility, biological activity, and peptide profiling of flaxseed protein isolates treated by ultrasound coupled with alkali cycling. Food Res Int 2024; 190:114629. [PMID: 38945621 DOI: 10.1016/j.foodres.2024.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
This study aims to investigate the effects of ultrasound coupled with alkali cycling on the structural properties, digestion characteristics, biological activity, and peptide profiling of flaxseed protein isolates (FPI). The digestibility of FPI obtained by ultrasound coupled with pH 10/12 cycling (UFPI-10/12) (74.56 % and 79.12 %) was significantly higher than that of native FPI (64.40 %), and UFPI-10 showed higher hydrolysis degree (35.76 %) than FPI (30.65 %) after intestinal digestion. The combined treatment induced transition from α-helix to β-sheet with an orderly structure. Large FPI aggregates broke down into small-sized FPI particles, which induced the increase of specific surface area of particles. This might expose more cutting sites and contact area with enzymes. Furthermore, UFPI-10 showed high antioxidant activity (29.18 %) and lipid-lowering activity (70.52 %). Peptide profiling revealed that UFPI-10 exhibited a higher proportion of 300-600 Da peptides and significantly higher abundance of antioxidant peptides than native FPI, which might promote its antioxidant activity. Those results suggest that the combined treatment is a promising modification method to improve the digestion characteristics and biological activity of FPI. This work provides new ideas for widespread use of FPI as an active stabilizer in food systems.
Collapse
Affiliation(s)
- Jing Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China; School of Food and Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jiaqi Shao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Weiping Jin
- School of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Dengfeng Peng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, and Hubei Research Center of Oil and Plant Protein Engineering Technology, Wuhan 430062, Hubei, China.
| |
Collapse
|
12
|
Zhang X, Xue Q, Zhao J, Zhang H, Dong J, Cao J, Wang Y, Liu Y, Cheng G. Chemical Constituents, Hypolipidemic, and Hypoglycemic Activities of Edgeworthia gardneri Flowers. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:440-450. [PMID: 38441843 DOI: 10.1007/s11130-024-01154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 06/15/2024]
Abstract
The flowers of Edgeworthia gardneri are used as herbal tea and medicine to treat various metabolic diseases including hyperglycemia, hypertension, and hyperlipidemia. This paper investigate the chemical constituents and biological activities of ethanolic extract and its different fractions from E. gardneri flowers. Firstly, the E. gardneri flowers was extracted by ethanol-aqueous solution to obtain crude extract (CE), which was subsequently fractionated by different polar organic solution to yield precipitated crystal (PC), dichloromethane (DCF), ethyl acetate (EAF), n-butanol (n-BuF), and residue water (RWF) fractions. UHPLC-ESI-HRMS/MS analysis resulted in the identification of 25 compounds, and the main compounds were flavonoids and coumarins. The precipitated crystal fraction showed the highest phenolic and flavonoid contents with 344.4 ± 3.38 mg GAE/g extract and 305.86 ± 0.87 mg RE/g extract. The EAF had the strongest antioxidant capacity and inhibitory effect on α-glucosidase and pancreatic lipase with IC50 values of 126.459 ± 7.82 and 23.16 ± 0.79 µg/mL. Besides, both PC and EAF significantly regulated the glucose and lipid metabolism disorders by increasing glucose consumption and reducing TG levels in HepG2 cells. Molecular docking results suggested that kaempferol-3-O-glucoside and tiliroside had good binding ability with enzymes, indicating that they may be potential α-glucosidase and pancreatic lipase inhibitors. Therefore, the E. gardneri flowers could be served as a bioactive agent for the regulation of metabolic disorders.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650500, China
| | - Hongbin Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiahong Dong
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jianxin Cao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650500, China
| | - Yaping Liu
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Guiguang Cheng
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Xu Y, Li Y, Chen G, Fan M, Hu G, Guo M. Screening and identification of potential hypoglycemic and hypolipidemic compounds from aqueous extract of Scutellaria baicalensis Georgi root combing affinity ultrafiltration with multiple drug targets and in silico analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:239-253. [PMID: 37779216 DOI: 10.1002/pca.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Scutellaria baicalensis Georgi, a traditional Chinese medicine, is widely applied to treat various diseases among people, especially in East Asia. However, the specific active compounds in S. baicalensis aqueous extracts (SBAEs) responsible for the hypoglycemic and hypolipidemic properties as well as their potential mechanisms of action remain unclear. OBJECTIVES This work aimed to explore the potential hypoglycemic and hypolipidemic compounds from SBAE and their potential mechanisms of action. METHODOLOGY The in vitro inhibitory tests against lipase and α-glucosidase, and the effects of SBAE on glucose consumption and total triglyceride content in HepG2 cells were first performed to evaluate the hypoglycemic and hypolipidemic effects. Then, affinity ultrafiltration liquid chromatography-mass spectrometry (LC-MS) screening strategy with five drug targets, including α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP1B), lipase and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) was developed to screen out the potential active constituents from SBAE, and some representative active compounds were further validated. RESULTS SBAE displayed noteworthy hypoglycemic and hypolipidemic properties, and 4, 10, 4, 8, and 8 potential bioactive components against α-amylase, α-glucosidase, PTP1B, HMGCR, and lipase were initially screened out, respectively. The interaction network was thus constructed between the potential bioactive compounds screened out and their corresponding drug targets. Among them, baicalein, wogonin, and wogonoside were revealed to possess remarkable hypoglycemic and hypolipidemic effects. CONCLUSION The potential hypolipidemic and hypoglycemic bioactive compounds in SBAE and their mode of action were initially explored through ligand-target interactions by combining affinity ultrafiltration LC-MS strategy with five drug targets.
Collapse
Affiliation(s)
- Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
14
|
Singab ANB, Elhawary EA, Elkhawas YA, Fawzy IM, Moussa AY, Mostafa NM. Role of Nutraceuticals in Obesity Management: A Mechanism and Prospective Supported by Molecular Docking Studies. J Med Food 2024; 27:176-197. [PMID: 38324003 DOI: 10.1089/jmf.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Obesity and its comorbidities represent a major health problem worldwide. Treatment by reducing food intake and physical activity interventions has limited success especially with elderly people with chronic diseases. Nutraceuticals are naturally originated and successfully used for their physiological and nutritional benefit in health care. They might be alternative means to help lose weight and reduce obesity-associated metabolic disorders with the improvement of health, delay the aging process, prevention of chronic diseases, increase of life expectancy, or support to the structure or function of the body. The current study enumerates the inherent role of nutraceuticals in the management of obesity and its related comorbidities. The study is supported with the molecular docking studies discussing the mechanism of action. An attempt to optimize the role of nutraceuticals is made in this article in addition to widen the scope of its use in this chronic worldwide disease.
Collapse
Affiliation(s)
- Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo, Egypt
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Yasmin A Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Amin MF, Ariwibowo T, Putri SA, Kurnia D. Moringa oleifera: A Review of the Pharmacology, Chemical Constituents, and Application for Dental Health. Pharmaceuticals (Basel) 2024; 17:142. [PMID: 38276015 PMCID: PMC10819732 DOI: 10.3390/ph17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Moringa oleifera L., commonly known as Kelor in Indonesia and miracle tree in English, has a rich history of utilization for medicinal, nutritional, and water treatment purposes dating back to ancient times. The plant is renowned for its abundance of vitamins, minerals, and various chemical constituents, making it a valuable resource. Among its notable pharmacological properties are its effectiveness as an anti-diabetic, anti-diarrheal, anti-helmintic, anti-leishmanial, anti-fungal, anti-bacterial, anti-allergic, anti-cancer, anti-inflammatory, and anti-oxidant agent. In this comprehensive review, we delve into the extensive pharmacological applications and phytochemical constituents of M. oleifera and its application in dental health.
