1
|
Alrubayyi A, Huang H, Gaiha GD. Severe Acute Respiratory Syndrome Coronavirus 2 Immunology and Coronavirus Disease 2019 Clinical Outcomes. Infect Dis Clin North Am 2025; 39:221-232. [PMID: 40089444 DOI: 10.1016/j.idc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The humoral and cellular immune response are the key players in preventing viral infection and limiting disease severity, particular in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019. In this review, we discuss how immune responses generated by prior infection and vaccination influence the outcomes of SARS-CoV-2 infection. We aim to provide an overview of the role of humoral and cellular immunity, with a particular focus on CD8+ T cell responses, to delineate how different immune compartments contribute to the control of infection and modulation of disease outcomes.
Collapse
Affiliation(s)
| | - Hsinyen Huang
- Ragon Institute of MGB, MIT and Harvard, 600 Main Street, Cambridge, MA 02139
| | - Gaurav D Gaiha
- Ragon Institute of MGB, MIT and Harvard, 600 Main Street, Cambridge, MA 02139; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02115.
| |
Collapse
|
2
|
Beaudoin-Bussières G, Tauzin A, Dionne K, El Ferri O, Benlarbi M, Bourassa C, Medjahed H, Bazin R, Côté M, Finzi A. Multiple exposures to SARS-CoV-2 Spike enhance cross-reactive antibody-dependent cellular cytotoxicity against SARS-CoV-1. Virology 2025; 607:110512. [PMID: 40147380 DOI: 10.1016/j.virol.2025.110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Vaccination or infection by SARS-CoV-2 elicits a protective immune response against severe outcomes. It has been reported that SARS-CoV-2 infection or vaccination elicits cross-reactive antibodies against other betacoronaviruses. While plasma neutralizing capacity was studied in great detail, their Fc-effector functions remain understudied. Here, we analyzed Spike recognition, neutralization and antibody-dependent cellular cytotoxicity (ADCC) against D614G, a recent Omicron subvariant of SARS-CoV-2 (JN.1) and SARS-CoV-1. Plasma from individuals before their first dose of mRNA vaccine, and following their second, third and sixth doses were analyzed. Despite poor neutralization activity observed after the second and third vaccine doses, ADCC was readily detected. By the sixth dose, individuals could neutralize and mediate ADCC against JN.1 and SARS-CoV-1. Since previous reports have shown that Fc-effector functions were associated with survival from acute infection, these results suggest that ADCC could help in combating future SARS-CoV-2 variants as well as closely related coronaviruses.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | | | | | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC, G1V 5C3, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
3
|
Schendel SL, Yu X, Halfmann PJ, Mahita J, Ha B, Hastie KM, Li H, Bedinger D, Troup C, Li K, Kuzmina N, Torrelles JB, Munt JE, Maddocks M, Osei-Twum M, Callaway HM, Reece S, Palser A, Kellam P, Dennison SM, Huntwork RHC, Horn GQ, Abraha M, Feeney E, Martinez-Sobrido L, Pino PA, Hicks A, Ye C, Park JG, Maingot B, Periasamy S, Mallory M, Scobey T, Lepage MN, St-Amant N, Khan S, Gambiez A, Baric RS, Bukreyev A, Gagnon L, Germann T, Kawaoka Y, Tomaras GD, Peters B, Saphire EO. A global collaboration for systematic analysis of broad-ranging antibodies against the SARS-CoV-2 spike protein. Cell Rep 2025; 44:115499. [PMID: 40184253 PMCID: PMC12014896 DOI: 10.1016/j.celrep.2025.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 04/06/2025] Open
Abstract
The Coronavirus Immunotherapeutic Consortium (CoVIC) conducted side-by-side comparisons of over 400 anti-SARS-CoV-2 spike therapeutic antibody candidates contributed by large and small companies as well as academic groups on multiple continents. Nine reference labs analyzed antibody features, including in vivo protection in a mouse model of infection, spike protein affinity, high-resolution epitope binning, ACE-2 binding blockage, structures, and neutralization of pseudovirus and authentic virus infection, to build a publicly accessible dataset in the database CoVIC-DB. High-throughput, high-resolution binning of CoVIC antibodies defines a broad and predictive landscape of antibody epitopes on the SARS-CoV-2 spike protein and identifies features associated with durable potency against multiple SARS-CoV-2 variants of concern and high in vivo efficacy. Results of the CoVIC studies provide a guide for selecting effective and durable antibody therapeutics and for immunogen design as well as providing a framework for rapid response to future viral disease outbreaks.
Collapse
Affiliation(s)
- Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xiaoying Yu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Jarjapu Mahita
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Brendan Ha
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Haoyang Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Kan Li
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA; Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA
| | - Jordi B Torrelles
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jennifer E Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Melissa Maddocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Mary Osei-Twum
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Heather M Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephen Reece
- Kymab, a Sanofi Company, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - Paul Kellam
- RQ Biotechnology Ltd., London W12 7RZ, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College, London SW7 2AZ, UK
| | - S Moses Dennison
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Richard H C Huntwork
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Gillian Q Horn
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Milite Abraha
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Elizabeth Feeney
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Paula A Pino
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Amberlee Hicks
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jun-Gyu Park
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Billie Maingot
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Sivakumar Periasamy
- Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA
| | - Michael Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Marie-Noelle Lepage
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Natalie St-Amant
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Sarwat Khan
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Anaïs Gambiez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ralph S Baric
- Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA; Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luc Gagnon
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Chen R, Hao Z, Ye J, Zhao X, Hu S, Luo J, Li J, Wu H, Liang X, Shen C, Deng M, Zhang W, Zhu Z, Qin Y, Hu G, Zhang L, Cao F, Liu Y, Liu R, Sun Q, Wei H, Wang Z. Decoding post-mortem infection dynamics of SARS-CoV-2, IAV and RSV: New insights for public health and emerging infectious diseases management. J Infect 2025; 90:106489. [PMID: 40268146 DOI: 10.1016/j.jinf.2025.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES The persistence and infectivity of respiratory viruses in cadavers remain poorly characterized, posing significant biosafety risks for forensic and healthcare professionals. This study systematically evaluates the post-mortem stability and transmission potential of SARS-CoV-2, influenza A virus (IAV), and respiratory syncytial virus (RSV) under varying environmental conditions, providing critical insights into viral kinetics. METHODS To assess the post-mortem stability of SARS-CoV-2, tissue samples were collected from infected cadavers at 4 ℃, room temperature (RT, 20-22 ℃), and 37 ℃ over a predetermined timeframe. Viral kinetics were analyzed using quantitative assays, while histopathology and immunohistochemistry characterized tissue-specific distribution. Additionally, comparative analyses were conducted both in vitro and in cadaveric tissues to characterize the survival dynamics of IAV and RSV under identical conditions. RESULTS SARS-CoV-2 exhibited prolonged post-mortem infectivity, persisting for up to 5 days at RT and 37 ℃ and over 7 days at 4 ℃, with the highest risk of transmission occurring within the first 72 h at RT and 24 h at 37 ℃. In contrast, RSV remained viable for 1-2 days, while IAV persisted for only a few hours post-mortem. Viral decay rates were temperature-dependent and varied across tissues, demonstrating distinct post-mortem survival kinetics. CONCLUSIONS This study presents the first comprehensive analysis of viral persistence in cadavers, revealing prolonged SARS-CoV-2 stability compared to IAV and RSV. These findings underscore the need for enhanced post-mortem biosafety protocols to mitigate occupational exposure risks in forensic and clinical settings. By elucidating viral decay dynamics across environmental conditions, this research establishes a critical foundation for infection control strategies, informing biosafety policies for emerging respiratory pathogens.
Collapse
Affiliation(s)
- Run Chen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zeyi Hao
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jian Ye
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Sheng Hu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Jianliang Luo
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Junhua Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Hao Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - XingGong Liang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chen Shen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingyan Deng
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanqing Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhengyang Zhu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yudong Qin
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Gengwang Hu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Letong Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fan Cao
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuzhao Liu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruina Liu
- Center for Translational Medicine, Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| | - Qinru Sun
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Hongping Wei
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
5
|
Benlarbi M, Kenfack DD, Dionne K, Côté-Chenette M, Beaudoin-Bussières G, Bélanger É, Ding S, Goni OH, Ngoume YF, Tauzin A, Medjahed H, Ghedin E, Duerr R, Finzi A, Tongo M. Longitudinal humoral immunity against SARS-CoV-2 Spike following infection in individuals from Cameroon. Virology 2025; 605:110467. [PMID: 40037139 PMCID: PMC11937844 DOI: 10.1016/j.virol.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
In May 2023 the World Health Organization (WHO) declared the end of COVID-19 as a public health emergency. Seroprevalence studies performed in African countries, such as Cameroon, depicted a much higher COVID-19 burden than reported by the WHO. To better understand humoral responses kinetics following infection, we enrolled 333 participants from Yaoundé, Cameroon between March 2020 and January 2022. We measured the levels of antibodies targeting the SARS-CoV-2 receptor-binding-domain (RBD) and the Spike glycoproteins of Delta, Omicron BA.1 and BA.4/5 and the common cold coronavirus HCoV-OC43. We also evaluated plasma capacity to neutralize authentic SARS-CoV-2 virus and to mediate Antibody-Dependent Cellular Cytotoxicity (ADCC). Most individuals mounted a strong antibody response against SARS-CoV-2 Spike. Plasma neutralization waned faster than anti-Spike binding and ADCC. We observed differences in humoral responses by age and circulating variants. Altogether, we show a global overview of antibody dynamics and functionality against SARS-CoV-2 in Cameroon.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Dell-Dylan Kenfack
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Côté-Chenette
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Oumarou H Goni
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Yannick F Ngoume
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Duerr
- Vaccine Center, NYU Grossman School of Medicine, New York, USA; Department of Medicine, NYU Grossman School of Medicine, New York, USA; Department of Microbiology, NYU Grossman School of Medicine, New York, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada.
