1
|
Etemad A, Tanaka Y, Wang S, Slae M, Sultan M, Elpeleg O, Hirokawa N. Mutations in the kinesin KIF12 promote MASH in humans and mice by disrupting lipogenic enzyme turnover. EMBO J 2025; 44:1608-1640. [PMID: 39920308 PMCID: PMC11914266 DOI: 10.1038/s44318-025-00366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
As a common cause of liver cirrhosis, metabolic dysfunction-associated steatohepatitis (MASH) is regarded as a target of therapeutic intervention. However, a successful therapy has not yet been found, partly because the molecular pathogenesis is largely elusive. Here we show that KIF12 kinesin suppresses MASH development by accelerating the breakdown of two lipid biosynthesis enzymes, acetyl-CoA carboxylase 1 (ACC1) and pyruvate carboxylase (PC), in hepatocytes. We report three familial early-onset liver cirrhosis pedigrees with homozygous KIF12 mutations, accompanying MASH-like steatosis and cholestasis. The mouse genetic model carrying the corresponding Kif12 nonsense mutation faithfully reproduced the phenotypes as early as between 8 and 10 weeks of age. Furthermore, KIF12-deficient HepG2 cells exhibited significant steatosis, which was ameliorated by overexpressing a proline-rich domain (PRD) of KIF12. We found that KIF12-PRD promotes the degradation of ACC1 and PC, and this effect is likely to be through its direct interaction with these enzymes. Interestingly, KIF12 enhanced the ubiquitination of ACC1 by the E3 ligase COP1 and colocalized with these proteins as seen by super-resolution microscopy imaging. These data propose a role for KIF12 in suppressing MASH by accelerating turnover of lipogenic enzymes.
Collapse
Affiliation(s)
- Asieh Etemad
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Shuo Wang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mordechai Slae
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Mutaz Sultan
- Makassed Hospital, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Orly Elpeleg
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
2
|
Qiu X, Shen S, Jiang N, Lu D, Feng Y, Yang G, Xiang B. Adherence to the planetary health diet index and metabolic dysfunction-associated steatotic liver disease: a cross-sectional study. Front Nutr 2025; 12:1534604. [PMID: 40051965 PMCID: PMC11882404 DOI: 10.3389/fnut.2025.1534604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Backgrounds Adherence to the Planetary Health Diet Index (PHDI) has been shown to benefit both individual health and the planet. However, its impact on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) remains unclear. This study aimed to investigate the relationship between PHDI adherence and the MASLD risk. Methods We analyzed a cohort of 15,865 adults (aged ≥18 years) using data from the National Health and Nutrition Examination Survey (NHANES, 2005-2018). The PHDI was derived from 24-h dietary assessments and comprised the scores of 15 food groups. Multivariate logistic regression was used to investigate the association between PHDI and MASLD, while restricted cubic spline (RCS) regression and threshold analysis were employed to explore potential non-linear relationship. Subgroup analyses were conducted to assess the influence of various demographic and clinical characteristics on the observed associations. Mediation analysis was performed to evaluate the indirect effect of PHDI on MASLD, and weighted quantile sum (WQS) regression was used to assess the influence of individual PHDI nutrients on MASLD. Results Among the cohort, 6,125 individuals were diagnosed with MASLD. Multivariate logistic regression revealed that a higher quintile of PHDI was significantly associated with reduced MASLD risk in the fully adjusted model (OR = 0.610, 95%CI 0.508-0.733, p < 0.001). Notably, nonlinear relationships between PHDI and MASLD risk were observed through RCS analysis (p = 0.002). Subgroup analyses indicated that PHDI was particularly effective in reducing MASLD risk among females, those with higher education attainment, and those living with a partner. WQS regression identified saturated fatty acids as the most significant factor contributing to MASLD risk (weight = 0.313). Additionally, BMI and waist circumference (81.47 and 87.66%, respectively) partially mediated the association between PHDI and MASLD risk, suggesting that the effect of PHDI on MASLD operates, in part, through its impact on BMI and waist circumference. The association between PHDI and MASLD remained robust across multiple sensitivity analyses. Conclusion Our findings indicate that adherence to PHDI is linked to a lower risk of MASLD, providing crucial insights for strategies aimed at mitigating the MASLD epidemic while simultaneously fostering environmental sustainability.
Collapse
Affiliation(s)
- Xin Qiu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuang Shen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Nizhen Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Donghong Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yifei Feng
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guodong Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| |
Collapse
|
3
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
4
|
Akl MG, Li L, Widenmaier SB. Protective Effects of Hepatocyte Stress Defenders, Nrf1 and Nrf2, against MASLD Progression. Int J Mol Sci 2024; 25:8046. [PMID: 39125617 PMCID: PMC11312428 DOI: 10.3390/ijms25158046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Progression of metabolic dysfunction-associated steatites liver disease (MASLD) to steatohepatitis (MASH) is driven by stress-inducing lipids that promote liver inflammation and fibrosis, and MASH can lead to cirrhosis and hepatocellular carcinoma. Previously, we showed coordinated defenses regulated by transcription factors, nuclear factor erythroid 2-related factor-1 (Nrf1) and -2 (Nrf2), protect against hepatic lipid stress. Here, we investigated protective effects of hepatocyte Nrf1 and Nrf2 against MASH-linked liver fibrosis and tumorigenesis. Male and female mice with flox alleles for genes encoding Nrf1 (Nfe2l1), Nrf2 (Nfe2l2), or both were fed a MASH-inducing diet enriched with high fat, fructose, and cholesterol (HFFC) or a control diet for 24-52 weeks. During this period, hepatocyte Nrf1, Nrf2, or combined deficiency for ~7 days, ~7 weeks, and ~35 weeks was induced by administering mice hepatocyte-targeting adeno-associated virus (AAV) expressing Cre recombinase. The effects on MASH, markers of liver fibrosis and proliferation, and liver tumorigenesis were compared to control mice receiving AAV-expressing green fluorescent protein. Also, to assess the impact of Nrf1 and Nrf2 induction on liver fibrosis, HFFC diet-fed C57bl/6J mice received weekly injections of carbon tetrachloride, and from week 16 to 24, mice were treated with the Nrf2-activating drug bardoxolone, hepatocyte overexpression of human NRF1 (hNRF1), or both, and these groups were compared to control. Compared to the control diet, 24-week feeding with the HFFC diet increased bodyweight as well as liver weight, steatosis, and inflammation. It also increased hepatocyte proliferation and a marker of liver damage, p62. Hepatocyte Nrf1 and combined deficiency increased liver steatosis in control diet-fed but not HFFC diet-fed mice, and increased liver inflammation under both diet conditions. Hepatocyte Nrf1 deficiency also increased hepatocyte proliferation, whereas combined deficiency did not, and this also occurred for p62 level in control diet-fed conditions. In 52-week HFFC diet-fed mice, 35 weeks of hepatocyte Nrf1 deficiency, but not combined deficiency, resulted in more liver tumors in male mice, but not in female mice. In contrast, hepatocyte Nrf2 deficiency had no effect on any of these parameters. However, in the 15-week CCL4-exposed and 24-week HFFC diet-fed mice, Nrf2 induction with bardoxolone reduced liver steatosis, inflammation, fibrosis, and proliferation. Induction of hepatic Nrf1 activity with hNRF1 enhanced the effect of bardoxolone on steatosis and may have stimulated liver progenitor cells. Physiologic Nrf1 delays MASLD progression, Nrf2 induction alleviates MASH, and combined enhancement synergistically protects against steatosis and may facilitate liver repair.
Collapse
Affiliation(s)
| | | | - Scott B. Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.G.A.)
| |
Collapse
|
5
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Wang Y, Li L, Zhang M, Feng R, Liu L. Optimization of the quantitative protocol for organic acid in fecal samples using gas chromatography-mass spectrometry. J Pharm Biomed Anal 2024; 241:116004. [PMID: 38309097 DOI: 10.1016/j.jpba.2024.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Organic acids (OAs) play important roles in a variety of intracellular metabolic pathways, such as the tricarboxylic acid cycle, fatty acid oxidation, glycolysis. The accurate detection of OAs in fecal samples was crucial for comprehending the metabolic changes associated with various metabolic disease. However, the analytical protocol detecting OAs profiling in feces have received scant attention. In this work, an optimized protocol based on chromatography-mass spectrometry for simultaneous quantification of 23 OAs in rat feces was developed. The optimal conditions involved using a 40-mg fecal sample mixed with isopropyl alcohol, acetonitrile, and deionized water (3:2:2 vol ratio) with a total volume of 1500 μL, followed by ultrasonic extraction and a derivatization reaction with an 80 μL derivative agent. The protocol showed an acceptable linearity (R2 ≥ 0.9906), the satisfactory precision (RSD% ≤ 14.87%), the low limits of detection (0.001 to 1 μg/mL) and the limit of quantification (0.005 to 1.5 μg/mL). Moreover, the dried residues of the extracted solution showed the better stability of OAs at -20 °C, which was more suitable for a large-scale sample analysis. Finally, the developed protocol was successfully applied to compare the difference of OAs profiling in fecal samples harvested from normal and nonalcoholic fatty liver disease rats, which was beneficial to find out the metabolic change of OAs profiling and explain the related mechanism of the disease.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, PR China
| | - Li Li
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, PR China
| | - Mingjia Zhang
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, PR China
| | - Rennan Feng
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, PR China
| | - Liyan Liu
- Key Laboratory of Precision nutrition and health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Heilongjiang, PR China.
| |
Collapse
|
7
|
Tsouka S, Kumar P, Seubnooch P, Freiburghaus K, St-Pierre M, Dufour JF, Masoodi M. Transcriptomics-driven metabolic pathway analysis reveals similar alterations in lipid metabolism in mouse MASH model and human. COMMUNICATIONS MEDICINE 2024; 4:39. [PMID: 38443644 PMCID: PMC10914730 DOI: 10.1038/s43856-024-00465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease worldwide, and can rapidly progress to metabolic dysfunction-associated steatohepatitis (MASH). Accurate preclinical models and methodologies are needed to understand underlying metabolic mechanisms and develop treatment strategies. Through meta-analysis of currently proposed mouse models, we hypothesized that a diet- and chemical-induced MASH model closely resembles the observed lipid metabolism alterations in humans. METHODS We developed transcriptomics-driven metabolic pathway analysis (TDMPA), a method to aid in the evaluation of metabolic resemblance. TDMPA uses genome-scale metabolic models to calculate enzymatic reaction perturbations from gene expression data. We performed TDMPA to score and compare metabolic pathway alterations in MASH mouse models to human MASH signatures. We used an already-established WD+CCl4-induced MASH model and performed functional assays and lipidomics to confirm TDMPA findings. RESULTS Both human MASH and mouse models exhibit numerous altered metabolic pathways, including triglyceride biosynthesis, fatty acid beta-oxidation, bile acid biosynthesis, cholesterol metabolism, and oxidative phosphorylation. We confirm a significant reduction in mitochondrial functions and bioenergetics, as well as in acylcarnitines for the mouse model. We identify a wide range of lipid species within the most perturbed pathways predicted by TDMPA. Triglycerides, phospholipids, and bile acids are increased significantly in mouse MASH liver, confirming our initial observations. CONCLUSIONS We introduce TDMPA, a methodology for evaluating metabolic pathway alterations in metabolic disorders. By comparing metabolic signatures that typify human MASH, we show a good metabolic resemblance of the WD+CCl4 mouse model. Our presented approach provides a valuable tool for defining metabolic space to aid experimental design for assessing metabolism.
