1
|
Horatscheck A, Krauß M, Bulut H, Chambon V, Zadah MS, Dransart E, Peloza K, Santos KF, Robertson MJ, Prichard K, Miksche S, Radetzki S, von Kries JP, Wahl MC, McCluskey A, Johannes L, Haucke V, Nazaré M. Next-generation small molecule inhibitors of clathrin function acutely inhibit endocytosis. Structure 2025; 33:878-890.e7. [PMID: 40112806 DOI: 10.1016/j.str.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/03/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Clathrin-mediated endocytosis (CME) is the predominant endocytic pathway in eukaryotic cells and a major regulator of cell physiology as it facilitates the internalization of receptors, channels, and transporters and viral entry. The clathrin terminal domain acts as a central protein interaction hub within the endocytic protein network. Previously described inhibitors of CME display off-target activities that result in cytotoxicity, providing limitations to their use. We report the development and characterization of next-generation small molecule inhibitors of clathrin terminal domain function. These compounds termed Pitstop 2c and Pitstop 2d occupy the binding site within the clathrin terminal domain for endocytic protein ligands including epsin, resulting in potent inhibition of receptor-mediated endocytosis and reduced entry of vesicular stomatitis virus (VSV) with minimal cytotoxic side effects. Next-generation Pitstops thus provide an improved toolset to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry.
Collapse
Affiliation(s)
- André Horatscheck
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Michael Krauß
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Haydar Bulut
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Valerie Chambon
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Massilullah Shafaq Zadah
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Estelle Dransart
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Kimberly Peloza
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Karine F Santos
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Mark J Robertson
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kate Prichard
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Sandra Miksche
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jens-Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Markus C Wahl
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
| |
Collapse
|
2
|
Mishra V, Agrawal S, Malik D, Mishra D, Bhavya B, Pathak E, Mishra R. Targeting Matrix Metalloproteinase-1, Matrix Metalloproteinase-7, and Serine Protease Inhibitor E1: Implications in preserving lung vascular endothelial integrity and immune modulation in COVID-19. Int J Biol Macromol 2025; 306:141602. [PMID: 40024412 DOI: 10.1016/j.ijbiomac.2025.141602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND SARS-CoV-2 disrupts lung vascular endothelial integrity, contributing to severe COVID-19 complications. However, the molecular mechanisms driving endothelial dysfunction remain underexplored, and targeted therapeutic strategies are lacking. OBJECTIVE This study investigates Naringenin-7-O-glucoside (N7G) as a multi-target therapeutic candidate for modulating vascular integrity and immune response by inhibiting MMP1, MMP7, and SERPINE1-key regulators of extracellular matrix (ECM) remodeling and inflammation. METHODS & RESULTS RNA-seq analysis of COVID-19 lung tissues identified 17 upregulated N7G targets, including MMP1, MMP7, and SERPINE1, with the latter exhibiting the highest expression. PPI network analysis linked these targets to ECM degradation, IL-17, HIF-1, and AGE-RAGE signaling pathways, and endothelial dysfunction. Disease enrichment associated these genes with idiopathic pulmonary fibrosis and asthma. Molecular docking, 200 ns MD simulations (triplicate), and MMGBSA calculations confirmed N7G's stable binding affinity to MMP1, MMP7, and SERPINE1. Immune profiling revealed increased neutrophils and activated CD4+ T cells, alongside reduced mast cells, NK cells, and naïve B cells, indicating immune dysregulation. Correlation analysis linked MMP1, MMP7, and SERPINE1 to distinct immune cell populations, supporting N7G's immunomodulatory role. CONCLUSION These findings suggest that N7G exhibits multi-target therapeutic potential by modulating vascular integrity, ECM remodeling, and immune dysregulation, positioning it as a promising candidate for mitigating COVID-19-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Vibha Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Shivangi Agrawal
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Divya Malik
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Divya Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Bhavya Bhavya
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Ekta Pathak
- Institute of Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Rajeev Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India.
| |
Collapse
|
3
|
Pathak T, Pal S, Banerjee I. Cathepsins in cellular entry of human pathogenic viruses. J Virol 2025; 99:e0164224. [PMID: 40135892 PMCID: PMC11998514 DOI: 10.1128/jvi.01642-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
In the life cycle of a virus, host cell entry represents the first step that a virus needs to undertake to gain access to the cell interior for replication. Once a virus attaches itself to its target cell receptor, it activates endogenous cellular responses and exploits host cell factors for its internalization, fusion, and genome release. Among the host factors that critically contribute to the viral entry processes are cathepsins, which are the most abundant endo/lysosomal proteases with diverse physiological functions. This review summarizes previous findings on how different cathepsins contribute to the host cell entry of human pathogenic viruses, focusing on their specific roles in the entry processes of both enveloped and non-enveloped RNA viruses. A comprehensive knowledge of the functions of different cathepsins in viral entry will provide valuable insights into the molecular mechanisms underlying viral infections and can be useful in the development of new antiviral strategies.
Collapse
Affiliation(s)
- Tejal Pathak
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Sampurna Pal
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Indranil Banerjee
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| |
Collapse
|
4
|
Ricci-Junior E, Rosa AS, do Nascimento T, Santos-Oliveira R, da Silva MAN, Barreto-Vieira DF, Batista LT, da Conceição GB, Quintão TAN, Ferreira VNS, Miranda MD. Nanotechnology-Driven Strategy Against SARS-CoV-2: Pluronic F127-Based Nanomicelles with or Without Atazanavir Reduce Viral Replication in Calu-3 Cells. Viruses 2025; 17:518. [PMID: 40284961 PMCID: PMC12031194 DOI: 10.3390/v17040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Despite extensive efforts, no highly effective antiviral molecule exists for treating moderate and severe COVID-19. Nanotechnology has emerged as a promising approach for developing novel drug delivery systems to enhance antiviral efficacy. Among these, polymeric nanomicelles improve the solubility, bioavailability, and cellular uptake of therapeutic agents. In this study, Pluronic F127-based nanomicelles were developed and evaluated for their antiviral activity against SARS-CoV-2. The nanomicelles, formulated using the direct dissolution method, exhibited an average size of 37.4 ± 8.01 nm and a polydispersity index (PDI) of 0.427 ± 0.01. Their antiviral efficacy was assessed in SARS-CoV-2-infected Vero E6 and Calu-3 cell models, where treatment with a 1:2 dilution inhibited viral replication by more than 90%. Cytotoxicity assays confirmed the nanomicelles were non-toxic to both cell lines after 72 h. In SARS-CoV-2-infected Calu-3 cells (human type II pneumocyte model), treatment with Pluronic F127-based nanomicelles containing atazanavir (ATV) significantly reduced viral replication, even under high MOI (2) and after 48 h, while also preventing IL-6 upregulation. To investigate their mechanism, viral pretreatment with nanomicelles showed no inhibitory effect. However, pre-exposure of Calu-3 cells led to significant viral replication reduction (>85% and >75% for 1:2 and 1:4 dilutions, respectively), as confirmed by transmission electron microscopy. These findings highlight Pluronic F127-based nanomicelles as a promising nanotechnology-driven strategy against SARS-CoV-2, reinforcing their potential for future antiviral therapies.
Collapse
Affiliation(s)
- Eduardo Ricci-Junior
- Galenic Development Laboratory, University Pharmacy, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Alice Santos Rosa
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (A.S.R.); (M.A.N.d.S.); (D.F.B.-V.); (L.T.B.); (G.B.d.C.); (T.A.N.Q.); (V.N.S.F.)
- Programa de Pós-graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Tatielle do Nascimento
- Galenic Development Laboratory, University Pharmacy, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Rio de Janeiro 21941-906, Brazil;
- Laboratory of Nanoradiopharmacy and Radiopharmaceuticals, Zona Oeste State University, Rio de Janeiro 21941-906, Brazil
| | - Marcos Alexandre Nunes da Silva
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (A.S.R.); (M.A.N.d.S.); (D.F.B.-V.); (L.T.B.); (G.B.d.C.); (T.A.N.Q.); (V.N.S.F.)
- Programa de Pós-graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Debora Ferreira Barreto-Vieira
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (A.S.R.); (M.A.N.d.S.); (D.F.B.-V.); (L.T.B.); (G.B.d.C.); (T.A.N.Q.); (V.N.S.F.)
- Programa de Pós-graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Programa de Pós-graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Luísa Tozatto Batista
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (A.S.R.); (M.A.N.d.S.); (D.F.B.-V.); (L.T.B.); (G.B.d.C.); (T.A.N.Q.); (V.N.S.F.)
| | - Giovanna Barbosa da Conceição
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (A.S.R.); (M.A.N.d.S.); (D.F.B.-V.); (L.T.B.); (G.B.d.C.); (T.A.N.Q.); (V.N.S.F.)
| | - Tayane Alvites Nunes Quintão
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (A.S.R.); (M.A.N.d.S.); (D.F.B.-V.); (L.T.B.); (G.B.d.C.); (T.A.N.Q.); (V.N.S.F.)
| | - Vivian Neuza Santos Ferreira
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (A.S.R.); (M.A.N.d.S.); (D.F.B.-V.); (L.T.B.); (G.B.d.C.); (T.A.N.Q.); (V.N.S.F.)
| | - Milene Dias Miranda
- Laboratory of Morphology and Viral Morphogenesis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (A.S.R.); (M.A.N.d.S.); (D.F.B.-V.); (L.T.B.); (G.B.d.C.); (T.A.N.Q.); (V.N.S.F.)
- Programa de Pós-graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
5
|
Guo L, Chen Z, Lin S, Yang F, Yang J, Wang L, Zhang X, Yuan X, He B, Cao Y, Li J, Zhao Q, Lu G. Structural basis and mode of action for two broadly neutralizing nanobodies targeting the highly conserved spike stem-helix of sarbecoviruses including SARS-CoV-2 and its variants. PLoS Pathog 2025; 21:e1013034. [PMID: 40215243 PMCID: PMC12052392 DOI: 10.1371/journal.ppat.1013034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 05/05/2025] [Accepted: 03/11/2025] [Indexed: 05/07/2025] Open
Abstract
The persistent emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlights the need for developing broad-spectrum antiviral agents. Here, we report the identification of two sarbecovirus S2-specific alpaca nanobodies, namely H17 and H145, that effectively neutralize known SARS-CoV-2 variants (including the Omicron subvariants) and other sarbecoviruses (such as SARS-CoV, PANG/GD, WIV1, and HKU3). The two nanobodies recognize a linear epitope (D1139PLQPELDSFKEEL1152) in the upper region of the S2 stem-helix (SH), which is highly conserved among SARS-CoV-2 variants and other sarbecoviruses. The complex structure of the nanobody bound to the epitope SH-peptide reveal that nanobody binding will impede the refolding of S2, effectively neutralizing the virus. Moreover, the nanobodies bind viral S2 in an acidification-insensitive manner, demonstrating their capacity for entry inhibition especially when viruses enter via the endosomal route. Finally, H17 and H145 possess a better taking-action window for virus neutralization, superior to the RBD-targeting nanobodies that exert neutralization by competing against ACE2 binding. Taken together, the results suggest that anti-SH nanobodies H17 and H145 are promising broad-spectrum drug candidates for preventing and treating the pandemic infections by SARS-CoV-2 variants and other sarbecoviruses.