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon; HIV Pathogenesis Program, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
6
|
Fu W, Zhang W, You Z, Li G, Wang C, Lei C, Zhao J, Hou J, Hu S. T-Cell-Dependent Bispecific IgGs Protect Aged Mice From Lethal SARS-CoV-2 Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406980. [PMID: 39976129 PMCID: PMC12005765 DOI: 10.1002/advs.202406980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/04/2025] [Indexed: 02/21/2025]
Abstract
T-cell ageing may be a key factor in the disproportionate severity of coronavirus disease 2019 (COVID-19) in older populations. For hospitalized COVID-19 patients, treatment involving the use of monoclonal antibodies with the ability to neutralize SARS-CoV-2 usually involves the administration of high doses but has not been very effective at preventing complications or fatality, highlighting the need for additional research into anti-SARS-CoV-2 therapies, particularly for older populations. In this study, it is discovered that older persons with a severe SARS-CoV-2 infection has weaker T-cell responses. Therefore the development and characterization of spike-targeting T-cell-dependent bispecific (TDB) full-length human immunoglobulin Gs with enhanced efficacy in the treatment of COVID-19 is described. Using S-targeting TDBs, polyclonal T cells are guided to target and destroy S-expressing cells, preventing the cell-to-cell transmission of SARS-CoV-2 and thereby eliminating the need for SARS-CoV-2-specific immunity. Using animal models of COVID-19, it is shown that the selective activation of T cells improves the efficiency of treatment in preinfected mice by attenuating disease-induced weight loss and death. The significance of T-cell-based immunity during infection is highlighted by the findings. These results have implications for better clinical effectiveness of therapies for COVID-19 and the development of T-cell-dependent medicines for the elderly population.
Collapse
Affiliation(s)
- Wenyan Fu
- Department of Assisted ReproductionShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
- Department of Biomedical EngineeringCollege of Basic Medical SciencesSecond Military Medical UniversityShanghai200433China
| | - Wei Zhang
- Department of Respiratory and Critical Care MedicineFirst Affiliated HospitalSecond Military Medical UniversityShanghai200433China
- Center of Critical Care MedicineFirst Affiliated Hospitalthe Second Military Medical UniversityShanghai200433China
| | - Zhongshuai You
- Department of Biomedical EngineeringCollege of Basic Medical SciencesSecond Military Medical UniversityShanghai200433China
| | - Guangyao Li
- Department of BiophysicsCollege of Basic Medical, SciencesSecond Military Medical UniversityShanghai200433China
| | - Chuqi Wang
- Department of Biomedical EngineeringCollege of Basic Medical SciencesSecond Military Medical UniversityShanghai200433China
| | - Changhai Lei
- Department of BiophysicsCollege of Basic Medical, SciencesSecond Military Medical UniversityShanghai200433China
| | - Jian Zhao
- KOCHKOR Biotech, Inc.Shanghai201406China
| | - Jin Hou
- National Key Laboratory of Medical Immunology and Institute of ImmunologySecond Military Medical UniversityShanghai200433China
| | - Shi Hu
- Department of Biomedical EngineeringCollege of Basic Medical SciencesSecond Military Medical UniversityShanghai200433China
| |
Collapse
|
7
|
Rubio-Casillas A, Redwan EM, Uversky VN. More antibodies are not always better: Fc effector functions play a critical role in SARS-CoV-2 infection and protection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:413-447. [PMID: 40246351 DOI: 10.1016/bs.pmbts.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional vaccinology has primarily focused on neutralizing antibody titers as the main correlate of vaccine efficacy, often overlooking the multifaceted roles of antibody Fc effector functions in orchestrating protective immune responses. Fc-mediated immune responses play a pivotal role in immune modulation and pathogen clearance. Emerging evidence from natural infections and vaccine studies highlights the critical contribution of Fc effector functions in determining the quality and durability of immunity. This work explores the limitations of current vaccine evaluation paradigms that prioritize neutralization over Fc effector mechanisms. It also describes findings from a study showing an unexpected role for SARS-CoV-2 anti-spike antibodies: both convalescent plasma and patient-derived monoclonal antibodies (mAbs) lead to maximum phagocytic capacity by monocytes at low concentrations, whereas at higher concentrations the phagocytic capacity was reduced. Given that the severity of COVID-19 disease and antibody titers are strongly positively correlated, this work challenges the paradigm that high antibodies offer better protection against severe disease. It is proposed that humoral and cellular responses elicited by vaccination should never be higher than those produced by natural infection. By integrating antibody Fc effector functions into vaccine development, a paradigm shift is proposed that emphasizes synergic antibody responses. Such an approach could transform vaccine efficacy assessment, enhance protection against dangerous pathogens, and drive innovation in vaccine design.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
8
|
Dunagan MM, Dábilla N, McNinch C, Brenchley JM, Dolan PT, Fox JM. Interaction of the endogenous antibody response with activating FcγRs enhance control of Mayaro virus through monocytes. PLoS Pathog 2025; 21:e1012944. [PMID: 39993025 PMCID: PMC11884725 DOI: 10.1371/journal.ppat.1012944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/06/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus. Previous studies have shown antibody Fc effector functions are critical for optimal monoclonal antibody-mediated protection against alphaviruses; however, the requirement of Fc gamma receptors (FcγRs) for protection during natural infection has not been evaluated. Here, we showed mice lacking activating FcγRs (FcRγ-/-) developed prolonged clinical disease with increased MAYV in joint-associated tissues. Viral reduction was associated with anti-MAYV cell surface binding antibodies rather than neutralizing antibodies. Lack of Fc-FcγR engagement increased the number of monocytes present in the joint-associated tissue through chronic timepoints. Single-cell RNA sequencing showed elevated levels of pro-inflammatory monocytes in joint-associated tissue with increased MAYV RNA present in FcRγ-/- monocytes and macrophages. Transfer of FcRγ-/- monocytes into wild type animals was sufficient to increase virus in joint-associated tissue. Overall, this study suggests that engagement of antibody Fc with activating FcγRs promotes protective responses during MAYV infection and prevents a pro-viral role for monocytes.
Collapse
Affiliation(s)
- Megan M. Dunagan
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie M. Fox
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
9
|
Giannakopoulos S, Pak J, Bakse J, Ward MA, Nerurkar VR, Tallquist MD, Verma S. SARS-CoV-2-induced cytokine storm drives prolonged testicular injury and functional impairment in mice that are mitigated by dexamethasone. PLoS Pathog 2025; 21:e1012804. [PMID: 39775442 PMCID: PMC11706467 DOI: 10.1371/journal.ppat.1012804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Compromised male reproductive health, including reduced testosterone and sperm count, is one of the long COVID symptoms in individuals recovering from mild-severe disease. COVID-19 patients display testicular injury in the acute stage and altered serum fertility markers in the recovery phase, however, long-term implications on the testis remain unknown. This study characterized the consequences of SARS-CoV-2 on testis function. The K18-hACE2 mice that survived SARS-CoV-2 infection were followed for one month after infection and the testicular injury and function markers were assessed at different stages of infection and recovery. The long-term impact of infection on key testes function-related hormones and male fertility was measured. The efficacy of inflammation-suppressing drug in preventing testicular injury was also evaluated. The morphological defects like sloughing of spermatids into the lumen and increased apoptotic cells sustained for 2-4 weeks after infection and correlated with testicular inflammation and immune cell infiltration. Transcriptomic analysis revealed dysregulation of inflammatory, cell death, and steroidogenic pathways. Furthermore, reduced testosterone levels associated with a transient reduction in sperm count and male fertility. Most testicular impairments resolved within one month of infection. Importantly, dexamethasone treatment attenuated testicular damage, inflammation, and immune infiltration. Our results implicate virus-induced cytokine storm as the major driver of testicular injury and functional impairments, timely prevention of which limits testis damage. These findings serve as a model for evaluating therapeutics in long COVID patients and may guide clinical strategies to improve male reproductive health outcomes post-SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stefanos Giannakopoulos
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jin Pak
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jackson Bakse
- Institute for Biogenesis Research, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Monika A. Ward
- Institute for Biogenesis Research, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michelle D. Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
10
|
Portilho AI, Hermes Monteiro da Costa H, Grando Guereschi M, Prudencio CR, De Gaspari E. Hybrid response to SARS-CoV-2 and Neisseria meningitidis C after an OMV-adjuvanted immunization in mice and their offspring. Hum Vaccin Immunother 2024; 20:2346963. [PMID: 38745461 PMCID: PMC11789737 DOI: 10.1080/21645515.2024.2346963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 μg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.
Collapse
MESH Headings
- Animals
- Mice
- Immunoglobulin G/blood
- Neisseria meningitidis/immunology
- Female
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- SARS-CoV-2/immunology
- Adjuvants, Immunologic/administration & dosage
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Immunity, Cellular
- Immunity, Humoral
- Mice, Inbred BALB C
- Meningococcal Infections/prevention & control
- Meningococcal Infections/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Vaccine/administration & dosage
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/immunology
- Immunization/methods
- Antibody Affinity
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Meningococcal Vaccines/immunology
- Meningococcal Vaccines/administration & dosage
- Immunologic Memory
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Hernan Hermes Monteiro da Costa
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Roberto Prudencio
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| | - Elizabeth De Gaspari
- Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
- Post-Graduate Program Interunits in Biotechnology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 PMCID: PMC11686093 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
12
|
Long C, Wang W, Du J, Xu G, Yu C, Wang L. Developing a human monoclonal antibody combination CRM25 to prevent rabies after exposure. Int J Antimicrob Agents 2024; 64:107383. [PMID: 39542064 DOI: 10.1016/j.ijantimicag.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Immunization against rabies post-exposure prophylaxis requires passive immunization with either monoclonal antibody (mAb) or blood-derived rabies immunoglobin (RIG). Currently, replacing traditional RIG with emerging mAb or mAb combinations is highly recommended due to the limited supply and potential safety risks of RIG. METHODS We developed a mAb combination named CRM25 by combining two human mAbs, RM02 and RM05, at a 1:1 mass ratio. RESULTS RM02 and RM05 were non-competing and non-overlapping mAbs targeting epitopes I and III, respectively. K226 and G229 were found to be the critical amino acid sites for RM02 neutralization, but the mutant I338T displayed decreased susceptibility to RM05 neutralization. Notably, CRM25 was capable of cross-neutralizing rabies virus (RABV) strains containing K226M or I338T mutations. CRM25 additionally showed an inhibitory effect on the infection of all tested common RABVs and non-RABV phylogroup I lyssaviruses. CRM25 not only exhibited neutralizing activity but also exhibited antiviral effects via Fc-mediated effector functions. Importantly, CRM25 was comparable to human RIG in terms of its capacity to protect Syrian golden hamsters from lethal RABV challenges. CONCLUSIONS These findings promote more thorough research on CRM25's antiviral properties in cells and in vivo to enhance its clinical applicability and suggest that it may be a viable candidate medication for rabies post-exposure prophylaxis.