Collapse
Affiliation(s)
- Sofia Tsouka
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Pavitra Kumar
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Patcharamon Seubnooch
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Katrin Freiburghaus
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marie St-Pierre
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Jean-François Dufour
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
- Centre des Maladie Digestives, Lausanne, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
8
|
Liu C, Sun X, Peng J, Yu H, Lu J, Feng Y. Association between dietary vitamin A intake from different sources and non-alcoholic fatty liver disease among adults. Sci Rep 2024; 14:1851. [PMID: 38253816 PMCID: PMC10803811 DOI: 10.1038/s41598-024-52077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an urgent public health issue with high global prevalence, but data on NAFLD are inconsistent. The association of total dietary vitamin A intake with the NAFLD risk was not well documented in previous studies. To explore the relationship between dietary vitamin A intake from different sources and NAFLD risk among American adults. Data were collected from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2014. Logistic regression and restricted cubic spline models were used to estimate the relationship between total dietary vitamin A intake and NAFLD risk. 6,613 adult participants were included. After adjusting potential confounders, the odds ratios (ORs) with 95% confidence intervals (CIs) of NAFLD for the highest quartile intake of total vitamin A, preformed vitamin A, provitamin A carotenoids were respectively 0.86 (0.69-1.06), 0.97 (0.74-1.28), and 0.78 (0.61-0.99), compared to the lowest quartile. Stratifying gender and age, provitamin A carotenoids intake was inversely associated with NAFLD risk in females and participants aged < 45 years. Dose-response analysis indicated a linear negative relationship between provitamin A carotenoids intake and NAFLD risk. Provitamin A carotenoids intake was inversely associated with NAFLD, especially in women and those aged < 45 years among adult American.
Collapse
Affiliation(s)
- Can Liu
- School of Public Health, Shanxi Medical University, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Xiaona Sun
- Department of Respiratory and Critical Care Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jing Peng
- Department of Pediatrics, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Haiqing Yu
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Jiao Lu
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Yihui Feng
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
9
|
Wang H, Shen H, Seo W, Hwang S. Experimental models of fatty liver diseases: Status and appraisal. Hepatol Commun 2023; 7:e00200. [PMID: 37378635 DOI: 10.1097/hc9.0000000000000200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Fatty liver diseases, including alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease nonalcoholic fatty liver disease (NAFLD), affect a large number of people worldwide and become one of the major causes of end-stage liver disease, such as liver cirrhosis and hepatocellular carcinoma (HCC). Unfortunately, there are currently no approved pharmacological treatments for ALD or NAFLD. This situation highlights the urgent need to explore new intervention targets and discover effective therapeutics for ALD and NAFLD. The lack of properly validated preclinical disease models is a major obstacle to the development of clinical therapies. ALD and NAFLD models have been in the development for decades, but there are still no models that recapitulate the full spectrum of ALD and NAFLD. Throughout this review, we summarize the current in vitro and in vivo models used for research on fatty liver diseases and discuss the advantages and limitations of these models.
Collapse
Affiliation(s)
- Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Wonhyo Seo
- Laboratory of Hepatotoxicity, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
10
|
Aljahdali BA, Bajaber AS, Al-Nouri DM, Al-Khalifah AS, Arzoo S, Alasmari AA. The Development of Nonalcoholic Fatty Liver Disease and Metabolic Syndromes in Diet-Induced Rodent Models. Life (Basel) 2023; 13:1336. [PMID: 37374119 DOI: 10.3390/life13061336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary macronutrients are essential for metabolic regulation and insulin function. The present study examined the effects of different high-fat diets (HFDs) and high-carbohydrate diets (HCDs) on the development of non-alcoholic fatty liver disease and metabolic syndrome indices in healthy adult male Wistar albino rats. Forty-two rats were distributed into six groups (n = 7), which were fed the following for 22 weeks: (1) a control diet; (2) a high-carbohydrate, low-fat diet (HCD-LFD); (3) high-saturated-fat, low-carbohydrate diet (HSF-LCD); (4) a high-monounsaturated-fat diet (HMUSF); (5) a high medium-chain fat diet (HMCF); and a (6) a high-carbohydrate, high-fiber diet (HCHF). In comparison to the control, the body weight increased in all the groups. The HSF-LCD group showed the highest levels of cholesterol, triglyceride, low-density lipoprotein, hepatic enzyme, insulin resistance, and Homeostatic Model Assessment for Insulin Resistance. A liver histology analysis of the HSF-LCD group showed macrovesicular hepatic steatosis associated with large hepatic vacuolation. Additionally, it showed marked periportal fibrosis, especially around the blood vessels and blood capillaries. The lowest levels of fasting glycemia, insulin, and HOMA-IR were observed in the HCHF group. In conclusion, these findings show that dietary saturated fat and cholesterol are principal components in the development and progression of non-alcoholic fatty liver disease in rats, while fiber showed the greatest improvement in glycemic control.
Collapse
Affiliation(s)
- Bayan Abdulhafid Aljahdali
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Adnan Salem Bajaber
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Doha M Al-Nouri
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Abdulrahman Saleh Al-Khalifah
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Shaista Arzoo
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| | - Abeer Abdullah Alasmari
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh 1495, Saudi Arabia
| |
Collapse
|
11
|
Zhang Q, Jin Y, Xin X, An Z, Hu YY, Li Y, Feng Q. A high-trans fat, high-carbohydrate, high-cholesterol, high-cholate diet-induced nonalcoholic steatohepatitis mouse model and its hepatic immune response. Nutr Metab (Lond) 2023; 20:28. [PMID: 37244987 DOI: 10.1186/s12986-023-00749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive disease that can progress to non-alcoholic steatohepatitis (NASH). Animal models are important tools for basic NASH research. Immune activation plays a key role in liver inflammation in patients with NASH. We established a high-trans fat, high-carbohydrate, and high-cholesterol, high-cholate diet-induced (HFHCCC) mouse model. C57BL/6 mice were fed a normal or HFHCCC diet for 24 weeks, and the immune response characteristics of this model were evaluated. The proportion of immune cells in mouse liver tissues was detected by immunohistochemistry and flow cytometry, Multiplex bead immunoassay and Luminex technology was used to detecte the expression of cytokines in mouse liver tissues. The results showed that mice treated with HFHCCC diet exhibited remarkably increased hepatic triglycerides (TG) content, and the increase in plasma transaminases resulted in hepatocyte injury. Biochemical results showed that HFHCCC induced elevated hepatic lipids, blood glucose, insulin; marked hepatocyte steatosis, ballooning, inflammation, and fibrosis. The proportion of innate immunity-related cells, including Kupffer cells (KCs), neutrophils, dendritic cells (DCs), natural killer T cells (NKT), and adaptive immunity-related CD3+ T cells increased; interleukin-1α (IL-1α), IL-1β, IL-2, IL-6, IL-9, and chemokines, including CCL2, CCL3, and macrophage colony stimulating factor (G-CSF) increased. The constructed model closely approximated the characteristics of human NASH and evaluation of its immune response signature, showed that the innate immune response was more pronounced than adaptive immunity. Its use as an experimental tool for understanding innate immune responses in NASH is recommended.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Yue Jin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yajuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
12
|
Akl MG, Li L, Baccetto R, Phanse S, Zhang Q, Trites MJ, McDonald S, Aoki H, Babu M, Widenmaier SB. Complementary gene regulation by NRF1 and NRF2 protects against hepatic cholesterol overload. Cell Rep 2023; 42:112399. [PMID: 37060561 DOI: 10.1016/j.celrep.2023.112399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/04/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
Hepatic cholesterol overload promotes steatohepatitis. Insufficient understanding of liver stress defense impedes therapy development. Here, we elucidate the role of stress defense transcription factors, nuclear factor erythroid 2 related factor-1 (NRF1) and -2 (NRF2), in counteracting cholesterol-linked liver stress. Using a diet that increases liver cholesterol storage, expression profiles and phenotypes of liver from mice with hepatocyte deficiency of NRF1, NRF2, or both are compared with controls, and chromatin immunoprecipitation sequencing is undertaken to identify target genes. Results show NRF1 and NRF2 co-regulate genes that eliminate cholesterol and mitigate inflammation and oxidative damage. Combined deficiency, but not deficiency of either alone, results in severe steatohepatitis, hepatic cholesterol overload and crystallization, altered bile acid metabolism, and decreased biliary cholesterol. Moreover, therapeutic effects of NRF2-activating drug bardoxolone require NRF1 and are supplemented by NRF1 overexpression. Thus, we discover complementary gene programming by NRF1 and NRF2 that counteract cholesterol-associated fatty liver disease progression.
Collapse
Affiliation(s)
- May G Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Lei Li
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raquel Baccetto
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sadhna Phanse
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Michael J Trites
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sherin McDonald
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hiroyuki Aoki
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Scott B Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
13
|
Gao X, Lin X, Xin Y, Zhu X, Li X, Chen M, Huang Z, Guo H. Dietary cholesterol drives the development of non-alcoholic steatohepatitis by altering gut microbiota mediated bile acid metabolism in high-fat diet fed mice. J Nutr Biochem 2023; 117:109347. [PMID: 37031879 DOI: 10.1016/j.jnutbio.2023.109347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most widespread chronic liver disorder globally. Unraveling the pathogenesis of simple fatty liver to non-alcoholic steatohepatitis (NASH) has important clinical significance for improving the prognosis of NAFLD. Here, we explored the role of a high-fat diet alone or combined with high cholesterol in causing NASH progression. Our results demonstrated that high dietary cholesterol intakes accelerate the progression of spontaneous NAFLD and induces liver inflammation in mice. An elevation of hydrophobic unconjugated bile acids cholic acid (CA), deoxycholic acid (DCA), muricholic acid and chenodeoxycholic acid, was observed in high-fat and high-cholesterol diet fed mice. Full-length sequencing of the 16S rRNA gene of gut microbiota revealed a significant increase in the abundance of Bacteroides, Clostridium and Lactobacillus that possess bile salt hydrolase activity. Furthermore, the relative abundance of these bacterial species was positively correlated with content of unconjugated bile acids in liver. Moreover, the expression of genes related to bile acid reabsorption (organic anion-transporting polypeptides, Na+-taurocholic acid cotransporting polypeptide, apical sodium dependent bile acid transporter and organic solute transporter β) was found to be increased in mice with a high-cholesterol diet. Lastly, we observed that hydrophobic bile acids CA and DCA induce an inflammatory response in free fatty acids-induced steatotic HepG2 cells. In conclusion, high dietary cholesterol promotes the development of NASH by altering gut microbiota composition and abundance and thereby influencing with bile acid metabolism.