Collapse
Affiliation(s)
- Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Koylass N, Sachithanandham J, Osei-Owusu J, Chen KH, Cheng HY, Pekosz A, Qiu Z. The proton-activated chloride channel inhibits SARS-CoV-2 spike protein-mediated viral entry through the endosomal pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642872. [PMID: 40161729 PMCID: PMC11952384 DOI: 10.1101/2025.03.12.642872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
SARS-CoV-2 binds to its obligatory receptor, angiotensin-converting enzyme 2 (ACE2) and capitalizes on decreasing endosomal acidity and cathepsin-mediated spike protein cleavage to enter cells. Endosomal acidification is driven by V-ATPase which pumps protons (H + ) into the lumen. The driving force for H + is maintained by the import of chloride (Cl - ) which is mediated by intracellular CLC transporters. We have recently identified the Proton-Activated Chloride (PAC) channel as a negative regulator of endosomal acidification. PAC responds to low pH and releases Cl - from the lumen to prevent endosomal hyperacidification. However, its role in SARS-CoV-2 viral entry remains unexplored. Here, we show that overexpressing the PAC channel in ACE2 expressing HEK 293T cells markedly inhibited the SARS-CoV-2 spike-mediated viral entry. Several lines of evidence suggest that this effect was due to the suppression of the endosomal entry pathway. First, the abilities of PAC to regulate endosomal acidification and inhibit pseudoviral entry were both dependent on its endosomal localization and channel activity. Second, the inhibitory effect on viral entry was similar to the suppression mediated by E64-d, a cathepsin inhibitor, while no major additive effect for both treatments was observed. Third, this inhibition was also attenuated in cells expressing TMPRSS2, which provides the alternative entry pathway through cell surface. Importantly, PAC overexpression also inhibited the number and size of plaques formed by two live SARS-CoV-2 isolates (B.1 and Omicron XBB.1.16) in Vero E6 cells. Altogether, our data indicates that PAC plays a vital role in inhibiting SARS-CoV-2 viral entry and identifies this endosomal channel as a potential novel target against the infection of SARS-CoV-2 and other viruses, which rely on the endosomal pathway.
Collapse
|
7
|
Akhtar S, Zuhair F. Advancing Nanomedicine Through Electron Microscopy: Insights Into Nanoparticle Cellular Interactions and Biomedical Applications. Int J Nanomedicine 2025; 20:2847-2878. [PMID: 40078651 PMCID: PMC11899938 DOI: 10.2147/ijn.s500978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025] Open
Abstract
Nanomedicine has revolutionized cancer treatment by the development of nanoparticles (NPs) that offer targeted therapeutic delivery and reduced side effects. NPs research in nanomedicine significantly focuses on understanding their cellular interactions and intracellular mechanisms. A precise understanding of nanoparticle interactions at the subcellular level is crucial for their effective application in cancer therapy. Electron microscopy has proven essential, offering high-resolution insights into nanoparticle behavior within biological systems. This article reviews the role of electron microscopy in elucidating the cellular uptake and intracellular interactions of NPs. Transmission electron microscopy (TEM) provides imaging capabilities, such as cryo three-dimensional tomography, which offer in-depth insights into nanoparticle localization, endocytosis pathways, and subcellular interactions, while high resolution-TEM is primarily used for studying the atomic structure of isolated NPs rather than nanoparticles within cells or tissues. On the other hand, scanning electron microscopy (SEM) is ideal for examining larger surface areas and provides a broader perspective on the morphology and topography of the samples. The review highlights the advantages of electron microscopy in visualizing nanoparticle interactions with cellular structures and tracking their mechanisms of action. It also addresses the challenges associated with electron microscopy characterization, such as tedious sample preparation, static imaging limitations, and a restricted field of view. By examining various nanoparticle uptake pathways, and cellular destination of NPs with examples, the article emphasizes the importance of these pathways to optimize nanoparticle design and enhance therapeutic efficacy. This review underscores the need for continued advancement in electron microscopy techniques to improve the effectiveness of nanomedicine and address existing challenges. In summary, electron microscopy is a key tool for advancing our understanding of nanoparticle behavior in biological contexts, aiding in the design and optimization of nanomedicines by providing insights into nanoparticle cellular dynamics, uptake mechanisms, and therapeutic applications.
Collapse
Affiliation(s)
- Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Fatimah Zuhair
- Department of Infection Control, Alzahra General Hospital, Qatif, 31911, Saudi Arabia
| |
Collapse
|
8
|
Banerjee T, Frazier C, Koti N, Yates P, Bowie E, Liermann M, Johnson D, Willis SH, Santra S. Development of Receptor-Integrated Magnetically Labeled Liposomes for Investigating SARS-CoV-2 Fusion Interactions. Anal Chem 2025; 97:4490-4498. [PMID: 39925203 PMCID: PMC11883728 DOI: 10.1021/acs.analchem.4c05966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The impacts of highly pathogenic enveloped viruses, such as SARS-CoV-2, have turned scientific inquiry toward the fusion mechanisms responsible for viral pathogenesis and to seek cost-effective and adaptable strategies to mitigate future outbreaks. Current approaches for studying SARS-CoV-2 fusion include computational studies, pan-coronavirus viral inhibitors, and modified peptides and lipopeptides, along with various nanotechniques. Although these methodologies have illuminated the fusion mechanisms, they possess key limitations that prevent their widespread utility in outbreaks, including high financial or instrumental costs, operational proficiency, cytotoxicity, or viral specificity. This work measures changes in spin-spin T2 magnetic (transverse) relaxation times using a benchtop NMR instrument and introduces a bioanalytical approach to quickly quantify fusion interactions between the SARS-CoV-2 spike protein and liposome-coated iron oxide nanosensors (LIONs). Additionally, this study modifies the LION platform by appending the angiotensin-converting enzyme (ACE2) receptor, thereby creating LIONs-ACE2 that mimics the ACE2 host cell receptor targeted by SARS-CoV-2. Furthermore, SARS-CoV-2 fusion to other receptors reported to be involved is also examined. Environmental factors impacting fusion, such as calcium ion concentration, cholesterol composition, pH, neutralizing antibodies, and lower temperature, are investigated. Finally, molecular dynamics (MD) simulation studies reveal that the receptor binding domain (RBD) of the spike protein interacts more favorably with ACE2 than the lipid bilayer in the opened conformation, yet the closed conformation of RBD interacts with the bilayer with a similar energy as with ACE2. These findings reveal how the LION platform offers a customizable, fast-acting, inexpensive, and accessible mechanism for examining the fusion process of SARS-CoV-2 and other enveloped viruses.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Clayton Frazier
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Neelima Koti
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Paris Yates
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Elizabeth Bowie
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Megan Liermann
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - David Johnson
- Computational
Chemical Biology Core, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66018, United States of America
| | - Sharon H Willis
- Integral
Molecular Incorporation, One uCity Square 25 N. 38th Street, Suite 800, Philadelphia, Pennsylvania 19104, United States of America
| | - Santimukul Santra
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| |
Collapse
|
9
|
Shah FH, Bang JY, Nam YS, Hwang IS, Kim DH, Ki M, Salman S, Lee HW. Understanding the Impact of SARS-CoV-2 on Lung Endothelial Cells: Brief Mechanisms Unveiled. Cell Biochem Biophys 2025; 83:221-227. [PMID: 39312156 DOI: 10.1007/s12013-024-01529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
As the world grapples with the coronavirus-19 (COVID) pandemic, more reports are coming in regarding Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in endotheliopathy. It is a vascular condition in which endothelial cell injury or damage inflicts anatomical and functional changes in the endothelium, significantly impacting the physiological process and function. Previously, it was assumed that SARS-CoV-2 infects respiratory epithelial cells via spike glycoproteins present on the surface of the virus. However, severe cases and different autopsy studies described the clandestine role of this virus in infecting endothelial cells other than epithelial cells. It was observed that SARS-CoV-2 targets the pulmonary and extrapulmonary systems to damage the microvasculature and affect respiratory functioning, resulting in the onset of endotheliopathy, thrombosis, inflammation, pulmonary edema, and fibrosis. Such deleterious events are the consequence of the hyperactive immune response initiated by the SARS-CoV-2 infection, leading to pulmonary and extrapulmonary complications. However, the molecular mechanism behind endotheliopathy and other complications caused by this virus is elusive and will be unraveled by covering recent literature in this mini-review.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jun Young Bang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yoon Seok Nam
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - In Seo Hwang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Dae Hong Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Minkyoung Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Saad Salman
- Department of Pharmacy, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
10
|
Liu J, Wu Y, Gao GF. A Structural Voyage Toward the Landscape of Humoral and Cellular Immune Escapes of SARS-CoV-2. Immunol Rev 2025; 330:e70000. [PMID: 39907512 DOI: 10.1111/imr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
The genome-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the past nearly 5 years since its emergence has refreshed our understanding of virus evolution, especially on convergent co-evolution with the host. SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations that affect the functional properties of the virus by altering its infectivity, virulence, transmissibility, and interactions with host immunity. This poses a huge challenge to global prevention and control measures based on drug treatment and vaccine application. As one of the key evasion strategies in response to the immune profile of the human population, there are overwhelming amounts of evidence for the reduced antibody neutralization of SARS-CoV-2 variants. Additionally, data also suggest that the levels of CD4+ and CD8+ T-cell responses against variants or sub-variants decrease in the populations, although non-negligible cross-T-cell responses are maintained. Herein, from the perspectives of structural immunology, we outline the characteristics and mechanisms of the T cell and antibody responses to SARS-CoV and its variants/sub-variants. The molecular bases for the impact of the immune escaping variants on the interaction of the epitopes with the key receptors in adaptive immunity, that is, major histocompatibility complex (MHC), T-cell receptor (TCR), and antibody are summarized and discussed, the knowledge of which will widen our understanding of this pandemic-threatening virus and assist the preparedness for Pathogen X in the future.