Collapse
Affiliation(s)
- Caifeng Long
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Wenbo Wang
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Jialiang Du
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Gangling Xu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China.
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China.
| |
Collapse
|
13
|
Dick JK, Sangala JA, Krishna VD, Khaimraj A, Hamel L, Erickson SM, Hicks D, Soigner Y, Covill LE, Johnson AK, Ehrhardt MJ, Ernste K, Brodin P, Koup RA, Khaitan A, Baehr C, Thielen BK, Henzler CM, Skipper C, Miller JS, Bryceson YT, Wu J, John CC, Panoskaltsis-Mortari A, Orioles A, Steiner ME, Cheeran MCJ, Pravetoni M, Hart GT. NK Cell and Monocyte Dysfunction in Multisystem Inflammatory Syndrome in Children. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1452-1466. [PMID: 39392378 PMCID: PMC11533154 DOI: 10.4049/jimmunol.2400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multiorgan involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong Ab production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 wk postinfection. Therefore, we hypothesized that dysfunctional cell-mediated Ab responses downstream of Ab production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, whereas NK cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Taken together, our results reveal dysregulation in Ab-mediated cellular responses of myeloid and NK cells that likely contribute to the immune pathology of this disease.
Collapse
Affiliation(s)
- Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Jules A. Sangala
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | | | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Lydia Hamel
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Spencer M. Erickson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Yvette Soigner
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Laura E. Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Alexander K. Johnson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Michael J. Ehrhardt
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Petter Brodin
- Unit for Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Richard A. Koup
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alka Khaitan
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Beth K. Thielen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | | | - Caleb Skipper
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Jeffrey S. Miller
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Angela Panoskaltsis-Mortari
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Alberto Orioles
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Marie E. Steiner
- Divisions of Pediatric Critical Care and Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Maxim C. J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
14
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
15
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
16
|
Mothes W. The KT Jeang retrovirology prize 2024: Walther Mothes. Retrovirology 2024; 21:16. [PMID: 39449025 PMCID: PMC11515334 DOI: 10.1186/s12977-024-00649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
|
17
|
Holder KA, Ings DP, Fifield KE, Barnes DA, Barnable KA, Harnum DOA, Russell RS, Grant MD. Sequence Matters: Primary COVID-19 Vaccination after Infection Elicits Similar Anti-spike Antibody Levels, but Stronger Antibody Dependent Cell-mediated Cytotoxicity than Breakthrough Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1105-1114. [PMID: 39248629 PMCID: PMC11457723 DOI: 10.4049/jimmunol.2400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Infection before primary vaccination (herein termed "hybrid immunity") engenders robust humoral immunity and broad Ab-dependent cell-mediated cytotoxicity (ADCC) across SARS-CoV-2 variants. We measured and compared plasma IgG and IgA against Wuhan-Hu-1 and Omicron (B.1.1.529) full-length spike (FLS) and receptor binding domain after three mRNA vaccines encoding Wuhan-Hu-1 spike (S) and after Omicron breakthrough infection. We also measured IgG binding to Wuhan-Hu-1 and Omicron S1, Wuhan-Hu-1 S2 and Wuhan-Hu-1 and Omicron cell-based S. We compared ADCC using human embryonic lung fibroblast (MRC-5) cells expressing Wuhan-Hu-1 or Omicron S. The effect of Omicron breakthrough infection on IgG anti-Wuhan-Hu-1 and Omicron FLS avidity was also considered. Despite Omicron breakthrough infection increasing IgG and IgA against FLS and receptor binding domain to levels similar to those seen with hybrid immunity, there was no boost to ADCC. Preferential recognition of Wuhan-Hu-1 persisted following Omicron breakthrough infection, which increased IgG avidity against Wuhan-Hu-1 FLS. Despite similar total anti-FLS IgG levels following breakthrough infection, 4-fold higher plasma concentrations were required to elicit ADCC comparable to that elicited by hybrid immunity. The greater capacity for hybrid immunity to elicit ADCC was associated with a differential IgG reactivity pattern against S1, S2, and linear determinants throughout FLS. Immunity against SARS-CoV-2 following Omicron breakthrough infection manifests significantly less ADCC capacity than hybrid immunity. Thus, the sequence of antigenic exposure by infection versus vaccination and other factors such as severity of infection affect antiviral functions of humoral immunity in the absence of overt quantitative differences in the humoral response.
Collapse
Affiliation(s)
- Kayla A. Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Danielle P. Ings
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kathleen E. Fifield
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - David A. Barnes
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Keeley A. Barnable
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rodney S. Russell
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
18
|
Gelderloos AT, Verheul MK, Middelhof I, de Zeeuw-Brouwer ML, van Binnendijk RS, Buisman AM, van Kasteren PB. Repeated COVID-19 mRNA vaccination results in IgG4 class switching and decreased NK cell activation by S1-specific antibodies in older adults. Immun Ageing 2024; 21:63. [PMID: 39272189 PMCID: PMC11401348 DOI: 10.1186/s12979-024-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Previous research has shown that repeated COVID-19 mRNA vaccination leads to a marked increase of SARS-CoV-2 spike-specific serum antibodies of the IgG4 subclass, indicating far-reaching immunoglobulin class switching after booster immunization. Considering that repeated vaccination has been recommended especially for older adults, the aim of this study was to investigate IgG subclass responses in the ageing population and assess their relation with Fc-mediated antibody effector functionality. RESULTS Spike S1-specific IgG subclass concentrations (expressed in arbitrary units per mL), antibody-dependent NK cell activation, complement deposition and monocyte phagocytosis were quantified in serum from older adults (n = 38-50, 65-83 years) at one month post-second, -third and -fifth vaccination. Subclass distribution in serum was compared to that in younger adults (n = 64, 18-47 years) at one month post-second and -third vaccination. Compared to younger individuals, older adults showed increased levels of IgG2 and IgG4 at one month post-third vaccination (possibly related to factors other than age) and a further increase following a fifth dose. The capacity of specific serum antibodies to mediate NK cell activation and complement deposition relative to S1-specific total IgG concentrations decreased upon repeated vaccination. This decrease associated with an increased IgG4/IgG1 ratio. CONCLUSIONS In conclusion, these findings show that, like younger individuals, older adults produce antibodies with reduced functional capacity upon repeated COVID-19 mRNA vaccination. Additional research is needed to better understand the mechanisms underlying these responses and their potential implications for vaccine effectiveness. Such knowledge is vital for the future design of optimal vaccination strategies in the ageing population.
Collapse
Affiliation(s)
- Anne T Gelderloos
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marije K Verheul
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Irene Middelhof
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robert S van Binnendijk
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anne-Marie Buisman
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Puck B van Kasteren
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
19
|
Ullah I, Symmes K, Keita K, Zhu L, Grunst MW, Li W, Mothes W, Kumar P, Uchil PD. Beta Spike-Presenting SARS-CoV-2 Virus-like Particle Vaccine Confers Broad Protection against Other VOCs in Mice. Vaccines (Basel) 2024; 12:1007. [PMID: 39340037 PMCID: PMC11435481 DOI: 10.3390/vaccines12091007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Virus-like particles (VLPs) are non-infectious and serve as promising vaccine platforms because they mimic the membrane-embedded conformations of fusion glycoproteins on native viruses. Here, we employed SARS-CoV-2 VLPs (SMEN) presenting ancestral, Beta, or Omicron spikes to identify the variant spike that elicits potent and cross-protective immune responses in the highly sensitive K18-hACE2 challenge mouse model. A combined intranasal and intramuscular SMEN vaccine regimen generated the most effective immune responses to significantly reduce disease burden. Protection was primarily mediated by antibodies, with minor but distinct contributions from T cells in reducing virus spread and inflammation. Immunization with SMEN carrying ancestral spike resulted in 100, 75, or 0% protection against ancestral, Delta, or Beta variant-induced mortality, respectively. However, SMEN with an Omicron spike provided only limited protection against ancestral (50%), Delta (0%), and Beta (25%) challenges. By contrast, SMEN with Beta spikes offered 100% protection against the variants used in this study. Thus, the Beta variant not only overcame the immunity produced by other variants, but the Beta spike also elicited diverse and effective humoral immune responses. Our findings suggest that leveraging the Beta variant spike protein can enhance SARS-CoV-2 immunity, potentially leading to a more comprehensive vaccine against emerging variants.