Collapse
Affiliation(s)
- Xuebin Gao
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Department of Science and Education, Yuebei People's Hospital, Shaoguan 512026, China
| | - Xiaozhuan Lin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yan Xin
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xuan Zhu
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ming Chen
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zhigang Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
14
|
Yang XH, Zhang BL, Cheng Y, Fu SK, Jin HM. Association of remnant cholesterol with risk of cardiovascular disease events, stroke, and mortality: A systemic review and meta-analysis. Atherosclerosis 2023; 371:21-31. [PMID: 36966562 DOI: 10.1016/j.atherosclerosis.2023.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND AND AIMS Lipid disorders are associated with the risk of cardiovascular diseases (CVDs). Remnant cholesterol (RC), a non-traditional previously neglected risk factor for CVD, has received much attention in recent years. The aim of this study is to evaluate the association of RC with the risks of CVD, stroke, and mortality. METHODS MEDLINE, Web of Science, EMBASE, ClinicalTrials.gov, and Cochrane Central Register for Controlled Trials were searched. We included randomized controlled trials (RCTs), non-RCTs, and observational cohort studies assessing the association of RC with the risks of cardiovascular (CV) events, coronary heart disease (CHD), stroke, and mortality. RESULTS Overall, 31 studies were included in this meta-analysis. Compared with low RC, elevated RC was associated with an increased risk of CVD, CHD, stroke, CVD mortality, and all-cause mortality (RR = 1.53, 95% CI 1.41-1.66; RR = 1.41, 95% CI 1.19-1.67; RR = 1.43, 95% CI 1.24-1.66; RR = 1.83, 95% CI 1.53-2.19; and RR = 1.39, 95% CI 1.27-1.50; respectively). A subgroup analysis demonstrated that each 1.0 mmol/L increase in RC was associated with an increased risk of CVD events and CHD. The association of RC with an increased CVD risk was not dependent on the presence or absence of diabetes, a fasted or non-fasted state, total cholesterol, or triglyceride or ApoB stratification. CONCLUSIONS Elevated RC is associated with an increased risk of CVD, stroke, and mortality. In addition to the traditional cardiovascular risk factors, such as total cholesterol and LDL-C, clinicians should also pay attention to RC in clinics.
Collapse
Affiliation(s)
- Xiu Hong Yang
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, 2800 Gong Wei Road, Shanghai, China
| | - Bao Long Zhang
- The Institutes of Biomedical Sciences (IBS), Fudan University, 130 Dongan Road, Shanghai, China
| | - Yun Cheng
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, 2800 Gong Wei Road, Shanghai, China
| | - Shun Kun Fu
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, 2800 Gong Wei Road, Shanghai, China.
| | - Hui Min Jin
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, 2800 Gong Wei Road, Shanghai, China.
| |
Collapse
|
15
|
Yang X, Batmanov K, Hu W, Zhu K, Tom AY, Guan D, Jiang C, Cheng L, McCright SJ, Yang EC, Lanza MR, Liu Y, Hill DA, Lazar MA. Hepatocytes demarcated by EphB2 contribute to the progression of nonalcoholic steatohepatitis. Sci Transl Med 2023; 15:eadc9653. [PMID: 36753562 PMCID: PMC10234568 DOI: 10.1126/scitranslmed.adc9653] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
Current therapeutic strategies for treating nonalcoholic steatohepatitis (NASH) have failed to alleviate liver fibrosis, which is a devastating feature leading to hepatic dysfunction. Here, we integrated single-nucleus transcriptomics and epigenomics to characterize all major liver cell types during NASH development in mice and humans. The bifurcation of hepatocyte trajectory with NASH progression was conserved between mice and humans. At the nonalcoholic fatty liver (NAFL) stage, hepatocytes exhibited metabolic adaptation, whereas at the NASH stage, a subset of hepatocytes was enriched for the signatures of cell adhesion and migration, which were mainly demarcated by receptor tyrosine kinase ephrin type B receptor 2 (EphB2). EphB2, acting as a downstream effector of Notch signaling in hepatocytes, was sufficient to induce cell-autonomous inflammation. Knockdown of Ephb2 in hepatocytes ameliorated inflammation and fibrosis in a mouse model of NASH. Thus, EphB2-expressing hepatocytes contribute to NASH progression and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiao Yang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kirill Batmanov
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Basic Research, Guangzhou Laboratory, Guangdong 510005, China
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander Y. Tom
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sam J. McCright
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, PA19104, USA
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104, USA
| | - Eric C. Yang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R. Lanza
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Yifan Liu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David A. Hill
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Lead Contact
| |
Collapse
|
16
|
Magee N, Ahamed F, Eppler N, Jones E, Ghosh P, He L, Zhang Y. Hepatic transcriptome profiling reveals early signatures associated with disease transition from non-alcoholic steatosis to steatohepatitis. LIVER RESEARCH 2022; 6:238-250. [PMID: 36864891 PMCID: PMC9977163 DOI: 10.1016/j.livres.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and aim Non-alcoholic fatty liver disease (NAFLD) is becoming a leading cause of chronic liver disease worldwide. The molecular events that influence disease progression from non-alcoholic fatty liver (NAFL) to aggressive non-alcoholic steatohepatitis (NASH) remain incompletely understood, leading to lack of mechanism-based targeted treatment options for NASH. This study aims to identify early signatures associated with disease progression from NAFL to NASH in mice and humans. Materials and methods Male C57BL/6J mice were fed a high-fat, -cholesterol, and - fructose (HFCF) diet for up to 9 months. The extent of steatosis, inflammation, and fibrosis was evaluated in liver tissues. Total RNA sequencing (RNA-seq) was conducted to determine liver transcriptomic changes. Results After being fed the HFCF diet, mice sequentially developed steatosis, early steatohepatitis, steatohepatitis with fibrosis, and eventually spontaneous liver tumor. Hepatic RNA-seq revealed that the key signatures during steatosis progression to early steatohepatitis were pathways related to extracellular matrix organization and immune responses such as T cell migration, arginine biosynthesis, C-type lectin receptor signaling, and cytokine-cytokine receptor interaction. Genes regulated by transcription factors forkhead box M1 (FOXM1) and negative elongation factor complex member E (NELFE) were significantly altered during disease progression. This phenomenon was also observed in patients with NASH. Conclusions In summary, we identified early signatures associated with disease progression from NAFL to early NASH in a mouse model that recapitulated key metabolic, histologic, and transcriptomic changes seen in humans. The findings from our study may shed light on the development of novel preventative, diagnostic, and therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Nancy Magee
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Priyanka Ghosh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lily He
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Liver Center, University of Kansas, Kansas City, KS, USA
| |
Collapse
|
17
|
Lu Z, Li Y, Li AJ, Syn WK, Wank SA, Lopes-Virella MF, Huang Y. Loss of GPR40 in LDL receptor-deficient mice exacerbates high-fat diet-induced hyperlipidemia and nonalcoholic steatohepatitis. PLoS One 2022; 17:e0277251. [PMID: 36331958 PMCID: PMC9635748 DOI: 10.1371/journal.pone.0277251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
GPR40, a G protein-coupled receptor for free fatty acids (FFAs), is considered as a therapeutic target for type 2 diabetes mellitus (T2DM) since GPR40 activation in pancreatic beta cells enhances glucose-stimulated insulin secretion. Nonalcoholic fatty liver disease (NAFLD) is a common complication of T2DM or metabolic syndrome (MetS). However, the role of GPR40 in NAFLD associated with T2DM or MetS has not been well established. Given that it is known that cholesterol and FFAs are critically involved in the pathogenesis of nonalcoholic steatohepatitis (NASH) and LDL receptor (LDLR)-deficient mice are a good animal model for human hyperlipidemia including high cholesterol and FFAs, we generated GPR40 and LDLR double knockout (KO) mice in this study to determine the effect of GPR40 KO on hyperlipidemia-promoted NASH. We showed that GPR40 KO increased plasma levels of cholesterol and FFAs in high-fat diet (HFD)-fed LDLR-deficient mice. We also showed that GPR40 KO exacerbated HFD-induced hepatic steatosis, inflammation and fibrosis. Further study demonstrated that GPR40 KO led to upregulation of hepatic CD36 and genes involved in lipogenesis, fatty acid oxidation, fibrosis and inflammation. Finally, our in vitro mechanistic studies showed that while CD36 was involved in upregulation of proinflammatory molecules in macrophages by palmitic acid (PA) and lipopolysaccharide (LPS), GPR40 activation in macrophages exerts anti-inflammatory effects. Taken together, this study demonstrated for the first time that loss of GPR40 in LDLR-deficient mice exacerbated HFD-induced hyperlipidemia, hepatic steatosis, inflammation and fibrosis potentially through a CD36-dependent mechanism, suggesting that GPR40 may play a beneficial role in hyperlipidemia-associated NASH in LDLR-deficient mice.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Leioa, Spain
| | - Stephen A. Wank
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
19
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
20
|
Vetuschi A, Cappariello A, Onori P, Gaudio E, Latella G, Pompili S, Sferra R. Ferroptosis resistance cooperates with cellular senescence in the overt stage of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Eur J Histochem 2022; 66. [PMID: 35726536 PMCID: PMC9251610 DOI: 10.4081/ejh.2022.3391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cellular senescence and ferroptosis are the two main, fine-tuned processes in tissue damage restraint; however, they can be overactivated in pathologies such as nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH), becoming dangerous stimuli. Senescence is characterized by a decline in cell division and an abnormal release of reactive oxygen species (ROS), and ferroptosis is represented by iron deposition associated with an excessive accumulation of ROS. ROS and cellular stress pathways are also drivers of NAFLD/NASH development. The etiology of NAFLD/NASH lies in poor diets enriched in fat and sugar. This food regimen leads to liver steatosis, resulting in progressive degeneration of the organ, with a late onset of irreversible fibrosis and cirrhosis. Few studies have investigated the possible connection between senescence and ferroptosis in NAFLD/NASH progression, despite the two events sharing some molecular players. We hypothesized a possible link between senescence and ferroptosis in a NAFLD background. To thoroughly investigate this in the context of "Western-style" diet (WSD) abuse, we used an amylin-modified liver NASH mouse model. The main NASH hallmarks have been confirmed in this model, as well as an increase in apoptosis, and Ki67 and p53 expression in the liver. Senescent beta-galactosidase-positive cells were elevated, as well as the expression of the related secretory molecules Il-6 and MMP-1. Features of DNA damage and iron-overload were found in the livers of NASH mice. Gpx4 (glutathione peroxidase 4) expression, counteracting ferroptotic cell death, was increased. Notably, an increased number of senescent cells showing overexpression of gpx4 was also found. Our data seem to suggest that senescent cells acquire a gpx4-mediated mechanism of ferroptosis resistance and thus remain in the liver, fostering the deterioration of liver fitness.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila.
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| |
Collapse
|
21
|
Pathak R, Kumar A, Palfrey HA, Stone KP, Raju NR, Gettys TW, Murthy SN. Prolonged effects of DPP-4 inhibitors on steato-hepatitic changes in Sprague-Dawley rats fed a high-cholesterol diet. Inflamm Res 2022; 71:711-722. [PMID: 35578028 PMCID: PMC10154130 DOI: 10.1007/s00011-022-01572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Sitagliptin and other dipeptidyl peptidase (DPP)-4 inhibitors/gliptins are antidiabetic drugs known to improve lipid profile, and confer anti-inflammatory and anti-fibrotic effects, which are independent of their hypoglycemic effects. However, in our previous short-term (35 days) studies, we showed that sitagliptin accentuates the hepato-inflammatory effects of high dietary cholesterol (Cho) in male Sprague-Dawley rats. Since most type 2 diabetics also present with lipid abnormalities and use DPP-4 inhibitors for glucose management, the present study was conducted to assess the impact of sitagliptin during long-term (98 days) feeding of a high Cho diet. An additional component of the present investigation was the inclusion of other gliptins to determine if hepatic steatosis, necro-inflammation, and fibrosis were specific to sitagliptin or are class effects. METHODS Adult male Sprague-Dawley rats were fed control or high Cho (2.0%) diets, and gavaged daily (from day 30 through 98) with vehicle or DPP-4 inhibitors (sitagliptin or alogliptin or saxagliptin). On day 99 after a 4 h fast, rats were euthanized. Blood and liver samples were collected to measure lipids and cytokines, and for histopathological evaluation, determination of hepatic lesions (steatosis, necrosis, inflammation, and fibrosis) using specific staining and immunohistochemical methods. RESULTS Compared to controls, the high Cho diet produced a robust increase in NASH like phenotype that included increased expression of hepatic (Tnfa, Il1b, and Mcp1) and circulatory (TNFα and IL-1β) markers of inflammation, steatosis, necrosis, fibrosis, and mononuclear cell infiltration. These mononuclear cells were identified as macrophages and T cells, and their recruitment in the liver was facilitated by marked increases in endothelium-expressed cell adhesion molecules. Importantly, treatment with DPP-4 inhibitors (3 tested) neither alleviated the pathologic responses induced by high Cho diet nor improved lipid profile. CONCLUSIONS The potential lipid lowering effects of DPP-4 inhibitors were diminished by high Cho (a significant risk factor for inducing liver damage). The robust inflammatory responses induced by high Cho feeding in long-term experiment were not exacerbated by DPP-4 inhibitors and a consistent hepatic inflammatory environment persisted, implying a prospective physiological adaptation.