Collapse
Affiliation(s)
- Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Qin W, Kong N, Xie S, Liu H, Yang X, Wang Y, Cao X, Liu Y, Wang J, Sun H, Tong W, Yu H, Zheng H, Zhang W, Tong G, Shan T. RNASEK interacting with PEDV structural proteins facilitates virus entry via clathrin-mediated endocytosis. J Virol 2025; 99:e0176024. [PMID: 39835814 PMCID: PMC11852855 DOI: 10.1128/jvi.01760-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), as a type of Alphacoronavirus causing acute diarrhea and high death rate among sucking piglets, poses great financial damage to the swine industry. Nevertheless, the molecular mechanism whereby PEDV enters host cells is unclear, limiting the development of PED vaccines and anti-PEDV agents. The present study found that the host protein ribonuclease kappa (RNASEK) was regulated by USF2, a transcription factor, and facilitated the PEDV replication. RNASEK was identified as a novel binding partner of PEDV, which interacted with a spike (S), envelope (E), and membrane (M) proteins on PEDV virion surfaces to increase the uptake not for attachment of PEDV virions. PEDV enters cells through the endocytosis pathways. RNASEK knockdown or RNASEK knockout assay revealed that through clathrin-mediated endocytosis (CME), RNASEK promoted the internalization of PEDV virions. Clathrin and the adaptor protein EPS15 only interacted with PEDV E protein, demonstrating that the RNASEK could target more virions through interaction with PEDV S, E, and M proteins to clathrin and EPS15 proteins rather than merely interacting with PEDV E protein to mediate the PEDV entry through CME. Moreover, our findings suggest that RNASEK, a newly identified host-entry factor, facilitates PEDV internalization by increasing the interaction of PEDV virions and EPS15-clathrin complex and may also provide a potential target for anti-PEDV therapies.IMPORTANCEPEDV is the causative pathogen of porcine diarrhea, which is a highly infectious acute intestinal condition, that poses significant economic damage to the swine industry. However, the existing PED vaccines fail to provide adequate protection for piglets against PEDV infection. Although PEDV replication in cells has been widely described, the mechanisms beneath PEDV entry of the host cells are incompletely understood. In this study, we showed that RNASEK, regulated by the transcription factor USF2, is a new host factor increasing PEDV infection in LLC-PK1 cells. RNASEK can bind to multiple structural proteins of PEDV (S, E, and M proteins), therefore increasing the interaction between PEDV virions, clathrin, and EPS15 to promote PEDV virion entry. Apart from unraveling the entry mechanisms of PEDV, our findings also contributed to facilitating the development of anti-PEDV agents and PED vaccines.
Collapse
Affiliation(s)
- Wenzhen Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yahe Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xinyu Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuchang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiarui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - He Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Fares P, Duhaini M, Tripathy SK, Srour A, Kondapalli KC. Acidic pH of early endosomes governs SARS-CoV-2 transport in host cells. J Biol Chem 2025; 301:108144. [PMID: 39732172 PMCID: PMC11815683 DOI: 10.1016/j.jbc.2024.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport. Here, we identify that the luminal pH of EEs is a key factor regulating the outcome of this tug-of-war. Among the known endosomal pH regulators, only the sodium-proton exchanger NHE9 has so far been genetically linked to severe COVID-19 risk. NHE9 functions as a proton leak pathway specifically on endosomes. We show that limiting acidification of EEs by increasing the expression of NHE9 leads to decreased infectivity of the SARS-CoV-2 spike-bearing virus in host cells. Our investigation identified the EE membrane lipid phosphatidylinositol-3-phosphate (PI3P) as a link between luminal pH changes and EE transport. Normally, as EEs mature, PI3P depletes. However, in cells with high NHE9 expression, PI3P persists longer on EEs. PI3P plays a pivotal role in the recruitment of motor proteins and the subsequent movement of EEs. Consistently, we observed that NHE9-mediated alkalization of EEs hindered perinuclear movement. Specifically, EE speed and run length were negatively impacted, ultimately leading to EEs falling off microtubules and impairing the delivery of viral cargo to LEs. NHE9 thus offers a unique opportunity as a viable therapeutic target to impede SARS-CoV-2 host cell entry.
Collapse
Affiliation(s)
- Perla Fares
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Mariam Duhaini
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Suvranta K Tripathy
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Ali Srour
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Kalyan C Kondapalli
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA.
| |
Collapse
|
13
|
Bolland W, Marechal I, Petiot C, Porrot F, Guivel-Benhassine F, Brelot A, Casartelli N, Schwartz O, Buchrieser J. SARS-CoV-2 entry and fusion are independent of ACE2 localization to lipid rafts. J Virol 2025; 99:e0182324. [PMID: 39570043 PMCID: PMC11784143 DOI: 10.1128/jvi.01823-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Membrane fusion occurs at the early stages of SARS-CoV-2 replication, during entry of the virus, and later during the formation of multinucleated cells called syncytia. Fusion is mediated by the binding of the viral Spike protein to its receptor ACE2. Lipid rafts are dynamic nanodomains enriched in cholesterol and sphingolipids. Rafts can act as platforms for entry of different viruses by localizing virus receptors, and attachment factors to the same membrane domains. Here, we first demonstrate that cholesterol depletion by methyl-beta-cyclodextrin inhibits Spike-mediated fusion and entry. To further study the role of ACE2 lipid raft localization in SARS-CoV-2 fusion and entry, we designed a GPI-anchored ACE2 construct. Both ACE2 and ACE2-GPI proteins were similarly expressed at the plasma membrane. Through membrane flotation assays, we show that in different cell lines, ACE2-GPI localizes predominantly to raft domains of the plasma membrane while ACE2 is non-raft associated. We then compare the ability of ACE2 and ACE2-GPI to permit SARS-CoV-2 entry, replication, and syncytia formation of different viral variants. We find little difference in the two proteins. Our results demonstrate that SARS-CoV-2 entry and fusion are cholesterol-dependent and raft-independent processes.IMPORTANCERafts are often exploited by viruses and used as platforms to enhance their entry into the cell or spread from cell to cell. The membrane localization of ACE2 and the role of lipid rafts in SARS-CoV-2 entry and cell-to-cell spread are poorly understood. The function of lipid rafts in viral fusion is often studied through their disruption by cholesterol-depleting agents. However, this process may have off-target impacts on viral fusion independently of lipid-raft disruption. Therefore, we created an ACE2 construct that localizes to lipid rafts using a GPI anchor. Conversely, wild-type ACE2 was non-raft associated. We find that the localization of ACE2 to lipid rafts does not modify the fusion dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- William Bolland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Université Paris Cité, Paris, France
| | - Inès Marechal
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Chloé Petiot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Anne Brelot
- Dynamic of Host-Pathogen Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Paris, France
| | - Nicoletta Casartelli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| |
Collapse
|
14
|
Liang QZ, Ji CM, Wang B, Chen W, Cong F, Huang Y, Huang YW. Deltacoronavirus HKU11, HKU13, PDCoV (HKU15) and HKU17 spike pseudoviruses enter avian DF-1 cells via clathrin-mediated endocytosis in a Rab5-, Rab7- and pH-dependent manner. Vet Res 2025; 56:15. [PMID: 39825424 PMCID: PMC11740469 DOI: 10.1186/s13567-024-01442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 01/20/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17). In the present work, to better understand how avian-origin CoVs may be transmitted to pigs, we investigated the unknown DCoV entry pathway in avian cells. We show that clathrin-mediated endocytosis is involved in the entry of these DCoV pseudoviruses into chicken-origin DF-1 cells. Pseudovirus entry was suppressed by means of pharmacological inhibitors, dominant-negative mutants, and siRNAs targeting various cellular proteins and signalling molecules, suggesting that PDCoV and avian DCoV pseudovirus entry into DF-1 cells depends on clathrin, dynamin-2, cathepsins and a low-pH environment but is independent of caveolae and macropinocytosis. Furthermore, we found that DCoV pseudovirus entry was linked to Rab5- and Rab7-dependent pathways. This is the first report demonstrating that these DCoVs utilize clathrin-mediated endocytosis pathways to enter avian-origin cells, providing new insights into interspecies transmission of DCoVs.
Collapse
Affiliation(s)
- Qi-Zhang Liang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chun-Miao Ji
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Bin Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Wei Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China.
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China.
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Camia B, Longo M, Bergonzi A, Dezza I, Biggiogera M, Redi CA, Casasco A, Monti M. The localization and function of the moonlighting protein Clathrin during oocyte maturation. Dev Biol 2025; 517:1-12. [PMID: 39241854 DOI: 10.1016/j.ydbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Clathrin is one of the leading players in the endocytic process during oocyte maturation. Immunofluorescence and transmission electron analysis on fully-grown germinal vesicle (GV) mouse oocytes shows Clathrin localization on the cortical region with three peculiar patterns: complete, incomplete, and half-moon. The first configuration is characterized by Clathrin lattices along the cortex; the second is represented by Clathrin lattices interrupted by invaginations forming coated vesicles as an indication of active endocytosis. The half-moon profile, the less frequent but the most interesting one, refers to Clathrin lattices distributed to one-half of the cell. The in vivo analysis of organelles' positioning and cytoplasmic rearrangements, performed to understand the possible relation between endocytosis and oocyte maturation, suggests that the half-moon pattern indicates those fully-grown oocytes that may have likely undergone Germinal Vesicle Breakdown, MI, and MII. Our results show that, before oocytes undergo maturation, Clathrin localizes on the side of the cell, opposite to future spindle migration, thus marking spindle orientation in mouse oocytes.
Collapse
Affiliation(s)
- B Camia
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - M Longo
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - A Bergonzi
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - I Dezza
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - M Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Italy
| | - C A Redi
- National Academy of Sciences (Accademia Dei Lincei), Roma, Italy
| | - A Casasco
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Centro Diagnostico Italiano, Milan, Italy
| | - M Monti
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Research Center for Regenerative Medicine, IRCCS San Matteo Foundation, Pavia, Italy.
| |
Collapse
|
16
|
Williams R. COVID-19 Humic/Fulvic Acid Plus Epigallocatechin Gallate Treatment: A Retrospective Chart Review. Cureus 2025; 17:e77188. [PMID: 39925527 PMCID: PMC11806964 DOI: 10.7759/cureus.77188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
INTRODUCTION The initial COVID-19 infection caused significant mortality in the nursing home setting. The mortality in our facility was approximately 50% and occurred in the later phase of the initial infection. In the nursing home setting, there were no approved treatment regimes. Specific treatment was left to the treating physician in concert with the administrative medical officials; immunizations were approved in December 2020. Concurrent publications indicated that epigallocatechin gallate (EGCG) and humic/fulvic acid with vitamin C possess the ability to interfere with the SARS-CoV-2 virus; both can inhibit viral attachment and reproduction, along with providing significant anti-inflammatory activity. They also exhibit good safety profiles and were previously utilized in our facility. With the high mortality and significant published data on inhibitory aspects of EGCG, humic/fulvic acid, and vitamin C, our facility utilized these supplements to treat COVID-19-positive patients. METHODS This retrospective chart review analyzes the effectiveness of an integrative treatment consisting of EGCG and humic/fulvic acid with vitamin C provided to COVID-19 patients in a long-term care facility between October and December 2020. Nursing home patients with COVID-19 infections were either provided integrative treatment utilizing EGCG, humic/fulvic acid, and vitamin C or provided care without integrative support. All EGCG patients were informed, and, when needed, the first line of authority, power of attorney (POA) was contacted and informed that the integrative approach was not standard treatment (but was reviewed and approved by Pulaski Health and Rehabilitation Medical Facility directors and the patient's physician). Patients were informed of the safety literature and compounds' utilization in viral infections prior to accepting treatment. RESULTS A review of 60 records indicates that among 22 patients receiving treatment with the integrative combination, there were no mortalities. Among 38 patients treated without this integrative support, there were 21 deaths. Conclusions: In a retrospective review of the treatment data, treatment of COVID-19 in the nursing home setting with EGCG, humic/fulvic acid, and vitamin C resulted in a significant reduction in overall mortality.