Collapse
Affiliation(s)
- Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Kelly Symmes
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Kadiatou Keita
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Li Zhu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| |
Collapse
|
20
|
Weskamm LM, Tarnow P, Harms C, Huchon M, Raadsen MP, Friedrich M, Rübenacker L, Grüttner C, Garcia MG, Koch T, Becker S, Sutter G, Lhomme E, Haagmans BL, Fathi A, Blois SM, Dahlke C, Richert L, Addo MM. Dissecting humoral immune responses to an MVA-vectored MERS-CoV vaccine in humans using a systems serology approach. iScience 2024; 27:110470. [PMID: 39148710 PMCID: PMC11325358 DOI: 10.1016/j.isci.2024.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Paulina Tarnow
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Huchon
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
| | - Matthijs P Raadsen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Rübenacker
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Cordula Grüttner
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Antibiotic Stewardship Team, Pharmacy of the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research, Partner Site München, Munich, Germany
| | - Edouard Lhomme
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Richert
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
21
|
Benlarbi M, Ding S, Bélanger É, Tauzin A, Poujol R, Medjahed H, El Ferri O, Bo Y, Bourassa C, Hussin J, Fafard J, Pazgier M, Levade I, Abrams C, Côté M, Finzi A. Temperature-dependent Spike-ACE2 interaction of Omicron subvariants is associated with viral transmission. mBio 2024; 15:e0090724. [PMID: 38953636 PMCID: PMC11323525 DOI: 10.1128/mbio.00907-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The continued evolution of severe acute respiratory syndrome 2 (SARS-CoV-2) requires persistent monitoring of its subvariants. Omicron subvariants are responsible for the vast majority of SARS-CoV-2 infections worldwide, with XBB and BA.2.86 sublineages representing more than 90% of circulating strains as of January 2024. To better understand parameters involved in viral transmission, we characterized the functional properties of Spike glycoproteins from BA.2.75, CH.1.1, DV.7.1, BA.4/5, BQ.1.1, XBB, XBB.1, XBB.1.16, XBB.1.5, FD.1.1, EG.5.1, HK.3, BA.2.86 and JN.1. We tested their capacity to evade plasma-mediated recognition and neutralization, binding to angiotensin-converting enzyme 2 (ACE2), their susceptibility to cold inactivation, Spike processing, as well as the impact of temperature on Spike-ACE2 interaction. We found that compared to the early wild-type (D614G) strain, most Omicron subvariants' Spike glycoproteins evolved to escape recognition and neutralization by plasma from individuals who received a fifth dose of bivalent (BA.1 or BA.4/5) mRNA vaccine and improve ACE2 binding, particularly at low temperatures. Moreover, BA.2.86 had the best affinity for ACE2 at all temperatures tested. We found that Omicron subvariants' Spike processing is associated with their susceptibility to cold inactivation. Intriguingly, we found that Spike-ACE2 binding at low temperature was significantly associated with growth rates of Omicron subvariants in humans. Overall, we report that Spikes from newly emerged Omicron subvariants are relatively more stable and resistant to plasma-mediated neutralization, present improved affinity for ACE2 which is associated, particularly at low temperatures, with their growth rates.IMPORTANCEThe persistent evolution of SARS-CoV-2 gave rise to a wide range of variants harboring new mutations in their Spike glycoproteins. Several factors have been associated with viral transmission and fitness such as plasma-neutralization escape and ACE2 interaction. To better understand whether additional factors could be of importance in SARS-CoV-2 variants' transmission, we characterize the functional properties of Spike glycoproteins from several Omicron subvariants. We found that the Spike glycoprotein of Omicron subvariants presents an improved escape from plasma-mediated recognition and neutralization, Spike processing, and ACE2 binding which was further improved at low temperature. Intriguingly, Spike-ACE2 interaction at low temperature is strongly associated with viral growth rate, as such, low temperatures could represent another parameter affecting viral transmission.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Julie Hussin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Mila—Quebec AI institute, Montreal, Quebec, Canada
| | - Judith Fafard
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Cameron Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
22
|
Guenthoer J, Garrett ME, Lilly M, Depierreux DM, Ruiz F, Chi M, Stoddard CI, Chohan V, Yaffe ZA, Sung K, Ralph D, Chu HY, Matsen FA, Overbaugh J. The S2 subunit of spike encodes diverse targets for functional antibody responses to SARS-CoV-2. PLoS Pathog 2024; 20:e1012383. [PMID: 39093891 PMCID: PMC11324185 DOI: 10.1371/journal.ppat.1012383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 virus responsible for the COVID-19 global pandemic has exhibited a striking capacity for viral evolution that drives continued evasion from vaccine and infection-induced immune responses. Mutations in the receptor binding domain of the S1 subunit of the spike glycoprotein have led to considerable escape from antibody responses, reducing the efficacy of vaccines and monoclonal antibody (mAb) therapies. Therefore, there is a need to interrogate more constrained regions of spike, such as the S2 subdomain. Here, we present a collection of S2 mAbs from two SARS-CoV-2 convalescent individuals that target multiple regions in S2, including regions outside of those commonly reported. One of the S2 mAbs, C20.119, which bound to a highly conserved epitope in the fusion peptide, was able to broadly neutralize across SARS-CoV-2 variants, SARS-CoV-1, and closely related zoonotic sarbecoviruses. The majority of the mAbs were non-neutralizing; however, many of them could mediate antibody-dependent cellular cytotoxicity (ADCC) at levels similar to the S1-targeting mAb S309 that was previously authorized for treatment of SARS-CoV-2 infections. Several of the mAbs with ADCC function also bound to spike trimers from other human coronaviruses (HCoVs), such as MERS-CoV and HCoV-HKU1. Our findings suggest S2 mAbs can target diverse epitopes in S2, including functional mAbs with HCoV and sarbecovirus breadth that likely target functionally constrained regions of spike. These mAbs could be developed for potential future pandemics, while also providing insight into ideal epitopes for eliciting a broad HCoV response.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Margaret Chi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caitlin I. Stoddard
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Beaudoin-Bussières G, Finzi A. Deciphering Fc-effector functions against SARS-CoV-2. Trends Microbiol 2024; 32:756-768. [PMID: 38365562 DOI: 10.1016/j.tim.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Major efforts were deployed to study the antibody response against SARS-CoV-2. Antibodies neutralizing SARS-CoV-2 have been extensively studied in the context of infections, vaccinations, and breakthrough infections. Antibodies, however, are pleiotropic proteins that have many functions in addition to neutralization. These include Fc-effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Although important to combat viral infections, these Fc-effector functions were less studied in the context of SARS-CoV-2 compared with binding and neutralization. This is partly due to the difficulty in developing reliable assays to measure Fc-effector functions compared to antibody binding and neutralization. Multiple assays have now been developed and can be used to measure different Fc-effector functions. Here, we review these assays and what is known regarding anti-SARS-CoV-2 Fc-effector functions. Overall, this review summarizes and updates our current state of knowledge regarding anti-SARS-CoV-2 Fc-effector functions.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec H2X 0A9, Canada
| | - Andrés Finzi
- Centre de recherche du CHUM, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec H2X 0A9, Canada.
| |
Collapse
|
24
|
Izadi A, Nordenfelt P. Protective non-neutralizing SARS-CoV-2 monoclonal antibodies. Trends Immunol 2024; 45:609-624. [PMID: 39034185 DOI: 10.1016/j.it.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Recent studies show an important role for non-neutralizing anti-spike antibodies, including monoclonal antibodies (mAbs), in robustly protecting against SARS-CoV-2 infection. These mAbs use Fc-mediated functions such as complement activation, phagocytosis, and cellular cytotoxicity. There is an untapped potential for using non-neutralizing mAbs in durable antibody treatments; because of their available conserved epitopes, they may not be as sensitive to virus mutations as neutralizing mAbs. Here, we discuss evidence of non-neutralizing mAb-mediated protection against SARS-CoV-2 infection. We explore how non-neutralizing mAb Fc-mediated functions can be enhanced via novel antibody-engineering techniques. Important questions remain to be answered regarding the characteristics of protective non-neutralizing mAbs, including the models and assays used for study, the risks of ensuing detrimental inflammation, as well as the durability and mechanisms of protection.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden.
| |
Collapse
|
25
|
van der Straten K, Guerra D, Kerster G, Claireaux M, Grobben M, Schriek AI, Boyd A, van Rijswijk J, Tejjani K, Eggink D, Beaumont T, de Taeye SW, de Bree GJ, Sanders RW, van Gils MJ. Primary SARS-CoV-2 variant of concern infections elicit broad antibody Fc-mediated effector functions and memory B cell responses. PLoS Pathog 2024; 20:e1012453. [PMID: 39146376 PMCID: PMC11349224 DOI: 10.1371/journal.ppat.1012453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by human sera is a strong correlate of protection against symptomatic and severe Coronavirus Disease 2019 (COVID-19). The emergence of antigenically distinct SARS-CoV-2 variants of concern (VOCs) and the relatively rapid waning of serum antibody titers, however, raises questions about the sustainability of serum protection. In addition to serum neutralization, other antibody functionalities and the memory B cell (MBC) response are suggested to help maintaining this protection. In this study, we investigate the breadth of spike (S) protein-specific serum antibodies that mediate effector functions by interacting with Fc-gamma receptor IIa (FcγRIIa) and FcγRIIIa, and of the receptor binding domain (RBD)-specific MBCs, following a primary SARS-CoV-2 infection with the D614G, Alpha, Beta, Gamma, Delta, Omicron BA.1 or BA.2 variant. Irrespectively of the variant causing the infection, the breadth of S protein-specific serum antibodies that interact with FcγRIIa and FcγRIIIa and the RBD-specific MBC responses exceeded the breadth of serum neutralization, although the Alpha-induced B cell response seemed more strain-specific. Between VOC groups, both quantitative and qualitative differences in the immune responses were observed, suggesting differences in immunogenicity. Overall, this study contributes to the understanding of protective humoral and B cell responses in the light of emerging antigenically distinct VOCs, and highlights the need to study the immune system beyond serum neutralization to gain a better understanding of the protection against emerging variants.
Collapse
Affiliation(s)
- Karlijn van der Straten
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Denise Guerra
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gius Kerster
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marloes Grobben
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Anders Boyd
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Stichting HIV monitoring, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Dirk Eggink
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Steven W. de Taeye
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location Academic Medical Center, Department of Internal Medicine, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Marit J. van Gils
- Amsterdam UMC, location Academic Medical Center, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Gelderloos AT, Lakerveld AJ, Schepp RM, Nicolaie MA, van Beek J, Beckers L, van Binnendijk RS, Rots NY, van Kasteren PB. Primary SARS-CoV-2 infection in children and adults results in similar Fc-mediated antibody effector function patterns. Clin Transl Immunology 2024; 13:e1521. [PMID: 39071109 PMCID: PMC11273100 DOI: 10.1002/cti2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Objectives Increasing evidence suggests that Fc-mediated antibody effector functions have an important role in protection against respiratory viruses, including SARS-CoV-2. However, limited data are available on the potential differences in the development, heterogeneity and durability of these responses in children compared to adults. Methods Here, we assessed the development of spike S1-specific serum antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and natural killer cell activation (ADNKA), alongside specific antibody binding concentrations (IgG, IgA and IgM) and IgG avidity in healthy adults (n = 38, 18-56 years) and children (n = 21, 5-16 years) following primary SARS-CoV-2 infection, with a 10-month longitudinal follow-up. Differences between groups were assessed using a nonparametric Kruskal-Wallis test with Dunn's multiple comparisons test. Results We found similar (functional) antibody responses in children compared to adults, with a tendency for increased durability in children, which was statistically significant for ADCD (P < 0.05). While ADNKA was strongly reduced in both adults (P < 0.001) and children (P < 0.05) at the latest time point, ADCP remained relatively stable over time, possibly relating to an increase in avidity of the spike-specific antibodies (P < 0.001). Finally, the ADNKA capacity relative to antibody concentration appeared to decrease over time in both children and adults. Conclusion In conclusion, our data provide novel insights into the development of SARS-CoV-2-specific antibody Fc-mediated effector functions in children and adults. An increased understanding of these characteristics in specific age populations is valuable for the future design of novel and improved vaccination strategies for respiratory viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- Anne T Gelderloos
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Anke J Lakerveld
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Rutger M Schepp
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Mioara Alina Nicolaie
- Department of Statistics, Information Technology and Modelling (SIM)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Josine van Beek
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Lisa Beckers
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Robert S van Binnendijk
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Nynke Y Rots
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Puck B van Kasteren
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| |
Collapse
|
27
|
Dunagan MM, Dábilla N, McNinch C, Brenchley JM, Dolan PT, Fox JM. Activating FcγRs on monocytes are necessary for optimal Mayaro virus clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604823. [PMID: 39149309 PMCID: PMC11326306 DOI: 10.1101/2024.07.23.604823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mayaro virus (MAYV) is an emerging arbovirus. Previous studies have shown antibody Fc effector functions are critical for optimal monoclonal antibody-mediated protection against alphaviruses; however, the requirement of Fc gamma receptors (FcγRs) for protection during natural infection has not been evaluated. Here, we showed mice lacking activating FcγRs (FcRγ-/-) developed prolonged clinical disease with more virus in joint-associated tissues. Viral clearance was associated with anti-MAYV cell surface binding rather than neutralizing antibodies. Lack of Fc-FcγR engagement increased the number of monocytes through chronic timepoints. Single cell RNA sequencing showed elevated levels of pro-inflammatory monocytes in joint-associated tissue with increased MAYV RNA present in FcRγ-/- monocytes and macrophages. Transfer of FcRγ-/- monocytes into wild type animals was sufficient to increase virus in joint-associated tissue. Overall, this study suggests that engagement of antibody Fc with activating FcγRs promotes protective responses during MAYV infection and prevents monocytes from being potential targets of infection.
