1
|
Harriott NC, Chimenti MS, Bonde G, Ryan AL. MixOmics Integration of Biological Datasets Identifies Highly Correlated Variables of COVID-19 Severity. Int J Mol Sci 2025; 26:4743. [PMID: 40429886 PMCID: PMC12111767 DOI: 10.3390/ijms26104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Despite several years passing since the COVID-19 pandemic was declared, challenges remain in understanding the factors that can predict the severity of COVID-19 disease and complications of SARS-CoV-2 infection. While many large-scale multi-omic datasets have been published, integration of these datasets has the potential to substantially increase the biological insight gained, allowing a more complex comprehension of the disease pathogenesis. Such insight may improve our ability to predict disease progression, detect severe cases more rapidly and develop effective therapeutics. In this study, we have applied an innovative machine learning algorithm to delineate COVID severity based on the integration of paired samples of proteomic and transcriptomic data from a small cohort of patients testing positive for SARS-CoV-2 infection with differential disease severity. Targeted plasma proteomics and an onco-immune targeted transcriptomic panel were performed on sequential samples from a cohort of 23 severe, 21 moderate and 10 mild COVID-19 patients. We applied DIABLO, a new integrative method, to identify multi-omics biomarker panels that can discriminate between multiple phenotypic groups, such as the varied severity of disease in COVID-19 patients. As COVID-19 severity is known among our sample group, we can train models using this as the outcome variable and calculate features that are important predictors of severe disease. In this study, we detect highly correlated key variables of severe COVID-19 using transcriptomic discriminant analysis and multi-omics integration methods. This approach highlights the power of data integration from a small cohort of patients, offering a better biological understanding of the molecular mechanisms driving COVID-19 severity and an opportunity to improve the prediction of disease trajectories and targeted therapeutics.
Collapse
Affiliation(s)
- Noa C. Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA; (N.C.H.); (G.B.)
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA;
| | - Gregory Bonde
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA; (N.C.H.); (G.B.)
| | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA; (N.C.H.); (G.B.)
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Shankar-Hari M, Francois B, Remy KE, Gutierrez C, Pastores S, Daix T, Jeannet R, Blood J, Walton AH, Salomao R, Auzinger G, Striker D, Martin RS, Anand NJ, Bosanquet J, Blood T, Brakenridge S, Moldawer LL, Vachharajani V, Yee C, Dal-Pizzol F, Morre M, Berbille F, van den Brink M, Hotchkiss R. A randomized, double-blind, placebo-controlled trial of IL-7 in critically ill patients with COVID-19. JCI Insight 2025; 10:e189150. [PMID: 39903535 PMCID: PMC11949036 DOI: 10.1172/jci.insight.189150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Lymphopenia and failure of lymphocytes to mount an early IFN-γ response correlate with increased mortality in COVID-19. Given the essential role of CD4 helper and CD8 cytotoxic cells in eliminating viral pathogens, this profound loss in lymphocytes may impair patients' ability to eliminate the virus. IL-7 is a pleiotropic cytokine that is obligatory for lymphocyte survival and optimal function. METHODS We conducted a prospective, double-blind, randomized, placebo-controlled trial of CYT107, recombinant human IL-7, in 109 critically ill, patients with lymphopenia who have COVID-19. The primary endpoint was to assess CYT107's effect on lymphocyte recovery with secondary clinical endpoints including safety, ICU and hospital length-of-stay, incidence of secondary infections, and mortality. RESULTS CYT107 was well tolerated without precipitating a cytokine storm or worsening pulmonary function. Absolute lymphocyte counts increased in both groups without a significant difference between CYT107 and placebo. Patients with COVID-19 receiving CYT107 but not concomitant antiviral medications, known inducers of lymphopenia, had a final lymphocyte count that was 43% greater than placebo (P = 0.067). There were significantly fewer treatment-emergent adverse events in CYT107 versus placebo-treated patients (P < 0.001), consistent with a beneficial drug effect. Importantly, CYT107-treated patients had 44% fewer hospital-acquired infections versus placebo-treated patients (P = 0.014). CONCLUSION Given that hospital-acquired infections are responsible for a large percentage of COVID-19 deaths, this effect of CYT107 to decrease nosocomial infections could substantially reduce late morbidity and mortality in this highly lethal disease. The strong safety profile of CYT107 and its excellent tolerability provide support for trials of CYT107 in other potential pandemic respiratory viral infections. TRIAL REGISTRATION NCT04379076, NCT04426201, NCT04442178, NCT04407689, NCT04927169. FUNDING Funding for the trial was provided by RevImmune and the Cancer Research Institute.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Department of Translational Critical Care Medicine, Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Scotland, United Kingdom
| | - Bruno Francois
- Medical-Surgical ICU & Inserm CIC 1435 Centre Hospitalier Universitaire, Limoges, France
| | - Kenneth E. Remy
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Cristina Gutierrez
- Department of Critical Care Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen Pastores
- Department of Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Thomas Daix
- Medical-Surgical ICU & Inserm CIC 1435 Centre Hospitalier Universitaire, Limoges, France
| | - Robin Jeannet
- Medical-Surgical ICU & Inserm CIC 1435 Centre Hospitalier Universitaire, Limoges, France
| | - Jane Blood
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Andrew H. Walton
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Reinaldo Salomao
- Department of Medicine, Universidade Federal de Sao Paulo (Unifesp), Sao Paulo, Brazil
| | - Georg Auzinger
- Department of Intensive Care Medicine, King’s College Hospital, London, United Kingdom
| | - David Striker
- Department of Critical Care Medicine, Missouri Baptist Medical Center, St. Louis, Missouri, USA
| | - Robert S. Martin
- Department of Critical Care Medicine, Missouri Baptist Medical Center, St. Louis, Missouri, USA
| | - Nitin J. Anand
- Department of Critical Care Medicine, Missouri Baptist Medical Center, St. Louis, Missouri, USA
| | - James Bosanquet
- Department of Critical Care Medicine, Missouri Baptist Medical Center, St. Louis, Missouri, USA
| | - Teresa Blood
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Scott Brakenridge
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lyle L. Moldawer
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Vidula Vachharajani
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cassian Yee
- Department of Critical Care Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Felipe Dal-Pizzol
- Department of Medicine, Hospital Sao Jose, Criciuma, Santa Catarina, Brazil
| | | | | | | | - Richard Hotchkiss
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Vanders RL, Gomez HM, Daly K, Wark PA, Horvat JC, Hansbro PM. Immune checkpoints are suppressed during pregnancy following influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2024; 327:L890-L904. [PMID: 39254092 DOI: 10.1152/ajplung.00391.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Influenza A virus (IAV) infection is a major health risk during pregnancy. Although vaccination and antiviral agents are widely used and reduce IAV-induced symptoms, they are not sufficient to control IAV infections in pregnancy, especially during pandemics. Respiratory viruses like IAV exploit immune alterations that occur during pregnancy, including the upregulation of immune checkpoint proteins (ICPs) like programmed death ligand-1 (PDL1), programmed cell death receptor 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4). We hypothesize that blocking expression of PDL1 on innate immune cells will improve maternal immunity following IAV infection. We used murine models of IAV infection during pregnancy with and without treatment with the immune checkpoint inhibitor (ICI), a-PDL1. Pregnant and nonpregnant mice were infected with mouse-adapted IAV (A/PR/8) and assessed at 3 days post infection (3 dpi). Lung cells were analyzed using flow cytometry. Lung mRNA expression of inflammatory and antiviral markers and histology was measured. Protein concentrations of inflammatory and antiviral markers, as well as viral titers were measured from lung bronchiolar lavage fluid (BALF). Lung function was also assessed. Following IAV infection, immune cells from pregnant mice had significant increases in the ICPs, PDL1, PD1, and CTLA4. a-PDL1 treatment effectively suppressed these ICPs and increased the activation marker, CD86. a-PDL1 treatment also reduced lung inflammatory cell infiltration and viral titers, increased antiviral responses, and improved lung function. Overall, IAV infection in pregnancy activates key inhibitory ICPs, leading to worsened disease outcomes. a-PDL1 treatment during IAV infection in pregnancy is an effective method to reduce ICP expression and improve overall immune cell responses.NEW & NOTEWORTHY Influenza infection worsens disease outcomes during pregnancy; however, treatment with anti-PDL1 can restore immune function during pregnancy.