Collapse
Affiliation(s)
- Meiny Faudah Amin
- Department Conservative Dentistry, Faculty of Dentistry, Universitas Trisakt, Jakarta Barat 11440, Indonesia;
| | - Taufiq Ariwibowo
- Department Conservative Dentistry, Faculty of Dentistry, Universitas Trisakt, Jakarta Barat 11440, Indonesia;
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.A.P.); (D.K.)
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.A.P.); (D.K.)
| |
Collapse
|
16
|
Zhang S, Cao Y, Huang Y, Zhang S, Wang G, Fang X, Bao W. Aqueous M. oleifera leaf extract alleviates DSS-induced colitis in mice through suppression of inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116929. [PMID: 37480965 DOI: 10.1016/j.jep.2023.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (M. oleifera) is a perennial deciduous tree with considerable agricultural and pharmacological value. Nearly all parts of the tree are edible, and nearly all parts are used in traditional medicine. Leaves of M. oleifera have the functions of hypoglycemic (antidiabetic), anti-cancer and anti-oxidant stress, but less research pay attention to the anti-inflammatory effect of M. oleifera leaves. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal medication. Here, we investigated the anti-inflammatory effects of aqueous extract of M. oleifera leaves. MATERIALS AND METHODS Intestinal organoids and mice as in vitro and in vivo models to investigate the effects of aqueous extract of M. oleifera leaves on inflammation induced by TNF-α and dextran sulfate sodium (DSS) respectively. The expression of inflammatory cytokines and proliferation-related genes were evaluated by RT-qPCR, respectively. The compounds in the leaf extract were determined by LC/MS, and network pharmacology approach was employed to predict 54 anti-IBD potential targets of quercetin-3-galactoside (QG) and isoquercitrin (IS). RESULTS We found that the extract protected against damage to intestinal organoids caused by tumor necrosis factor (TNF-α), and significantly down-regulated the expression of inflammatory cytokines. The extract also suppressed the TNF-α-induced expression of Pcna, c-Myc, and c-Jun. Additionally, oral administration of the extract also ameliorated DSS-induced colon damage (colonic shortening, loss of goblet cells and overall abnormal cellularity), and inhibited the expression of inflammatory cytokines and proliferation-related genes in colitis. By LC/MS we identified nearly 2000 of the compounds in the leaf extract, of the flavonoids identified, QG and IS made up the largest percentage; both have been shown to have anti-inflammatory properties. Moreover, network pharmacology approach was employed to predict 54 anti-IBD potential targets of QG and IS. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the overlapping targets participated in response to oxidative stress and PI3K-Akt signaling pathway respectively. CONCLUSIONS The present study demonstrated the anti-inflammatory capability, in vitro and in vivo, of the aqueous extract of M. oleifera leaves and suggests its potential phytotherapeutic treatment for IBD.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaomin Fang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
17
|
Liang C, Xu Y, Fan M, Muema FW, Chen G, Guo M, Hu G. Potential antioxidative and anti-hyperuricemic components in Rodgersia podophylla A. Gray revealed by bio-affinity ultrafiltration with SOD and XOD. Front Pharmacol 2023; 14:1298049. [PMID: 38027025 PMCID: PMC10663331 DOI: 10.3389/fphar.2023.1298049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Rodgersia podophylla A. Gray (R. podophylla) is a traditional Chinese medicine with various pharmacological effects. However, its antioxidant and anti-hyperuricemia components and mechanisms of action have not been explored yet. In this study, we first assessed the antioxidant potential of R. podophylla with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power (FRAP) assays. The results suggested that the ethyl acetate (EA) fraction of R. podophylla not only exhibited the strongest DPPH, ABTS radical scavenging and ferric-reducing activities, but also possessed the highest total phenolic and total flavonoid contents among the five fractions. After that, the potential superoxide dismutase (SOD) and xanthine oxidase (XOD) ligands from the EA fraction were quickly screened and identified through the bio-affinity ultrafiltration liquid chromatography-mass spectrometry (UF-LC-MS). Accordingly, norbergenin, catechin, procyanidin B2, 4-O-galloylbergenin, 11-O-galloylbergenin, and gallic acid were considered to be potential SOD ligands, while gallic acid, 11-O-galloylbergenin, catechin, bergenin, and procyanidin B2 were recognized as potential XOD ligands, respectively. Moreover, these six ligands effectively interacted with SOD in molecular docking simulation, with binding energies (BEs) ranging from -6.85 to -4.67 kcal/mol, and the inhibition constants (Ki) from 9.51 to 379.44 μM, which were better than the positive controls. Particularly, catechin exhibited a robust binding affinity towards XOD, with a BE value of -8.54 kcal/mol and Ki value of 0.55 μM, which surpassed the positive controls. In conclusion, our study revealed that R. podophylla possessed remarkable antioxidant and anti-hyperuricemia activities and that the UF-LC-MS method is suitable for screening potential ligands for SOD and XOD from medicinal plants.
Collapse
Affiliation(s)
- Can Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Felix Wambua Muema
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
18
|
Setyani W, Murwanti R, Sulaiman TNS, Hertiani T. Flavonoid from Moringa oleifera leaves revisited: A review article on in vitro, in vivo, and in silico studies of antidiabetic insulin-resistant activity. J Adv Pharm Technol Res 2023; 14:283-288. [PMID: 38107449 PMCID: PMC10723170 DOI: 10.4103/japtr.japtr_290_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Diabetes mellitus (DM) occurs when the body experiences insulin deficiency or is unable to use insulin appropriately, which increases the blood glucose levels over the threshold. Moringa oleifera leaf is a widely used and scientifically proven herbal medicine to treat DM. The demand for the development of new drugs has prompted in vitro, in vivo, and in silico studies of antidiabetic insulin-resistant activity. This study aims to conduct a comprehensive study of the types of flavonoid and nonflavonoid compounds that have antidiabetic activity in insulin resistance mellitus using in vitro, in vivo, and in silico approaches. The literature review was conducted in accordance with the offered reporting items for systematic review. Major bibliographic databases, i.e. Scopus, PubMed, and DOAJ, covering original articles about the aforementioned issues between January 1, 2011 and December 31, 2021 were used. In this study, 274 articles were retrieved, of which 4 were duplicates, and after the titles were read, only 108 were left for analysis. After the abstract screening, 32 articles were eligible for the literature review. The results exhibit that flavonoids, including quercetin and kaempferol, and nonflavonoids, including anthraquinone, cytogluside (glycoside), hemlock tannin, phenolic steroid, and 2-phenylchromenylium (anthocyanins), have potential insulin-resistant antidiabetic activity in vitro, in vivo, and in silico. This has broadened the research into the development of new drugs.
Collapse
Affiliation(s)
- Wahyuning Setyani
- Pharmaceutical Sciences Doctoral Study Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta, Indonesia
| | - Retno Murwanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Triana Hertiani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
19
|
Li LZ, Chen L, Tu YL, Dai XJ, Xiao SJ, Shi JS, Li YJ, Yang XS. Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity. Molecules 2023; 28:6426. [PMID: 37687255 PMCID: PMC10489651 DOI: 10.3390/molecules28176426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Plant-derived phytochemicals have recently drawn interest in the prevention and treatment of diabetes mellitus (DM). The seeds of Moringa oleifera Lam. are widely used in food and herbal medicine for their health-promoting properties against various diseases, including DM, but many of their effective constituents are still unknown. In this study, 6 new phenolic glycosides, moringaside B-G (1-6), together with 10 known phenolic glycosides (7-16) were isolated from M. oleifera seeds. The structures were elucidated by 1D and 2D NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) data analysis. The absolute configurations of compounds 2 and 3 were determined by electronic circular dichroism (ECD) calculations. Compounds 2 and 3 especially are combined with a 1,3-dioxocyclopentane moiety at the rhamnose group, which are rarely reported in phenolic glycoside backbones. A biosynthetic pathway of 2 and 3 was assumed. Moreover, all the isolated compounds were evaluated for their inhibitory activities against α-glucosidase. Compounds 4 and 16 exhibited marked activities with IC50 values of 382.8 ± 1.42 and 301.4 ± 6.22 μM, and the acarbose was the positive control with an IC50 value of 324.1 ± 4.99 μM. Compound 16 revealed better activity than acarbose.