Collapse
Affiliation(s)
- Megan M. Dunagan
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nathânia Dábilla
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Colton McNinch
- Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie M. Fox
- Emerging Virus Immunity Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Chang YH, Hsu MF, Chen WN, Wu MH, Kong WL, Lu MYJ, Huang CH, Chang FJ, Chang LY, Tsai HY, Tung CP, Yu JH, Kuo Y, Chou YC, Bai LY, Chang YC, Chen AY, Chen CC, Chen YH, Liao CC, Chang CS, Liang JJ, Lin YL, Angata T, Hsu STD, Lin KI. Functional and structural investigation of a broadly neutralizing SARS-CoV-2 antibody. JCI Insight 2024; 9:e179726. [PMID: 38775156 PMCID: PMC11141937 DOI: 10.1172/jci.insight.179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single-B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Nan Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Wye-Lup Kong
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Ju Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Ho-Yang Tsai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jou-Hui Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yali Kuo
- Biomedical Translation Research Center (BioTReC)
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC)
| | - Li-Yang Bai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuan-Chih Chang
- Institute of Biological Chemistry and
- Academia Sinica Cryo-EM Center, and
| | - An-Yu Chen
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine
- Graduate Institute of Medical Sciences, and
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Biomedical Translation Research Center (BioTReC)
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and
| | - Shang-Te Danny Hsu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry and
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKC M2, ) Hiroshima University, Hiroshima, Japan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center (BioTReC)
| |
Collapse
|
29
|
Tamura T, Ito H, Torii S, Wang L, Suzuki R, Tsujino S, Kamiyama A, Oda Y, Tsuda M, Morioka Y, Suzuki S, Shirakawa K, Sato K, Yoshimatsu K, Matsuura Y, Iwano S, Tanaka S, Fukuhara T. Akaluc bioluminescence offers superior sensitivity to track in vivo dynamics of SARS-CoV-2 infection. iScience 2024; 27:109647. [PMID: 38638572 PMCID: PMC11025001 DOI: 10.1016/j.isci.2024.109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. Because the gene size of RNA viruses is typically small, NanoLuc is the primary choice for accommodation within viral genome. However, NanoLuc/Furimazine and also the conventional firefly luciferase/D-luciferin are known to exhibit relatively low tissue permeability and thus less sensitivity for visualization of deep tissue including lungs. Here, we demonstrated in vivo sufficient visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using the pair of a codon-optimized Akaluc and AkaLumine. We engineered the codon-optimized Akaluc gene possessing the similar GC ratio of SARS-CoV-2. Using the SARS-CoV-2 recombinants carrying the codon-optimized Akaluc, we visualized in vivo infection of respiratory organs, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of antivirals by monitoring changes in Akaluc signals. Overall, we offer an effective technology for monitoring viral dynamics in live animals.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Shiho Torii
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Akifumi Kamiyama
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yuhei Morioka
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Tokyo 113-0033, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Kumiko Yoshimatsu
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoshi Iwano
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Tokyo 100-0004, Japan
| |
Collapse
|
30
|
Gao R, Feng C, Sheng Z, Li F, Wang D. Research progress in Fc-effector functions against SARS-CoV-2. J Med Virol 2024; 96:e29638. [PMID: 38682662 DOI: 10.1002/jmv.29638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 676 million cases in the global human population with approximately 7 million deaths and vaccination has been proved as the most effective countermeasure in reducing clinical complications and mortality rate of SARS-CoV-2 infection in people. However, the protective elements and correlation of protection induced by vaccination are still not completely understood. Various antibodies with multiple protective mechanisms can be induced simultaneously by vaccination in vivo, thereby complicating the identification and characterization of individual correlate of protection. Recently, an increasing body of observations suggests that antibody-induced Fc-effector functions play a crucial role in combating SARS-CoV-2 infections, including neutralizing antibodies-escaping variants. Here, we review the recent progress in understanding the impact of Fc-effector functions in broadly disarming SARS-CoV-2 infectivity and discuss various efforts in harnessing this conserved antibody function to develop an effective SARS-CoV-2 vaccine that can protect humans against infections by SARS-CoV-2 virus and its variants of concern.
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Chenchen Feng
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
31
|
Papini C, Ullah I, Ranjan AP, Zhang S, Wu Q, Spasov KA, Zhang C, Mothes W, Crawford JM, Lindenbach BD, Uchil PD, Kumar P, Jorgensen WL, Anderson KS. Proof-of-concept studies with a computationally designed M pro inhibitor as a synergistic combination regimen alternative to Paxlovid. Proc Natl Acad Sci U S A 2024; 121:e2320713121. [PMID: 38621119 PMCID: PMC11046628 DOI: 10.1073/pnas.2320713121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/27/2024] [Indexed: 04/17/2024] Open
Abstract
As the SARS-CoV-2 virus continues to spread and mutate, it remains important to focus not only on preventing spread through vaccination but also on treating infection with direct-acting antivirals (DAA). The approval of Paxlovid, a SARS-CoV-2 main protease (Mpro) DAA, has been significant for treatment of patients. A limitation of this DAA, however, is that the antiviral component, nirmatrelvir, is rapidly metabolized and requires inclusion of a CYP450 3A4 metabolic inhibitor, ritonavir, to boost levels of the active drug. Serious drug-drug interactions can occur with Paxlovid for patients who are also taking other medications metabolized by CYP4503A4, particularly transplant or otherwise immunocompromised patients who are most at risk for SARS-CoV-2 infection and the development of severe symptoms. Developing an alternative antiviral with improved pharmacological properties is critical for treatment of these patients. By using a computational and structure-guided approach, we were able to optimize a 100 to 250 μM screening hit to a potent nanomolar inhibitor and lead compound, Mpro61. In this study, we further evaluate Mpro61 as a lead compound, starting with examination of its mode of binding to SARS-CoV-2 Mpro. In vitro pharmacological profiling established a lack of off-target effects, particularly CYP450 3A4 inhibition, as well as potential for synergy with the currently approved alternate antiviral, molnupiravir. Development and subsequent testing of a capsule formulation for oral dosing of Mpro61 in B6-K18-hACE2 mice demonstrated favorable pharmacological properties, efficacy, and synergy with molnupiravir, and complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate.
Collapse
Affiliation(s)
- Christina Papini
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520-8066
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT06520-8066
| | - Amalendu P. Ranjan
- Department of Microbiology, Immunology and Genetics Graduate School for Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX76107
| | - Shuo Zhang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06520-8066
| | - Qihao Wu
- Department of Chemistry, Yale University, New Haven, CT06520-8107
| | - Krasimir A. Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520-8066
| | - Chunhui Zhang
- Department of Chemistry, Yale University, New Haven, CT06520-8107
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06520-8066
| | | | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06520-8066
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06520-8066
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT06520-8066
| | | | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520-8066
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT06520-8066
| |
Collapse
|
32
|
Ueki H, Kiso M, Furusawa Y, Iida S, Yamayoshi S, Nakajima N, Imai M, Suzuki T, Kawaoka Y. Development of a Mouse-Adapted Reporter SARS-CoV-2 as a Tool for Two-Photon In Vivo Imaging. Viruses 2024; 16:537. [PMID: 38675880 PMCID: PMC11053786 DOI: 10.3390/v16040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often causes severe viral pneumonia. Although many studies using mouse models have examined the pathogenicity of SARS-CoV-2, COVID-19 pathogenesis remains poorly understood. In vivo imaging analysis using two-photon excitation microscopy (TPEM) is useful for elucidating the pathology of COVID-19, providing pathological insights that are not available from conventional histological analysis. However, there is no reporter SARS-CoV-2 that demonstrates pathogenicity in C57BL/6 mice and emits sufficient light intensity for two-photon in vivo imaging. Here, we generated a mouse-adapted strain of SARS-CoV-2 (named MASCV2-p25) and demonstrated its efficient replication in the lungs of C57BL/6 mice, causing fatal pneumonia. Histopathologic analysis revealed the severe inflammation and infiltration of immune cells in the lungs of MASCV2-p25-infected C57BL/6 mice, not unlike that observed in COVID-19 patients with severe pneumonia. Subsequently, we generated a mouse-adapted reporter SARS-CoV-2 (named MASCV-Venus-p9) by inserting the fluorescent protein-encoding gene Venus into MASCV2-p25 and sequential lung-to-lung passages in C57BL/6 mice. C57BL/6 mice infected with MASCV2-Venus-p9 exhibited severe pneumonia. In addition, the TPEM of the lungs of the infected C57BL/6J mice showed that the infected cells emitted sufficient levels of fluorescence for easy observation. These findings suggest that MASCV2-Venus-p9 will be useful for two-photon in vivo imaging studies of the pathogenesis of severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Hiroshi Ueki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Shun Iida
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
| | - Noriko Nakajima
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Tadaki Suzuki
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (H.U.); (M.K.); (Y.F.); (S.Y.); (M.I.)
- Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; (S.I.); (N.N.); (T.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| |
Collapse
|
33
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Bioluminescence imaging reveals enhanced SARS-CoV-2 clearance in mice with combinatorial regimens. iScience 2024; 27:109049. [PMID: 38361624 PMCID: PMC10867665 DOI: 10.1016/j.isci.2024.109049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have escaped vaccine-elicited spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy regimens did not eradicate SARS-CoV-2 in mice, but combining molnupiravir with nirmatrelvir exhibited superior additive efficacy and led to virus clearance. Furthermore, combining molnupiravir with caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma demonstrated synergy, rapid virus clearance, and 100% survival. Thus, our study provides insights into in vivo treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fanny Escudie
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Zoela Gilani
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Fleur Gaudette
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
| | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Renée Bazin
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
- Departement de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
34
|
Bradshaw CM, Georgieva T, Tankersley TN, Taylor-Doyle T, Johnson L, Uhrlaub JL, Besselsen D, Nikolich JŽ. Cutting Edge: Characterization of Low Copy Number Human Angiotensin-Converting Enzyme 2-Transgenic Mice as an Improved Model of SARS-CoV-2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:523-528. [PMID: 38197714 DOI: 10.4049/jimmunol.2300591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
A popular mouse model of COVID-19, the K18-hACE2 mouse, expresses the SARS-coronavirus entry receptor, human angiotensin-converting enzyme 2 (hACE2) driven by the keratin-18 promoter. SARS-CoV-2-infected K18-hACE2 mice exhibit neuropathology not representative of human infection. They contain eight transgene (Tg) copies, leading to excess hACE2 expression and rampant viral replication. We generated two new lines of K18-hACE2 mice encoding one and two copies of hACE2 (1-hACE2-Tg and 2-hACE2-Tg, respectively). Relative to the original strain (called 8-hACE2-Tg in this study), 2-hACE2-Tg mice exhibited lower mortality, with less viral replication in the lung and brain. Furthermore, 1-hACE2-Tg mice exhibited no mortality and had no detectable virus in the brain; yet, they exhibited clear viral replication in the lung. All three strains showed SARS-CoV-2-related weight loss commensurate with the mortality rates. 1-hACE2-Tg mice mounted detectable primary and memory T effector cell and Ab responses. We conclude that these strains provide improved models to study hACE2-mediated viral infections.
Collapse
Affiliation(s)
- Christine M Bradshaw
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ
- Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ
| | - Teodora Georgieva
- Genetically Engineered Mouse Model (GEMM) Core, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ
| | - Trevor N Tankersley
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ
- Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ
| | - Tama Taylor-Doyle
- Genetically Engineered Mouse Model (GEMM) Core, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ
| | - Larry Johnson
- Genetically Engineered Mouse Model (GEMM) Core, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ
- Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ
| | - David Besselsen
- BIO5 Institute, University of Arizona, Tucson, AZ
- Arizona Animal Care, University of Arizona, Tucson, AZ
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ
- Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ
- Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, Tucson, AZ
| |
Collapse
|
35
|
Sankhala RS, Dussupt V, Chen WH, Bai H, Martinez EJ, Jensen JL, Rees PA, Hajduczki A, Chang WC, Choe M, Yan L, Sterling SL, Swafford I, Kuklis C, Soman S, King J, Corbitt C, Zemil M, Peterson CE, Mendez-Rivera L, Townsley SM, Donofrio GC, Lal KG, Tran U, Green EC, Smith C, de Val N, Laing ED, Broder CC, Currier JR, Gromowski GD, Wieczorek L, Rolland M, Paquin-Proulx D, van Dyk D, Britton Z, Rajan S, Loo YM, McTamney PM, Esser MT, Polonis VR, Michael NL, Krebs SJ, Modjarrad K, Joyce MG. Antibody targeting of conserved sites of vulnerability on the SARS-CoV-2 spike receptor-binding domain. Structure 2024; 32:131-147.e7. [PMID: 38157856 PMCID: PMC11145656 DOI: 10.1016/j.str.2023.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Spencer L Sterling
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Isabella Swafford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Courtney Corbitt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Samantha M Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ethan C Green
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Clayton Smith
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dewald van Dyk
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Zachary Britton
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Saravanan Rajan
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yueh Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Patrick M McTamney
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
36
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
37
|
Abstract
The treatment for COVID-19 has evolved rapidly since the start of the pandemic and now consists mainly of antiviral and immunomodulatory agents. Antivirals, such as remdesivir and nirmatrelvir-ritonavir, have proved to be most useful earlier in illness (e.g., as outpatient therapy) and for less severe disease. Immunomodulatory therapies, such as dexamethasone and interleukin-6 or Janus kinase inhibitors, are most useful in severe disease or critical illness. The role of anti-SARS-CoV-2 monoclonal antibodies has diminished because of the emergence of viral variants that are not anticipated to be susceptible to these treatments, and there still is not a consensus on the use of convalescent plasma. COVID-19 has been associated with increased rates of venous thromboembolism, but the role of antithrombotic therapy is limited. Multiple investigational agents continue to be studied, which will alter current treatment paradigms as new data are released.
Collapse
Affiliation(s)
- Hayden S Andrews
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Jonathan D Herman
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
38
|
Adhikari A, Abayasingam A, Brasher NA, Kim HN, Lord M, Agapiou D, Maher L, Rodrigo C, Lloyd AR, Bull RA, Tedla N. Characterization of antibody-dependent cellular phagocytosis in patients infected with hepatitis C virus with different clinical outcomes. J Med Virol 2024; 96:e29381. [PMID: 38235622 PMCID: PMC10953302 DOI: 10.1002/jmv.29381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Early neutralizing antibodies against hepatitis C virus (HCV) and CD8 + T cell effector responses can lead to viral clearance. However, these functions alone are not sufficient to protect patients against HCV infection, thus undefined additional antiviral immune mechanisms are required. In recent years, Fc-receptor-dependent antibody effector functions, particularly, antibody-dependent cellular phagocytosis (ADCP) were shown to offer immune protection against several RNA viruses. However, its development and clinical role in patients with HCV infection remain unknown. In this study, we found that patients with chronic GT1a or GT3a HCV infection had significantly higher concentrations of anti-envelope 2 (E2) antibodies, predominantly IgG1 subclass, than patients that cleared the viruses while the latter had antibodies with higher affinities. 97% of the patients with HCV had measurable ADCP of whom patients with chronic disease showed significantly higher ADCP than those who naturally cleared the virus. Epitope mapping studies showed that patients with antibodies that target antigenic domains on the HCV E2 protein that are known to associate with neutralization function are also strongly associated with ADCP, suggesting antibodies with overlapping/dual functions. Correlation studies showed that ADCP significantly correlated with plasma anti-E2 antibody levels and neutralization function regardless of clinical outcome and genotype of infecting virus, while a significant correlation between ADCP and affinity was only evident in patients that cleared the virus. These results suggest ADCP was mostly driven by antibody titer in patients with chronic disease while maintained in clearers due to the quality (affinity) of their anti-E2 antibodies despite having lower antibody titers.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- Department of Infection and ImmunologyKathmandu Research Institute for Biological SciencesLalitpurNepal
| | - Arunasingam Abayasingam
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicholas A. Brasher
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
| | - Megan Lord
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
- Graduate School of Biomedical Engineering, Faculty of EngineeringUNSW SydneySydneyNew South WalesAustralia
| | - David Agapiou
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Lisa Maher
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Andrew R. Lloyd
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Rowena A. Bull
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
39
|
Xu H, Jian X, Wen Y, Xu M, Jin R, Wu X, Zhou F, Cao J, Xiao G, Peng K, Xie Y, Chen H, Zhang L. A nanoluciferase SFTSV for rapid screening antivirals and real-time visualization of virus infection in mice. EBioMedicine 2024; 99:104944. [PMID: 38176215 PMCID: PMC10806088 DOI: 10.1016/j.ebiom.2023.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that causes severe hemorrhagic fever in humans, but no FDA-approved specific antivirals or vaccines are available to treat or prevent SFTS. METHODS The plasmids construction and transfection were performed to generate the recombinant SFTSV harboring the nanoluciferase gene (SFTSV-Nluc). Immunostaining plaque assay was performed to measure viral titers, and DNA electrophoresis and Sanger sequencing were performed to evaluate the genetic stability. Luciferase assay and quantitative RT-PCR were performed to evaluate the efficacy of antivirals in vitro. Bioluminescence imaging, titration of virus from excised organs, hematology, and histopathology and immunohistochemistry were performed to evaluate the efficacy of antivirals in vivo. FINDINGS SFTSV-Nluc exhibited high genetic stability and replication kinetics similar to those of wild-type virus (SFTSVwt), then a rapid high-throughput screening system for identifying inhibitors to treat SFTS was developed, and a nucleoside analog, 4-FlU, was identified to effectively inhibit SFTSV in vitro. SFTSV-Nluc mimicked the replication characteristics and localization of SFTSVwt in counterpart model mice. Bioluminescence imaging of SFTSV-Nluc allowed real-time visualization and quantification of SFTSV replication in the mice. 4-FlU was demonstrated to inhibit the replication of SFTSV with more efficiency than T-705 and without obvious adverse effect in vivo. INTERPRETATION The high-throughput screening system based on SFTSV-Nluc for use in vitro and in vivo revealed that a safe and effective antiviral nucleoside analog, 4-FlU, may be a basis for the strategic treatment of SFTSV and other bunyavirus infections, paving the way for the discovery of antivirals. FUNDING This work was supported by grants from the National Key Research and Development Plan of China (2021YFC2300700 to L. Zhang, 2022YFC2303300 to L. Zhang), Strategic Priority Research Program of Chinese Academy of Sciences (XDB0490000 to L. Zhang), National Natural Science Foundation of China (31970165 to L. Zhang, U22A20379 to G. Xiao), the Science and Technology Commission of Shanghai Municipality (21S11903100 to Y. Xie), Hubei Natural Science Foundation for Distinguished Young Scholars (2022CFA099 to L. Zhang).