Collapse
Affiliation(s)
- Rebecca L Vanders
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Katie Daly
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Immune Health, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Lee N, Jeon K, Park MJ, Song W, Jeong S. Predicting survival in patients with SARS-CoV-2 based on cytokines and soluble immune checkpoint regulators. Front Cell Infect Microbiol 2024; 14:1397297. [PMID: 39654974 PMCID: PMC11625743 DOI: 10.3389/fcimb.2024.1397297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) has been widespread for over four years and has progressed to an endemic stage. Accordingly, the evaluation of host immunity in infected patients and the development of markers for prognostic prediction in the early stages have been emphasized. Soluble immune checkpoints (sICs), which regulate T cell activity, have been reported as promising biomarkers of viral infections. Methods In this study, quantitative values of 17 sICs and 16 cytokines (CKs) were measured using the Luminex multiplex assay. A total of 148 serum samples from 100 patients with COVID-19 were collected and the levels were compared between survivors vs. non-survivors and pneumonic vs. non-pneumonic conditions groups. The impact of these markers on overall survival were analyzed using a machine learning algorithm. Results sICs, including sCD27, sCD40, herpes virus entry mediator (sHVEM), T-cell immunoglobulin and mucin-domain containing-3 (sTIM-3), and Toll-like receptor 2 (sTLR-2) and CKs, including chemokine CC motif ligand 2 (CCL2), interleukin-6 (IL-6), IL-8, IL-10, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-α (TNF- α), were statistically significantly increased in the non-survivors compared to those of in the survivors. IL-6 showed the highest area under the receiver-operating curve (0.844, 95% CI = 0.751-0.913) to discriminate non-survival, with a sensitivity of 78.9% and specificity of 82.4%. In Kaplan-Meier analysis, patients with procalcitonin over 0.25 ng/mL, C-reactive protein (CRP) over 41.0 mg/dL, neutrophil-to-lymphocyte ratio over 18.97, sCD27 over 3828.8 pg/mL, sCD40 over 1283.6 pg/mL, and IL-6 over 21.6 pg/mL showed poor survival (log-rank test). In the decision tree analysis, IL-6, sTIM-3, and sCD40 levels had a strong impact on survival. Moreover, IL-6, CD40, and CRP levels were important to predict the probability of 90-d mortality using the SHapley Additive exPlanations method. Conclusion sICs and CKs, especially IL-6, sCD27, sCD40, and sTIM-3 are expected to be useful in predicting patient outcomes when used in combination with existing markers.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Kibum Jeon
- Department of Laboratory Medicine, Hallym University College of Medicine, Hangang Sacred Heart Hospital, Seoul, Republic of Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Seri Jeong
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Singh H, Nair A, Mahajan SD. Impact of genetic variations of gene involved in regulation of metabolism, inflammation and coagulation on pathogenesis of cardiac injuries associated with COVID-19. Pathol Res Pract 2024; 263:155608. [PMID: 39447244 DOI: 10.1016/j.prp.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND SARS-CoV-2 infection can result in long-term chronic cardiovascular (CV) damage after the acute phase of the illness. COVID-19 frequently causes active myocarditis, SARS-CoV-2 can directly infect and kill cardiac cells, causing severe pathology and dysfunction across the organs and cells. Till now, the pathogenesis of COVID-19-associated cardiac injuries has not been understood, but there are several factors that contribute to the progression of cardiac injuries, such as genetic, dietary, and environmental. Among them ranges of host genetic factor including metabolizing, inflammation, and coagulation related genes have a role to contribute the cardiac injuries induced by COVID-19. Hereditary DNA sequence variations contribute to the risk of illness in almost all of these diseases. Hence, we comprehended the occurrence of genetic variations of metabolizing, inflammation and coagulation-related genes in the general population, their expression in various diseases, and their impact on cardiac injuries induced by COVID-19. METHOD We utilized multiple databases, including PubMed (Medline), EMBASE, and Google Scholar, for literature searches. DESCRIPTION The genes involved in metabolism (APOE, MTHFR), coagulation (PAI-1, ACE2), and immune factors (CRP, ESR, and troponin I) may have a role in the progression of COVID-19-associated cardiac injuries. The risk factors for CVD are significantly varied between and within different regions. In healthy individuals, the ACE I allele is responsible for the predisposition to CAD, but the ACE D haplotype is responsible for susceptibility and severity, which ultimately leads to heart failure. Patients who carry the T allele of rs12329760 in the TMPRSS2 gene are at risk for developing the severe form of COVID-19. IL-6 (rs1800796/rs1800795) polymorphism is associated with an increased mortality rate and susceptibility to severe COVID-19 disease. While the putative role of IL-6 associated with chronic, inflammatory diseases like cardiac and cerebrovascular disease is well known. CONCLUSION The occurrence of genetic variations in the ACE-2, AGT, DPP-IV, TMPRSS2, FUIRN, IL-4, IL-6, IFN-γ, and CYP2D6 genes is varied among different populations. Examining the correlation between these variations and their protein levels and cardiac injuries induced by COVID-19 may provide valuable insights into the pathogenesis of cardiac injuries induced by COVID-19.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India.
| | - Aishwarya Nair
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India
| | - Supriya D Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
7
|
Acúrcio RC, Kleiner R, Vaskovich‐Koubi D, Carreira B, Liubomirski Y, Palma C, Yeheskel A, Yeini E, Viana AS, Ferreira V, Araújo C, Mor M, Freund NT, Bacharach E, Gonçalves J, Toister‐Achituv M, Fabregue M, Matthieu S, Guerry C, Zarubica A, Aviel‐Ronen S, Florindo HF, Satchi‐Fainaro R. Intranasal Multiepitope PD-L1-siRNA-Based Nanovaccine: The Next-Gen COVID-19 Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404159. [PMID: 39116324 PMCID: PMC11515909 DOI: 10.1002/advs.202404159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/28/2024] [Indexed: 08/10/2024]
Abstract
The first approved vaccines for human use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nanotechnology-based. Although they are modular, rapidly produced, and can reduce disease severity, the currently available vaccines are restricted in preventing infection, stressing the global demand for novel preventive vaccine technologies. Bearing this in mind, we set out to develop a flexible nanovaccine platform for nasal administration to induce mucosal immunity, which is fundamental for optimal protection against respiratory virus infection. The next-generation multiepitope nanovaccines co-deliver immunogenic peptides, selected by an immunoinformatic workflow, along with adjuvants and regulators of the PD-L1 expression. As a case study, we focused on SARS-CoV-2 peptides as relevant antigens to validate the approach. This platform can evoke both local and systemic cellular- and humoral-specific responses against SARS-CoV-2. This led to the secretion of immunoglobulin A (IgA), capable of neutralizing SARS-CoV-2, including variants of concern, following a heterologous immunization strategy. Considering the limitations of the required cold chain distribution for current nanotechnology-based vaccines, it is shown that the lyophilized nanovaccine is stable for long-term at room temperature and retains its in vivo efficacy upon reconstitution. This makes it particularly relevant for developing countries and offers a modular system adaptable to future viral threats.