Collapse
Affiliation(s)
- Lin-Zhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China;
| | - Liang Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Yang-Li Tu
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xiang-Jie Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Sheng-Jia Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xiao-Sheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China;
| |
Collapse
|
20
|
Huang H, Han MH, Gu Q, Wang JD, Zhao H, Zhai BW, Nie SM, Liu ZG, Fu YJ. Identification of pancreatic lipase inhibitors from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Orbitrap MS and in vitro validation. Food Chem 2023; 426:136630. [PMID: 37352710 DOI: 10.1016/j.foodchem.2023.136630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Pancreatic lipase inhibitors can reduce blood lipids by inactivating the catalytic activity of human pancreatic lipase, a key enzyme involved in triglyceride hydrolysis, which helps control some dyslipidemic diseases. The ability of Eucommia ulmoides tea to improve fat-related diseases is closely related to the natural inhibitory components of pancreatic lipase contained in the tea. In this study, fifteen pancreatic lipase inhibitors were screened and identified from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Q-Exactive Orbitrap/MS. Four representative components of geniposidic acid, quercetin-3-O-sambuboside, isochlorogenic acid A, and quercetin with high binding degrees were further verified by nanoscale differential scanning fluorimetry (nanoDSF) and enzyme inhibitory assays. The results of flow cytometry showed that they could significantly reduce the activity of pancreatic lipase in AR42J cells induced by palmitic acid in a concentration-dependent manner. Our findings suggest that Eucommia ulmoides tea may be a promising resource for pancreatic lipase inhibitors of natural origin.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Ming-Hao Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qi Gu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Heng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Bo-Wen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Si-Ming Nie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhi-Guo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
21
|
Aljazzaf B, Regeai S, Elghmasi S, Alghazir N, Balgasim A, Hdud Ismail IM, Eskandrani AA, Shamlan G, Alansari WS, AL-Farga A, Alghazeer R. Evaluation of Antidiabetic Effect of Combined Leaf and Seed Extracts of Moringa oleifera ( Moringaceae) on Alloxan-Induced Diabetes in Mice: A Biochemical and Histological Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9136217. [PMID: 37215365 PMCID: PMC10198764 DOI: 10.1155/2023/9136217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 05/24/2023]
Abstract
Moringa oleifera (Moringaceae) is a medicinal plant rich in biologically active compounds. The aim of the present study was to screen M. oleifera methanolic leaf (L) extract, seed (S) extract, and a combined leaf/seed extract (2L : 1S ratio) for antidiabetic and antioxidant activities in mice following administration at a dose level of 500 mg/kg of body weight/day. Diabetes was induced by alloxan administration. Mice were treated with the extracts for 1 and 3 months and compared with the appropriate control. At the end of the study period, the mice were euthanized and pancreas, liver, kidney, and blood samples were collected for the analysis of biochemical parameters and histopathology. The oral administration of the combined L/S extract significantly reduced fasting blood glucose to normal levels compared with L or S extracts individually; moreover, a significant decrease in cholesterol, triglycerides, creatinine, liver enzymes, and oxidant markers was observed, with a concomitant increase in antioxidant biomarkers. Thus, the combined extract has stronger antihyperlipidemic and antioxidant properties than the individual extracts. The histopathological results also support the biochemical parameters, showing recovery of the pancreas, liver, and kidney tissue. The effects of the combined L/S extracts persisted throughout the study period tested. To the best of our knowledge, this is the first study to report on the antidiabetic, antioxidant, and antihyperlipidemic effects of a combined L/S extract of M. oleifera in an alloxan-induced diabetic model in mice. Our results suggest the potential for developing a natural potent antidiabetic drug from M. oleifera; however, clinical studies are required.
Collapse
Affiliation(s)
- Badriyah Aljazzaf
- Department of Food Sciences and Nutrition, College of Health Sciences, The Public Authority for Applied Education and Training, Kuwait
| | - Sassia Regeai
- Department of Life Sciences, School of Basic Science, Libyan Academy of Postgraduate Studies, Janzour, Libya
- Histology and Genetics Department, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Sana Elghmasi
- Department of Biochemistry, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Nadia Alghazir
- Department of Pediatrics, Tripoli University Hospital, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Amal Balgasim
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud Ismail
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Rabia Alghazeer
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
22
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Feng H, Chen G, Guo M. Exploring multifunctional components from Andrographis paniculata by affinity ultrafiltration with three molecular targets. Food Chem 2023; 404:134515. [DOI: 10.1016/j.foodchem.2022.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
24
|
Shuai X, Dai T, McClements DJ, Ruan R, Du L, Liu Y, Chen J. Hypolipidemic effects of macadamia oil are related to AMPK activation and oxidative stress relief: In vitro and in vivo studies. Food Res Int 2023; 168:112772. [PMID: 37120222 DOI: 10.1016/j.foodres.2023.112772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Macadamia oil is rich in monounsaturated fatty acids, especially a high level of palmitoleic acid, which may have beneficial health effects by lowering blood lipid levels. In our study, the hypolipidemic effects of macadamia oil and its potential mechanisms of action were investigated using a combination of in vitro and in vivo assays. The results showed that macadamia oil significantly reduced lipid accumulation, and improved triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels in oleic acid-induced high-fat HepG2 cells. The macadamia oil treatment also exhibited antioxidant effects, as seen by its ability to reduce reactive oxygen species and malondialdehyde (MDA) levels, and increase superoxide dismutase (SOD) activity. The effects of 1000 μg/mL of macadamia oil were comparable to that of 4.19 μg/mL simvastatin. The results of qRT-PCR and western blotting analyses indicated that macadamia oil effectively inhibited hyperlipidemia by reducing the expression levels of SREBP-1c, PPAR-γ, ACC and FAS and by enhancing the expression levels of HO-1, NRF2 and γ-GCS, via AMPK activation and oxidative stress relief, respectively. In addition, different doses of macadamia oil were found to significantly improve liver lipid accumulation, reduce serum and liver TC, TG, and LDL-C levels, increase HDL-C levels, increase antioxidant enzyme (SOD, GSH-Px, and T-AOC) activity, and decrease the MDA content of mice on a high-fat diet. These results indicated that macadamia oil had a hypolipidemic effect and provide insights that might facilitate the development of functional food and dietary supplements.
Collapse
Affiliation(s)
- Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liqing Du
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
25
|
Potential of moringa (Moringa oleifera) leaf powder for functional food ingredients: A review. CZECH JOURNAL OF FOOD SCIENCES 2023. [DOI: 10.17221/221/2022-cjfs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
In Vitro Inhibitory Effects of Polyphenols from Flos sophorae immaturus on α-Glucosidase: Action Mechanism, Isothermal Titration Calorimetry and Molecular Docking Analysis. Foods 2023; 12:foods12040715. [PMID: 36832790 PMCID: PMC9956223 DOI: 10.3390/foods12040715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Flos sophorae immaturus (FSI) is considered to be a natural hypoglycemic product with the potential for a-glucosidase inhibitory activity. In this work, the polyphenols with α-glucosidase inhibition in FSI were identified, and then their potential mechanisms were investigated by omission assay, interaction, type of inhibition, fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry and molecular docking analysis. The results showed that five polyphenols, namely rutin, quercetin, hyperoside, quercitrin and kaempferol, were identified as a-glucosidase inhibitors with IC50 values of 57, 0.21, 12.77, 25.37 and 0.55 mg/mL, respectively. Quercetin plays a considerable a-glucosidase inhibition role in FSI. Furthermore, the combination of quercetin with kaempferol generated a subadditive effect, and the combination of quercetin with rutin, hyperoside and quercitrin exhibited an interference effect. The results of inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry and molecular docking analysis showed that the five polyphenols were mixed inhibitors and significantly burst the fluorescence intensity of α-glucosidase. Moreover, the isothermal titration calorimetry and molecular docking analysis showed that the binding to α-glucosidase was a spontaneous heat-trapping process, with hydrophobic interactions and hydrogen bonding being the key drivers. In general, rutin, quercetin, hyperoside, quercitrin and kaempferol in FSI are potential α-glucosidase inhibitors.