Collapse
Affiliation(s)
- Rashmi Pathak
- Department of Environmental Toxicology, Southern University and A&M College, 209, Lee Hall, Baton Rouge, LA, 70813, USA.,Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Avinash Kumar
- Department of Environmental Toxicology, Southern University and A&M College, 209, Lee Hall, Baton Rouge, LA, 70813, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.,Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Henry A Palfrey
- Department of Environmental Toxicology, Southern University and A&M College, 209, Lee Hall, Baton Rouge, LA, 70813, USA
| | - Kirsten P Stone
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Narayan R Raju
- Pathology Research Laboratory Inc, South San Francisco, CA, USA
| | - Thomas W Gettys
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Subramanyam N Murthy
- Department of Environmental Toxicology, Southern University and A&M College, 209, Lee Hall, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
22
|
Jiang LP, Sun HZ. Long-chain saturated fatty acids and its interaction with insulin resistance and the risk of nonalcoholic fatty liver disease in type 2 diabetes in Chinese. Front Endocrinol (Lausanne) 2022; 13:1051807. [PMID: 36568120 PMCID: PMC9768420 DOI: 10.3389/fendo.2022.1051807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION This study aimed to explore relationships between long-chain saturated fatty acids (LSFAs) and nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes (T2D); and whether insulin action had an interactive effect with LSFAs on NAFLD progression. METHODS From April 2018 to April 2019, we extracted the electronic medical records of 481 patients with T2D who meet the inclusion and exclusion criteria from the Second Affiliated Hospital of Dalian Medical University. Ultrasound was used to estimate NAFLD at admission. Logistic regression analysis were used to estimate odds ratios (OR) and 95% confidence intervals (CI). The additive interaction was carried out to estimate interactions between LSFAs and insulin resistance (IR) in NAFLD patients with T2D. RESULTS Myristic acid (14:0) and palmitic acid (16:0) were positively associated with the risk of NAFLD (OR for myristic acid (14:0): 7.516, 3.557-15.882 and OR for palmitic acid (16:0): 4.071, 1.987-8.343, respectively). After adjustment for traditional risk factors, these associations were slightly attenuated but still highly significant. Co-presence of myristic acid (14:0)>72.83 μmol/L and IR>4.89 greatly increased OR of NAFLD to 9.691 (4.113-22.833). Similarly, co-presence of palmitic acid (16:0)>3745.43μmol/L and IR>4.89 greatly increased OR of NAFLD to 6.518(2.860-14.854). However, stearic acid (18:0) and risk of NAFLD have no association. Moreover, there was no association between very-long-chain SFAs (VLSFAs) and risk of NAFLD. DISCUSSION Myristic acid (14:0) and palmitic acid (16:0) were positively associated with the risk of NAFLD in T2D patients in China. High IR amplified the effect of high myristic acid (14:0) and high palmitic acid (16:0) on NAFLD.
Collapse
Affiliation(s)
- Li-Peng Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hong-Zhi Sun
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou, China
- *Correspondence: Hong-Zhi Sun,
| |
Collapse
|
23
|
Chen L, Wu N, Kennedy L, Francis H, Ceci L, Zhou T, Samala N, Kyritsi K, Wu C, Sybenga A, Ekser B, Dar W, Atkins C, Meadows V, Glaser S, Alpini G. Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes. Hepatology 2021; 74:1845-1863. [PMID: 33928675 PMCID: PMC8782246 DOI: 10.1002/hep.31871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Human NAFLD is characterized at early stages by hepatic steatosis, which may progress to NASH when the liver displays microvesicular steatosis, lobular inflammation, and pericellular fibrosis. The secretin (SCT)/secretin receptor (SCTR) axis promotes biliary senescence and liver fibrosis in cholestatic models through down-regulation of miR-125b signaling. We aim to evaluate the effect of disrupting biliary SCT/SCTR/miR-125b signaling on hepatic steatosis, biliary senescence, and liver fibrosis in NAFLD/NASH. APPROACH AND RESULTS In vivo, 4-week-old male wild-type, Sct-/- and Sctr-/- mice were fed a control diet or high-fat diet (HFD) for 16 weeks. The expression of SCT/SCTR/miR-125b axis was measured in human NAFLD/NASH liver samples and HFD mouse livers by immunohistochemistry and quantitative PCR. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were evaluated in mouse liver and human NAFLD/NASH liver samples. miR-125b target lipogenesis genes in hepatocytes were screened and validated by custom RT2 Profiler PCR array and luciferase assay. Biliary SCT/SCTR expression was increased in human NAFLD/NASH samples and in livers of HFD mice, whereas the expression of miR-125b was decreased. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were observed in human NAFLD/NASH samples as well as HFD mice, which were decreased in Sct-/- and Sctr-/- HFD mice. Elovl1 is a lipogenesis gene targeted by miR-125b, and its expression was also decreased in HFD mouse hepatocytes following Sct or Sctr knockout. Bile acid profile in fecal samples have the greatest changes between wild-type mice and Sct-/- /Sctr-/- mice. CONCLUSION The biliary SCT/SCTR/miR-125b axis promotes liver steatosis by up-regulating lipid biosynthesis gene Elovl1. Targeting the biliary SCT/SCTR/miR-125b axis may be key for ameliorating phenotypes of human NAFLD/NASH.
Collapse
Affiliation(s)
- Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Niharika Samala
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX
| | - Amelia Sybenga
- Department of Pathology, Laboratory Medicine, University of Vermont Medical Center, Burlington, VT
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Wasim Dar
- Department of Surgery, Division of Acute Care Surgery, The University of Texas Health Sciences Center at Houston
| | - Constance Atkins
- Department of Anesthesiology, University of Texas Health Sciences Center at Houston
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
24
|
Oh S, Son M, Byun KA, Jang JT, Choi CH, Son KH, Byun K. Attenuating Effects of Dieckol on High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease by Decreasing the NLRP3 Inflammasome and Pyroptosis. Mar Drugs 2021; 19:318. [PMID: 34070893 PMCID: PMC8227003 DOI: 10.3390/md19060318] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which promotes serious health problems, is related to the increase in the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis by a high-fat diet (HFD). Whether dieckol (DK), a component of Ecklonia cava extracts (ECE), attenuated NAFLD in an HFD-induced NAFLD animal model was evaluated. The expression of high mobility group box 1/Toll-like receptor 4/nuclear factor-κB, which initiated the NLRP3 inflammasome, was increased in the liver of HFD-fed animals and significantly decreased with ECE or DK administration. The expression of NLRP3/ASC/caspase-1, which are components of the NLRP3 inflammasome, and the number of pyroptotic cells were increased by HFD and decreased with ECE or DK administration. The accumulation of triglycerides and free fatty acids in the liver was increased by HFD and decreased with ECE or DK administration. The histological NAFLD score was increased by HFD and decreased with ECE or DK administration. The expression of lipogenic genes (FASN, SREBP-2, PPARγ, and FABP4) increased and that of lipolytic genes (PPARα, CPT1A, ATGL, and HSL) was decreased by HFD and attenuated with ECE or DK administration. In conclusion, ECE or DK attenuated NAFLD by decreasing the NLRP3 inflammasome and pyroptosis.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, College of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (M.S.); (K.-A.B.)
| | - Myeongjoo Son
- Functional Cellular Networks Laboratory, Department of Medicine, College of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (M.S.); (K.-A.B.)
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| | - Kyung-A Byun
- Functional Cellular Networks Laboratory, Department of Medicine, College of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (M.S.); (K.-A.B.)
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| | - Ji Tae Jang
- Aqua Green Technology Co., Ltd., Smart Bldg., Jeju Science Park, Cheomdan-ro, Jeju 63309, Korea;
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Department of Medicine, College of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (M.S.); (K.-A.B.)
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| |
Collapse
|
25
|
Vancells Lujan P, Viñas Esmel E, Sacanella Meseguer E. Overview of Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Sugary Food Consumption and Other Dietary Components in Its Development. Nutrients 2021; 13:nu13051442. [PMID: 33923255 PMCID: PMC8145877 DOI: 10.3390/nu13051442] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
NAFLD is the world's most common chronic liver disease, and its increasing prevalence parallels the global rise in diabetes and obesity. It is characterised by fat accumulation in the liver evolving to non-alcoholic steatohepatitis (NASH), an inflammatory subtype that can lead to liver fibrosis and cirrhosis. Currently, there is no effective pharmacotherapeutic treatment for NAFLD. Treatment is therefore based on lifestyle modifications including changes to diet and exercise, although it is unclear what the most effective form of intervention is. The aim of this review, then, is to discuss the role of specific nutrients and the effects of different dietary interventions on NAFLD. It is well established that an unhealthy diet rich in calories, sugars, and saturated fats and low in polyunsaturated fatty acids, fibre, and micronutrients plays a critical role in the development and progression of this disease. However, few clinical trials have evaluated the effects of nutrition interventions on NAFLD. We, therefore, summarise what is currently known about the effects of macronutrients, foods, and dietary patterns on NAFLD prevention and treatment. Most current guidelines recommend low-calorie, plant-based diets, such as the Mediterranean diet, as the most effective dietary pattern to treat NAFLD. More clinical trials are required, however, to identify the best evidence-based dietary treatment approach.
Collapse
Affiliation(s)
- Pau Vancells Lujan
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (P.V.L.); (E.V.E.)
| | - Esther Viñas Esmel
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (P.V.L.); (E.V.E.)
- Department of Internal Medicine, Hospital Clínic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Emilio Sacanella Meseguer
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain; (P.V.L.); (E.V.E.)