Collapse
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Ron Kleiner
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Yulia Liubomirski
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Carolina Palma
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Adva Yeheskel
- The Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel Aviv6997801Israel
| | - Eilam Yeini
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Ana S. Viana
- Center of Chemistry and BiochemistryFaculty of SciencesUniversity of LisbonLisbon1749‐016Portugal
| | - Vera Ferreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Carlos Araújo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Michael Mor
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Natalia T. Freund
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer ResearchGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | | | - Manon Fabregue
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Solene Matthieu
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Capucine Guerry
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Ana Zarubica
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | | | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
8
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis. Front Immunol 2024; 15:1422940. [PMID: 39044822 PMCID: PMC11263040 DOI: 10.3389/fimmu.2024.1422940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), long COVID (LC) and post-COVID-19 vaccine syndrome show similarities in their pathophysiology and clinical manifestations. These disorders are related to viral or adjuvant persistence, immunological alterations, autoimmune diseases and hormonal imbalances. A developmental model is postulated that involves the interaction between immune hyperactivation, autoimmune hypophysitis or pituitary hypophysitis, and immune depletion. This process might begin with a deficient CD4 T-cell response to viral infections in genetically predisposed individuals (HLA-DRB1), followed by an uncontrolled immune response with CD8 T-cell hyperactivation and elevated antibody production, some of which may be directed against autoantigens, which can trigger autoimmune hypophysitis or direct damage to the pituitary, resulting in decreased production of pituitary hormones, such as ACTH. As the disease progresses, prolonged exposure to viral antigens can lead to exhaustion of the immune system, exacerbating symptoms and pathology. It is suggested that these disorders could be included in the autoimmune/adjuvant-induced inflammatory syndrome (ASIA) because of their similar clinical manifestations and possible relationship to genetic factors, such as polymorphisms in the HLA-DRB1 gene. In addition, it is proposed that treatment with antivirals, corticosteroids/ginseng, antioxidants, and metabolic precursors could improve symptoms by modulating the immune response, pituitary function, inflammation and oxidative stress. Therefore, the purpose of this review is to suggest a possible autoimmune origin against the adenohypophysis and a possible improvement of symptoms after treatment with corticosteroid replacement therapy.
Collapse
Affiliation(s)
- Manuel Ruiz-Pablos
- Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Bruno Paiva
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
9
|
Aminsobahni E, Hosseini M, Gholizadeh N, Soltani-Zangbar MS, Savari G, Motlagh Asghari K, Pourlak T, Zolfaghari M, Chakari-Khiavi F, Motavalli R, Chakari-Khiavi A, Shekarchi AA, Mahmoodpoor A, Ahmadian Heris J, Pouya K, Mehdizadeh A, Babalou Z, Yousefi M. T Lymphocyte Characteristic Changes Under Serum Cytokine Deviations and Prognostic Factors of COVID-19 in Pregnant Women. Appl Biochem Biotechnol 2024; 196:4366-4381. [PMID: 37947946 DOI: 10.1007/s12010-023-04775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Physiological changes during pregnancy make the individuals more susceptible to severe respiratory diseases. Hence, pregnant women with coronavirus disease 2019 (COVID-19) are likely at a higher risk. We investigated the effects of COVID-19 on T cell response and serum cytokine profile in pregnant patients. Peripheral blood mononuclear cells (PBMCs) of women with COVID-19 were collected during the first trimester of pregnancy, and the percentage of total lymphocytes, as well as CD4 + and CD8 + T cells, was assessed using flow cytometry. The expression of the programmed death-1 (PD-1) marker for exhausted T cells was evaluated. Additionally, the serum samples were provided to evaluate the levels of antiviral and proinflammatory cytokines, as well as laboratory serological tests. Pregnant women with COVID-19 presented lymphopenia with diminished CD4 + and CD8 + T cells. Besides, high expression levels of the PD-1 gene and protein were observed on PBMCs and T cells, respectively, when compared with normal pregnant individuals. Moreover, serum levels of TNF-α, IL-6, IL-1β, and IL-2 receptor were notably enhanced, while IFN-I α/β values were significantly decreased in the patients when compared with controls. Furthermore, hyperlipidemia, hyperglycemia, and hypertension were directly correlated with the disease although serum albumin and vitamin D3 levels adversely affected the viral infection. Our study showed extreme lymphopenia and poor T cell response while elevated values of serum inflammatory cytokines in infected pregnant women. Moreover, a hypertension background or metabolic changes, including hyperlipidemia, hyperglycemia, and vitamin D3 or albumin deficiency, might be promising prognostic factors in pregnant women with COVID-19.
Collapse
Affiliation(s)
- Ehsan Aminsobahni
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golaleh Savari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tannaz Pourlak
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Zolfaghari
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Roza Motavalli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aref Chakari-Khiavi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Pouya
- Department of Obstetrics and Gynecology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babalou
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Tang J, Shang C, Chang Y, Jiang W, Xu J, Zhang L, Lu L, Chen L, Liu X, Zeng Q, Cao W, Li T. Peripheral PD-1 +NK cells could predict the 28-day mortality in sepsis patients. Front Immunol 2024; 15:1426064. [PMID: 38953031 PMCID: PMC11215063 DOI: 10.3389/fimmu.2024.1426064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Unbalanced inflammatory response is a critical feature of sepsis, a life-threatening condition with significant global health burdens. Immune dysfunction, particularly that involving different immune cells in peripheral blood, plays a crucial pathophysiological role and shows early warning signs in sepsis. The objective is to explore the relationship between sepsis and immune subpopulations in peripheral blood, and to identify patients with a higher risk of 28-day mortality based on immunological subtypes with machine-learning (ML) model. Methods Patients were enrolled according to the sepsis-3 criteria in this retrospective observational study, along with age- and sex-matched healthy controls (HCs). Data on clinical characteristics, laboratory tests, and lymphocyte immunophenotyping were collected. XGBoost and k-means clustering as ML approaches, were employed to analyze the immune profiles and stratify septic patients based on their immunological subtypes. Cox regression survival analysis was used to identify potential biomarkers and to assess their association with 28-day mortality. The accuracy of biomarkers for mortality was determined by the area under the receiver operating characteristic (ROC) curve (AUC) analysis. Results The study enrolled 100 septic patients and 89 HCs, revealing distinct lymphocyte profiles between the two groups. The XGBoost model discriminated sepsis from HCs with an area under the receiver operating characteristic curve of 1.0 and 0.99 in the training and testing set, respectively. Within the model, the top three highest important contributions were the percentage of CD38+CD8+T cells, PD-1+NK cells, HLA-DR+CD8+T cells. Two clusters of peripheral immunophenotyping of septic patients by k-means clustering were conducted. Cluster 1 featured higher proportions of PD1+ NK cells, while cluster 2 featured higher proportions of naïve CD4+T cells. Furthermore, the level of PD-1+NK cells was significantly higher in the non-survivors than the survivors (15.1% vs 8.6%, P<0.01). Moreover, the levels of PD1+ NK cells combined with SOFA score showed good performance in predicting the 28-day mortality in sepsis (AUC=0.91,95%CI 0.82-0.99), which is superior to PD1+ NK cells only(AUC=0.69, sensitivity 0.74, specificity 0.64, cut-off value of 11.25%). In the multivariate Cox regression, high expression of PD1+ NK cells proportion was related to 28-day mortality (aHR=1.34, 95%CI 1.19 to 1.50; P<0.001). Conclusion The study provides novel insights into the association between PD1+NK cell profiles and prognosis of sepsis. Peripheral immunophenotyping could potentially stratify the septic patients and identify those with a high risk of 28-day mortality.
Collapse
Affiliation(s)
- Jia Tang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chenming Shang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yue Chang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Jiang
- Department of Medical ICU, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Xu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Leidan Zhang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Chen
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaosheng Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Qingjia Zeng
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
11
|
Opoka-Winiarska V, Grywalska E, Morawska-Michalska I, Korona-Głowniak I, Kądziołka O, Gosik K, Majchrzak A, Rahnama-Hezavah M, Niedźwiedzka-Rystwej P. Programmed Cell Death Protein-1 Regulation in Response to SARS-CoV-2 in Paediatric Multisystem Inflammatory Syndrome Temporally Associated with SARS-CoV-2: A Prospective Cohort Study. Int J Mol Sci 2024; 25:5968. [PMID: 38892153 PMCID: PMC11172628 DOI: 10.3390/ijms25115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The role of programmed death cell protein 1 (PD-1) has already been described in a range of various diseases, including COVID-19. This study provides new, innovative data, related to the expression of PD-1 and the risk of Paediatric Inflammatory Multisystem Syndrome, temporally associated with SARS-CoV-2 infection (PIMS-TS)-a rare, but potentially life-threatening complication of COVID-19. In this study, we evaluated the expression of PD-1 protein in patients with PIMS. Blood samples were taken from patients at the time of diagnosis (n = 33), after 6 weeks (n = 33), 3 months (n = 24), 6 months (n = 24) and 12 months (n = 8). The immunophenotypes were evaluated in flow cytometry. The control group consisted of 35 healthy children with negative SARS-CoV-2 antigen/PCR test, who were asymptomatic and had no history of allergic, autoimmune or oncological diseases. The associations between immunophenotypes, biochemical findings and clinical data were analysed. Significant increases in the expression of PD-1 for CD4+ and CD8+ T cells, compared to the control group, were observed in the day of admission, with a gradual decrease during the first weeks from initiation of treatment. This study sheds new light on the pathogenesis of PIMS-TS, emphasizing the role of PD-1 protein. Future research is essential for early risk prediction in SARS-CoV-2 patients and for devising effective clinical prevention and management strategies.