Collapse
|
27
|
Isolation and Identification of Lipid-Lowering Peptides from Sacha Inchi Meal. Int J Mol Sci 2023; 24:ijms24021529. [PMID: 36675040 PMCID: PMC9863159 DOI: 10.3390/ijms24021529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/14/2023] Open
Abstract
Sacha inchi meal (SIM) is a by-product of sacha inchi (considered as a "super-food") processing. In previous studies, we found that SIM protein hydrolysates exhibited pancreatic lipase inhibition activity. In this study, 10 bioactive peptides from those hydrolysates were identified. The top five peptides (NLYYKVV (NV-7), WWYVK (WK-5), WLLMWPYK (WK-8), EGLLMWPY (EY-8), and FPFFGYVWK (FK-9)) with strong pancreatic lipase inhibition activity had IC50 values of 34.01-246.50 µM, and displayed various inhibition types (mixed, non-competitive, and competitive type) by enzyme inhibition kinetics analysis. Fluorescence quenching analysis demonstrated that the interaction between the peptides and pancreatic lipase was mainly hydrogen bond and van der Waals force. The key residues involved in the peptide-enzyme interaction were determined by molecular docking. Moreover, the top two peptides were found to significantly inhibit fat accumulation and regulate lipid metabolism by alleviating the level of reactive oxygen species in HepG2 cells. Collectively, sacha inchi meal-derived peptides displayed potent lipid-lowering activity and could be used as materials of functional food.
Collapse
|
28
|
Abdel Shakour ZT, El-Akad RH, Elshamy AI, El Gendy AENG, Wessjohann LA, Farag MA. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chem 2023; 399:133948. [DOI: 10.1016/j.foodchem.2022.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
29
|
Peng J, Abdulla R, Li Y, Liu XY, He F, Xin XL, Aisa HA. Potential anti-diabetic components of Apocynum venetum L. flowers: Optimization, chemical characterization and quality evaluation. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Shen H, Wang J, Ao J, Ye L, Shi Y, Liu Y, Li M, Luo A. The inhibitory mechanism of pentacyclic triterpenoid acids on pancreatic lipase and cholesterol esterase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Alavilli H, Poli Y, Verma KS, Kumar V, Gupta S, Chaudhary V, Jyoti A, Sahi SV, Kothari SL, Jain A. Miracle Tree Moringa oleifera: Status of the Genetic Diversity, Breeding, In Vitro Propagation, and a Cogent Source of Commercial Functional Food and Non-Food Products. PLANTS (BASEL, SWITZERLAND) 2022; 11:3132. [PMID: 36432862 PMCID: PMC9694164 DOI: 10.3390/plants11223132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Moringa oleifera Lam. (MO) is a fast-growing drought-resistant tree belonging to the family Moringaceae and native to the Indian subcontinent and cultivated and/or naturalized worldwide with a semi-arid climate. MO is also popularly known as a miracle tree for its repertoire of nutraceutical, pharmacological, and phytochemical properties. The MO germplasm is collected, conserved, and maintained by various institutions across the globe. Various morphological, biochemical, and molecular markers are used for determining the genetic diversity in MO accessions. A higher yield of leaves and pods is often desirable for making various products with commercial viability and amenable for trade in the international market. Therefore, breeding elite varieties adapted to local agroclimatic conditions and in vitro propagation are viable and sustainable approaches. Here, we provide a comprehensive overview of MO germplasm conservation and various markers that are employed for assessing the genetic diversity among them. Further, breeding and in vitro propagation of MO for various desirable agronomic traits are discussed. Finally, trade and commerce of various functional and biofortified foods and non-food products are enumerated albeit with a need for a rigorous and stringent toxicity evaluation.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Yugandhar Poli
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India
| | - Kumar Sambhav Verma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Swati Gupta
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, India
| | - Vigi Chaudhary
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Anupam Jyoti
- Biotechnology Department, Chandigarh University, National Highway-95, Ludhiana-Chandigarh State Highway, Chandigarh 160055, India
| | - Shivendra V. Sahi
- Department of Biology, Saint Joseph’s University (University City Campus), 600 South 43rd Street, Philadelphia, PA 19104, USA
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| |
Collapse
|
32
|
Li S, Zhang W, Wang R, Li C, Lin X, Wang L. Screening and identification of natural α-glucosidase and α-amylase inhibitors from partridge tea (Mallotus furetianus Muell-Arg) and in silico analysis. Food Chem 2022; 388:133004. [PMID: 35483282 DOI: 10.1016/j.foodchem.2022.133004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Partridge leaves (Mallotus furetianus Muell-Arg.) have long been consumed as popular folk substitute tea for treating hyperglycemia in China. In this study, the inhibiting effects of partridge tea extracts on α-glucosidase and α-amylase were investigated, and then effect of partridge tea aqueous extracts (PTAEs) on glucose consumption capacity of 3 T3-L1 preadipocytes cells was determined. Results verified that PTAEs showed excellent anti-α-glucosidase and anti-α-amylase effects. In addition, the PTAEs evidently promoted glucose consumption capacity of 3T3L1 preadipocytes cells. To this end, a combined method of affinity ultrafiltration and HPLC-ESI-qTOF-MS/MS was used for rapidly screening and identifying the potential inhibitors in the PTAEs. Catechin, epicatechin, rutin, ferulic acid, and kaempferitrin with high affinity capacity indicated strong inhibiting effect on α-glucosidase and α-amylase. Docking studies revealed the potential interactive mechanisms between these major inhibitors and two digestive enzymes. This research shows that partridge tea is effective in preventing and treating post hyperglycemia.