Collapse
Affiliation(s)
- Richard Williams
- Geriatrics, Edward Via College of Osteopathic Medicine, Blacksburg, USA
| |
Collapse
|
17
|
La Rosa P, Tiberi J, Palermo E, Stefanelli R, Tiano SML, Canterini S, Cortese M, Hiscott J, Fiorenza MT. The inactivation of the Niemann Pick C1 cholesterol transporter restricts SARS-CoV-2 entry into host cells by decreasing ACE2 abundance at the plasma membrane. Cell Biosci 2024; 14:148. [PMID: 39707537 DOI: 10.1186/s13578-024-01331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway. Because the angiotensin-converting enzyme 2 (ACE2) and type 2 serine transmembrane protease (TMPRSS2), interactors of the SARS-CoV-2 Spike protein also localize to lipid rafts, we sought to investigate the hypothesis that NPC1 inactivation would generate an intrinsically unfavorable barrier to SARS-CoV-2 entry. RESULTS In this study, we show that inhibition of the cholesterol transporter activity of NPC1 in cells that express both ACE2 and TMPRSS2, considerably reduces SARS-CoV-2 infectivity, evaluated as early as 4 h post-infection. Mechanistically, treatment with NPC1 specific inhibitor U18666A relocalizes ACE2 from the plasma membrane to the autophagosomal/lysosomal compartment, thereby reducing SARS-CoV-2 entry into treated cells. Reduction of viral entry was observed for both fully infectious SARS-CoV-2 virus and with a pseudotyped VSV-Spike-GFP virus. For instance, U18666A-treated Caco-2 cells infected with the pseudotyped VSV-Spike-GFP showed a > threefold and > 40-fold reduction in virus titer when infectivity was measured at 4 h or 24 h post-infection, respectively. A similar effect was observed in CRISP/R-Cas9-edited Caco-2 cells, which were even more resistant to SARS-CoV-2 infection as indicated by a 97% reduction of viral titers. CONCLUSION Overall, this study provides compelling evidence that the inhibition of NPC1 cholesterol transporter activity generates a cellular environment that hinders SARS-CoV-2 entry. ACE2 depletion from the plasma membrane appears to play a major role as limiting factor for viral entry.
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Jessica Tiberi
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Enrico Palermo
- Istituto Pasteur Italia-Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161, Rome, Italy
| | - Roberta Stefanelli
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
| | - Sofia Maria Luigia Tiano
- Telethon Institute of Genetics and Medicine, TIGEM, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Sonia Canterini
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, TIGEM, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
- Universitá della Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100, Caserta, Italy
| | - John Hiscott
- Istituto Pasteur Italia-Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161, Rome, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy.
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
18
|
Xiao Z, Guo Y, Li J, Jiang X, Wu F, Wang Y, Zhang Y, Zhou W. Harnessing traditional Chinese medicine polysaccharides for combatting COVID-19. Carbohydr Polym 2024; 346:122605. [PMID: 39245521 DOI: 10.1016/j.carbpol.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
With the global spread of COVID-19 posing ongoing challenges to public health systems, there is an ever-increasing demand for effective therapeutics that can mitigate both viral transmission and disease severity. This review surveys the landscape of polysaccharides derived from traditional Chinese medicine, acclaimed for their medicinal properties and potential to contribute to the COVID-19 response. We specifically focus on the capability of these polysaccharides to thwart SARS-CoV-2 entry into host cells, a pivotal step in the viral life cycle that informs transmission and pathogenicity. Moreover, we delve into the concept of trained immunity, an innate immune system feature that polysaccharides may potentiate, offering an avenue for a more moderated yet efficacious immune response against various pathogens, including SARS-CoV-2. Our comprehensive overview aims to bolster understanding of the possible integration of these substances within anti-COVID-19 measures, emphasizing the need for rigorous investigation into their potential applications and underlying mechanisms. The insights provided here strongly support ongoing investigations into the adjunctive use of polysaccharides in the management of COVID-19, with the anticipation that such findings could lead to a deeper appreciation and clearer elucidation of the antiviral potentials inherent in complex Chinese herbal remedies.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Yizhen Guo
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Jingxuan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Xuyong Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Fushan Wu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ying Wang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
19
|
Neilsen G, Mathew AM, Castro JM, McFadden WM, Wen X, Ong YT, Tedbury PR, Lan S, Sarafianos SG. Dimming the corona: studying SARS-coronavirus-2 at reduced biocontainment level using replicons and virus-like particles. mBio 2024; 15:e0336823. [PMID: 39530689 PMCID: PMC11633226 DOI: 10.1128/mbio.03368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential. Viral replicon- and virus-like particle (VLP)-based systems are excellent examples of such tools. This review outlines the importance, advantages, and disadvantages of both the replicon- and VLP-based systems that have been developed for SARS-CoV-2 and have helped the scientific community in dimming the intensity of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Grace Neilsen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Asha Maria Mathew
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jose M. Castro
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Siwak KC, LeBlanc EV, Scott HM, Kim Y, Pellizzari-Delano I, Ball AM, Temperton NJ, Capicciotti CJ, Colpitts CC. Cellular sialoglycans are differentially required for endosomal and cell-surface entry of SARS-CoV-2 in lung cell lines. PLoS Pathog 2024; 20:e1012365. [PMID: 39625989 PMCID: PMC11642992 DOI: 10.1371/journal.ppat.1012365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/13/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Cell entry of severe acute respiratory coronavirus-2 (SARS-CoV-2) and other CoVs can occur via two distinct routes. Following receptor binding by the spike glycoprotein, membrane fusion can be triggered by spike cleavage either at the cell surface in a transmembrane serine protease 2 (TMPRSS2)-dependent manner or within endosomes in a cathepsin-dependent manner. Cellular sialoglycans have been proposed to aid in CoV attachment and entry, although their functional contributions to each entry pathway are unknown. In this study, we used genetic and enzymatic approaches to deplete sialic acid from cell surfaces and compared the requirement for sialoglycans during endosomal and cell-surface CoV entry using lentiviral particles pseudotyped with the spike proteins of different sarbecoviruses. We show that entry of SARS-CoV-1, WIV1-CoV and WIV16-CoV, like the SARS-CoV-2 omicron variant, depends on endosomal cathepsins and requires cellular sialoglycans for entry. Ancestral SARS-CoV-2 and the delta variant can use either pathway for entry, but only require sialic acid for endosomal entry in cells lacking TMPRSS2. Binding of SARS-CoV-2 spike protein to cells did not require sialic acid, nor was sialic acid required for SARS-CoV-2 entry in TMRPSS2-expressing cells. These findings suggest that cellular sialoglycans are not strictly required for SARS-CoV-2 attachment, receptor binding or fusion, but rather promote endocytic entry of SARS-CoV-2 and related sarbecoviruses. In contrast, the requirement for sialic acid during entry of MERS-CoV pseudoparticles and authentic HCoV-OC43 was not affected by TMPRSS2 expression, consistent with a described role for sialic acid in merbecovirus and embecovirus cell attachment. Overall, these findings clarify the role of sialoglycans in SARS-CoV-2 entry and suggest that cellular sialoglycans mediate endosomal, but not cell-surface, SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Kimberley C. Siwak
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Heidi M. Scott
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | | | - Alice M. Ball
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
- Department of Chemistry, Queen’s University, Kingston, Canada
- Department of Surgery, Queen’s University, Kingston, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Canada
| |
Collapse
|
21
|
Indra S, Chalak K, Das P, Mukhopadhyay A. Placenta a potential gateway of prenatal SARS-CoV-2 infection: A review. Eur J Obstet Gynecol Reprod Biol 2024; 303:123-131. [PMID: 39461078 DOI: 10.1016/j.ejogrb.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
SARS-CoV-2, the causative agent of COVID-19, can infect various tissues in the body apart from the lungs. Although placental infection remains controversial, COVID-19-associated placental abnormalities have been reported worldwide. Therefore, COVID-19 poses a significant risk for fetal distress as well. Scientists are currently debating whether such distress results from direct viral induced assault or placental damage caused by the mother's immune response. The placenta develops different histopathological lesions in response to maternal SARS-CoV-2 infection. While some studies support both theories, the transmission rate through the placenta remains low. Therefore, a more in-depth study is necessary to determine the primary cause of maternal SARS-CoV-2-induced fetal distress. This comprehensive review is aimed to shed light on the possible reasons towards fetal distress among mothers with COVID-19. This review describes the various mechanisms of viral entry along with the mechanisms by which the virus could affect the placenta. Reported cases of placental abnormalities and fetal distress symptoms have been collated to provide an overview of the current state of knowledge on vertical transmission of COVID-19.