Collapse
Affiliation(s)
- Violetta Opoka-Winiarska
- Department of Pediatric Pulmonology and Rheumatology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (K.G.)
| | | | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Olga Kądziołka
- Department of Paediatric Pulmonology and Rheumatology, University Children’s Hospital of Lublin, 20-093 Lublin, Poland;
| | - Krzysztof Gosik
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (K.G.)
| | - Adam Majchrzak
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Center for Experimental Immunology and Immunobiology in Infectious Diseases and Cancer, University of Szczecin, 71-412 Szczecin, Poland
| |
Collapse
|
12
|
Paine SK, Choudhury P, Alam M, Bhattacharyya C, Pramanik S, Tripathi D, Das C, Patel V, Ghosh S, Chatterjee S, Kanta Mondal L, Basu A. Multi-faceted dysregulated immune response for COVID-19 infection explaining clinical heterogeneity. Cytokine 2024; 174:156434. [PMID: 38141460 DOI: 10.1016/j.cyto.2023.156434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 12/25/2023]
Abstract
Clinical heterogeneity and varied prognosis are well noted for SARS-CoV-2 infection. Altered immune response is a major feature for the adverse prognosis however focus on altered immune response has been primarily limited to hyper-inflammatory responses like Cytokine storm. A deeper understanding of viral pathobiology and the interplay of innate and adaptive immune cells against SARS-CoV-2 infection is essential to optimize intervention strategy and future preparedness for SARS-CoV-2 or its related viral diseases. To uncover the immunological signatures driving the progression of SARS-CoV-2 infection, we performed an extensive immunophenotype on blood samples from 79 hospitalized patients with mild/moderate to severe infections as well as from healthy controls and recovered donors to understand the interplay between innate and adaptive responses impacting severity and prognosis. We observed multifarious immune dysregulation, varied across patients of the clinical spectrum. We observed 4 major dysregulations of immune phenotypes 1) depletion of M1φ (impaired antiviral response as APC), 2) immune suppression/exhaustion via activation of repressor like CD4+/CD8+PD1, TIM3, LAG3 3) inappropriate differentiation of lymphocyte (extreme elevated proportion of CD4 naive, memory B and T cells along with reduction of inflammatory activator like TLR2/4/TIGIT) and 4) cytokine storm. Our results show the identification of biomarkers to differentiate the different trajectories for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Suman K Paine
- National Institute of Biomedical Genomics, Kalyani, India.
| | | | - Mahabub Alam
- National Institute of Biomedical Genomics, Kalyani, India
| | | | | | - Devashish Tripathi
- National Institute of Biomedical Genomics, Kalyani, India; Regional Centre for Biotechnology, Delhi, India
| | | | - Vatsal Patel
- National Institute of Biomedical Genomics, Kalyani, India
| | | | | | | | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, India.
| |
Collapse
|
13
|
Bingham GC, Muehling LM, Li C, Huang Y, Ma SF, Abebayehu D, Noth I, Sun J, Woodfolk JA, Barker TH, Bonham CA. High-dimensional comparison of monocytes and T cells in post-COVID and idiopathic pulmonary fibrosis. Front Immunol 2024; 14:1308594. [PMID: 38292490 PMCID: PMC10824838 DOI: 10.3389/fimmu.2023.1308594] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Up to 30% of hospitalized COVID-19 patients experience persistent sequelae, including pulmonary fibrosis (PF). Methods We examined COVID-19 survivors with impaired lung function and imaging worrisome for developing PF and found within six months, symptoms, restriction and PF improved in some (Early-Resolving COVID-PF), but persisted in others (Late-Resolving COVID-PF). To evaluate immune mechanisms associated with recovery versus persistent PF, we performed single-cell RNA-sequencing and multiplex immunostaining on peripheral blood mononuclear cells from patients with Early- and Late-Resolving COVID-PF and compared them to age-matched controls without respiratory disease. Results and discussion Our analysis showed circulating monocytes were significantly reduced in Late-Resolving COVID-PF patients compared to Early-Resolving COVID-PF and non-diseased controls. Monocyte abundance correlated with pulmonary function forced vital capacity and diffusion capacity. Differential expression analysis revealed MHC-II class molecules were upregulated on the CD8 T cells of Late-Resolving COVID-PF patients but downregulated in monocytes. To determine whether these immune signatures resembled other interstitial lung diseases, we analyzed samples from Idiopathic Pulmonary Fibrosis (IPF) patients. IPF patients had a similar marked decrease in monocyte HLA-DR protein expression compared to Late-Resolving COVID-PF patients. Our findings indicate decreased circulating monocytes are associated with decreased lung function and uniquely distinguish Late-Resolving COVID-PF from Early-Resolving COVID-PF, IPF, and non-diseased controls.
Collapse
Affiliation(s)
- Grace C. Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Lyndsey M. Muehling
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Chaofan Li
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Yong Huang
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Judith A. Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Catherine A. Bonham
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Mirsharif ES, Rostamian A, Salehi M, Askari N, Ghazanfari T. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) +49A>G (rs231775) gene polymorphism is not associated with COVID-19 severity and mortality in an Iranian population. Heliyon 2024; 10:e23308. [PMID: 38116190 PMCID: PMC10726245 DOI: 10.1016/j.heliyon.2023.e23308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates T cell immune responses as an immune activation inhibitor. Literature reviews suggest that COVID-19 is associated with dysregulation of the inflammatory immune response. The purpose of the present hospital-based case-control study was to evaluate the genetic association of the CTLA4 +49A > G (rs231775) Single Nucleotide Polymorphism (SNP) with COVID-19 severity and mortality among the Iranian people. Method Genomic DNA of peripheral blood nuclear cells was extracted from the 794 COVID-19 patients and 167 control individuals. The polymorphic site of rs231775 was genotyped using the PCR-RFLP technique. Also, to identify whether this genetic variation was related to CTLA-4 mRNA expression, total RNA was extracted from 178 COVID-19 patients and 70 controls. The mRNA levels of CTLA-4 were determined using real-time PCR. Result There were no statistically significant differences found in the genotype and allele frequencies among the different genetic models with regards to the severity and mortality of COVID-19. Furthermore, there was no significant association between rs231775 genotypes and CTLA-4 mRNA expression in patients. Conclusion Our findings demonstrated that SARS-CoV-2 infection is not associated with rs231775 in the Iranian people. More investigations are crucial to show how this genetic variation affects other ethnic groups. Given the importance of CTLA-4 in regulating immune responses, further studies are recommended to examine other CTLA-4 SNPs and the function of this gene in COVID-19 patients.