Collapse
Affiliation(s)
- Songjie Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
33
|
Feng H, Chen G, Zhang Y, Guo M. Potential Multifunctional Bioactive Compounds from Dysosma versipellis Explored by Bioaffinity Ultrafiltration-HPLC/MS with Topo I, Topo II, COX-2 and ACE2. J Inflamm Res 2022; 15:4677-4692. [PMID: 35996684 PMCID: PMC9392260 DOI: 10.2147/jir.s371830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dysosma versipellis (D. versipellis) has been traditionally used as a folk medicine for ages. However, the specific phytochemicals responsible for their correlated anti-inflammatory, anti-proliferative and antiviral activities remain unknown. Purpose This study aimed to explore the specific active components in D. versipellis responsible for its potential anti-inflammatory, anti-proliferative, and antiviral effects, and further elucidate the corresponding mechanisms of action. Methods Bioaffinity ultrafiltration coupled to liquid chromatography–mass spectrometry (UF-LC/MS) was firstly hired to fast screen for the anti-inflammatory, anti-proliferative and antiviral compounds from rhizomes of D. versipellis, and then further validation was conducted using in vitro inhibition assays and molecular docking. Results A total of 12, 12, 9 and 12 phytochemicals with considerable affinities to Topo I, Topo II, COX-2 and ACE2 were fished out, respectively. The anti-proliferative assay in vitro indicated that podophyllotoxin and quercetin exhibited comparably strong inhibitory rates on A549 and HT-29 cells compared with 5-FU and etoposide. Meanwhile, kaempferol displayed prominent dose-dependent inhibition against COX-2 with IC50 value at 0.36 ± 0.02 μM lower than indomethacin at 0.73 ± 0.07 μM. Furthermore, quercetin exerted stronger inhibitory effect against ACE2 with IC50 value at 104.79 ± 8.26 μM comparable to quercetin 3-O-glucoside at 135.25 ± 6.54 μM. Conclusion We firstly showcased an experimental investigation on the correlations between bioactive phytochemicals of D. versipellis and their multiple drug targets reflecting its potential pharmacological activities, and further constructed a multi-target and multi-component network to decipher its empirical traditional applications. It could not only offer a reliable and valuable experimental basis to better comprehend the curative effects of D. versipellis but also provide more new insights and strategies for other traditional medicinal plants.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| |
Collapse
|
34
|
Characterization of phenolics and discovery of α-glucosidase inhibitors in Artemisia argyi leaves based on ultra-performance liquid chromatography-tandem mass spectrometry and relevance analysis. J Pharm Biomed Anal 2022; 220:114982. [PMID: 35944337 DOI: 10.1016/j.jpba.2022.114982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/20/2022]
Abstract
Artemisia argyi leaves (AAL) has been widely used as herbal medicine and food supplement and in China and other Asian countries. The aim of this work is to qualitative and quantitative characterization of phenolic compounds in AAL and screening of natural product inhibitors of α-glucosidase from AAL. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was employed to rapid and comprehensive identification of phenolic compounds in AAL, and a total of thirty-three phenolic compounds were identified. High performance liquid chromatography with diode array detection (HPLC-DAD) was established and validated to simultaneously determinate ten main bioactive phenolics compounds in different batches of AAL samples. Meanwhile, the inhibitory capacities of different batches of AAL samples on α-glucosidase were evaluated. Then, relevance analysis, including grey relational analysis and Pearson correlation analysis were employed to investigate the correlations between the contents of phenolic compounds and α-glucosidase inhibitory activities, and discover the α-glucosidase inhibitors in AAL. The relevance analysis results indicated that three phenolic compounds, 3-caffeoylquinic acid, 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid could be potential α-glucosidase inhibitors in AAL. Moreover, the α-glucosidase inhibitory activities of the three phenolic compounds were validated by in vitro and in vivo experiments. The possible inhibiting effect of the three phenolic compounds on α-glucosidase was also explored by molecular docking analysis, and the results indicated that the binding of the three α-glucosidase inhibitors to α-glucosidase mainly by hydrogen bonds, hydrophobic forces and ionic bonds. The present research provided a deep insight into phenolic compounds and α-glucosidase inhibitory activities of AAL, and discovered the α-glucosidase inhibitors in AAL.
Collapse
|
35
|
Tian YQ, Hu D, Zhang YL, Zou J, Chen GL, Guo MQ. Inhibitors Targeting Multiple Janus Kinases From Zanthoxylum simulans Mediate Inhibition and Apoptosis Against Gastric Cancer Cells via the Estrogen Pathway. Front Chem 2022; 10:922110. [PMID: 35734442 PMCID: PMC9207197 DOI: 10.3389/fchem.2022.922110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Janus kinases (JAKs) play a key role in subtly regulating proliferation, apoptosis, and differentiation of cancer cells, and their inhibitors are actively sought as new drug leads. By developing JAKs based affinity ultrafiltration method coupled with LC/Q-TOF-MS in order to discover selective JAKs inhibitors from total quaternary alkaloids (QAs) from Zanthoxylum simulans, peak 19 (Berberine) and peak 21 (Chelerythrine) were revealed to exhibit notable selectivity on JAK1, JAK2, and JAK3 over Tyk2. In addition, Chelerythrine showed stronger inhibitory activity than the positive control (Cerdulatinib) on gastric cancer cells (AGS), while Berberine, with weaker inhibition. Chelerythrine and Berberine also showed obvious inhibition on human hepatocyte cells (LO2). Furthermore, molecular docking analysis revealed their discrepancies due to different interaction bonds and characteristic residues. Quaternary N was proposed as the functional group to enhance the selectivity of JAK1, and some specific moieties towards Asp1021, Leu855, and Leu828 were suggested to increase the selectivity for JAK1, JAK2, and JAK3, respectively. As the most potential inhibitor of JAKs from QAs, Chelerythrine exhibited distinct suppression of adhesion, migration, invasion, and stimulating apoptosis of AGS cells, which was consistent with the significant down-regulation of estrogen receptors (ER-α36, ER-α66, and ER-β1) and Src expression. In conclusion, an efficient screening approach was developed to identify Berberine and Chelerythrine as potential selective candidates from Zanthoxylum simulans with significant anti-proliferative activity against gastric carcinoma. As we know, it was the first report to propose an estrogen signal pathway for Chelerythrine in anti-gastric cancer cells (AGS) study. The results supported Chelerythrine inhibitory effects on AGS by not only direct inhibiting JAKs but also down-regulating the estrogen pathway.
Collapse
Affiliation(s)
- Yong-Qiang Tian
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dai Hu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Li Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zou
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
| | - Gui-Lin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Quan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Ming-Quan Guo,
| |
Collapse
|
36
|
Optimization, identification and bioactivity of flavonoids extracted from Moringa oleifera leaves by deep eutectic solvent. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Xu Y, Chen G, Guo M. Potential Anti-aging Components From Moringa oleifera Leaves Explored by Affinity Ultrafiltration With Multiple Drug Targets. Front Nutr 2022; 9:854882. [PMID: 35619958 PMCID: PMC9127542 DOI: 10.3389/fnut.2022.854882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Moringa oleifera (M. oleifera), widely used in tropical and subtropical regions, has been reported to possess good anti-aging benefits on skincare. However, the potential bioactive components responsible for its anti-aging effects, including anti-collagenase, anti-elastase, and anti-hyaluronidase activities, have not been clarified so far. In this study, M. oleifera leaf extracts were first conducted for anti-elastase and anti-collagenase activities in vitro by spectrophotometric and fluorometric assays, and the results revealed that they possessed good activities against skin aging-related enzymes. Then, multi-target bio-affinity ultrafiltration coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS) was applied to quickly screen anti-elastase, anti-collagenase, and anti-hyaluronidase ligands in M. oleifera leaf extracts. Meanwhile, 10, 8, and 14 phytochemicals were screened out as the potential anti-elastase, anti-collagenase, and anti-hyaluronidase ligands, respectively. Further confirmation of these potential bioactive components with anti-aging target enzymes was also implemented by molecule docking analysis. In conclusion, these results suggest that the M. oleifera leaves might be a very promising natural source of anti-aging agent for skincare, which can be further explored in the cosmetics and cosmeceutical industries combating aging and skin wrinkling.
Collapse
Affiliation(s)
- Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
The First Optimization Process from Cultivation to Flavonoid-Rich Extract from Moringa oleifera Lam. Leaves in Brazil. Foods 2022; 11:foods11101452. [PMID: 35627022 PMCID: PMC9140588 DOI: 10.3390/foods11101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022] Open
Abstract
Flavonoids are significant antioxidant and anti-inflammatory agents and have multiple potential health applications. Moringa oleifera is globally recognized for its nutritional and pharmacological properties, correlated to the high flavonoid content in its leaves. However, the bioactive compounds found in plants may vary according to the cultivation, origin, season, and extraction process used, making it difficult to extract reliable raw material. Hence, this study aimed to standardize the best cultivation and harvest season in Brazil and the best extraction process conditions to obtain a flavonoid-rich extract from M. oleifera as a final product. Firstly, ultrasound-assisted extraction (UAE) was optimized to reach the highest flavonoid content by three-level factorial planning and response surface methodology (RSM). The optimal cultivation condition was mineral soil fertilizer in the drought season, and the optimized extraction was with 80% ethanol and 13.4 min of extraction time. The flavonoid-rich extract was safe and significantly decreased reactive oxygen species (ROS) and nitric oxide (NO) in LPS-treated RAW 264.7 cells. Lastly, the major flavonoids characterized by HPLC-ESI-QTRAP-MS/MS were compounds derived from apigenin, quercetin, and kaempferol glycosides. The results confirmed that it was possible to standardize the flavonoid-rich extract leading to a standardized and reliable raw material extracted from M. oleifera leaves.