- Department of Internal Medicine, Hospital Clínic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-275539
| |
Collapse
|
26
|
Svop Jensen V, Fledelius C, Max Wulff E, Lykkesfeldt J, Hvid H. Temporal Development of Dyslipidemia and Nonalcoholic Fatty Liver Disease (NAFLD) in Syrian Hamsters Fed a High-Fat, High-Fructose, High-Cholesterol Diet. Nutrients 2021; 13:nu13020604. [PMID: 33673227 PMCID: PMC7917647 DOI: 10.3390/nu13020604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The use of translationally relevant animal models is essential, also within the field of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Compared to frequently used mouse and rat models, the hamster may provide a higher degree of physiological similarity to humans in terms of lipid profile and lipoprotein metabolism. However, the effects in hamsters after long-term exposure to a NASH diet are not known. Male Syrian hamsters were fed either a high-fat, high-fructose, high-cholesterol diet (NASH diet) or control diets for up to 12 months. Plasma parameters were assessed at two weeks, one, four, eight and 12 months and liver histopathology and biochemistry was characterized after four, eight and 12 months on the experimental diets. After two weeks, hamsters on NASH diet had developed marked dyslipidemia, which persisted for the remainder of the study. Hepatic steatosis was present in NASH-fed hamsters after four months, and hepatic stellate cell activation and fibrosis was observed within four to eight months, respectively, in agreement with progression towards NASH. In summary, we demonstrate that hamsters rapidly develop dyslipidemia when fed a high-fat, high-fructose, high-cholesterol diet. Moreover, within four to eight months, the NASH-diet induced hepatic changes with resemblance to human NAFLD.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark;
- Diabetes Pharmacology 1, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark;
- Correspondence:
| | - Christian Fledelius
- Diabetes Pharmacology 1, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark;
| | - Erik Max Wulff
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970 Hørsholm, Denmark;
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg, Denmark;
| | - Henning Hvid
- Pathology & Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark;
| |
Collapse
|
27
|
Abstract
Liver fibrosis is defined as excessive accumulation of extracellular matrix, and results from maladaptive wound healing processes that occur in response to chronic liver injury and inflammation. The main etiologies of liver fibrosis include nonalcoholic fatty liver disease (NAFLD), chronic viral hepatitis, as well as alcoholic and cholestatic liver disease. In patients, liver fibrosis typically develops over several decades and can progress to cirrhosis, and liver failure due to replacement of functional liver tissue with scar tissue. Additionally, advanced fibrosis and cirrhosis are associated with an increased risk for the development of hepatocellular carcinoma. On a cellular level, hepatic fibrosis is mediated by activated hepatic stellate cells, the primary fibrogenic cell type of the liver. Murine models are employed to recapitulate, understand, and therapeutically target mechanisms of fibrosis and hepatic stellate cell activation. Here, we summarize different mouse models of liver fibrosis focusing on the most commonly used models of toxic, biliary, and metabolically induced liver fibrosis, triggered by treatment with carbon tetrachloride (CCl4), thioacetamide (TAA), bile duct ligation (BDL), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and high-fat diets.
Collapse
Affiliation(s)
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA. .,Institute of Human Nutrition, Columbia University, 1130 St. Nicholas Avenue, ICRC 926, New York, NY, USA.
| |
Collapse
|
28
|
Kabir F, Nahar K, Rahman MM, Mamun F, Lasker S, Khan F, Yasmin T, Akter KA, Subhan N, Alam MA. Etoricoxib treatment prevented body weight gain and ameliorated oxidative stress in the liver of high-fat diet-fed rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:33-47. [PMID: 32780227 DOI: 10.1007/s00210-020-01960-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The main focus of this study was to determine the role of etoricoxib in counterbalancing the oxidative stress, metabolic disturbances, and inflammation in high-fat (HF) diet-induced obese rats. To conduct this study, 28 male Wistar rats (weighing 190-210 g) were distributed randomly into four groups: control, control + etoricoxib, HF, and HF + etoricoxib. After 8 weeks of treatment with etoricoxib (200 mg/kg), all the animals were sacrificed followed by the collection of blood and tissue samples in order to perform biochemical tests along with histological staining on hepatic tissues. According to this study, etoricoxib treatment prevented the body weight gain in HF diet-fed rats. Furthermore, rats of HF + etoricoxib group exhibited better blood glucose tolerance than the rats of HF diet-fed group. In addition, etoricoxib also markedly normalized HF diet-mediated rise of hepatic enzyme activity. Etoricoxib treatment lowered the level of oxidative stress indicators significantly with a parallel augmentation of antioxidant enzyme activities. Furthermore, etoricoxib administration helped in preventing inflammatory cell invasion, collagen accumulation, and fibrotic catastrophe in HF diet-fed rats. The findings of the present work are suggestive of the helpful role of etoricoxib in deterring the metabolic syndrome as well as other deleterious pathological changes afflicting the HF diet-fed rats.
Collapse
Affiliation(s)
- Fariha Kabir
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Kamrun Nahar
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Fariha Mamun
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Shoumen Lasker
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Tahmina Yasmin
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Khondker Ayesha Akter
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1219, Bangladesh.
| |
Collapse
|
29
|
High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem Biol Interact 2020; 330:109199. [DOI: 10.1016/j.cbi.2020.109199] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
30
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
31
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Kim MB, Lee Y, Bae M, Kang H, Pham TX, Hu S, Lee JY, Park YK. Comprehensive characterization of metabolic, inflammatory and fibrotic changes in a mouse model of diet-derived nonalcoholic steatohepatitis. J Nutr Biochem 2020; 85:108463. [PMID: 32891893 DOI: 10.1016/j.jnutbio.2020.108463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/28/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
The objective of this study was to develop a well-characterized mouse model of nonalcoholic steatohepatitis (NASH) with a strong manifestation of liver fibrosis. The progression of metabolic, inflammatory and fibrotic features of this mouse model was monitored by performing in vivo time-course study. Male C57BL/6J mice were fed a high-fat/high-sucrose/high-cholesterol diet (34% fat, 34% sucrose and 2.0% cholesterol, by weight) for 2, 4, 6, 8, 10, 12, 14 or 16 weeks to induce obesity-associated metabolic dysfunctions, inflammation and fibrosis in the liver and white adipose tissue (WAT). Body and liver weights were gradually increased with significant hepatic triglyceride accumulation, i.e., liver steatosis, and marked elevation of serum alanine transaminase levels at week 10. While hepatic inflammation was displayed with the highest expression of macrophage markers and M1 markers at week 6, liver fibrosis determined by collagen accumulation was continuously increased to week 16. In epididymal WAT, weights and adipocyte size peaked at week 6-8. The increased expression of fibrogenic genes preceded inflammatory features (week 2 to 6 vs. week 6 to 16), suggesting that early fibrosis may trigger inflammatory events in the WAT. This study established a mouse model of diet-induced NASH with a strong manifestation of liver fibrosis. This mouse model will be a valuable in vivo tool in studying the pathophysiology of NASH and also in testing preventive and therapeutic potentials of dietary components and drugs against NASH with liver fibrosis.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
33
|
Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutr Res 2019; 71:72-88. [PMID: 31757631 DOI: 10.1016/j.nutres.2019.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Many studies have recently shown that diet and its impact on gut microbiota are closely related to obesity and metabolic diseases including nonalcoholic fatty liver disease. Gut microbiota may be an important intermediate link, causing gastrointestinal and metabolic diseases under the influence of changes in diet and genetic predisposition. The aim of this study was to assess the reversibility of liver phenotype in parallel with exploring the resilience of the mice gut microbiota by switching high-fat diet (HFD) to chow diet (CD). Mice were fed an HF for 8 weeks. A part of the mice was euthanized, whereas the rest were then fed a CD. These mice were euthanized after 3 and 7 days of feeding with CD, respectively. Gut microbiota composition, serum parameters, and liver morphology were assessed. Eight weeks of HFD treatment induced marked liver steatosis in mice with a perturbed microbiome. Interestingly, only 7 days of CD was enough to recover the liver to a normal status, whereas the microbiome was accordingly reshaped to a close to initial pattern. The abundance of some of the bacteria including Prevotella, Parabacteroides, Lactobacillus, and Allobaculum was reversible upon diet change from HFD to CD. This suggests that microbiome modifications contribute to the metabolic effects of HFD feeding and that restoration of a normal microbiota may lead to improvement of the liver phenotype. In conclusion, we found that steatosis and gut microbiota dysbiosis induced by 8 weeks of high-fat diet can be reversed by 1 week of chow diet administration, and we identified gut bacteria associated with the metabolic phenotype.
Collapse
|
34
|
Jeong MJ, Kim SR, Jung UJ. Schizandrin A supplementation improves nonalcoholic fatty liver disease in mice fed a high-fat and high-cholesterol diet. Nutr Res 2019; 64:64-71. [DOI: 10.1016/j.nutres.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
|
35
|
Gasheva OY, Tsoy Nizamutdinova I, Hargrove L, Gobbell C, Troyanova-Wood M, Alpini SF, Pal S, Du C, Hitt AR, Yakovlev VV, Newell-Rogers MK, Zawieja DC, Meininger CJ, Alpini GD, Francis H, Gashev AA. Prolonged intake of desloratadine: mesenteric lymphatic vessel dysfunction and development of obesity/metabolic syndrome. Am J Physiol Gastrointest Liver Physiol 2019; 316:G217-G227. [PMID: 30475062 PMCID: PMC6383386 DOI: 10.1152/ajpgi.00321.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study aimed to establish mechanistic links between the prolonged intake of desloratadine, a common H1 receptor blocker (i.e., antihistamine), and development of obesity and metabolic syndrome. Male Sprague-Dawley rats were treated for 16 wk with desloratadine. We analyzed the dynamics of body weight gain, tissue fat accumulation/density, contractility of isolated mesenteric lymphatic vessels, and levels of blood lipids, glucose, and insulin, together with parameters of liver function. Prolonged intake of desloratadine induced development of an obesity-like phenotype and signs of metabolic syndrome. These alterations in the body included excessive weight gain, increased density of abdominal subcutaneous fat and intracapsular brown fat, high blood triglycerides with an indication of their rerouting toward portal blood, high HDL, high fasting blood glucose with normal fasting and nonfasting insulin levels (insulin resistance), high liver/body weight ratio, and liver steatosis (fatty liver). These changes were associated with dysfunction of mesenteric lymphatic vessels, specifically high lymphatic tone and resistance to flow together with diminished tonic and abolished phasic responses to increases in flow, (i.e., greatly diminished adaptive reserves to respond to postprandial increases in lymph flow). The role of nitric oxide in this flow-dependent adaptation was abolished, with remnants of these responses controlled by lymphatic vessel-derived histamine. Our current data, considered together with reports in the literature, support the notion that millions of the United States population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication. NEW & NOTEWORTHY Prolonged intake of desloratadine induced development of obesity and metabolic syndrome associated with dysfunction of mesenteric lymphatic vessels, high lymphatic tone, and resistance to flow together with greatly diminished adaptive reserves to respond to postprandial increases in lymph flow. Data support the notion that millions of the USA population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication.