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqin Jian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwei Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyuan Cao
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China.
| | | | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
40
|
Yamamoto Y, Inoue T. Current Status and Perspectives of Therapeutic Antibodies Targeting the Spike Protein S2 Subunit against SARS-CoV-2. Biol Pharm Bull 2024; 47:917-923. [PMID: 38692869 DOI: 10.1248/bpb.b23-00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has devastated public health and the global economy. New variants are continually emerging because of amino acid mutations within the SARS-CoV-2 spike protein. Existing neutralizing antibodies (nAbs) that target the receptor-binding domain (RBD) within the spike protein have been shown to have reduced neutralizing activity against these variants. In particular, the recently expanding omicron subvariants BQ 1.1 and XBB are resistant to nAbs approved for emergency use by the United States Food and Drug Administration. Therefore, it is essential to develop broad nAbs to combat emerging variants. In contrast to the massive accumulation of mutations within the RBD, the S2 subunit remains highly conserved among variants. Therefore, nAbs targeting the S2 region may provide effective cross-protection against novel SARS-CoV-2 variants. Here, we provide a detailed summary of nAbs targeting the S2 subunit: the fusion peptide, stem helix, and heptad repeats 1 and 2. In addition, we provide prospects to solve problems such as the weak neutralizing potency of nAbs targeting the S2 subunit.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
41
|
Maranda B, Labbé SM, Lurquin M, Brabant P, Fugère A, Larrivée JF, Grbic D, Leroux A, Leduc F, Finzi A, Gaudreau S, Swart Y. Safety and efficacy of inhaled IBIO123 for mild-to-moderate COVID-19: a randomised, double-blind, dose-ascending, placebo-controlled, phase 1/2 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:25-35. [PMID: 37619584 DOI: 10.1016/s1473-3099(23)00393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND COVID-19 severity is associated with its respiratory manifestations. Neutralising antibodies against SARS-CoV-2 administered systemically have shown clinical efficacy. However, immediate and direct delivery of neutralising antibodies via inhalation might provide additional respiratory clinical benefits. IBIO123 is a cocktail of three, fully human, neutralising monoclonal antibodies against SARS-CoV-2. We aimed to assess the safety and efficacy of inhaled IBIO123 in individuals with mild-to-moderate COVID-19. METHODS This double-blind, dose-ascending, placebo-controlled, first-in-human, phase 1/2 trial recruited symptomatic and non-hospitalised participants with COVID-19 in South Africa and Brazil across 11 centres. Eligible participants were adult outpatients (aged ≥18 years; men and non-pregnant women) infected with COVID-19 (first PCR-confirmed within 72 h) and with mild-to-moderate symptoms, the onset of which had to be within 10 days of randomisation. Using permuted blocks of four, stratified by site, we randomly assigned participants (1:3) to receive single-dose placebo or IBIO123 (1 mg, 5 mg, or 10 mg) in phase 1, and single-dose placebo or IBIO123 (10 mg) in phase 2, in addition to local standard of care. Participants underwent serological testing to identify antibodies against SARS-CoV-2. Participants, investigators, and the study team were masked to treatment assignment. In phase 1, the primary outcome was the safety assessment in the safety population (ie, all participants who received an intervention). In phase 2, the primary outcome was the mean absolute change from baseline to day 5 in SARS-CoV-2 viral load measured by nasopharyngeal swabs analysed using a mixed model for repeated measures in the full analysis set (FAS; ie, participants with one analysable viral load value at baseline and at least one analysable viral load value at day 3 or day 5). Secondary clinical outcomes included safety from baseline to day 29, assessed by evaluating adverse events; the effect of IBIO123 on baseline COVID-19 symptoms resolution until day 6, with symptoms systemically evaluated by the investigators; and disease progression as measured by the COVID-19 WHO Clinical Progression Scale. For clinical endpoints in phase 2, we used a modified FAS (ie, participants who had at least one analysable viral load value over the course of the study, confirming that they were infected with SARS-CoV-2). This trial is now completed and is registered with ClinicalTrials.gov, NCT05298813. FINDINGS Between Dec 4, 2021, and May 23, 2022, 24 participants were enrolled in phase 1. Between July 20, 2022, and Jan 4, 2023, 138 participants were enrolled in phase 2 and five were excluded because they did not meet the inclusion criteria. Participants were randomly assigned to receive IBIO123 (n=18) or placebo (n=6) in phase 1, and randomly assigned to receive IBIO123 (n=104) or placebo (n=34) in phase 2. In phase 2, the study was stopped before reaching the planned accrual because of a decline in COVID-19 incidence. In phase 1, no safety issues were observed. In phase 2, the difference in mean absolute change from baseline viral load to day 5 between participants in the IBIO123 group and participants in the placebo group was -0·29 log10 copies per mL (95% CI -1·32 to 0·75; p=0·45) in the FAS population and -0·49 log10 copies per mL (-1·56 to 0·58; p=0·20) in seropositive participants. In the modified FAS, 81 (69%) of 118 participants were at high risk of severe disease progression. The number of participants with resolution of respiratory symptoms at day 6 was 34 (42%) of 81 in the IBIO123 group versus five (17%) of 29 in the placebo group (p=0·017) in the modified FAS population and 19 (35%) of 55 versus three (14%) of 21 among participants at high risk (p=0·083). One participant died and one participant was hospitalised in the placebo group, whereas no deaths or hospitalisations were reported in the IBIO123 group. 39 (38%) of 104 participants in the IBIO123 group had adverse events, compared with 13 (38%) of 34 in the placebo group. INTERPRETATION Inhalation of IBIO123 was safe. Despite the lack of significant reduction of viral load at day 5, treatment with IBIO123 resulted in a higher proportion of participants with complete resolution of respiratory symptoms at day 6. This study supports further clinical research on inhaled monoclonal antibodies in COVID-19 and respiratory diseases in general. FUNDING Canadian Strategic Innovation Fund and Immune Biosolutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | | | | |
Collapse
|
42
|
Yao H, Wang H, Zhang Z, Lu Y, Zhang Z, Zhang Y, Xiong X, Wang Y, Wang Z, Yang H, Zhao J, Xu W. A potent and broad-spectrum neutralizing nanobody for SARS-CoV-2 viruses, including all major Omicron strains. MedComm (Beijing) 2023; 4:e397. [PMID: 37901798 PMCID: PMC10600506 DOI: 10.1002/mco2.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
SARS-CoV-2 viruses are highly transmissible and immune evasive. It is critical to develop broad-spectrum prophylactic and therapeutic antibodies for potential future pandemics. Here, we used the phage display method to discover nanobodies (Nbs) for neutralizing SARS-CoV-2 viruses especially Omicron strains. The leading nanobody (Nb), namely, Nb4, with excellent physicochemical properties, can neutralize Delta and Omicron subtypes, including BA.1, BA.1.1 (BA.1 + R346K), BA.2, BA.5, BQ.1, and XBB.1. The crystal structure of Nb4 in complex with the receptor-binding domain (RBD) of BA.1 Spike protein reveals that Nb4 interacts with an epitope on the RBD overlapping with the receptor-binding motif, and thus competes with angiotensin-converting enzyme 2 (ACE2) binding. Nb4 is expected to be effective for neutralizing most recent Omicron variants, since the epitopes are evolutionarily conserved among them. Indeed, trivalent Nb4 interacts with the XBB1.5 Spike protein with low nM affinity and competes for ACE2 binding. Prophylactic and therapeutic experiments in mice indicated that Nb4 could reduce the Omicron virus loads in the lung. In particular, in prophylactic experiments, intranasal administration of multivalent Nb4 completely protected mice from Omicron infection. Taken together, these results demonstrated that Nb4 could serve as a potent and broad-spectrum prophylactic and therapeutic Nb for COVID-19.
Collapse
Affiliation(s)
- Hebang Yao
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Hongyang Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yuchi Lu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Zhiying Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yu Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xinyi Xiong
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yanqun Wang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhizhi Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Haitao Yang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
- Guangzhou LaboratoryBio‐IslandGuangzhouGuangdongChina
- Institute of Infectious DiseaseGuangzhou Eighth People's Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Institute for HepatologyNational Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Wenqing Xu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
43
|
Wang L, Li C, Li W, Zhao L, Zhao T, Chen L, Li M, Fan J, Li J, Wu C, Chen Y. Coronavac inactivated vaccine triggers durable, cross-reactive Fc-mediated phagocytosis activities. Emerg Microbes Infect 2023; 12:2225640. [PMID: 37309826 PMCID: PMC10332191 DOI: 10.1080/22221751.2023.2225640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Although humoral responses elicited by infection or vaccine lost the ability to prevent transmission against Omicron, vaccine-induced antibodies may still contribute to disease attenuation through Fc-mediated effector functions. However, Fc effector function elicited by CoronaVac, as the most widely supplied inactivated vaccine globally, has not been characterized. For the first time, our study depicted Fc-mediated phagocytosis activity induced by CoronaVac, including antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent neutrophil phagocytosis (ADNP) activities, and further compared with that from convalescent individuals and CoronaVac recipients with subsequent breakthrough infections. We showed that 2-dose of CoronaVac effectively induced both ADCP and ADNP, but was substantially lower compared to infection, whereas the booster dose further augmented ADCP and ADNP responses, and remained detectable for 52 weeks. Among CoronaVac recipients, ADCP and ADNP responses also demonstrated cross-reactivity against Omicron subvariants, and breakthrough infection could enhance the phagocytic response. Meanwhile, serum samples from vaccinees, convalescent individuals with wildtype infection, BA.2 and BA.5 breakthrough infection demonstrated differential cross-reactive ADCP and ADNP responses against Omicron subvariants, suggesting the different subvariants of spike antigen exposure might alter the cross-reactivity of Fc effector function. Further, ADCP and ADNP responses were strongly correlated with Spike-specific IgG responses and neutralizing activities, indicating coordinated neutralization activity, ADCP and ADNP responses triggered by CoronaVac. Of note, the ADCP and ADNP responses were more durable and cross-reactive than corresponding Spike-specific IgG titers and neutralizing activities. Our study has important implications for optimal boosting vaccine strategies that may induce potent and broad Fc-mediated phagocytic activities.
Collapse
Affiliation(s)
- Lili Wang
- Department of Infectious Disease, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wanting Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, People’s Republic of China
| | - Liwei Zhao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tiantian Zhao
- Department of Infectious Disease, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Lin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ming Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chao Wu
- Department of Infectious Disease, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
44
|
Vanderven HA, Kent SJ. Fc-mediated functions and the treatment of severe respiratory viral infections with passive immunotherapy - a balancing act. Front Immunol 2023; 14:1307398. [PMID: 38077353 PMCID: PMC10710136 DOI: 10.3389/fimmu.2023.1307398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Passive immunotherapies have been used to treat severe respiratory infections for over a century, with convalescent blood products from recovered individuals given to patients with influenza-related pneumonia as long ago as the Spanish flu pandemic. However, passive immunotherapy with convalescent plasma or hyperimmune intravenous immunoglobulin (hIVIG) has not provided unequivocal evidence of a clinical benefit for severe respiratory infections including influenza and COVID-19. Efficacy trials, primarily conducted in late-stage disease, have demonstrated inconsistent efficacy and clinical benefit for hIVIG treatment of severe respiratory infections. To date, most serological analyses of convalescent plasma and hIVIG trial samples have focused on the measurement of neutralizing antibody titres. There is, however, increasing evidence that baseline antibody levels and extra-neutralizing antibody functions influence the outcome of passive immunotherapy in humans. In this perspective, findings from convalescent plasma and hIVIG trials for severe influenza, COVID-19 and respiratory syncytial virus (RSV) will be described. Clinical trial results will be discussed in the context of the potential beneficial and deleterious roles of antibodies with Fc-mediated effector functions, with a focus on natural killer cells and antibody-dependent cellular cytotoxicity. Overall, we postulate that treating respiratory viral infections with hIVIG represents a delicate balance between protection and immunopathology.