Collapse
Affiliation(s)
- Subhashis Indra
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Kuheli Chalak
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | | |
Collapse
|
22
|
Patel P, Kaushik N, Acharya TR, Lenka SS, Ghosh S, Wahab R, Verma SK, Choi EH, Kaushik NK. Inactivation of Pseudovirus Expressing the D614G Spike Protein Mutation using Nitric Oxide-Plasma Activated Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2411515. [PMID: 39535372 DOI: 10.1002/advs.202411515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Indexed: 11/16/2024]
Abstract
Variants of concern (VOCs) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) exhibit high infectivity due to mutations, particularly in the spike protein, that facilitate enhanced binding of virus to human angiotensin-converting enzyme 2 (hACE2). The D614G mutation, situated in S1-domain, promotes the open conformation of spike protein, augmenting its interaction with hACE2. Activated water neutralizes pathogens by damaging biological molecules; however, its effect on mutated SARS-CoV-2 or VOCs requires further exploration. Here, the efficacy of nitric oxide (NOx)-plasma activated water (PAW) in inhibiting infections by SARS-CoV-2 pseudovirus expressing D614G-mutated spike protein is investigated, which serves as a model for mutated SARS-CoV-2. Results demonstrated high prevalence of D614G mutation in SARS-CoV-2 and its VOCs. NOx-PAW is non-toxic to cells at high concentration, inhibiting infection by 71%. Moreover, NOx-PAW induced structural changes in S1-domain of spike protein, reducing its binding affinity and lowering clathrin-mediated endocytosis-related gene expression. Additionally, in silico analysis revealed NOx species in NOx-PAW played key role in impairing S1-domain function of the mutated SARS-CoV-2 pseudovirus by interacting directly with it. Collectively, these findings reveal the potent inactivation ability of PAW against mutated SARS-CoV-2 and suggest its potential application in combating emerging variants of SARS-CoV-2 and other viral threats.
Collapse
Affiliation(s)
- Paritosh Patel
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Sudakshya S Lenka
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Soujanya Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Rizwan Wahab
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| |
Collapse
|
23
|
Majewska M, Maździarz M, Krawczyk K, Paukszto Ł, Makowczenko KG, Lepiarczyk E, Lipka A, Wiszpolska M, Górska A, Moczulska B, Kocbach P, Sawicki J, Gromadziński L. SARS-CoV-2 disrupts host gene networks: Unveiling key hub genes as potential therapeutic targets for COVID-19 management. Comput Biol Med 2024; 183:109343. [PMID: 39500239 DOI: 10.1016/j.compbiomed.2024.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Although the end of COVID-19 as a public health emergency was declared on May 2023, still new cases of the infection are reported and the risk remains of new variants emerging that may cause new surges in cases and deaths. While clinical symptoms have been rapidly defined worldwide, the basic body responses and pathogenetic mechanisms acting in patients with SARS-CoV-2 infection over time until recovery or death require further investigation. The understanding of the molecular mechanisms underlying the development and course of the disease is essential in designing effective preventive and therapeutic approaches, and ultimately reducing mortality and disease spreading. METHODS The current investigation aimed to identify the key genes engaged in SARS-CoV-2 infection. To achieve this goal high-throughput RNA sequencing of peripheral blood samples collected from healthy donors and COVID-19 patients was performed. The resulting sequence data were processed using a wide range of bioinformatics tools to obtain detailed modifications within five transcriptomic phenomena: expression of genes and long non-coding RNAs, alternative splicing, allel-specific expression and circRNA production. The in silico procedure was completed with a functional analysis of the identified alterations. RESULTS The transcriptomic analysis revealed that SARS-CoV-2 has a significant impact on multiple genes encoding ribosomal proteins (RPs). Results show that these genes differ not only in terms of expression but also manifest biases in alternative splicing and ASE ratios. The integrated functional analysis exposed that RPs mostly affected pathways and processes related to infection-COVID-19 and NOD-like receptor signaling pathway, SARS-CoV-2-host interactions and response to the virus. Furthermore, our results linked the multiple intronic ASE variants and exonic circular RNA differentiations with SARS-CoV-2 infection, suggesting that these molecular events play a crucial role in mRNA maturation and transcription during COVID-19 disease. CONCLUSIONS By elucidating the genetic mechanisms induced by the virus, the current research provides significant information that can be employed to create new targeted therapeutic strategies for future research and treatment related to COVID-19. Moreover, the findings highlight potentially promising therapeutic biomarkers for early risk assessment of critically ill patients.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Mateusz Maździarz
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Anna Górska
- Diagnostyka Medical Laboratories, 10-082, Olsztyn, Poland
| | - Beata Moczulska
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Piotr Kocbach
- Department of Family Medicine and Infectious Diseases, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| |
Collapse
|
24
|
Ridgway H, Apostolopoulos V, Moore GJ, Gadanec LK, Zulli A, Swiderski J, Tsiodras S, Kelaidonis K, Chasapis CT, Matsoukas JM. Computational Evidence for Bisartan Arginine Blockers as Next-Generation Pan-Antiviral Therapeutics Targeting SARS-CoV-2, Influenza, and Respiratory Syncytial Viruses. Viruses 2024; 16:1776. [PMID: 39599890 PMCID: PMC11599072 DOI: 10.3390/v16111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus (RSV) are significant global health threats. The need for low-cost, easily synthesized oral drugs for rapid deployment during outbreaks is crucial. Broad-spectrum therapeutics, or pan-antivirals, are designed to target multiple viral pathogens simultaneously by focusing on shared molecular features, such as common metal cofactors or conserved residues in viral catalytic domains. This study introduces a new generation of potent sartans, known as bisartans, engineered in our laboratories with negative charges from carboxylate or tetrazolate groups. These anionic tetrazoles interact strongly with cationic arginine residues or metal cations (e.g., Zn2+) within viral and host target sites, including the SARS-CoV-2 ACE2 receptor, influenza H1N1 neuraminidases, and the RSV fusion protein. Using virtual ligand docking and molecular dynamics, we investigated how bisartans and their analogs bind to these viral receptors, potentially blocking infection through a pan-antiviral mechanism. Bisartan, ACC519TT, demonstrated stable and high-affinity docking to key catalytic domains of the SARS-CoV-2 NSP3, H1N1 neuraminidase, and RSV fusion protein, outperforming FDA-approved drugs like Paxlovid and oseltamivir. It also showed strong binding to the arginine-rich furin cleavage sites S1/S2 and S2', suggesting interference with SARS-CoV-2's spike protein cleavage. The results highlight the potential of tetrazole-based bisartans as promising candidates for developing broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
- THERAmolecular, LLC, Rodeo, NM 88056, USA
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia;
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
| | - Jordan Swiderski
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - John M. Matsoukas
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia; (A.Z.); (J.S.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
25
|
Defelipe LA, Veith K, Burastero O, Kupriianova T, Bento I, Skruzny M, Kölbel K, Uetrecht C, Thuenauer R, García-Alai MM. Subtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast. Nat Commun 2024; 15:9655. [PMID: 39511183 PMCID: PMC11543927 DOI: 10.1038/s41467-024-54037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Clathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear. In this study, we examine the binding hierarchy of adaptors for clathrin, using integrative biophysical and structural approaches, along with in vivo functional experiments. We find that yeast epsin Ent5 has the highest affinity for clathrin, highlighting its key role in cellular trafficking. Epsins Ent1 and Ent2, crucial for endocytosis but thought to have redundant functions, show distinct binding patterns. Ent1 exhibits stronger interactions with clathrin than Ent2, suggesting a functional divergence toward actin binding. These results offer molecular insights into adaptor protein selectivity, suggesting they competitively bind clathrin while also targeting three different clathrin sites.
Collapse
Affiliation(s)
- Lucas A Defelipe
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Osvaldo Burastero
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Tatiana Kupriianova
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
| | - Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Carl Zeiss Microscopy GmbH, Jena, Germany
| | - Knut Kölbel
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), Universität Hamburg (UHH), Hamburg, Germany
| | - Maria M García-Alai
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
26
|
Oliveira BR, Nehlmeier I, Kempf AM, Venugopalan V, Rehders M, Ceniza MEP, Cavalcanti PADTPV, Hoffmann M, Pöhlmann S, Brix K. Cytoskeletal β-tubulin and cysteine cathepsin L deregulation by SARS-CoV-2 spike protein interaction with the neuronal model cell line SH-SY5Y. Biochimie 2024; 226:49-61. [PMID: 38432290 DOI: 10.1016/j.biochi.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
SARS-CoV-2 mainly infects the respiratory tract but can also target other organs, including the central nervous system. While it was recently shown that cells of the blood-brain-barrier are permissive to SARS-CoV-2 infection in vitro, it remains debated whether neurons can be infected. In this study, we demonstrate that vesicular stomatitis virus particles pseudotyped with the spike protein of SARS-CoV-2 variants WT, Alpha, Delta and Omicron enter the neuronal model cell line SH-SY5Y. Cell biological analyses of the pseudo-virus treated cultures showed marked alterations in microtubules of SH-SY5Y cells. Because the changes in β-tubulin occurred in most cells, but only few were infected, we further asked whether interaction of the cells with spike protein might be sufficient to cause molecular and structural changes. For this, SH-SY5Y cells were incubated with trimeric spike proteins for time intervals of up to 24 h. CellProfiler™-based image analyses revealed changes in the intensities of microtubule staining in spike protein-incubated cells. Furthermore, expression of the spike protein-processing protease cathepsin L was found to be up-regulated by wild type, Alpha and Delta spike protein pseudotypes and cathepsin L was found to be secreted from spike protein-treated cells. We conclude that the mere interaction of the SARS-CoV-2 with neuronal cells can affect cellular architecture and proteolytic capacities. The molecular mechanisms underlying SARS-CoV-2 spike protein induced cytoskeletal changes in neuronal cells remain elusive and require future studies.
Collapse
Affiliation(s)
- Bernardo R Oliveira
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany
| | - Inga Nehlmeier
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany.
| | - Amy Madeleine Kempf
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | | | - Maren Rehders
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| | - Marianne E P Ceniza
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| | | | - Markus Hoffmann
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | - Stefan Pöhlmann
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | - Klaudia Brix
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| |
Collapse
|
27
|
Ojha R, Jiang A, Mäntylä E, Quirin T, Modhira N, Witte R, Gaudin A, De Zanetti L, Gormal RS, Vihinen-Ranta M, Mercer J, Suomalainen M, Greber UF, Yamauchi Y, Lozach PY, Helenius A, Vapalahti O, Young P, Watterson D, Meunier FA, Joensuu M, Balistreri G. Dynamin independent endocytosis is an alternative cell entry mechanism for multiple animal viruses. PLoS Pathog 2024; 20:e1012690. [PMID: 39541404 PMCID: PMC11594517 DOI: 10.1371/journal.ppat.1012690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/26/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Mammalian receptor-mediated endocytosis (RME) often involves at least one of three isoforms of the large GTPase dynamin (Dyn). Dyn pinches-off vesicles at the plasma membrane and mediates uptake of many viruses, although some viruses directly penetrate the plasma membrane. RME is classically interrogated by genetic and pharmacological interference, but this has been hampered by undesired effects. Here we studied virus entry in conditional genetic knock-out (KO) mouse embryonic fibroblasts lacking expression of all three dynamin isoforms (Dyn-KO-MEFs). The small canine parvovirus known to use a single receptor, transferrin receptor, strictly depended on dynamin. Larger viruses or viruses known to use multiple receptors, including alphaviruses, influenza, vesicular stomatitis, bunya, adeno, vaccinia, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinoviruses infected Dyn-KO-MEFs, albeit at higher dosage than wild-type MEFs. In absence of the transmembrane protease serine subtype 2 (TMPRSS2), which normally activates the SARS-CoV-2 spike protein for plasma membrane fusion, SARS-CoV-2 infected angiotensin-converting enzyme 2 (ACE2)-expressing MEFs predominantly through dynamin- and actin-dependent endocytosis. In presence of TMPRSS2 the ancestral Wuhan-strain bypassed both dynamin-dependent and -independent endocytosis, and was less sensitive to endosome maturation inhibitors than the Omicron B1 and XBB variants, supporting the notion that the Omicron variants do not efficiently use TMPRSS2. Collectively, our study suggests that dynamin function at endocytic pits can be essential for infection with single-receptor viruses, while it is not essential but increases uptake and infection efficiency of multi-receptor viruses that otherwise rely on a functional actin network for infection.