Collapse
Affiliation(s)
- Olga Y. Gasheva
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Irina Tsoy Nizamutdinova
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Laura Hargrove
- 2Central Texas Veterans Health Care System, Temple, Texas
| | - Cassidy Gobbell
- 3Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Maria Troyanova-Wood
- 3Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | | | - Sarit Pal
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Christina Du
- 4Department of Comparative Medicine, Baylor Scott & White Health, Temple, Texas
| | - Angie R. Hitt
- 4Department of Comparative Medicine, Baylor Scott & White Health, Temple, Texas
| | - Vlad V. Yakovlev
- 3Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - M. Karen Newell-Rogers
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - David C. Zawieja
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Cynthia J. Meininger
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Gianfranco D. Alpini
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas,2Central Texas Veterans Health Care System, Temple, Texas
| | - Heather Francis
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas,2Central Texas Veterans Health Care System, Temple, Texas
| | - Anatoliy A. Gashev
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| |
Collapse
|
36
|
Sharma H, Kumar P, Deshmukh RR, Bishayee A, Kumar S. Pentacyclic triterpenes: New tools to fight metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:166-177. [PMID: 30466975 DOI: 10.1016/j.phymed.2018.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/25/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Metabolic syndrome is a combination of dysregulated cardiometabolic risk factors characterized by dyslipidemia, impaired glucose tolerance, insulin resistance, inflammation, obesity as well as hypertension. These factors are tied to the increased risk for type-II diabetes and cardiovascular diseases including myocardial infarction in patients with metabolic syndrome. PURPOSE To review the proposed molecular mechanisms of pentacyclic triterpenes for their potential use in the metabolic syndrome. METHODS PubMed, Science Direct, and Google Scholar database were searched from commencement to April 2018. Following keywords were searched in the databases with varying combinations: "metabolic syndrome", "pentacyclic triterpenes", "transcription factors", "protein kinase", "lipogenesis", "adipogenesis", "lipolysis", "fatty acids", "gluconeogenesis", "cardiovascular", "mitochondria", "oxidative stress", "pancreas", "hepatic cells", "skeletal muscle", "3T3-L1", "C2C12", "obesity", "inflammation", "insulin resistance", "glucose uptake", "clinical studies" and "bioavailability". RESULTS Pentacyclic triterpenes, such as asiatic acid, ursolic acid, oleanolic acid, 18β-glycyrrhetinic acid, α,β-amyrin, celastrol, carbenoxolone, corosolic acid, maslinic acid, bardoxolone methyl and lupeol downregulate several metabolic syndrome components by regulating transcription factors, protein kinases and enzyme involved in the adipogenesis, lipolysis, fatty acid oxidation, insulin resistance, mitochondria biogenesis, gluconeogenesis, oxidative stress and inflammation. CONCLUSION In vitro and in vivo studies suggests that pentacyclic triterpenes effectively downregulate various factors related to metabolic syndrome. These phytochemicals may serve as promising candidates for clinical trials for the management of metabolic syndrome.
Collapse
Affiliation(s)
- Hitender Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136 119 Haryana, India
| | - Pushpander Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136 119 Haryana, India
| | - Rahul R Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136 119 Haryana, India.
| |
Collapse
|
37
|
Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from a hepatologist's point of view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:943-953. [PMID: 29990551 DOI: 10.1016/j.bbadis.2018.06.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder closely linked to obesity, hyperlipidemia and type 2 diabetes and is increasingly recognized as a major health problem in many parts of the world. While early stages of NAFLD are characterized by a bland accumulation of fat (steatosis) in hepatocytes, the disease can progress to non-alcoholic steatohepatitis (NASH) which involves chronic liver inflammation, tissue damage and fibrosis and can ultimately lead to end-stage liver disease including cirrhosis and cancer. As no approved pharmacological treatment for NAFLD exists today, there is an urgent need to identify promising pharmacological targets and develop future therapies. For this purpose, basic and translational research in NAFLD animal models is indispensable. While a large number of diverse animal models are currently used in the field, there is an ongoing challenge to identify those models that mirror human pathology the closest to allow good translation of obtained results into further clinical development. This review is meant to provide a concise overview of the most relevant NAFLD animal models currently available and will discuss the strengths and weaknesses of these models with regard to their comparability to human disease conditions.
Collapse
Affiliation(s)
- Daniel Jahn
- University Hospital Würzburg, Division of Hepatology, Würzburg, Germany.
| | - Stefan Kircher
- University of Würzburg, Institute of Pathology, Würzburg, Germany; Comprehensive Cancer Center Mainfranken (CCCMF), Würzburg, Germany
| | - Heike M Hermanns
- University Hospital Würzburg, Division of Hepatology, Würzburg, Germany
| | - Andreas Geier
- University Hospital Würzburg, Division of Hepatology, Würzburg, Germany
| |
Collapse
|
38
|
Bagi CM, Edwards K, Berryman E. Metabolic Syndrome and Bone: Pharmacologically Induced Diabetes has Deleterious Effect on Bone in Growing Obese Rats. Calcif Tissue Int 2018; 102:683-694. [PMID: 29196931 PMCID: PMC5956015 DOI: 10.1007/s00223-017-0367-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome and osteoporosis share similar risk factors. Also, patients with diabetes have a higher risk of osteoporosis and fracture. Liver manifestations, such as non-alcoholic steatohepatitis (NASH), of metabolic syndrome are further aggravated in diabetics and often lead to liver failure. Our objective was to create a rat model of human metabolic syndrome and determine the long-term impact of early-onset T1D on bone structure and strength in obese growing rats. Male rats were given either standard chow and RO water (Controls) or a high-fat, high-cholesterol diet and sugar water containing 55% fructose and 45% glucose (HFD). A third group of rats received the HFD diet and a single dose of streptozotocin to induce type 1 diabetes (HFD/Sz). Body weight and glucose tolerance tests were conducted several times during the course of the study. Serum chemistry, liver enzymes, and biomarkers of bone metabolism were evaluated at 10 and 28 weeks. Shear wave elastography and histology were used to assess liver fibrosis. Cancellous bone structure and cortical bone geometry were evaluated by mCT and strength by the 3-point bending method. Body mass and fat accumulation was significantly higher in HFD and HFD/Sz rats compared to Controls. Rats in both the HFD and HFD/Sz groups developed NASH, although the change was more severe in diabetic rats. Although both groups of obese rats had larger bones, their cancellous structure and cortical thickness were reduced, resulting in diminished strength that was further aggravated by diabetes. The HFD and HFD/Sz rats recapitulate MeSy in humans with liver pathology consistent with NASH. Our data provide strong indication that obesity accompanied by type 1 diabetes significantly aggravates comorbidities of MeSy, including the development of osteopenia and weaker bones. The juvenile rat skeleton seems to be more vulnerable to damage imposed by obesity and diabetes and may offer a model to inform the underlying pathology associated with the unusually high fracture rates in obese adults with diabetes.
Collapse
Affiliation(s)
- Cedo M Bagi
- Pfizer WRD, Comparative Medicine, Global Science and Technology, 100 Eastern Point Road, Groton, CT, 06340, USA.
- Pfizer R&D, Global Science and Technology, 100 Eastern Point Road, Groton, CT, 06340, USA.
| | - Kristin Edwards
- Pfizer WRD, Comparative Medicine, Global Science and Technology, 100 Eastern Point Road, Groton, CT, 06340, USA
| | - Edwin Berryman
- Pfizer WRD, Comparative Medicine, Global Science and Technology, 100 Eastern Point Road, Groton, CT, 06340, USA
| |
Collapse
|
39
|
Stephenson K, Kennedy L, Hargrove L, Demieville J, Thomson J, Alpini G, Francis H. Updates on Dietary Models of Nonalcoholic Fatty Liver Disease: Current Studies and Insights. Gene Expr 2018; 18:5-17. [PMID: 29096730 PMCID: PMC5860971 DOI: 10.3727/105221617x15093707969658] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a disease of increasing interest, as its prevalence is on the rise. NAFLD has been linked to metabolic syndrome, which is becoming more common due to the Western diet. Because NAFLD can lead to cirrhosis and related complications including hepatocellular carcinoma, the increasing prevalence is concerning, and medical therapy aimed at treating NAFLD is of great interest. Researchers studying the effects of medical therapy on NAFLD use dietary mouse models. The two main types of mouse model diets are the methionine- and choline-deficient (MCD) diet and the Western-like diet (WD). Although both induce NAFLD, the mechanisms are very different. We reviewed several studies conducted within the last 5 years that used MCD diet or WD mouse models in order to mimic this disease in a way most similar to humans. The MCD diet inconsistently induces NAFLD and fibrosis and does not completely induce metabolic syndrome. Thus, the clinical significance of the MCD diet is questionable. In contrast, WD mouse models consisting of high fat, cholesterol, and a combination of high-fructose corn syrup, sucrose, fructose, or glucose not only lead to metabolic syndrome but also induce NAFLD with fibrosis, making these choices most suitable for research.
Collapse
Affiliation(s)
- Kristen Stephenson
- *Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Lindsey Kennedy
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
- ‡Department of Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Laura Hargrove
- ‡Department of Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | | | - Joanne Thomson
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Gianfranco Alpini
- *Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
- ‡Department of Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Heather Francis
- *Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
- †Research, Central Texas Veterans Health Care System, Temple, TX, USA
- ‡Department of Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| |
Collapse
|
40
|
Kennedy L, Hargrove L, Demieville J, Bailey JM, Dar W, Polireddy K, Chen Q, Nevah Rubin MI, Sybenga A, DeMorrow S, Meng F, Stockton L, Alpini G, Francis H. Knockout of l-Histidine Decarboxylase Prevents Cholangiocyte Damage and Hepatic Fibrosis in Mice Subjected to High-Fat Diet Feeding via Disrupted Histamine/Leptin Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:600-615. [PMID: 29248461 PMCID: PMC5840487 DOI: 10.1016/j.ajpath.2017.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 02/08/2023]
Abstract
Feeding a high-fat diet (HFD) coupled with sugar, mimicking a Western diet, causes fatty liver disease in mice. Histamine induces biliary proliferation and fibrosis and regulates leptin signaling. Wild-type (WT) and l-histidine decarboxylase (Hdc-/-) mice were fed a control diet or an HFD coupled with a high fructose corn syrup equivalent. Hematoxylin and eosin and Oil Red O staining were performed to determine steatosis. Biliary mass and cholangiocyte proliferation were evaluated by immunohistochemistry. Senescence and fibrosis were measured by quantitative PCR and immunohistochemistry. Hepatic stellate cell activation was detected by immunofluorescence. Histamine and leptin levels were measured by enzyme immunoassay. Leptin receptor (Ob-R) was evaluated by quantitative PCR. The HDC/histamine/histamine receptor axis, ductular reaction, and biliary senescence were evaluated in patients with nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or end-stage liver disease. Hdc-/- HFD mice had increased steatosis compared with WT HFD mice. WT HFD mice had increased biliary mass, biliary proliferation, senescence, fibrosis, and hepatic stellate cell activation, which were reduced in Hdc-/- HFD mice. In Hdc-/- HFD mice, serum leptin levels increased, whereas biliary Ob-R expression decreased. Nonalcoholic steatohepatitis patients had increased HDC/histamine/histamine receptor signaling. Hdc-/- HFD mice are susceptible to obesity via dysregulated leptin/Ob-R signaling, whereas the lack of HDC protects from HFD-induced fibrosis and cholangiocyte damage. HDC/histamine/leptin signaling may be important in managing obesity-induced biliary damage.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Jennifer Demieville
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas
| | - Jennifer M Bailey
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Wasim Dar
- Division of Immunology and Organ Transplantation, Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kishore Polireddy
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Qingzheng Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Moises I Nevah Rubin
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Amelia Sybenga
- Department of Anatomic and Clinical Pathology, Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Fanyin Meng
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Lindsey Stockton
- Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Heather Francis
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
| |
Collapse
|
41
|
Rodriguez-Echevarria R, Macias-Barragan J, Parra-Vargas M, Davila-Rodriguez JR, Amezcua-Galvez E, Armendariz-Borunda J. Diet switch and omega-3 hydroxy-fatty acids display differential hepatoprotective effects in an obesity/nonalcoholic fatty liver disease model in mice. World J Gastroenterol 2018; 24:461-474. [PMID: 29398867 PMCID: PMC5787781 DOI: 10.3748/wjg.v24.i4.461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effect of 18-hydroxy-eicosapentaenoic acid (18-HEPE) and 17-hydroxy-docosahexaenoic acid (17-HDHA) in a murine model of obesity/nonalcoholic fatty liver disease.