Collapse
|
39
|
Li S, Wang R, Hu X, Li C, Wang L. Bio-affinity ultra-filtration combined with HPLC-ESI-qTOF-MS/MS for screening potential α-glucosidase inhibitors from Cerasus humilis (Bge.) Sok. leaf-tea and in silico analysis. Food Chem 2022; 373:131528. [PMID: 34774376 DOI: 10.1016/j.foodchem.2021.131528] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Cerasus humilis(Bge.) Sok. leaf-tea (CLT) has a potential anti-α-glucosidase effect. However, its anti-α-glucosidase functional compositions remain unclear. Results showed that 70% methanol extract of CLT (IC50 = 36.57 μg/mL) with the highest total phenolic/flavonoid contents exhibited significantly higher α-glucosidase inhibitory activity (α-GIA) than acarbose (IC50 = 189.57 μg/mL). Additionally, phenolic constituents of the CLT extract were analyzed for the first time in this work. Ten major potential α-glucosidase inhibitors (α-GIs) with high bio-affinity degree in the CLT extract were recognized using a bio-affinity ultra-filtration and HPLC-ESI-qTOF-MS/MS method. In vitro α-GIA assay confirmed that myricetin (IC50 = 36.17 μg/mL), avicularin (IC50 = 69.84 μg/mL), quercitrin, isoquercitrin, prunin and guajavarin were responsible for the α-GIA of the CLT extract. More importantly, the interaction mechanism between α-GIs and α-glucosidase was investigated via in silico analysis. This study provides a high-throughput screening platform for identification of the potential α-GIs from natural products.
Collapse
Affiliation(s)
- Songjie Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaoping Hu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
40
|
Fan MX, Chen GL, Guo MQ. Potential Antioxidative Components in Azadirachta indica Revealed by Bio-Affinity Ultrafiltration with SOD and XOD. Antioxidants (Basel) 2022; 11:antiox11040658. [PMID: 35453343 PMCID: PMC9030372 DOI: 10.3390/antiox11040658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Azadirachta indica (A. indica) has been widely used due to its diverse pharmacological activities. However, there are currently few studies on its responsible antioxidant ingredients against superoxide dismutase (SOD) and xanthine oxidase (XOD). In this study, the antioxidant activities of A. indica were evaluated by a 2,2′-azinobis-(3-ethyl-benzthiazoline)-6-sulfonic acid) and ferric-ion-reducing antioxidant power method. Meanwhile, total polyphenol and flavonoid content were determined to reveal that they were the highest in ethyl acetate (EA) fraction. Next, compounds with the most antioxidant activity were screened out from EA fraction by bio-affinity ultrafiltration liquid chromatography–mass spectrometry (UF-LC-MS) with SOD and XOD. As a result, gallic acid, protocatechuic acid and (−)-epicatechin were identified as potential SOD ligands with relative binding affinity (RBA) values of 2.15, 1.78 and 1.61, respectively. Additionally, these three ligands could effectively interact with SOD in molecular docking with binding energies (BEs) ranging from −3.84 ± 0.37 to −5.04 ± 0.01 kcal/mol. In addition, carnosic acid exhibited a strong binding affinity to XOD with an RBA value of 2.05 and BE value of −8.24 ± 0.71 kcal/mol. In conclusion, these results indicated that A. indica might have good antioxidant activity and antigout potential, and the UF-LC-MS method is suitable and efficient for screening both SOD and XOD ligands from A. indica.
Collapse
Affiliation(s)
- Min-Xia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.-X.F.); (G.-L.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gui-Lin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.-X.F.); (G.-L.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.-X.F.); (G.-L.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: ; Tel.: +86-027-87700850
| |
Collapse
|
41
|
Zhang H, Chen G, Yang J, Yang C, Guo M. Screening and characterisation of potential antioxidant, hypoglycemic and hypolipidemic components revealed in Portulaca oleracea via multi-target affinity ultrafiltration LC-MS and molecular docking. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:272-285. [PMID: 34467579 DOI: 10.1002/pca.3086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Portulaca oleracea is a commonly used nutritional vegetable and traditional herbal medicine with plenty of nutrients and manifold pharmacological activities. However, the potential active ingredients for its remarkable antioxidant, hypoglycemic and hypolipidemic activities remain unexplored. OBJECTIVES The present study aims to systematically evaluate the antioxidant activities of different extracts of P. oleracea and screen bioactive ligands that can interact with α-glucosidase, pancreatic lipase, and superoxide dismutase (SOD). METHODS In this research, the antioxidant activities of different parts of P. oleracea and their corresponding total phenolic content (TPC) and total flavonoid content (TFC) were systematically determined. Subsequently, a multi-target affinity ultrafiltration method was developed using affinity ultrafiltration with SOD, α-glucosidase, and pancreatic lipase coupled to liquid chromatography-mass spectrometry (UF-LC-MS). Later, molecular docking was used to further investigate the possible interaction mechanism between these ligands and target enzymes. RESULTS Among them, the ethyl acetate (EA) fraction showed the highest antioxidant activity along with the highest TPC and TFC, and four compounds in the EA fraction were quickly retrieved as potential SOD, α-glucosidase, and pancreatic lipase ligands, respectively. Molecular docking revealed that these potential ligands exhibited strong binding ability and inhibitory activities on SOD, α-glucosidase, and pancreatic lipase. CONCLUSION The present study revealed that P. oleracea can be used as a functional food with excellent antioxidant, hypoglycemic and hypolipidemic effects. Meanwhile, the integrated strategy based on multi-target UF-LC-MS and molecular docking also provided a powerful tool and a multidimensional perspective for further exploration of active ingredients in P. oleracea responsible for the antioxidant, hypoglycemic and hypolipidemic activities.
Collapse
Affiliation(s)
- Hui Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Jinpeng Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Yue H, Wang L, Jiang S, Banma C, Jia W, Tao Y, Zhao X. Hypoglycemic effects of Rhodiola crenulata (HK. f. et. Thoms) H. Ohba in vitro and in vivo and its ingredient identification by UPLC-triple-TOF/MS. Food Funct 2022; 13:1659-1667. [PMID: 35080557 DOI: 10.1039/d1fo03436g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodiola crenulata (HK. f. et. Thoms) H. Ohba (RC), mainly distributed in the highly cold region of China, has long been used as a medicine/healthy food for eliminating fatigue and increasing blood circulation. This study aimed to evaluate the inhibitory effects of the RCRS extract on α-amylase and α-glucosidase (sucrase and maltase) in vitro and in vivo, and tentatively analyze and identify its chemical ingredients using UPLC-Triple-TOF/MS. The Rhodiola crenulata RCRS extract had strong inhibitory activities against α-amylase, sucrase and maltase with an IC50 of 0.031 mg mL-1, 0.142 mg mL-1 and 0.214 mg mL-1, respectively. Furthermore, the RCRS extract could significantly decrease the postprandial blood glucose (PBG) level of normal mice in a starch tolerance test, and reduce the PBG levels of diabetic mice in a starch/maltose/sucrose tolerance test. UHPLC-Triple-TOF-MS/MS analysis indicated that hydroxybenzoic acids, hydroxycinnamic acids, alcohol glycosides, flavonols and their derivatives were the main active ingredients in the RCRS extract. The results demonstrate that the RCRS extract of Rhodiola crenulata could be employed as a healthy food or medicine for controlling postprandial blood glucose levels.