Collapse
Affiliation(s)
- Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elina Mäntylä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tania Quirin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Naphak Modhira
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Arnaud Gaudin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lisa De Zanetti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Rachel Sarah Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pierre-Yves Lozach
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, PSL Research University, Lyon, France
| | - Ari Helenius
- Department of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Paul Young
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Frédéric A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Li H, Gong W, Sun W, Yao Y, Han Y. Role of VPS39, a key tethering protein for endolysosomal trafficking and mitochondria-lysosome crosstalk, in health and disease. J Cell Biochem 2024; 125:e30396. [PMID: 36924104 DOI: 10.1002/jcb.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The coordinated interaction between mitochondria and lysosomes, mainly manifested by mitophagy, mitochondria-derived vesicles, and direct physical contact, is essential for maintaining cellular life activities. The VPS39 subunit of the homotypic fusion and protein sorting complex could play a key role in the regulation of organelle dynamics, such as endolysosomal trafficking and mitochondria-vacuole/lysosome crosstalk, thus contributing to a variety of physiological functions. The abnormalities of VPS39 and related subunits have been reported to be involved in the pathological process of some diseases. Here, we analyze the potential mechanisms and the existing problems of VPS39 in regulating organelle dynamics, which, in turn, regulate physiological functions and disease pathogenesis, so as to provide new clues for facilitating the discovery of therapeutic targets for mitochondrial and lysosomal diseases.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yuanfa Yao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
29
|
Navhaya LT, Matsebatlela TM, Monama MZ, Makhoba XH. In Silico Discovery and Evaluation of Inhibitors of the SARS-CoV-2 Spike Protein-HSPA8 Complex Towards Developing COVID-19 Therapeutic Drugs. Viruses 2024; 16:1726. [PMID: 39599841 PMCID: PMC11599135 DOI: 10.3390/v16111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
The SARS-CoV-2 spike protein is pivotal in the COVID-19 virus's life cycle, facilitating viral attachment to host cells. It is believed that targeting this viral protein could be key to developing effective COVID-19 prophylactics. Using in silico techniques, this study sought to virtually screen for compounds from the literature that strongly bind and disrupt the stability of the HSPA8-spike protein complex. To evaluate the interactions between the individual proteins and the protein complex attained from protein-protein docking using BioLuminate, molecular docking was performed using the Maestro Schrodinger Suite. The screened small molecules met all bioavailability conditions, Lipinski's and Veber's rules, and the required medicinal chemistry properties. Protein-protein docking of the spike protein and HSPA8 identified the optimal pose with a PIPER cluster size of 65, a PIPER pose energy of -748.301 kcal/mol, and a PIPER pose score of -101.189 kcal/mol. Two small molecules, NSC36398 and NSC281245, showed promising docking scores against the spike protein individually and in a complex with HSPA8. NSC36398 had a docking score of -7.934 kcal/mol and a binding free energy of -39.52 kcal/mol with the viral spike protein and a docking score of -8.029 kcal/mol and binding free energy of -38.61 with the viral protein in complex with HSPA8, respectively. Mevastatin had a docking score of -5.099 kcal/mol and a binding free energy of -44.49 kcal/mol with the viral protein and a docking score of -5.285 kcal/mol and binding free energy of -36.65 kcal/mol with the viral protein in complex with HSPA8, respectively. These results, supported by extensive 2D interaction diagrams, suggest that NSC36398 and NSC281245 are potential drug candidates targeting SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Liberty T. Navhaya
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Turfloop Campus, Sovenga 7270, South Africa; (L.T.N.); (T.M.M.); (M.Z.M.)
| | - Thabe M. Matsebatlela
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Turfloop Campus, Sovenga 7270, South Africa; (L.T.N.); (T.M.M.); (M.Z.M.)
| | - Mokgerwa Z. Monama
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Turfloop Campus, Sovenga 7270, South Africa; (L.T.N.); (T.M.M.); (M.Z.M.)
| | - Xolani H. Makhoba
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa
| |
Collapse
|
30
|
Do TL, Tachibana K, Yamamoto N, Ando K, Isoda T, Kihara T. Interaction of SARS-CoV-2 Spike protein with ACE2 induces cortical actin modulation, including dephosphorylation of ERM proteins and reduction of cortical stiffness. Hum Cell 2024; 38:3. [PMID: 39436480 DOI: 10.1007/s13577-024-01142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Cell surface cortical actin is a regulatory target for viral infection. We aimed to investigate the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on host cell cortical stiffness, an indicator of cortical actin structure. The receptor-binding domain (RBD) of SARS-CoV-2 Spike (S) protein induced a reduction in cortical stiffness in ACE2-expressing cells. The interaction of RBD with ACE2 caused the inactivation of Ezrin/Radixin/Moesin (ERM) proteins. We further investigated the effects of the RBD of SARS-CoV-2 Omicron variants, BA.1 and BA.5. These RBDs influenced cortical stiffness depending on their affinity for ACE2. Our study provides the first evidence that the interaction of the SARS-CoV-2 S protein with ACE2 induces mechanobiological signals and attenuates the cortical actin.
Collapse
Affiliation(s)
- Thi Ly Do
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Kouichi Tachibana
- Division of Hematology and Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Norio Yamamoto
- Department of Microbiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Kiyoshi Ando
- Division of Hematology and Oncology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Takaaki Isoda
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
31
|
Katiyar H, Arduini A, Li Y, Liang C. SARS-CoV-2 Assembly: Gaining Infectivity and Beyond. Viruses 2024; 16:1648. [PMID: 39599763 PMCID: PMC11598957 DOI: 10.3390/v16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was responsible for causing the COVID-19 pandemic. Intensive research has illuminated the complex biology of SARS-CoV-2 and its continuous evolution during and after the COVID-19 pandemic. While much attention has been paid to the structure and functions of the viral spike protein and the entry step of viral infection, partly because these are targets for neutralizing antibodies and COVID-19 vaccines, the later stages of SARS-CoV-2 replication, including the assembly and egress of viral progenies, remain poorly characterized. This includes insight into how the activities of the viral structural proteins are orchestrated spatially and temporally, which cellular proteins are assimilated by the virus to assist viral assembly, and how SARS-CoV-2 counters and evades the cellular mechanisms antagonizing virus assembly. In addition to becoming infectious, SARS-CoV-2 progenies also need to survive the hostile innate and adaptive immune mechanisms, such as recognition by neutralizing antibodies. This review offers an updated summary of the roles of SARS-CoV-2 structural proteins in viral assembly, the regulation of assembly by viral and cellular factors, and the cellular mechanisms that restrict this process. Knowledge of these key events often reveals the vulnerabilities of SARS-CoV-2 and aids in the development of effective antiviral therapeutics.
Collapse
Affiliation(s)
- Harshita Katiyar
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yichen Li
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
32
|
Li S, Yang H, Tian F, Li W, Wang H, Shi X, Cui Z, Shan Y. Unveiling the Dynamic Mechanism of SARS-CoV-2 Entry Host Cells at the Single-Particle Level. ACS NANO 2024; 18:27891-27904. [PMID: 39353173 DOI: 10.1021/acsnano.4c04212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the dynamic features of severe acute respiratory coronavirus 2 (SARS-CoV-2) binding to the cell membrane and entry cells is crucial for comprehending viral pathogenesis and transmission and facilitating the development of effective drugs against COVID-19. Herein, we employed atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) to study the binding dynamics between the virus and cell membrane. Our findings revealed that the Omicron variant of SARS-CoV-2 virus-like particles (VLPs) exhibited a slightly stronger affinity for the angiotensin-converting enzyme-2 (ACE2) receptor compared with the Delta variant and was significantly higher than the wild-type (WT). Using a real-time force-tracing technique, we quantified the dynamic parameters for a single SARS-CoV-2 VLP entry into cells, showing that approximately 200 ms and 60 pN are required. The parameters aligned with the analysis obtained from coarse-grained molecular dynamics (CGMD) simulations. Additionally, the Omicron variant invades cells at a higher entry cell speed, smaller force, and higher probability. Furthermore, single-particle fluorescence tracking visually demonstrated clathrin-dependent endocytosis for SARS-CoV-2 entry into A549 cells. The dynamic features of endocytosis provide valuable insights into the SARS-CoV-2 entry mechanism and possible intervention strategies targeting the viral infection process.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falin Tian
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
33
|
Verma SK, Ana-Sosa-Batiz F, Timis J, Shafee N, Maule E, Pinto PBA, Conner C, Valentine KM, Cowley DO, Miller R, Elong Ngono A, Tran L, Varghese K, Dos Santos Alves RP, Hastie KM, Saphire EO, Webb DR, Jarnagin K, Kim K, Shresta S. Influence of Th1 versus Th2 immune bias on viral, pathological, and immunological dynamics in SARS-CoV-2 variant-infected human ACE2 knock-in mice. EBioMedicine 2024; 108:105361. [PMID: 39353281 PMCID: PMC11472634 DOI: 10.1016/j.ebiom.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mouse models that recapitulate key features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection are important tools for understanding complex interactions between host genetics, immune responses, and SARS-CoV-2 pathogenesis. Little is known about how predominantly cellular (Th1 type) versus humoral (Th2 type) immune responses influence SARS-CoV-2 dynamics, including infectivity and disease course. METHODS We generated knock-in (KI) mice expressing human ACE2 (hACE2) and/or human TMPRSS2 (hTMPRSS2) on Th1-biased (C57BL/6; B6) and Th2-biased (BALB/c) genetic backgrounds. Mice were infected intranasally with SARS-CoV-2 Delta (B.1.617.2) or Omicron BA.1 (B.1.1.529) variants, followed by assessment of disease course, respiratory tract infection, lung histopathology, and humoral and cellular immune responses. FINDINGS In both B6 and BALB/c mice, hACE2 expression was required for infection of the lungs with Delta, but not Omicron BA.1. Disease severity was greater in Omicron BA.1-infected hTMPRSS2-KI and double-KI BALB/c mice compared with B6 mice, and in Delta-infected double-KI B6 and BALB/c mice compared with hACE2-KI mice. hACE2-KI B6 mice developed more severe lung pathology and more robust SARS-CoV-2-specific splenic CD8 T cell responses compared with hACE2-KI BALB/c mice. There were no notable differences between the two genetic backgrounds in plasma cell, germinal center B cell, or antibody responses to SARS-CoV-2. INTERPRETATION SARS-CoV-2 Delta and Omicron BA.1 infection, disease course, and CD8 T cell response are influenced by the host genetic background. These humanized mice hold promise as important tools for investigating the mechanisms underlying the heterogeneity of SARS-CoV-2-induced pathogenesis and immune response. FUNDING This work was funded by NIH U19 AI142790-02S1, the GHR Foundation, the Arvin Gottleib Foundation, and the Overton family (to SS and EOS); Prebys Foundation (to SS); NIH R44 AI157900 (to KJ); and by an American Association of Immunologists Career Reentry Fellowship (FASB).