METHODS C57BL/6 mice were fed with standard chow diet (CD) or high-fat, fructose-enriched diet (HFD) for 16 wk. Then, three groups were treated for 14 d with either, diet switch (HFD for CD), 18-HEPE, or 17-HDHA. Weight and fasting glucose were recorded on a weekly basis. Insulin tolerance test was performed at the end of treatment. Histological analysis (HE and Masson’s trichrome stain) and determination of serum insulin, glucagon, glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide, adiponectin and resistin were carried out as well as liver proteins by western blot.
RESULTS Mice treated with hydroxy-fatty acids 18-HEPE and 17-HDHA displayed no weight loss or improved insulin sensitivity. However, these mice groups showed a significant amelioration on serum GLP-1, adiponectin and resistin levels. Also, a significant reduction on inflammatory infiltrate was observed at both portal and lobular zones. Furthermore, up-regulation of PPARα/γ protein levels was observed in liver tissue and it was associated with decreased levels of NF-κB also determined by western blot analysis. On the other hand, diet switch regimen resulted in a marked improvement in most parameters including: weight loss, increased insulin sensitivity, decreased steatosis, restored levels of insulin, glucagon, leptin, adiponectin and resistin. However, no significant changes were observed regarding inflammatory infiltrate in this last group.
CONCLUSION 18-HEPE and 17-HDHA differentially exert hepatoprotective effects through up-regulation of nuclear receptors PPARα/γ and amelioration of serum adipokines profile.
Collapse
Affiliation(s)
- Roberto Rodriguez-Echevarria
- Institute for Molecular Biology and Gene Therapy-CUCS, Department of Molecular Biology and Genomics, University of Guadalajara, Guadalajara 44340, Mexico
| | - Jose Macias-Barragan
- Department of Health Sciences-CUValles, University of Guadalajara, Guadalajara 46600, Mexico
| | - Marcela Parra-Vargas
- Institute for Molecular Biology and Gene Therapy-CUCS, Department of Molecular Biology and Genomics, University of Guadalajara, Guadalajara 44340, Mexico
| | | | | | - Juan Armendariz-Borunda
- Institute for Molecular Biology and Gene Therapy-CUCS, Department of Molecular Biology and Genomics, University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
42
|
Jensen VS, Hvid H, Damgaard J, Nygaard H, Ingvorsen C, Wulff EM, Lykkesfeldt J, Fledelius C. Dietary fat stimulates development of NAFLD more potently than dietary fructose in Sprague-Dawley rats. Diabetol Metab Syndr 2018; 10:4. [PMID: 29410708 PMCID: PMC5781341 DOI: 10.1186/s13098-018-0307-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In humans and animal models, excessive intake of dietary fat, fructose and cholesterol has been linked to the development of non-alcoholic fatty liver disease (NAFLD). However, the individual roles of the dietary components remain unclear. To investigate this further, we compared the effects of a high-fat diet, a high-fructose diet and a combination diet with added cholesterol on the development of NAFLD in rats. METHODS Forty male Sprague-Dawley rats were randomized into four groups receiving either a control-diet (Control: 10% fat); a high-fat diet (HFD: 60% fat, 20% carbohydrate), a high-fructose diet [HFr: 10% fat, 70% carbohydrate (mainly fructose)] or a high-fat/high-fructose/high-cholesterol-diet (NASH: 40% fat, 40% carbohydrate (mainly fructose), 2% cholesterol) for 16 weeks. RESULTS After 16 weeks, liver histology revealed extensive steatosis and inflammation in both NASH- and HFD-fed rats, while hepatic changes in HFr-rats were much more subtle. These findings were corroborated by significantly elevated hepatic triglyceride content in both NASH- (p < 0.01) and HFD-fed rats (p < 0.0001), elevated hepatic cholesterol levels in NASH-fed rats (p < 0.0001), but no changes in HFr-fed rats, compared to Control. On the contrary, only HFr-fed rats developed dyslipidemia as characterized by higher levels of plasma triglycerides compared to all other groups (p < 0.0001). Hepatic dysfunction and inflammation was confirmed in HFD-fed rats by elevated levels of hepatic MCP-1 (p < 0.0001), TNF-alpha (p < 0.001) and plasma β-hydroxybutyrate (p < 0.0001), and in NASH-fed rats by elevated levels of hepatic MCP-1 (p < 0.01), increased hepatic macrophage infiltration (p < 0.001), and higher plasma levels of alanine aminotransferase (p < 0.0001) aspartate aminotransferase (p < 0.05), haptoglobin (p < 0.001) and TIMP-1 (p < 0.01) compared to Control. CONCLUSION These findings show that dietary fat and cholesterol are the primary drivers of NAFLD development and progression in rats, while fructose mostly exerts its effect on the circulating lipid pool.
Collapse
Affiliation(s)
- Victoria Svop Jensen
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Henning Hvid
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Jesper Damgaard
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Helle Nygaard
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Camilla Ingvorsen
- Histology and Imaging, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Erik Max Wulff
- Obesity and Diabetes Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg, Denmark
| | - Christian Fledelius
- Insulin Pharmacology, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| |
Collapse
|
43
|
Rao A, Kosters A, Mells JE, Zhang W, Setchell KDR, Amanso AM, Wynn GM, Xu T, Keller BT, Yin H, Banton S, Jones DP, Wu H, Dawson PA, Karpen SJ. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med 2017; 8:357ra122. [PMID: 27655848 DOI: 10.1126/scitranslmed.aaf4823] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and safe and effective therapies are needed. Bile acids (BAs) and their receptors [including the nuclear receptor for BAs, farnesoid X receptor (FXR)] play integral roles in regulating whole-body metabolism and hepatic lipid homeostasis. We hypothesized that interruption of the enterohepatic BA circulation using a luminally restricted apical sodium-dependent BA transporter (ASBT) inhibitor (ASBTi; SC-435) would modify signaling in the gut-liver axis and reduce steatohepatitis in high-fat diet (HFD)-fed mice. Administration of this ASBTi increased fecal BA excretion and messenger RNA (mRNA) expression of BA synthesis genes in liver and reduced mRNA expression of ileal BA-responsive genes, including the negative feedback regulator of BA synthesis, fibroblast growth factor 15. ASBT inhibition resulted in a marked shift in hepatic BA composition, with a reduction in hydrophilic, FXR antagonistic species and an increase in FXR agonistic BAs. ASBT inhibition restored glucose tolerance, reduced hepatic triglyceride and total cholesterol concentrations, and improved NAFLD activity score in HFD-fed mice. These changes were associated with reduced hepatic expression of lipid synthesis genes (including liver X receptor target genes) and normalized expression of the central lipogenic transcription factor, Srebp1c Accumulation of hepatic lipids and SREBP1 protein were markedly reduced in HFD-fed Asbt(-/-) mice, providing genetic evidence for a protective role mediated by interruption of the enterohepatic BA circulation. Together, these studies suggest that blocking ASBT function with a luminally restricted inhibitor can improve both hepatic and whole body aspects of NAFLD.
Collapse
Affiliation(s)
- Anuradha Rao
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive Northeast, Atlanta, GA 30322, USA
| | - Astrid Kosters
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive Northeast, Atlanta, GA 30322, USA
| | - Jamie E Mells
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive Northeast, Atlanta, GA 30322, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Angelica M Amanso
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive Northeast, Atlanta, GA 30322, USA
| | - Grace M Wynn
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive Northeast, Atlanta, GA 30322, USA
| | - Tianlei Xu
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
| | | | - Hong Yin
- Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, Atlanta, GA 30322, USA
| | - Sophia Banton
- Department of Biochemistry, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Dean P Jones
- Department of Biochemistry, Emory University, 1510 Clifton Road Northeast, Atlanta, GA 30322, USA. Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Paul A Dawson
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive Northeast, Atlanta, GA 30322, USA. Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, Atlanta, GA 30322, USA
| | - Saul J Karpen
- Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive Northeast, Atlanta, GA 30322, USA. Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, Atlanta, GA 30322, USA.
| |
Collapse
|
44
|
Ejima C, Kuroda H, Ishizaki S. A novel diet-induced murine model of steatohepatitis with fibrosis for screening and evaluation of drug candidates for nonalcoholic steatohepatitis. Physiol Rep 2017; 4:4/21/e13016. [PMID: 27821715 PMCID: PMC5112494 DOI: 10.14814/phy2.13016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022] Open
Abstract
Many animal models of nonalcoholic steatohepatitis have been reported. While these models exhibit mild onset of hepatitis and fibrosis, induction is often slow. For faster screening of drug candidates, there is a compelling need for convenient animal models of steatohepatitis and nonalcoholic steatohepatitis in which fatty liver and hepatitis are stably induced within a short period. Here, we analyzed the hepatic lipid composition in nonalcoholic steatohepatitis, and used this information to successfully establish a murine model where steatohepatitis is induced within only 1 week using a novel diet (steatohepatitis‐inducing high‐fat diet, STHD‐01) high in saturated fatty acids and cholesterol. After receiving STHD‐01 for 1 week, normal mice (C57BL/6J) showed elevated markers of fatty liver and hepatitis, including hepatic triglycerides and plasma alanine aminotransferase; the administration of angiotensin receptor blockers reduced these symptoms. Furthermore, we confirmed that STHD‐01 administration for 36 weeks induced not only sustained elevation of hepatic triglyceride and plasma alanine aminotransferase levels, but also fibrosis and tumor formation. Pretreatment with the carcinogen diethylnitrosamine accelerated tumor formation, and hepatic lesions were observed within 30 weeks of STHD‐01 feeding following diethylnitrosamine pretreatment. Finally, branched‐chain amino acids, known to reduce the risk for hepatocellular carcinoma in preclinical models, were effective in reducing the progression of liver fibrosis induced by STHD‐01 feeding after diethylnitrosamine pretreatment. We concluded that STHD‐01 administration successfully induces steatohepatitis within a short period of time. The proposed murine model is suitable for studying the long‐term effects of pharmaceutical agents targeting steatohepatitis, fibrosis, and tumor formation.
Collapse
Affiliation(s)
- Chieko Ejima
- Research Institute, EA Pharma Co. Ltd., Kanagawa, Japan
| | - Haruna Kuroda
- Research Institute, EA Pharma Co. Ltd., Kanagawa, Japan
| | | |
Collapse
|
45
|
Abstract
Purpose of Review The purpose of this review article is to raise awareness of the significance of steatosis that exist within the spectrum of nonalcoholic fatty liver disease (NAFLD). While the impact of nonalcoholic steatohepatitis (NASH), and its potential for histologic progression to cirrhosis and hepatocellular carcinoma is widely appreciated, the impact of non-NASH NAFLD (steatosis) on morbidity and mortality is less well recognized. Recent Findings NAFLD is a spectrum of hepatic pathology with a rising prevalence worldwide. Steatosis without fibrosis carries a low risk of progression to cirrhosis but likely confers an increased risk of diabetes mellitus and cardiovascular disease. Summary About a quarter of the world population is affected by NAFLD. NAFLD represents a burden to affected individuals, economics of the health care system and contributes significantly to morbidity and mortality worldwide. An increased level of awareness and knowledge about risk factors and diagnostic strategies is needed to identify patients affected with disease.