Collapse
Affiliation(s)
| | - Abdolrahman Rostamian
- Rheumatology Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of Infectious and Tropical Medicines, Tehran University of Medical Sciences, Tehran, Iran
| | - Nayere Askari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Department of Biology, Faculty of Basic Sciences, Shahid Bahonar, University of Kerman, Kerman, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
15
|
Al-Kaif LAIK, Al-Ameri H, Alfatlawi WRO, Mahdi AE, Al-Khafaji YAK, Al-Saadi MAK, Al-Charrakh AH, Al-Mammori RT, Akkaif MA. Detection of CTLA-4 level and humeral immune response after the second dose of COVID-19 vaccine in certain Iraqi provinces participants. PLoS One 2024; 19:e0296521. [PMID: 38180994 PMCID: PMC10769031 DOI: 10.1371/journal.pone.0296521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Evaluating immune responses following COVID-19 vaccination is paramount to understanding vaccine effectiveness and optimizing public health interventions. This study seeks to elucidate individuals' immune status after administering a second dose of diverse COVID-19 vaccines. By analyzing immune responses through serological markers, we aim to contribute valuable insights into the uniformity of vaccine performance. METHODS A total of 80 participants were enrolled in this study, with demographic and COVID-19 infection-related data collected for categorization. Serum samples were acquired within a specified timeframe, and SARS-CoV-2 IgM/IgG rapid tests were conducted. Moreover, CTLA-4 levels were measured through ELISA assays, allowing us to assess the immune responses comprehensively. The participants were divided into eight groups based on various factors, facilitating a multifaceted analysis. RESULTS The outcomes of our investigation demonstrated consistent immune responses across the diverse types of COVID-19 vaccines administered in Iraq. Statistical analysis revealed no significant distinctions among the vaccine categories. In contrast, significant differences were observed in CTLA-4 among the control group (non-infected/non-vaccinated, infected/non-vaccinated) and infected/Pfizer, non-infected/Pfizer, and infected/Sinopharm, non-infected/sinopharm (P = 0.001, < 0.001, 0.023, respectively). This suggests that these vaccines exhibit comparable effectiveness in eliciting an immune response among the study participants. CONCLUSIONS In conclusion, our study's results underscore the lack of discriminatory variations between different COVID-19 vaccine types utilized in Iraq. The uniform immune responses observed signify the equitable efficacy and performance of these vaccines. Despite minor quantitative discrepancies, these variations do not hold statistical significance, reaffirming the notion that the various vaccines serve a similar purpose in conferring protection against COVID-19.
Collapse
Affiliation(s)
- Laith A. I. K. Al-Kaif
- Department of Medical Microbiology, Hammurabi College of Medicine, University of Babylon, Hillah, Babylon, Iraq
- Department of Medical Laboratory Techniques, Al-Mustaqbal University, Hillah, Babylon, Iraq
| | - Hussain Al-Ameri
- Department of Medical Laboratory Techniques, Al-Mustaqbal University, Hillah, Babylon, Iraq
| | | | - Ammar Eesa Mahdi
- Basic Science Department, College of Dentistry, University of Babylon, Hillah, Babylon, Iraq
| | | | | | - Alaa H. Al-Charrakh
- Basic Science Department, College of Dentistry, University of Babylon, Hillah, Babylon, Iraq
| | | | - Mohammed Ahmed Akkaif
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
16
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
18
|
Aghbash PS, Rasizadeh R, Arefi V, Nahand JS, Baghi HB. Immune-checkpoint expression in antigen-presenting cells (APCs) of cytomegaloviruses infection after transplantation: as a diagnostic biomarker. Arch Microbiol 2023; 205:280. [PMID: 37430000 DOI: 10.1007/s00203-023-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Cytomegalovirus (CMV), a member of the Herpesviridae family, mostly causes only slight feverish symptoms or can be asymptomatic in immunocompetent individuals. However, it is known to be particularly a significant cause of morbidity in immunocompromised patients, including transplant recipients, whose immune system has been weakened due to the consumption of immunosuppressor drugs. Therefore, the diagnosis of CMV infection after transplantation is crucial. New diagnostic methods for the quick detection of CMV have been developed as a result of understanding the clinical importance of invasive CMV. Antigen-presenting cells (APCs) and T cells are important components of the immune system and it may be possible to diagnose viral infections using immunological markers, such as lymphocytosis, cytotoxic T lymphocytes (CTL), and serum cytokine levels. Moreover, PD-1, CTLA 4, and TIGIT, which are expressed on certain T cells and antigen-presenting cells, are over-expressed during the infection. The assessment of CMV infection based on T cell and APC activity, and the expression of immunological checkpoints, can be helpful for the diagnosis of transplant patients at risk for CMV infection. In this review, we will investigate how immune checkpoints affect immune cells and how they impair organ transplantation after CMV infection.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Arefi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
| |
Collapse
|
19
|
Lee YJ, Seok SH, Lee NY, Choi HJ, Lee YW, Chang HJ, Hwang JY, On DI, Noh HA, Lee SB, Kwon HK, Yun JW, Shin JS, Seo JY, Nam KT, Lee H, Lee HY, Park JW, Seong JK. Murine Coronavirus Disease 2019 Lethality Is Characterized by Lymphoid Depletion Associated with Suppressed Antigen-Presenting Cell Functionality. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:866-882. [PMID: 37024046 PMCID: PMC10073095 DOI: 10.1016/j.ajpath.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.
Collapse
Affiliation(s)
- Yu Jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Sang Hyeok Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Na Yun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Hee Jin Choi
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Yoon Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hee Jung Chang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Da In On
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ah Noh
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Su-Bin Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Won Yun
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, and the Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, and the Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, and the Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Ho Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Aghbash PS, Rasizadeh R, Shirvaliloo M, Nahand JS, Baghi HB. Dynamic alterations in white blood cell counts and SARS-CoV-2 shedding in saliva: an infection predictor parameter. Front Med (Lausanne) 2023; 10:1208928. [PMID: 37396915 PMCID: PMC10313227 DOI: 10.3389/fmed.2023.1208928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The recent coronavirus (COVID-19) outbreak posed a global threat and quickly escalated to a pandemic. However, accurate information on potential relationships between SARS-CoV-2 shedding in body fluids, especially saliva, and white blood cell (WBC) count is limited. In the present study we investigated the potential correlation between alterations in blood cell counts and viral shedding in saliva in a cohort of COVID-19 patients. Method In this preliminary clinical research, 24 age-matched COVID-19 patients without comorbidities, 12 (50%) men and 12 (50%) women, were followed up for a period of 5 days to investigate whether changes in the level of viral shedding in saliva might parallel with temporal alterations in WBC count. Viral shedding in saliva was qualitatively measured by performing SARS-CoV-2 rapid antigen tests on patient saliva samples, using SARS-CoV-2 Rapid Antigen Test Kit (Roche, Basel, Switzerland). These patients were classified into two groups with sputum and non-sputum cough. WBCs counts including leukocyte (LYM), neutrophil (NEU), and LYM counts were recorded for each patient on days 1, 3, and 5. Results The results of the present study showed that the levels of WBC, LYM, and NEU as well as erythrocyte sedimentation rate (ESR) increased significantly on the 5th day compared to the first day in both groups with sputum. However, the levels of C-reactive protein (CRP), Neutrophil-to-Lymphocyte Ratio (NLR) and lactate dehydrogenase (LDH) did not show significant changes. Conclusion This study proves that investigating the change in the number of blood LYMs as well as laboratory parameters such as CRP, LDH, and ESR as biomarkers is an accurate indicator to detect the amount of viral shedding in people with sputum and non-sputum. The results of our study denote that the measured parameters exhibit the intensity of viral shedding in people with sputum.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Li M, He Q, Chen L. Identifying Hub Genes and miRNA-mRNA Regulatory Networks in Mice Infected with H1N1 Influenza Virus. DISEASE MARKERS 2023; 2023:2291051. [PMID: 37228892 PMCID: PMC10205411 DOI: 10.1155/2023/2291051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 05/27/2023]
Abstract
H1N1 influenza virus is a major factor in seasonal influenza outbreaks. After the body is infected with the influenza virus, the expression of certain mRNAs, including miRNAs, could be affected. However, the association between these mRNAs and miRNAs remains unclear. This study is aimed at identifying differentially expressed genes (DEGs) and miRNAs (DEmiRs) caused by H1N1 influenza virus infection and constructing a miRNA-mRNA regulatory network. Nine GSE datasets were downloaded from the Gene Expression Omnibus database, of which seven were mRNA data and two were miRNA data. The limma package in R language package was used to analyze array data, and edgeR package was used to analyze high-throughput sequencing data. At the same time, the genes related to H1N1 infection were further screened by WGCNA analysis. DEGs were subjected to Gene Ontology and KEGG pathway enrichment analyses by DAVID database, while the STRING database predicted the protein-protein interaction (PPI) network. The correspondence between miRNA and target mRNA was analyzed by the miRWalk database. Cytoscape software was used to output PPI results, identify hub genes, and construct a miRNA-mRNA regulatory network. 114 DEGs and 37 candidate DEmiRs were identified for subsequent analysis. These DEGs were significantly enriched in response to the virus, cytokine activity, and symbiont-containing vacuole membrane. According to KEGG analysis, DEGs were enriched in PD-L1 expression and PD-1 checkpoint pathway. The key point Cd274 (PD-L1) was highly expressed in the H1N1-infected group. Finally, a potential miRNA-mRNA regulatory network (containing 8 candidate DEmiRs and 69 candidate DEGs) and a PPI network were constructed. After that, three hub genes were identified: Ifit3, Stat2, and Irf7. These hub genes and Cd274 were validated by another independent high-throughput dataset and were highly expressed pattern. This study will help researchers gain insights into the intrinsic effects of H1N1 influenza virus infection on the host and suggest a novel association of H1N1 virus with the host immune system.