Collapse
Affiliation(s)
- Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Luya Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Sirong Jiang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Cailang Banma
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Wenjing Jia
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| |
Collapse
|
43
|
Gómez-Martínez S, Díaz-Prieto LE, Castro IV, Jurado C, Iturmendi N, Martín-Ridaura MC, Calle N, Dueñas M, Picón MJ, Marcos A, Nova E. Moringa oleifera Leaf Supplementation as a Glycemic Control Strategy in Subjects with Prediabetes. Nutrients 2021; 14:nu14010057. [PMID: 35010932 PMCID: PMC8746299 DOI: 10.3390/nu14010057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Moringa oleifera (MO) is a multipurpose plant with a high polyphenol content, which is being increasingly consumed to lessen the risk of chronic metabolic diseases such as Type 2 diabetes; however, scientific evidence from clinical trials is scarce. A double-blind, randomized, placebo-controlled, parallel group intervention study with MO leaves as a food supplement was conducted in subjects with prediabetes. They consumed six daily capsules of MO dry leaf powder (2400 mg/day) (MO, n = 31) or placebo (PLC, n = 34) over 12 weeks. Glycemia, appetite-controlling hormones and gut microbiota composition were studied. ANCOVA with the fixed factor “treatment” and the basal value as covariate was used to compare the change score between the groups. The results showed significant differences between groups in the rate of change of fasting blood glucose (FBG) and glycated hemoglobin (HbA1c), which showed opposite directions during the intervention, decreasing in MO and increasing in PLC. No different change scores were found between the groups in microbiota, hepatic and renal function markers or the appetite-controlling hormones measured. In conclusion, MO supplementation resulted in favorable changes in glycaemia markers compared to placebo in the subjects with prediabetes studied, suggesting that MO might act as a natural antihyperglycemic agent.
Collapse
Affiliation(s)
- Sonia Gómez-Martínez
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - Ligia E. Díaz-Prieto
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - Iván Vicente Castro
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - César Jurado
- Cea Bermúdez Primary Health Care Centre, Madrid Health Service, C/Cea Bermúdez 10, 28003 Madrid, Spain; (C.J.); (N.I.)
| | - Nerea Iturmendi
- Cea Bermúdez Primary Health Care Centre, Madrid Health Service, C/Cea Bermúdez 10, 28003 Madrid, Spain; (C.J.); (N.I.)
| | | | - Nuria Calle
- Madrid-Health, Madrid City Hall, 28007 Madrid, Spain; (M.C.M.-R.); (N.C.)
| | - María Dueñas
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - María J. Picón
- Hospital Virgen de la Victoria de Málaga, Campus de Teatinos, S/N, 29010 Malaga, Spain;
| | - Ascensión Marcos
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
| | - Esther Nova
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Nováis 10, 28040 Madrid, Spain; (S.G.-M.); (L.E.D.-P.); (I.V.C.); (M.D.); (A.M.)
- Correspondence: ; Tel.: +34-915-492-300 (ext. 231209)
| |
Collapse
|
44
|
Liu Y, Kong KW, Wu DT, Liu HY, Li HB, Zhang JR, Gan RY. Pomegranate peel-derived punicalagin: Ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism. Food Chem 2021; 374:131635. [PMID: 34823934 DOI: 10.1016/j.foodchem.2021.131635] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The pomegranate peel is a by-product of pomegranate fruit rich in polyphenols. In this study, pomegranate peel polyphenols were explored using LC-MS/MS, and punicalagin was the most abundant compound. The highest yield (505.89 ± 1.73 mg/g DW) of punicalagin was obtained by ultrasonic-assisted extraction (UAE) with the ethanol concentration of 53%, sample-to-liquid ratio of 1:25 w/v, ultrasonic power of 757 W, and extraction time of 25 min. Punicalagin was further purified by the macroporous resin D101 and prep-HPLC, reaching the purity of 92.15%. The purified punicalagin had the IC50 of 82 ± 0.02 µg/mL against α-glucosidase, similar to the punicalagin standard with IC50 of 58 ± 0.014 µg/mL, both exhibiting a mixed inhibitory mechanism. Molecular docking further revealed that a steric hindrance with the intermolecular energy of -7.99 kcal/mol was formed between punicalagin and α-glucosidase. Overall, pomegranate peel is a promising source of punicalagin to develop anti-diabetic functional foods.
Collapse
Affiliation(s)
- Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jia-Rong Zhang
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
45
|
Feng H, Chen G, Zhang Y, Guo M. Exploring Multifunctional Bioactive Components from Podophyllum sinense Using Multi-Target Ultrafiltration. Front Pharmacol 2021; 12:749189. [PMID: 34759823 PMCID: PMC8573357 DOI: 10.3389/fphar.2021.749189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Podophyllum sinense (P. sinense) has been used as a traditional herbal medicine for ages due to its extensive pharmaceutical activities, including antiproliferative, anti-inflammatory, antiviral, insecticidal effects, etc. Nevertheless, the specific bioactive constituents responsible for its antiproliferative, anti-inflammatory, and antiviral activities remain elusive, owing to its complicated and diversified chemical components. In order to explore these specific bioactive components and their potential interaction targets, affinity ultrafiltration with multiple drug targets coupled with high performance liquid chromatography/mass spectrometry (UF–HPLC/MS) strategy was developed to rapidly screen out and identify bioactive compounds against four well-known drug targets that are correlated to the application of P. sinense as a traditional medicine, namely, Topo I, Topo II, COX-2, and ACE2. As a result, 7, 10, 6, and 7 phytochemicals were screened out as the potential Topo I, Topo II, COX-2, and ACE2 ligands, respectively. Further confirmation of these potential bioactive components with antiproliferative and COX-2 inhibitory assays in vitro was also implemented. Herein, diphyllin and podophyllotoxin with higher EF values demonstrated higher inhibitory rates against A549 and HT-29 cells as compared with those of 5-FU and etoposide. The IC50 values of diphyllin were calculated at 6.46 ± 1.79 and 30.73 ± 0.56 μM on A549 and HT-29 cells, respectively. Moreover, diphyllin exhibited good COX-2 inhibitory activity with the IC50 value at 1.29 ± 0.14 μM, whereas indomethacin was 1.22 ± 0.08 μM. In addition, those representative constituents with good affinity on Topo I, Topo II, COX-2, or ACE2, such as diphyllin, podophyllotoxin, and diphyllin O-glucoside, were further validated with molecular docking analysis. Above all, the integrated method of UF–HPLC/MS with multiple drug targets rapidly singled out multi-target bioactive components and partly elucidated their action mechanisms regarding its multiple pharmacological effects from P. sinense, which could provide valuable information about its further development for the new multi-target drug discovery from natural medicines.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
46
|
Balbaa M, El-Zeftawy M, Abdulmalek SA. Therapeutic Screening of Herbal Remedies for the Management of Diabetes. Molecules 2021; 26:6836. [PMID: 34833928 PMCID: PMC8618521 DOI: 10.3390/molecules26226836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The study of diabetes mellitus (DM) patterns illustrates increasingly important facts. Most importantly, they include oxidative stress, inflammation, and cellular death. Up to now, there is a shortage of drug therapies for DM, and the discovery and the development of novel therapeutics for this disease are crucial. Medicinal plants are being used more and more as an alternative and natural cure for the disease. Consequently, the objective of this review was to examine the latest results on the effectiveness and protection of natural plants in the management of DM as adjuvant drugs for diabetes and its complex concomitant diseases.