Collapse
Affiliation(s)
- Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kristen M Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Dale O Cowley
- TransViragen Inc., 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet LM, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun 2024; 15:8479. [PMID: 39353909 PMCID: PMC11445543 DOI: 10.1038/s41467-024-52773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Gregory W Busey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wesley H Iobst
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Chloe Renken
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hansa Doppalapudi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marta E Stremska
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Mohan C Manjegowda
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Weiming Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Nikegen Inc., Shanghai, China
| | - Shardul Naphade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Kennedy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Eric J Stipes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
35
|
Calcagnile M, Damiano F, Lobreglio G, Siculella L, Bozzetti MP, Forgez P, Malgoyre A, Libert N, Bucci C, Alifano M, Alifano P. In silico evidence that substitution of glycine for valine (p.G8V) in a common variant of TMPRSS2 isoform 1 increases accessibility to an endocytic signal: Implication for SARS-cov-2 entry into host cells and susceptibility to COVID-19. Biochimie 2024; 225:89-98. [PMID: 38754620 DOI: 10.1016/j.biochi.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The TMPRSS2 protease plays a key role in the entry of the SARS-CoV-2 into cells. The TMPRSS2 gene is highly polymorphic in humans, and some polymorphisms may affect the susceptibility to COVID-19 or disease severity. rs75603675 (c.23G > T) is a missense variant that causes the replacement of glycine with valine at position 8 (p.G8V) in the TMPRSS2 isoform 1. According to GnomAD v4.0.0 database, the allele frequency of the rs75603675 on a global scale is 38.10 %, and range from 0.92 % in East Asian to 40.77 % in non-Finnish European (NFE) population. We analyzed the occurrence of the rs75603675 in two cohorts of patients, the first with severe/critical COVID-19 enrolled in a French hospital (42 patients), and the second with predominantly asymptomatic/pauci-symptomatic/mild COVID-19 enrolled in an Italian hospital (69 patients). We found that the TMPRSS2-c.23T minor allele frequency was similar in the two cohorts, 46.43 % and 46.38 %, respectively, and higher than the frequency in the NFE population (40.77 %). Chi-square test provided significant results (p < 0.05) when the genotype data (TMPRSS2-c.23T/c.23T homozygotes + TMPRSS2-c.23G/c.23T heterozygotes vs. TMPRSS2-c.23G/c.23G homozygotes) of the two patient groups were pooled and compared to the expected data for the NFE population, suggesting a possible pathogenetic mechanism of the p.G8V substitution. We explored the possible effects of the p.G8V substitution and found that the N-terminal region of the TMPRSS2 isoform 1 contains a signal for clathrin/AP-2-dependent endocytosis. In silico analysis predicted that the p.G8V substitution may increase the accessibility to the endocytic signal, which could help SARS-CoV-2 enter cells.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Giambattista Lobreglio
- Clinical Pathology and Microbiology Unit, Vito Fazzi General Hospital, 73100, Lecce, Italy
| | - Luisa Siculella
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Patricia Forgez
- INSERM UMR-S 1124 T3S, Eq 5 CELLULAR HOMEOSTASIS, CANCER and THERAPY, University of Paris, Campus Saint Germain, Paris, France
| | - Alexandra Malgoyre
- Institut de Recherche Biomedicale des Armées, French Armed Forces Health Services, Brétigny sur Orge, France; Ecole Du Val de Grâce, French Armed Forces Health Service, France; Laboratoire de Biologie de L'Exercice pour La Performance et La Santé, Université Evry-Paris-Saclay, Evry, France
| | - Nicolas Libert
- Ecole Du Val de Grâce, French Armed Forces Health Service, France; Hopital D'Instruction des Armées, French Armed Forces Health Services, Clamart, France
| | - Cecilia Bucci
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, France; INSERM U1138 Team «Cancer, Immune Control, and Escape», Cordeliers Research Center, University of Paris, France.
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Lecce, Italy.
| |
Collapse
|
36
|
Andreu S, Ripa I, López-Guerrero JA, Bello-Morales R. Human Coronavirus 229E Uses Clathrin-Mediated Endocytosis as a Route of Entry in Huh-7 Cells. Biomolecules 2024; 14:1232. [PMID: 39456165 PMCID: PMC11505773 DOI: 10.3390/biom14101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Human coronavirus 229E (HCoV-229E) is an endemic coronavirus responsible for approximately one-third of "common cold" cases. To infect target cells, HCoV-229E first binds to its receptor on the cell surface and then can follow different pathways, entering by direct fusion or by taking advantage of host cell mechanisms such as endocytosis. Based on the role of clathrin, the process can be classified into clathrin-dependent or -independent endocytosis. This study characterizes the role of clathrin-mediated endocytosis (CME) in HCoV-229E infection of the human hepatoma cell line Huh-7. Using specific CME inhibitory drugs, we demonstrated that blocking CME significantly reduces HCoV-229E infection. Additionally, CRISPR/Cas9-mediated knockout of the µ subunit of adaptor protein complex 2 (AP-2) further corroborated the role of CME, as KOs showed over a 50% reduction in viral infection. AP-2 plays an important role in clathrin recruitment and the maturation of clathrin-coated vesicles. Our study also confirmed that in Huh-7 cells, HCoV-229E requires endosomal acidification for successful entry, as viral entry decreased when treated with lysomotropic agents. Furthermore, the colocalization of HCoV-229E with early endosome antigen 1 (EEA-1), only present in early endosomes, suggested that the virus uses an endosomal route for entry. These findings highlight, for the first time, the role of CME in HCoV-229E infection and confirm previous data of the use of the endosomal route at a low pH in the experimental cell model Huh-7. Our results provide new insights into the mechanisms of entry of HCoV-229E and provide a new basis for the development of targeted antiviral therapies.
Collapse
Affiliation(s)
- Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), 28049 Madrid, Spain
| |
Collapse
|
37
|
Nor Rashid N, Amrani L, Alwan A, Mohamed Z, Yusof R, Rothan H. Angiotensin-Converting Enzyme-2 (ACE2) Downregulation During Coronavirus Infection. Mol Biotechnol 2024:10.1007/s12033-024-01277-5. [PMID: 39266903 DOI: 10.1007/s12033-024-01277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Angiotensin-converting enzyme-2 (ACE2) downregulation represents a detrimental factor in people with a baseline ACE2 deficiency associated with older age, hypertension, diabetes, and cardiovascular diseases. Human coronaviruses, including HCoV-NL63, SARS-CoV-1, and SARS CoV-2 infect target cells via binding of viral spike (S) glycoprotein to the ACE2, resulting in ACE2 downregulation through yet unidentified mechanisms. This downregulation disrupts the enzymatic activity of ACE2, essential in protecting against organ injury by cleaving and disposing of Angiotensin-II (Ang II), leading to the formation of Ang 1-7, thereby exacerbating the accumulation of Ang II. This accumulation activates the Angiotensin II type 1 receptor (AT1R) receptor, leading to leukocyte recruitment and increased proinflammatory cytokines, contributing to organ injury. The biological impacts and underlying mechanisms of ACE2 downregulation during SARS-CoV-2 infection have not been well defined. Therefore, there is an urgent need to establish a solid theoretical and experimental understanding of the mechanisms of ACE2 downregulation during SARS-CoV-2 entry and replication in the host cells. This review aims to discuss the physiological impact of ACE2 downregulation during coronavirus infection, the relationship between ACE2 decline and virus pathogenicity, and the possible mechanisms of ACE2 degradation, along with the therapeutic approaches.
Collapse
Affiliation(s)
- Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| | - Hussin Rothan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Pfizer, Pearl River, NY, USA.
| |
Collapse
|
38
|
Porebski B, Christ W, Corman A, Haraldsson M, Barz M, Lidemalm L, Häggblad M, Ilmain J, Wright SC, Murga M, Schlegel J, Jarvius M, Lapins M, Sezgin E, Bhabha G, Lauschke VM, Carreras-Puigvert J, Lafarga M, Klingström J, Hühn D, Fernandez-Capetillo O. Discovery of a novel inhibitor of macropinocytosis with antiviral activity. Mol Ther 2024; 32:3012-3024. [PMID: 38956870 PMCID: PMC11403221 DOI: 10.1016/j.ymthe.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.
Collapse
Affiliation(s)
- Bartlomiej Porebski
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Wanda Christ
- Center of Infectious Medicine, Department of Medicine, Karolinska Institutet, 141-86 Huddinge, Sweden
| | - Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Myriam Barz
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Louise Lidemalm
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Maria Häggblad
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Juliana Ilmain
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Malin Jarvius
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Maris Lapins
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gira Bhabha
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden; Margarete Fischer-Bosch Institute of Clinical Pharmacology, D-70376 Stuttgart, Germany; University of Tuebingen, 72074 Tuebingen, Germany
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden; Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Miguel Lafarga
- Departament of Anatomy and Cellular Biology, Neurodegenerative Diseases Network (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain
| | - Jonas Klingström
- Center of Infectious Medicine, Department of Medicine, Karolinska Institutet, 141-86 Huddinge, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Daniela Hühn
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
39
|
Guo ZY, Tang YQ, Zhang ZB, Liu J, Zhuang YX, Li T. COVID-19: from immune response to clinical intervention. PRECISION CLINICAL MEDICINE 2024; 7:pbae015. [PMID: 39139990 PMCID: PMC11319938 DOI: 10.1093/pcmedi/pbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.