Collapse
Affiliation(s)
- Mingyang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Qizhi He
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, China
| | - Lingli Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
22
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
23
|
Hamidi Z, Jabraeili-Siahroud S, Taati-Alamdari Y, Aghbash PS, Shamekh A, Baghi HB. A comprehensive review of COVID-19 symptoms and treatments in the setting of autoimmune diseases. Virol J 2023; 20:1. [PMID: 36611166 PMCID: PMC9824943 DOI: 10.1186/s12985-023-01967-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
After the first reporting of the index case of Severe Acute Respiratory Syndrome (SARS)-CoV-2-associated disease at the end of December 2019, the virus spread quickly throughout the world, prompting the WHO on 11 March 2020 to declare the disease a global pandemic. The coronavirus disease 2019 (COVID-19) pandemic, raises concerns for all people, mainly for susceptible population. People with pre-existing diseases, especially individuals with autoimmune disorders, are more at the risk of SARS-CoV-2 infection because of compromised immune system due to frequent use of immunosuppressive drugs and steroids. Patients with autoimmune diseases and their physicians have concerns about these patients' healthcare, since they are at a higher risk for COVID-19 infection, may show severe complications of COVID-19, and may experience probable flares of their pre-existing disease. Even though there have been several studies discussing the relation between COVID-19 and various types of autoimmune diseases, it cannot be ascertained that all patients with autoimmune diseases experience more severe complications of COVID-19 and have more hospitalization or mortality rate. The situation depends on each patient's condition, such as the type and the severity of the underlying autoimmune disease and the kind of treatment they receive. In the present review, we have discussed the effects of COVID-19 pandemic on patients with different autoimmune diseases and their relative concerns about their treatments. As a result, we have reviewed further considerations that should be taken into account for these patients during the pandemic or when they are infected with COVID-19.
Collapse
Affiliation(s)
- Zahra Hamidi
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaghaiegh Jabraeili-Siahroud
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Taati-Alamdari
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5165665931, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5165665931, Tabriz, Iran.
| |
Collapse
|
24
|
Hamidi Z, Jabraeili-Siahroud S, Taati-Alamdari Y, Aghbash PS, Shamekh A, Baghi HB. A comprehensive review of COVID-19 symptoms and treatments in the setting of autoimmune diseases. Virol J 2023. [PMID: 36611166 DOI: 10.1186/s12985-023-01967-7/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
After the first reporting of the index case of Severe Acute Respiratory Syndrome (SARS)-CoV-2-associated disease at the end of December 2019, the virus spread quickly throughout the world, prompting the WHO on 11 March 2020 to declare the disease a global pandemic. The coronavirus disease 2019 (COVID-19) pandemic, raises concerns for all people, mainly for susceptible population. People with pre-existing diseases, especially individuals with autoimmune disorders, are more at the risk of SARS-CoV-2 infection because of compromised immune system due to frequent use of immunosuppressive drugs and steroids. Patients with autoimmune diseases and their physicians have concerns about these patients' healthcare, since they are at a higher risk for COVID-19 infection, may show severe complications of COVID-19, and may experience probable flares of their pre-existing disease. Even though there have been several studies discussing the relation between COVID-19 and various types of autoimmune diseases, it cannot be ascertained that all patients with autoimmune diseases experience more severe complications of COVID-19 and have more hospitalization or mortality rate. The situation depends on each patient's condition, such as the type and the severity of the underlying autoimmune disease and the kind of treatment they receive. In the present review, we have discussed the effects of COVID-19 pandemic on patients with different autoimmune diseases and their relative concerns about their treatments. As a result, we have reviewed further considerations that should be taken into account for these patients during the pandemic or when they are infected with COVID-19.
Collapse
Affiliation(s)
- Zahra Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaghaiegh Jabraeili-Siahroud
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Taati-Alamdari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5165665931, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5165665931, Tabriz, Iran.
| |
Collapse
|
25
|
Gedda MR, Danaher P, Shao L, Ongkeko M, Chen L, Dinh A, Thioye Sall M, Reddy OL, Bailey C, Wahba A, Dzekunova I, Somerville R, De Giorgi V, Jin P, West K, Panch SR, Stroncek DF. Longitudinal transcriptional analysis of peripheral blood leukocytes in COVID-19 convalescent donors. J Transl Med 2022; 20:587. [PMID: 36510222 PMCID: PMC9742656 DOI: 10.1186/s12967-022-03751-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SARS-CoV2 can induce a strong host immune response. Many studies have evaluated antibody response following SARS-CoV2 infections. This study investigated the immune response and T cell receptor diversity in people who had recovered from SARS-CoV2 infection (COVID-19). METHODS Using the nCounter platform, we compared transcriptomic profiles of 162 COVID-19 convalescent donors (CCD) and 40 healthy donors (HD). 69 of the 162 CCDs had two or more time points sampled. RESULTS After eliminating the effects of demographic factors, we found extensive differential gene expression up to 241 days into the convalescent period. The differentially expressed genes were involved in several pathways, including virus-host interaction, interleukin and JAK-STAT signaling, T-cell co-stimulation, and immune exhaustion. A subset of 21 CCD samples was found to be highly "perturbed," characterized by overexpression of PLAU, IL1B, NFKB1, PLEK, LCP2, IRF3, MTOR, IL18BP, RACK1, TGFB1, and others. In addition, one of the clusters, P1 (n = 8) CCD samples, showed enhanced TCR diversity in 7 VJ pairs (TRAV9.1_TCRVA_014.1, TRBV6.8_TCRVB_016.1, TRAV7_TCRVA_008.1, TRGV9_ENST00000444775.1, TRAV18_TCRVA_026.1, TRGV4_ENST00000390345.1, TRAV11_TCRVA_017.1). Multiplexed cytokine analysis revealed anomalies in SCF, SCGF-b, and MCP-1 expression in this subset. CONCLUSIONS Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed following recovery from COVID-19 infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04360278 Registered April 24, 2020.