Collapse
Affiliation(s)
- Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, New Valley 72511, Egypt;
| | - Shaymaa A. Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria 21511, Egypt
| |
Collapse
|
47
|
Xu Y, Chen G, Guo M. Correlations between phytochemical fingerprints of Moringa oleifera leaf extracts and their antioxidant activities revealed by chemometric analysis. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:698-709. [PMID: 33319431 DOI: 10.1002/pca.3016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Moringa oleifera Lam. is widely cultivated and applied in tropical and subtropical areas. Numerous studies have been focused on the antioxidant capacity of M. oleifera leaves, but its correlated bioactive phytochemicals remain elusive. OBJECTIVE In order to search for the corresponding chemical compounds from M. oleifera leaves responsible for their antioxidant activity, the correlations between phytochemical fingerprints of 15 batches of M. oleifera leaves and their antioxidant activities were investigated by using chemometric analysis. MATERIAL AND METHODS Fifteen batches of M. oleifera leaves were extracted with 90% ethanol solution, and their phytochemical fingerprints and antioxidant activities were estimated by using high-performance liquid chromatography-ultraviolet-electrospray ionisation tandem mass spectrometry (HPLC-UV/ESI-MS/MS), and three detected methods, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay and ferric-reducing antioxidant power (FRAP) assay, respectively. Chemometric analysis was then applied to reveal the correlations between their phytochemical fingerprints and corresponding antioxidant capacity. RESULTS Fifteen M. oleifera leaf extracts exhibited strong antioxidant activities, in which 24 common compounds were identified by LC-MS. Furthermore, the partial least squares (PLS) analysis indicated that compounds 14, 16, 18 and 23 were the main potential effective components in at least two antioxidant tests. They were identified as kaempferol 3-O-rutinoside, quercetin 3-O-(6″-malonyl-glucoside), kaempferol 3-O-glucoside, and quercetin derivative, respectively. CONCLUSION The correlations between phytochemical fingerprints of M. oleifera leaf extracts and their corresponding antioxidant capacities were revealed by chemometric analysis, which provides an alternative method for screening for potential bioactive compounds with antioxidant capacity from M. oleifera leaves.
Collapse
Affiliation(s)
- Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Acyl Quinic Acid Derivatives Screened Out from Carissa spinarum by SOD-Affinity Ultrafiltration LC-MS and Their Antioxidative and Hepatoprotective Activities. Antioxidants (Basel) 2021; 10:antiox10081302. [PMID: 34439550 PMCID: PMC8389231 DOI: 10.3390/antiox10081302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Carissa spinarum Linn. has been utilized both in the food industry and as a traditional medicine for various ailments, while the responsible chemical components and action mechanisms of its antioxidative and hepatoprotective activities remain unclear. In this work, at least 17 quinic acid derivatives as potential ligands for the superoxide dismutase (SOD) enzyme from Carissa spinarum L. were screened out using the bio-affinity ultrafiltration with liquid chromatography mass spectrometry (UF–LC/MS), and 12 of them (1–12), including, three new ones (1–3), were further isolated by phytochemical methods and identified by high resolution electrospray ionization mass spectrometry (HR-ESI-MS) and extensive nuclear magnetic resonance (NMR) spectroscopic analysis. All of these isolated compounds were evaluated for their antioxidant activities by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) methods. As a result, compounds 4 and 6–11 displayed similar or better antioxidant activities compared to vitamin C, which is in good agreement with the bio-affinity ultrafiltration with SOD enzyme. Then, these compounds, 4 and 6–11, with better antioxidant activity were further explored to protect the L02 cells from H2O2-induced oxidative injury by reducing the reactive oxygen species (ROS) and Malondialdehyde (MDA) production and activating the SOD enzyme. To the best of our knowledge, this is the first report to use an efficient ultrafiltration approach with SOD for the rapid screening and identification of the SOD ligands directly from a complex crude extract of Carissa spinarum, and to reveal its corresponding active compounds with good antioxidative and hepatoprotective activities.
Collapse
|
49
|
Long X, Liao S, Li E, Pang D, Li Q, Liu S, Hu T, Zou Y. The hypoglycemic effect of freeze-dried fermented mulberry mixed with soybean on type 2 diabetes mellitus. Food Sci Nutr 2021; 9:3641-3654. [PMID: 34262724 PMCID: PMC8269569 DOI: 10.1002/fsn3.2321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/21/2021] [Indexed: 01/04/2023] Open
Abstract
Mulberry has significant hypoglycemic effect and can be used as an auxiliary food for people with type 2 diabetes. However, it is rich in carbohydrate and cannot be consumed directly by diabetic patients. In the study, we fermented the mulberry to reduce the content of glucose and fructose, and added the soybean to reduce the loss of probiotics during fermentation and then determined its hypoglycemic effect. We induced type 2 diabetes mellitus (T2DM) mice by streptozotocin and measured its blood glucose, serum biochemistry, hepatic and pancreatic histopathology, and the diversity of the gut microbiota. After 5 weeks of oral DFMS administration, the glucose tolerance was improved significantly in T2DM mice. Furthermore, there were also significant increases in superoxide dismutase activity and glutathione concentration, and marked reductions in the concentrations of malondialdehyde and free fatty acids. Moreover, DFMS also prevented histopathological changes and the increases in the activities of alanine transaminase and aspartate transaminase. DFMS treatment also markedly increased the richness of the gut microbial community. The abundance of Bacteroidetes was increased, and those of Proteobacteria, Escherichia-Shigella, and Lactobacillus were reduced. In summary, DFMS has a clear hypoglycemic effect in mice with T2DM.
Collapse
Affiliation(s)
- Xiao‐Shan Long
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
- College of Food Science and TechnologyKey Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education InstitutionGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
| | - Sen‐Tai Liao
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| | - Er‐Na Li
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| | - Dao‐Rui Pang
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| | - Qian Li
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| | - Shu‐Cheng Liu
- College of Food Science and TechnologyKey Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education InstitutionGuangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
| | - Teng‐Gen Hu
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
- South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySchool of Food Science and EngineeringGuangzhouChina
| | - Yu‐Xiao Zou
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingSericultural & Agri‐Food Research InstituteGuangzhouChina
| |
Collapse
|
50
|
Ukiya M, Motegi K, Sato D, Kimura H, Satsu H, Koketsu M, Ninomiya M, Myint LM, Nishina A. Effect of Compounds from Moringa oleifera Lam. on in Vitro Non-Alcoholic Fatty Liver Disease (NAFLD) Model System. Chem Biodivers 2021; 18:e2100243. [PMID: 34128328 DOI: 10.1002/cbdv.202100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/27/2021] [Indexed: 11/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease in the world, with a prevalence of 25 % in many countries. To date, no drug has been approved to treat NAFLD, therefore, the use of phytochemicals to prevent this disease is meaningful. In this study, we focused on the effects of Moringa oleifera Lam. on diabetes, attempted to isolate compounds that regulate NAFLD. Compounds 1 and 2 were isolated from the ethyl acetate fraction of M. oleifera. Spectral data revealed that they were 1-hydroxy-3-phenylpropan-2-yl benzoate (1) and benzyl benzylcarbamate (2), respectively. The three-dimensional structure of compound 1 was determined by single crystal X-ray structural analysis. Neither compound was toxic to HepG2 cells, and compound 1 was found to have a concentration-dependent inhibitory effect on intracellular lipid accumulation induced by stimulation of linoleic acid (LA). As a result of measuring the effects of compound 1 on the intracellular lipid production-related protein, it was found that compound 1 enhanced protein expression that promotes lipolysis. On the other hand, since the action of compound 1 was similar to that of PPARα agonists, it is deduced that compound 1 enhanced the activity of PPARα and further enhanced the expression of lipolytic proteins, which is related to the suppression of intracellular lipid accumulation. Furthermore, as the result of docking simulation, compound 1 had a higher binding affinity to the ligand binding site of PPARα than fenofibrate, which is a PPARα agonist, and thus compound 1 was considered to be promising as an agonist of PPARα.
Collapse
Affiliation(s)
- Motohiko Ukiya
- Department of Applied Chemistry, College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Kazuki Motegi
- Department of Applied Chemistry, College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Daisuke Sato
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa, 992-8510, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1 Tonyamachi, Takasaki, Gunma, 370-0006, Japan
| | - Hideo Satsu
- Department of Biotechnology, Maebashi Institute of Technology, 460-1 Kamisadorimachi, Maebashi, Gunma, 371-0816, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lwin Mon Myint
- FAME Pharmaceuticals Industry Co., Ltd, Mingyi Mahar Min Gaung Street, Yangon, Myamar
| | - Atsuyoshi Nishina
- Department of Applied Chemistry, College of Science and Technology, Nihon University, 1-5-1 Kandasurugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|