Collapse
Affiliation(s)
- Zheng-yang Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan-qing Tang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zi-bo Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yu-xin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
40
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
41
|
Atemin A, Ivanova A, Peppel W, Stamatov R, Gallegos R, Durden H, Uzunova S, Vershinin MD, Saffarian S, Stoynov SS. Kinetic Landscape of Single Virus-like Particles Highlights the Efficacy of SARS-CoV-2 Internalization. Viruses 2024; 16:1341. [PMID: 39205315 PMCID: PMC11359012 DOI: 10.3390/v16081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role of virus internalization, the precise kinetics of the processes involved remains elusive. We developed a pipeline, which combines live-cell microscopy and advanced image analysis, for measuring the rates of multiple internalization-associated molecular events of single SARS-CoV-2-virus-like particles (VLPs), including endosome ingression and pH change. Our live-cell imaging experiments demonstrate that only a few minutes after binding to the plasma membrane, VLPs ingress into RAP5-negative endosomes via dynamin-dependent scission. Less than two minutes later, VLP speed increases in parallel with a pH drop below 5, yet these two events are not interrelated. By co-imaging fluorescently labeled nucleocapsid proteins, we show that nucleocapsid release occurs with similar kinetics to VLP acidification. Neither Omicron mutations nor abrogation of the S protein polybasic cleavage site affected the rate of VLP internalization, indicating that they do not confer any significant advantages or disadvantages during this process. Finally, we observe that VLP internalization occurs two to three times faster in VeroE6 than in A549 cells, which may contribute to the greater susceptibility of the former cell line to SARS-CoV-2 infection. Taken together, our precise measurements of the kinetics of VLP internalization-associated processes shed light on their contribution to the effectiveness of SARS-CoV-2 propagation in cells.
Collapse
Affiliation(s)
- Aleksandar Atemin
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Aneliya Ivanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Wiley Peppel
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Rumen Stamatov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Rodrigo Gallegos
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Haley Durden
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Sonya Uzunova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Michael D. Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Saveez Saffarian
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Stoyno S. Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| |
Collapse
|
42
|
Yılmaz Çolak Ç. Bacterial Membrane Vesicles as a Novel Vaccine Platform against SARS-CoV-2. Curr Microbiol 2024; 81:317. [PMID: 39164527 DOI: 10.1007/s00284-024-03846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Throughout history, infectious diseases have plagued humanity, with outbreaks occurring regularly worldwide. Not every outbreak affects people globally; however, in the case of Coronavirus Disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), it reached a pandemic level within a remarkably short period. Fortunately, advancements in medicine and biotechnology have facilitated swift responses to the disease, resulting in the development of therapeutics and vaccines. Nevertheless, the persistent spread of the virus and the emergence of new variants underscore the necessity for protective interventions, leading researchers to seek more effective vaccines. Despite the presence of various types of vaccines, including mRNA and inactivated vaccines against SARS-CoV-2, new platforms have been investigated since the pandemic, and research on bacterial membrane vesicles (BMVs) has demonstrated their potential as a novel COVID-19 vaccine platform. Researchers have explored different strategies for BMV-based COVID-19 vaccines, such as mixing the vesicles with antigenic components of the virus due to their adjuvant capacity or decorating the vesicles with the viral antigens to create adjuvanted delivery systems. These approaches have presented promising results in inducing robust immune responses, but obstacles such as reproducibility in obtaining and homogeneous characterization of BMVs remain in developing vesicle-based vaccines. Overall, the development of BMV-based vaccines represents a novel and promising strategy in the fight against COVID-19. Additional research and clinical trials are needed to further evaluate the potential of these vaccines to offer long-lasting protection against SARS-CoV-2 and its evolving variants.
Collapse
Affiliation(s)
- Çiğdem Yılmaz Çolak
- Life Sciences, Marmara Research Center, TUBITAK, Kocaeli, Türkiye.
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Türkiye.
| |
Collapse
|
43
|
Qian J, Yang B, Wang S, Yuan S, Zhu W, Zhou Z, Zhang Y, Hu G. Drug Repurposing for COVID-19 by Constructing a Comorbidity Network with Central Nervous System Disorders. Int J Mol Sci 2024; 25:8917. [PMID: 39201608 PMCID: PMC11354300 DOI: 10.3390/ijms25168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
In the post-COVID-19 era, treatment options for potential SARS-CoV-2 outbreaks remain limited. An increased incidence of central nervous system (CNS) disorders has been observed in long-term COVID-19 patients. Understanding the shared molecular mechanisms between these conditions may provide new insights for developing effective therapies. This study developed an integrative drug-repurposing framework for COVID-19, leveraging comorbidity data with CNS disorders, network-based modular analysis, and dynamic perturbation analysis to identify potential drug targets and candidates against SARS-CoV-2. We constructed a comorbidity network based on the literature and data collection, including COVID-19-related proteins and genes associated with Alzheimer's disease, Parkinson's disease, multiple sclerosis, and autism spectrum disorder. Functional module detection and annotation identified a module primarily involved in protein synthesis as a key target module, utilizing connectivity map drug perturbation data. Through the construction of a weighted drug-target network and dynamic network-based drug-repurposing analysis, ubiquitin-carboxy-terminal hydrolase L1 emerged as a potential drug target. Molecular dynamics simulations suggested pregnenolone and BRD-K87426499 as two drug candidates for COVID-19. This study introduces a dynamic-perturbation-network-based drug-repurposing approach to identify COVID-19 drug targets and candidates by incorporating the comorbidity conditions of CNS disorders.
Collapse
Affiliation(s)
- Jing Qian
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Bin Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Shuo Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Su Yuan
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Wenjing Zhu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Mukherjee A, Lo M, Chandra P, Datta Chaudhuri R, De P, Dutta S, Chawla-Sarkar M. SARS-CoV-2 nucleocapsid protein promotes self-deacetylation by inducing HDAC6 to facilitate viral replication. Virol J 2024; 21:186. [PMID: 39135075 PMCID: PMC11321199 DOI: 10.1186/s12985-024-02460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The global outbreak of COVID-19 caused by the SARS-CoV-2 has led to millions of deaths. This unanticipated emergency has prompted virologists across the globe to delve deeper into the intricate dynamicity of the host-virus interface with an aim to identify antiviral targets and elucidate host and viral determinants of severe disease. AIM The present study was undertaken to analyse the role of histone deacetylase 6 (HDAC6) in regulating SARS-CoV-2 infection. RESULTS Gradual increase in HDAC6 expression was observed in different SARS-CoV-2-permissive cell lines following SARS-CoV-2 infection. The SARS-CoV-2 nucleocapsid protein (N protein) was identified as the primary viral factor responsible for upregulating HDAC6 expression. Downregulation of HDAC6 using shRNA or a specific inhibitor tubacin resulted in reduced viral replication suggesting proviral role of its deacetylase activity. Further investigations uncovered the interaction of HDAC6 with stress granule protein G3BP1 and N protein during infection. HDAC6-mediated deacetylation of SARS-CoV-2 N protein was found to be crucial for its association with G3BP1. CONCLUSION This study provides valuable insights into the molecular mechanisms underlying the disruption of cytoplasmic stress granules during SARS-CoV-2 infection and highlights the significance of HDAC6 in the process.
Collapse
Affiliation(s)
- Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Mahadeb Lo
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Ratul Datta Chaudhuri
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Papiya De
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
45
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
46
|
Seo Y, Jang Y, Lee SG, Rhlee JH, Kong S, Vo TTH, Kim MH, Lee MK, Kim B, Hong SY, Kim M, Lee JY, Myung K. A dual inhibitor of PIP5K1C and PIKfyve prevents SARS-CoV-2 entry into cells. Exp Mol Med 2024; 56:1736-1749. [PMID: 39085352 PMCID: PMC11372076 DOI: 10.1038/s12276-024-01283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 08/02/2024] Open
Abstract
The SARS-CoV-2 pandemic has had an unprecedented impact on global public health and the economy. Although vaccines and antivirals have provided effective protection and treatment, the development of new small molecule-based antiviral candidates is imperative to improve clinical outcomes against SARS-CoV-2. In this study, we identified UNI418, a dual PIKfyve and PIP5K1C inhibitor, as a new chemical agent that inhibits SARS-CoV-2 entry into host cells. UNI418 inhibited the proteolytic activation of cathepsins, which is regulated by PIKfyve, resulting in the inhibition of cathepsin L-dependent proteolytic cleavage of the SARS-CoV-2 spike protein into its mature form, a critical step for viral endosomal escape. We also demonstrated that UNI418 prevented ACE2-mediated endocytosis of the virus via PIP5K1C inhibition. Our results identified PIKfyve and PIP5K1C as potential antiviral targets and UNI418 as a putative therapeutic compound against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuri Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Seon-Gyeong Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
- Department of Biological Science, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- CasCure Therapeutics, Seoul, Republic of Korea
| | - Joon Ho Rhlee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sukyeong Kong
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Thi Tuyet Hanh Vo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Hun Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Byungil Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Sung You Hong
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea.
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| | - Joo-Yong Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea.
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
47
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
48
|
Chidambaram V, Kumar A, Sadaf MI, Lu E, Al’Aref SJ, Tarun T, Galiatsatos P, Gulati M, Blumenthal RS, Leucker TM, Karakousis PC, Mehta JL. COVID-19 in the Initiation and Progression of Atherosclerosis: Pathophysiology During and Beyond the Acute Phase. JACC. ADVANCES 2024; 3:101107. [PMID: 39113913 PMCID: PMC11304887 DOI: 10.1016/j.jacadv.2024.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 08/10/2024]
Abstract
The incidence of atherosclerotic cardiovascular disease is increasing globally, especially in low- and middle-income countries, despite significant efforts to reduce traditional risk factors. Premature subclinical atherosclerosis has been documented in association with several viral infections. The magnitude of the recent COVID-19 pandemic has highlighted the need to understand the association between SARS-CoV-2 and atherosclerosis. This review examines various pathophysiological mechanisms, including endothelial dysfunction, platelet activation, and inflammatory and immune hyperactivation triggered by SARS-CoV-2 infection, with specific attention on their roles in initiating and promoting the progression of atherosclerotic lesions. Additionally, it addresses the various pathogenic mechanisms by which COVID-19 in the post-acute phase may contribute to the development of vascular disease. Understanding the overlap of these syndromes may enable novel therapeutic strategies. We further explore the need for guidelines for closer follow-up for the often-overlooked evidence of atherosclerotic cardiovascular disease among patients with recent COVID-19, particularly those with cardiometabolic risk factors.
Collapse
Affiliation(s)
- Vignesh Chidambaram
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amudha Kumar
- Division of Cardiology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Murrium I. Sadaf
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Emily Lu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Subhi J. Al’Aref
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tushar Tarun
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Panagis Galiatsatos
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Martha Gulati
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M. Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C. Karakousis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jawahar L. Mehta
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Cardiovascular Medicine, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
49
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
50
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|