Collapse
Affiliation(s)
- Mallikarjuna R. Gedda
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.280030.90000 0001 2150 6316Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Patrick Danaher
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Lipei Shao
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Martin Ongkeko
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Leonard Chen
- grid.94365.3d0000 0001 2297 5165Blood Services Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anh Dinh
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mame Thioye Sall
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Opal L. Reddy
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Christina Bailey
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Amy Wahba
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Inna Dzekunova
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Robert Somerville
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Valeria De Giorgi
- grid.94365.3d0000 0001 2297 5165Infectious Disease Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ping Jin
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kamille West
- grid.94365.3d0000 0001 2297 5165Blood Services Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sandhya R. Panch
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.34477.330000000122986657Department of Medicine (Hematology Division), University of Washington/Fred Hutchinson Cancer Center, Seattle, WA 98109 USA
| | - David F. Stroncek
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
26
|
Shiri Aghbash P, Ebrahimzadeh Leylabadlo H, Fathi H, Bahmani M, Chegini R, Bannazadeh Baghi H. Hepatic Disorders and COVID-19: From Pathophysiology to Treatment Strategy. Can J Gastroenterol Hepatol 2022; 2022:4291758. [PMID: 36531832 PMCID: PMC9754839 DOI: 10.1155/2022/4291758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 12/13/2022] Open
Abstract
Following the SARS-CoV-2 outbreak and the subsequent development of the COVID-19 pandemic, organs such as the lungs, kidneys, liver, heart, and brain have been identified as priority organs. Liver diseases are considered a risk factor for high mortality from the COVID-19 pandemic. Besides, liver damage has been demonstrated in a substantial proportion of patients with COVID-19, especially those with severe clinical symptoms. Furthermore, antiviral medications, immunosuppressive drugs after liver transplantation, pre-existing hepatic diseases, and chronic liver diseases such as cirrhosis have also been implicated in SARS-CoV-2-induced liver injury. As a result, some precautions have been taken to prevent, monitor the virus, and avoid immunocompromised and susceptible individuals, such as liver and kidney transplant recipients, from being infected with SARS-CoV-2, thereby avoiding an increase in mortality. The purpose of this review was to examine the impairment caused by SARS-CoV-2 infection and the impact of drugs used during the pandemic on the mortality range and therefore the possibility of preventive measures in patients with liver disease.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Mohaddeseh Bahmani
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rojin Chegini
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Gholizadeh O, Yasamineh S, Amini P, Afkhami H, Delarampour A, Akbarzadeh S, Karimi Matloub R, Zahedi M, Hosseini P, Hajiesmaeili M, Poortahmasebi V. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J 2022; 19:206. [PMID: 36463213 PMCID: PMC9719161 DOI: 10.1186/s12985-022-01935-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
In December 2019, Coronavirus Disease 2019 (COVID-19) was reported in Wuhan, China. Comprehensive strategies for quick identification, prevention, control, and remedy of COVID-19 have been implemented until today. Advances in various nanoparticle-based technologies, including organic and inorganic nanoparticles, have created new perspectives in this field. These materials were extensively used to control COVID-19 because of their specific attribution to preparing antiviral face masks, various safety sensors, etc. In this review, the most current nanoparticle-based technologies, applications, and achievements against the coronavirus were summarized and highlighted. This paper also offers nanoparticle preventive, diagnostic, and treatment options to combat this pandemic.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Parya Amini
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Abbasali Delarampour
- Microbiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parastoo Hosseini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Hajiesmaeili
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Seliger B, Jasinski-Bergner S, Massa C, Mueller A, Biehl K, Yang B, Bachmann M, Jonigk D, Eichhorn P, Hartmann A, Wickenhauser C, Bauer M. Induction of pulmonary HLA-G expression by SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:582. [PMID: 36334153 PMCID: PMC9637071 DOI: 10.1007/s00018-022-04592-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
The non-classical human leukocyte antigen (HLA)-G exerts immune-suppressive properties modulating both NK and T cell responses. While it is physiologically expressed at the maternal-fetal interface and in immune-privileged organs, HLA-G expression is found in tumors and in virus-infected cells. So far, there exists little information about the role of HLA-G and its interplay with immune cells in biopsies, surgical specimen or autopsy tissues of lung, kidney and/or heart muscle from SARS-CoV-2-infected patients compared to control tissues. Heterogeneous, but higher HLA-G protein expression levels were detected in lung alveolar epithelial cells of SARS-CoV-2-infected patients compared to lung epithelial cells from influenza-infected patients, but not in other organs or lung epithelia from non-viral-infected patients, which was not accompanied by high levels of SARS-CoV-2 nucleocapsid antigen and spike protein, but inversely correlated to the HLA-G-specific miRNA expression. High HLA-G expression levels not only in SARS-CoV-2-, but also in influenza-infected lung tissues were associated with a high frequency of tissue-infiltrating immune cells, but low numbers of CD8+ cells and an altered expression of hyperactivation and exhaustion markers in the lung epithelia combined with changes in the spatial distribution of macrophages and T cells. Thus, our data provide evidence for an involvement of HLA-G and HLA-G-specific miRNAs in immune escape and as suitable therapeutic targets for the treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany.
- Institute of Translational Immunology, Medical School "Theodor Fontane", 14770, Brandenburg, Germany.
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Bachmann
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
- German Center for Lung Research (DZL), Hannover Medical School (BREATH), 30625, Hannover, Germany
| | - Philip Eichhorn
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
29
|
Network Analysis for Uncovering the Relationship between Host Response and Clinical Factors to Virus Pathogen: Lessons from SARS-CoV-2. Viruses 2022; 14:v14112422. [PMID: 36366522 PMCID: PMC9697085 DOI: 10.3390/v14112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Analysing complex datasets while maintaining the interpretability and explainability of outcomes for clinicians and patients is challenging, not only in viral infections. These datasets often include a variety of heterogeneous clinical, demographic, laboratory, and personal data, and it is not a single factor but a combination of multiple factors that contribute to patient characterisation and host response. Therefore, multivariate approaches are needed to analyse these complex patient datasets, which are impossible to analyse with univariate comparisons (e.g., one immune cell subset versus one clinical factor). Using a SARS-CoV-2 infection as an example, we employed a patient similarity network (PSN) approach to assess the relationship between host immune factors and the clinical course of infection and performed visualisation and data interpretation. A PSN analysis of ~85 immunological (cellular and humoral) and ~70 clinical factors in 250 recruited patients with coronavirus disease (COVID-19) who were sampled four to eight weeks after a PCR-confirmed SARS-CoV-2 infection identified a minimal immune signature, as well as clinical and laboratory factors strongly associated with disease severity. Our study demonstrates the benefits of implementing multivariate network approaches to identify relevant factors and visualise their relationships in a SARS-CoV-2 infection, but the model is generally applicable to any complex dataset.
Collapse
|
30
|
Lazar V, Raynaud J, Magidi S, Bresson C, Martini JF, Galbraith S, Wunder F, Onn A, Batist G, Girard N, Lassen U, Pramesh CS, Al-Omari A, Ikeda S, Berchem G, Blay JY, Solomon B, Felip E, Tabernero J, Rubin E, Philip T, Porgador A, Berindan-Neagoe I, Schilsky RL, Kurzrock R. Comorbidity between lung cancer and COVID-19 pneumonia: role of immunoregulatory gene transcripts in high ACE2-expressing normal lung. Ther Adv Med Oncol 2022; 14:17588359221133893. [PMID: 36324736 PMCID: PMC9618916 DOI: 10.1177/17588359221133893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND SARS-CoV-2 (COVID-19) elicits a T-cell antigen-mediated immune response of variable efficacy. To understand this variability, we explored transcriptomic expression of angiotensin-converting enzyme 2 (ACE2, the SARS-CoV-2 receptor) and of immunoregulatory genes in normal lung tissues from patients with non-small cell lung cancer (NSCLC). METHODS This study used the transcriptomic and the clinical data for NSCLC patients generated during the CHEMORES study [n = 123 primary resected (early-stage) NSCLC] and the WINTHER clinical trial (n = 32 metastatic NSCLC). RESULTS We identified patient subgroups with high and low ACE2 expression (p = 1.55 × 10-19) in normal lung tissue, presumed to be at higher and lower risk, respectively, of developing severe COVID-19 should they become infected. ACE2 transcript expression in normal lung tissues (but not in tumor tissue) of patients with NSCLC was higher in individuals with more advanced disease. High-ACE2 expressors had significantly higher levels of CD8+ cytotoxic T lymphocytes and natural killer cells but with presumably impaired function by high Thymocyte Selection-Associated High Mobility Group Box Protein TOX (TOX) expression. In addition, immune checkpoint-related molecules - PD-L1, CTLA-4, PD-1, and TIGIT - are more highly expressed in normal (but not tumor) lung tissues; these molecules might dampen immune response to either viruses or cancer. Importantly, however, high inducible T-cell co-stimulator (ICOS), which can amplify immune and cytokine reactivity, significantly correlated with high ACE2 expression in univariable analysis of normal lung (but not lung tumor tissue). CONCLUSIONS We report a normal lung immune-tolerant state that may explain a potential comorbidity risk between two diseases - NSCLC and susceptibility to COVID-19 pneumonia. Further, a NSCLC patient subgroup has normal lung tissue expressing high ACE2 and high ICOS transcripts, the latter potentially promoting a hyperimmune response, and possibly leading to severe COVID-19 pulmonary compromise.