Collapse
Affiliation(s)
- Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, VIC, Australia
| |
Collapse
|
45
|
Evans JP, Liu SL. Challenges and Prospects in Developing Future SARS-CoV-2 Vaccines: Overcoming Original Antigenic Sin and Inducing Broadly Neutralizing Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1459-1467. [PMID: 37931210 DOI: 10.4049/jimmunol.2300315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 11/08/2023]
Abstract
The impacts of the COVID-19 pandemic led to the development of several effective SARS-CoV-2 vaccines. However, waning vaccine efficacy as well as the antigenic drift of SARS-CoV-2 variants has diminished vaccine efficacy against SARS-CoV-2 infection and may threaten public health. Increasing interest has been given to the development of a next generation of SARS-CoV-2 vaccines with increased breadth and effectiveness against SARS-CoV-2 infection. In this Brief Review, we discuss recent work on the development of these next-generation vaccines and on the nature of the immune response to SARS-CoV-2. We examine recent work to develop pan-coronavirus vaccines as well as to develop mucosal vaccines. We further discuss challenges associated with the development of novel vaccines including the need to overcome "original antigenic sin" and highlight areas requiring further investigation. We place this work in the context of SARS-CoV-2 evolution to inform how the implementation of future vaccine platforms may impact human health.
Collapse
Affiliation(s)
- John P Evans
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
46
|
Cuevas Otahola B, Arriaga-Hernández J, Morín Castillo M, Oliveros Oliveros J. 3D solid of SARS-CoV-2 viral particles applying Legendre polynomials from tomography Fourier analysis. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:1994-2001. [PMID: 38038064 DOI: 10.1364/josaa.498859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023]
Abstract
We show the construction of 3D solids (volumetric 3D models) of SARS-CoV-2 viral particles from the tomographic studies (videos) of SARS-CoV-2-infected tissues. To this aim, we propose a video analysis (tomographic images) by frames (medical images of the virus), which we set as our metadata. We optimize the frames by means of Fourier analysis, which induces a periodicity with simple structure patterns to minimize noise filtering and to obtain an optimal phase of the objects in the image, focusing on the SARS-CoV-2 cells to obtain a medical image under study phase (MIS) (process repeated over all frames). We build a Python algorithm based on Legendre polynomials called "2DLegendre_Fit," which generates (using multilinear interpolation) intermediate images between neighboring MIS phases. We used this code to generate m images of size M×M, resulting in a matrix with size M×M×M (3D solid). Finally, we show the 3D solid of the SARS-CoV-2 viral particle as part of our results in several videos, subsequently rotated and filtered to identify the glicoprotein spike protein, membrane protein, envelope, and the hemagglutinin esterase. We show the algorithms in our proposal along with the main MATLAB functions such as FourierM and Results as well as the data required for the program execution in order to reproduce our results.
Collapse
|
47
|
Edgar JE, Trezise S, Anthony RM, Krammer F, Palese P, Ravetch JV, Bournazos S. Antibodies elicited in humans upon chimeric hemagglutinin-based influenza virus vaccination confer FcγR-dependent protection in vivo. Proc Natl Acad Sci U S A 2023; 120:e2314905120. [PMID: 37871218 PMCID: PMC10622865 DOI: 10.1073/pnas.2314905120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Antibody responses against highly conserved epitopes on the stalk domain of influenza virus hemagglutinin (HA) confer broad protection; however, such responses are limited. To effectively induce stalk-specific immunity against conserved HA epitopes, sequential immunization strategies have been developed based on chimeric HA (cHA) constructs featuring different head domains but the same stalk regions. Immunogenicity studies in small animal models, as well as in humans, revealed that cHA immunogens elicit stalk-specific IgG responses with broad specificity against heterologous influenza virus strains. However, the mechanisms by which these antibodies confer in vivo protection and the contribution of their Fc effector function remain unclear. To characterize the role of Fc-FcγR (Fcγ receptor) interactions to the in vivo protective activity of IgG antibodies elicited in participants in a phase I trial of a cHA vaccine candidate, we performed passive transfer studies of vaccine-elicited IgG antibodies in mice humanized for all classes of FcγRs, as well as in mice deficient for FcγRs. IgG antibodies elicited upon cHA vaccination completely protected FcγR humanized mice against lethal influenza virus challenge, while no protection was evident in FcγR-deficient mice, suggesting a major role for FcγR pathways in the protective function of vaccine-elicited IgG antibodies. These findings have important implications for influenza vaccine development, guiding the design of vaccination approaches with the capacity to elicit IgG responses with optimal Fc effector function.
Collapse
Affiliation(s)
- Julia E. Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY10065
| | - Stephanie Trezise
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Robert M. Anthony
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA02129
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY10065
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY10065
| |
Collapse
|
48
|
Mahé D, Bourgeau S, da Silva J, Schlederer J, Satie AP, Kuassivi N, Mathieu R, Guillou YM, Le Tortorec A, Guivel-Benhassine F, Schwartz O, Plotton I, Dejucq-Rainsford N. SARS-CoV-2 replicates in the human testis with slow kinetics and has no major deleterious effects ex vivo. J Virol 2023; 97:e0110423. [PMID: 37830818 PMCID: PMC10653996 DOI: 10.1128/jvi.01104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE SARS-CoV-2 is a new virus responsible for the Covid-19 pandemic. Although SARS-CoV-2 primarily affects the lungs, other organs are infected. Alterations of testosteronemia and spermatozoa motility in infected men have raised questions about testicular infection, along with high level in the testis of ACE2, the main receptor used by SARS-CoV-2 to enter host cells. Using an organotypic culture of human testis, we found that SARS-CoV-2 replicated with slow kinetics in the testis. The virus first targeted testosterone-producing Leydig cells and then germ-cell nursing Sertoli cells. After a peak followed by the upregulation of antiviral effectors, viral replication in the testis decreased and did not induce any major damage to the tissue. Altogether, our data show that SARS-CoV-2 replicates in the human testis to a limited extent and suggest that testicular damages in infected patients are more likely to result from systemic infection and inflammation than from viral replication in the testis.
Collapse
Affiliation(s)
- Dominique Mahé
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Salomé Bourgeau
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
- University of CAS, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Shanghai, China
| | - Janaina da Silva
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Julie Schlederer
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Anne-Pascale Satie
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Nadège Kuassivi
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | - Romain Mathieu
- Service d‘Urologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Yves-Marie Guillou
- Service de Coordination des prélèvements, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Anna Le Tortorec
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| | | | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR3569, Paris, France
| | - Ingrid Plotton
- Institut National de la Santé et de la Recherche Médicale, Institut Cellules Souche et Cerveau (SBRI), UMR_S1208, Bron, France
| | - Nathalie Dejucq-Rainsford
- Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes, UMR_S1085, Rennes, France
| |
Collapse
|
49
|
Xing M, Wang Y, Wang X, Liu J, Dai W, Hu G, He F, Zhao Q, Li Y, Sun L, Wang Y, Du S, Dong Z, Pang C, Hu Z, Zhang X, Xu J, Cai Q, Zhou D. Broad-spectrum vaccine via combined immunization routes triggers potent immunity to SARS-CoV-2 and its variants. J Virol 2023; 97:e0072423. [PMID: 37706688 PMCID: PMC10617383 DOI: 10.1128/jvi.00724-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE The development of broad-spectrum SARS-CoV-2 vaccines will reduce the global economic and public health stress from the COVID-19 pandemic. The use of conserved T-cell epitopes in combination with spike antigen that induce humoral and cellular immune responses simultaneously may be a promising strategy to further enhance the broad spectrum of COVID-19 vaccine candidates. Moreover, this research suggests that the combined vaccination strategies have the ability to induce both effective systemic and mucosal immunity, which may represent promising strategies for maximizing the protective efficacy of respiratory virus vaccines.
Collapse
Affiliation(s)
- Man Xing
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaowei Hu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Zhao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
50
|
Mastraccio KE, Huaman C, Coggins SA, Clouse C, Rader M, Yan L, Mandal P, Hussain I, Ahmed AE, Ho T, Feasley A, Vu BK, Smith IL, Markotter W, Weir DL, Laing ED, Broder CC, Schaefer BC. mAb therapy controls CNS-resident lyssavirus infection via a CD4 T cell-dependent mechanism. EMBO Mol Med 2023; 15:e16394. [PMID: 37767784 PMCID: PMC10565638 DOI: 10.15252/emmm.202216394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre-symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti-lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11-dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell-dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ-binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization-independent T cell-mediated effects, even against an established CNS infection by a lethal neurotropic virus.
Collapse
Affiliation(s)
- Kate E Mastraccio
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
- Present address:
Wadsworth CenterNew York State Department of HealthAlbanyNYUSA
| | - Celeste Huaman
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Si'Ana A Coggins
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Caitlyn Clouse
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Madeline Rader
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Lianying Yan
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Pratyusha Mandal
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Imran Hussain
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Anwar E Ahmed
- Department of Preventive Medicine and BiostatisticsUniformed Services UniversityBethesdaMDUSA
| | - Trung Ho
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Austin Feasley
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.MDBethesdaUSA
| | - Bang K Vu
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
Lentigen Technology, Inc.GaithersburgMDUSA
| | - Ina L Smith
- Risk Evaluation and Preparedness Program, Health and BiosecurityCSIROBlack MountainACTAustralia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Emerging Zoonotic and Parasitic DiseasesNational Institute for Communicable Diseases, National Health Laboratory ServicePretoriaSouth Africa
| | - Dawn L Weir
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
- Present address:
The Center for Bio/Molecular Science and EngineeringU.S. Naval Research LaboratoryWashingtonDCUSA
| | - Eric D Laing
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Christopher C Broder
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| | - Brian C Schaefer
- Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaMDUSA
| |
Collapse
|