Collapse
|
46
|
Jang JE, Park HS, Yoo HJ, Baek IJ, Yoon JE, Ko MS, Kim AR, Kim HS, Park HS, Lee SE, Kim SW, Kim SJ, Leem J, Kang YM, Jung MK, Pack CG, Kim CJ, Sung CO, Lee IK, Park JY, Fernández-Checa JC, Koh EH, Lee KU. Protective role of endogenous plasmalogens against hepatic steatosis and steatohepatitis in mice. Hepatology 2017; 66:416-431. [PMID: 28073164 PMCID: PMC5503808 DOI: 10.1002/hep.29039] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Free cholesterol (FC) accumulation in the liver is an important pathogenic mechanism of nonalcoholic steatohepatitis (NASH). Plasmalogens, key structural components of the cell membrane, act as endogenous antioxidants and are primarily synthesized in the liver. However, the role of hepatic plasmalogens in metabolic liver disease is unclear. In this study, we found that hepatic levels of docosahexaenoic acid (DHA)-containing plasmalogens, expression of glyceronephosphate O-acyltransferase (Gnpat; the rate-limiting enzyme in plasmalogen biosynthesis), and expression of Pparα were lower in mice with NASH caused by accumulation of FC in the liver. Cyclodextrin-induced depletion of FC transactivated Δ-6 desaturase by increasing sterol regulatory element-binding protein 2 expression in cultured hepatocytes. DHA, the major product of Δ-6 desaturase activation, activated GNPAT, thereby explaining the association between high hepatic FC and decreased Gnpat expression. Gnpat small interfering RNA treatment significantly decreased peroxisome proliferator-activated receptor α (Pparα) expression in cultured hepatocytes. In addition to GNPAT, DHA activated PPARα and increased expression of Pparα and its target genes, suggesting that DHA in the DHA-containing plasmalogens contributed to activation of PPARα. Accordingly, administration of the plasmalogen precursor, alkyl glycerol (AG), prevented hepatic steatosis and NASH through a PPARα-dependent increase in fatty acid oxidation. Gnpat+/- mice were more susceptible to hepatic lipid accumulation and less responsive to the preventive effect of fluvastatin on NASH development, suggesting that endogenous plasmalogens prevent hepatic steatosis and NASH. CONCLUSION Increased hepatic FC in animals with NASH decreased plasmalogens, thereby sensitizing animals to hepatocyte injury and NASH. Our findings uncover a novel link between hepatic FC and plasmalogen homeostasis through GNPAT regulation. Further study of AG or other agents that increase hepatic plasmalogen levels may identify novel therapeutic strategies against NASH. (Hepatology 2017;66:416-431).
Collapse
Affiliation(s)
- Jung Eun Jang
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Han-Sol Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ji Eun Yoon
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Myoung Seok Ko
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ah-Ram Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyoun Sik Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hye-Sun Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Eun Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung-Whan Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jaechan Leem
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yu Mi Kang
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Min Kyo Jung
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chan-Gi Pack
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Chang Ohk Sung
- Department of Pathology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721, Republic of Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - José C. Fernández-Checa
- Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona, CSIC, Barcelona and Liver Unit-Hospital Clinic-IDIBAPS and Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain,University of Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, USC, Los Angeles, CA, USA
| | - Eun Hee Koh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Contact information: Ki-Up Lee and Eun Hee Koh, Department of Internal Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505, Republic of Korea. Phone: +82-2-3010-3243 (K.-U.L.), +82-2-3010-3248 (E.H.K.); Fax: +82-2-3010-6962; (K.-U.L.), (E.H.K.)
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea,Contact information: Ki-Up Lee and Eun Hee Koh, Department of Internal Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505, Republic of Korea. Phone: +82-2-3010-3243 (K.-U.L.), +82-2-3010-3248 (E.H.K.); Fax: +82-2-3010-6962; (K.-U.L.), (E.H.K.)
| |
Collapse
|
47
|
Jeyapal S, Putcha UK, Mullapudi VS, Ghosh S, Sakamuri A, Kona SR, Vadakattu SS, Madakasira C, Ibrahim A. Chronic consumption of fructose in combination with trans fatty acids but not with saturated fatty acids induces nonalcoholic steatohepatitis with fibrosis in rats. Eur J Nutr 2017; 57:2171-2187. [PMID: 28676973 DOI: 10.1007/s00394-017-1492-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/25/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Consumption of Western diet high in fat and fructose has been attributed to the recent epidemic of nonalcoholic fatty liver disease (NAFLD). However, the impact of specific fatty acids on the progression of NAFLD to nonalcoholic steatohepatitis (NASH) is poorly understood. In the present study, we investigated the chronic effects of consumption of fructose in combination with saturated fatty acids (SFA) or trans fatty acids (TFA) on the development of NAFLD. METHODS Male Sprague-Dawley rats were randomly assigned to six isocaloric starch/high fructose (44% of calories), high fat (39% calories) diet containing either starch-peanut oil, fructose-peanut oil, fructose-palmolein, fructose-clarified butter, fructose-coconut oil or fructose-partially hydrogenated vegetable oil and fed for 24 weeks. Palmolein, clarified butter and coconut oil were used as the source of SFA whereas partially hydrogenated vegetable oil was used as the source of TFA. Peanut oil was used as the reference oil. RESULTS Long-term feeding of fructose in combination with SFA or TFA induced hepatic steatosis of similar extent associated with upregulation of stearoyl CoA desaturase-1. In contrast, fructose in combination with TFA induced NASH with fibrosis as evidenced by upregulation of hepatic proinflammatory cytokine and fibrogenic gene expression, increased hepatic oxidative stress and adipocytokine imbalance. Histopathological analysis revealed the presence of NASH with fibrosis. Further, peanut oil prevented the development of NAFLD in fructose-fed rats. CONCLUSION Fructose in combination with TFA caused NASH with fibrosis by inducing oxidative stress and inflammation, whereas, fructose in combination with SFA caused simple steatosis, suggesting that the type of fatty acid is more important for the progression of NAFLD.
Collapse
Affiliation(s)
- Sugeedha Jeyapal
- Department of Lipid Chemistry, National Institute of Nutrition, Hyderabad, India
| | - Uday Kumar Putcha
- Department of Pathology, National Institute of Nutrition, Hyderabad, India
| | | | - Sudip Ghosh
- Department of Molecular Biology, National Institute of Nutrition, Hyderabad, India
| | - Anil Sakamuri
- Department of Lipid Chemistry, National Institute of Nutrition, Hyderabad, India
| | - Suryam Reddy Kona
- Department of Lipid Chemistry, National Institute of Nutrition, Hyderabad, India
| | | | - Chandana Madakasira
- Department of Lipid Chemistry, National Institute of Nutrition, Hyderabad, India
| | - Ahamed Ibrahim
- Department of Lipid Chemistry, National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
48
|
Hansen HH, Feigh M, Veidal SS, Rigbolt KT, Vrang N, Fosgerau K. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today 2017; 22:1707-1718. [PMID: 28687459 DOI: 10.1016/j.drudis.2017.06.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/06/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease in the Western world. NAFLD is a complex spectrum of liver diseases ranging from benign hepatic steatosis to its more aggressive necroinflammatory manifestation, nonalcoholic steatohepatitis (NASH). NASH pathogenesis is multifactorial and risk factors are almost identical to those of the metabolic syndrome. This has prompted substantial efforts to identify novel drug therapies for correcting underlying metabolic deficits, and to prevent or alleviate hepatic fibrosis in NASH. Available mouse models of NASH address different aspects of the disease, have varying clinical translatability, and, therefore, also show different utility in drug discovery.
Collapse
Affiliation(s)
- Henrik H Hansen
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark.
| | - Michael Feigh
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark
| | - Sanne S Veidal
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark
| | | | - Niels Vrang
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark
| | - Keld Fosgerau
- Gubra Aps, Hørsholm Kongevej 11b, Hørsholm DK-2970, Denmark
| |
Collapse
|
49
|
Santos-López JA, Garcimartín A, López-Oliva ME, Bautista-Ávila M, González-Muñoz MJ, Bastida S, Benedí J, Sánchez-Muniz FJ. Chia Oil-Enriched Restructured Pork Effects on Oxidative and Inflammatory Status of Aged Rats Fed High Cholesterol/High Fat Diets. J Med Food 2017; 20:526-534. [PMID: 28294699 DOI: 10.1089/jmf.2016.0161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chia oil has the highest recognized α-linolenic acid (ALA) content. ALA is associated with beneficial changes in plasma lipids and the prevention of cardiovascular diseases. Present article aims to analyze the effect of Chia oil-enriched restructured pork (RP) on aged rats in a nonalcoholic steatohepatitis (NASH) model. Groups of six male Wistar rats (1-year old) were fed the experimental diets: control RP diet (C) noncholesterol high saturated; cholesterol-enriched high-saturated fat/high-cholesterol control RP diet (HC) with added cholesterol and cholic acid; and Chia oil- or Hydroxytyrosol RP cholesterol-enriched high-saturated fat/high cholesterol (CHIA and HxT). Total cholesterol, hepatosomatic index, Nrf2, antioxidant, and inflammation markers were determined. CHIA reduced the hypercholesterolemic effect by lowering levels similar to C; also, ameliorated redox index. CHIA, despite high polyunsaturated fatty acids (PUFA) content, reduced thiobarbituric acid reactive substances (TBARS) and induced the lowest SOD protein synthesis but not a reduction on its activity. Chia oil activated the Nrf2 to arrest the pro-oxidative response to cholesterol and aging. Endothelial nitric oxide synthase (eNOS) system was lower in HxT than in CHIA, suggesting its antiatherogenic activity and related protective effect against high PUFA. Increase in tumor necrosis factor alpha (TNFα) was partially blocked by CHIA. Chia oil has the ability to prevent oxidative damage and modify the inflammatory response, suggesting adequate regulation of the antioxidant system. Results stress the importance of incorporating ALA into the diet.
Collapse
Affiliation(s)
| | - Alba Garcimartín
- 2 Nutrition and Food Science Department I (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - María Elvira López-Oliva
- 3 Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | | | - María José González-Muñoz
- 5 Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School, Alcala University, Alcalá de Henares, Spain
| | - Sara Bastida
- 2 Nutrition and Food Science Department I (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- 1 Pharmacology Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Francisco José Sánchez-Muniz
- 2 Nutrition and Food Science Department I (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
50
|
FOXO transcription factors protect against the diet-induced fatty liver disease. Sci Rep 2017; 7:44597. [PMID: 28300161 PMCID: PMC5353679 DOI: 10.1038/srep44597] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
Forkhead O transcription factors (FOXOs) have been implicated in glucose and lipid homeostasis; however, the role of FOXOs in the development of nonalcoholic fatty liver disease (NAFLD) is not well understood. In this study, we designed experiments to examine the effects of two different diets-very high fat diet (HFD) and moderately high fat plus cholesterol diet (HFC)-on wildtype (WT) and liver-specific Foxo1/3/4 triple knockout mice (LTKO). Both diets induced severe hepatic steatosis in the LTKO mice as compared to WT controls. However, the HFC diet led to more severe liver injury and fibrosis compared to the HFD diet. At the molecular levels, hepatic Foxo1/3/4 deficiency triggered a significant increase in the expression of inflammatory and fibrotic genes including Emr1, Ccl2, Col1a1, Tgfb, Pdgfrb, and Timp1. Thus, our data suggest that FOXO transcription factors play a salutary role in the protection against the diet-induced fatty liver disease.
Collapse
|