Collapse
Affiliation(s)
| | | | - Shai Magidi
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Villejuif, France
| | | | | | | | - Fanny Wunder
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Villejuif, France
| | - Amir Onn
- Sheba Medical Center, Tel-Hashomer, Israel
| | - Gerald Batist
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Canada
| | | | | | - C. S. Pramesh
- Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | | | | | - Guy Berchem
- Centre Hospitalier Luxembourg and Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jean-Yves Blay
- Centre Leon Bérard, University Lyon 1, LYRICAN & NETSARC+, Lyon, France
| | | | - Enriqueta Felip
- Vall d’Hebron Hospital Campus and Institute of Oncology, UVic-UCC, Barcelona, Spain
| | | | - Eitan Rubin
- Faculty of Health Sciences Ben-Gurion University of the Negev, Beer-Sheeva, Israel
| | | | - Angel Porgador
- Faculty of Health Sciences Ben-Gurion University of the Negev, Beer-Sheeva, Israel
| | | | | | | |
Collapse
|
31
|
Silva MJA, Ribeiro LR, Lima KVB, Lima LNGC. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front Immunol 2022; 13:1001198. [PMID: 36300105 PMCID: PMC9589156 DOI: 10.3389/fimmu.2022.1001198] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is evidence that the adaptive or acquired immune system is one of the crucial variables in differentiating the course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work aimed to analyze the immunopathological aspects of adaptive immunity that are involved in the progression of this disease. METHODS This is a systematic review based on articles that included experimental evidence from in vitro assays, cohort studies, reviews, cross-sectional and case-control studies from PubMed, SciELO, MEDLINE, and Lilacs databases in English, Portuguese, or Spanish between January 2020 and July 2022. RESULTS Fifty-six articles were finalized for this review. CD4+ T cells were the most resolutive in the health-disease process compared with B cells and CD8+ T lymphocytes. The predominant subpopulations of T helper lymphocytes (Th) in critically ill patients are Th1, Th2, Th17 (without their main characteristics) and regulatory T cells (Treg), while in mild cases there is an influx of Th1, Th2, Th17 and follicular T helper cells (Tfh). These cells are responsible for the secretion of cytokines, including interleukin (IL) - 6, IL-4, IL-10, IL-7, IL-22, IL-21, IL-15, IL-1α, IL-23, IL-5, IL-13, IL-2, IL-17, tumor necrosis factor alpha (TNF-α), CXC motivating ligand (CXCL) 8, CXCL9 and tumor growth factor beta (TGF-β), with the abovementioned first 8 inflammatory mediators related to clinical benefits, while the others to a poor prognosis. Some CD8+ T lymphocyte markers are associated with the severity of the disease, such as human leukocyte antigen (HLA-DR) and programmed cell death protein 1 (PD-1). Among the antibodies produced by SARS-CoV-2, Immunoglobulin (Ig) A stood out due to its potent release associated with a more severe clinical form. CONCLUSIONS It is concluded that through this study it is possible to have a brief overview of the main immunological biomarkers and their function during SARS-CoV-2 infection in particular cell types. In critically ill individuals, adaptive immunity is varied, aberrantly compromised, and late. In particular, the T-cell response is also an essential and necessary component in immunological memory and therefore should be addressed in vaccine formulation strategies.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Layana Rufino Ribeiro
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Luana Nepomuceno Gondim Costa Lima
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| |
Collapse
|
32
|
Aghbash PS, Hemmat N, Fathi H, Baghi HB. Monoclonal antibodies in cervical malignancy-related HPV. Front Oncol 2022; 12:904790. [PMID: 36276117 PMCID: PMC9582116 DOI: 10.3389/fonc.2022.904790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Despite many efforts to treat HPV infection, cervical cancer survival is still poor for several reasons, including resistance to chemotherapy and relapse. Numerous treatments such as surgery, radiation therapy, immune cell-based therapies, siRNA combined with various drugs, and immunotherapy are being studied and performed to provide the best treatment. Depending on the stage and size of the tumor, methods such as radical hysterectomy, pelvic lymphadenectomy, or chemotherapy can be utilized to treat cervical cancer. While accepted, these treatments lead to interruptions in cellular pathways and immune system homeostasis. In addition to a low survival rate, cervical neoplasm incidence has been rising significantly. However, new strategies have been proposed to increase patient survival while reducing the toxicity of chemotherapy, including targeted therapy and monoclonal antibodies. In this article, we discuss the types and potential therapeutic roles of monoclonal antibodies in cervical cancer.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Huțanu A, Manu D, Gabor MR, Văsieșiu AM, Andrejkovits AV, Dobreanu M. Dynamic Evaluation of Natural Killer Cells Subpopulations in COVID-19 Patients. Int J Mol Sci 2022; 23:ijms231911875. [PMID: 36233174 PMCID: PMC9569797 DOI: 10.3390/ijms231911875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to evaluate the dynamic changes of the total Natural Killer (NK) cells and different NK subpopulations according to their differentiated expression of CD16/CD56 in COVID-19 patients. Blood samples with EDTA were analyzed on day 1 (admission moment), day 5, and day 10 for the NK subtypes. At least 30,000 singlets were collected for each sample and white blood cells were gated in CD45/SSC and CD16/CD56 dot plots of fresh human blood. From the lymphocyte singlets, the NK cells subpopulations were analyzed based on the differentiated expression of surface markers and classified as follows: CD16-CD56+/++/CD16+CD56++/CD16+CD56+/CD16++CD56−. By examining the CD56 versus CD16 flow cytometry dot plots, we found four distinct NK sub-populations. These NK subtypes correspond to different NK phenotypes from secretory to cytolytic ones. There was no difference between total NK percentage of different disease forms. However, the total numbers decreased significantly both in survivors and non-survivors. Additionally, for the CD16-CD56+/++ phenotype, we observed different patterns, gradually decreasing in survivors and gradually increasing in those with fatal outcomes. Despite no difference in the proportion of the CD16−CD56++ NK cells in survivors vs. non–survivors, the main cytokine producers gradually decline during the study period in the survival group, underling the importance of adequate IFN production during the early stage of SARS-CoV-2 infection. Persistency in the circulation of CD56++ NK cells may have prognostic value in patients, with a fatal outcome. Total NK cells and the CD16+CD56+ NK subtypes exhibit significant decreasing trends across the moments for both survivors and non-survivors.
Collapse
Affiliation(s)
- Adina Huțanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Correspondence:
| | - Manuela Rozalia Gabor
- Department of Economic Science, Faculty of Economics and Law, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Anca Meda Văsieșiu
- Department of Infectious Diseases, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Akos Vince Andrejkovits
- Department of Infectious Diseases, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Minodora Dobreanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
34
|
Demoliou C, Papaneophytou C, Nicolaidou V. SARS-CoV-2 and HIV-1: So Different yet so Alike . Immune Response at the Cellular and Molecular Level. Int J Med Sci 2022; 19:1787-1795. [PMID: 36313221 PMCID: PMC9608044 DOI: 10.7150/ijms.73134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023] Open
Abstract
In the past half century, humanity has experienced two devastating pandemics; the HIV-1 pandemic and the recent pandemic caused by SARS-CoV-2. Both emerged as zoonotic pathogens. Interestingly, SARS-CoV-2 has rapidly migrated all over the world in less than two years, much as HIV-1 did almost 40 years ago. Despite these two RNA viruses being different in their mode of transmission as well as the symptoms they generate, recent evidence suggests that they cause similar immune responses. In this mini review, we compare the molecular basis for CD4+ T cell lymphopenia and other effects on the immune system induced by SARS-CoV-2 and HIV-1 infections. We considered features of the host immune response that are shared with HIV-1 and could account for the lymphopenia and other immune effects observed in COVID-19. The information provided herein, may cast the virus-induced lymphopenia and cytokine storm associated with the acute SARS-CoV-2 infection and pathogenesis in a different light for further research on host immune responses. It can also provide opportunities for the identification of novel therapeutic targets for COVID-19. Furthermore, we provide some basic information to enable a comparative framework for considering the overlapping sets of immune responses caused by HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Vicky Nicolaidou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Avenue, 2417, Nicosia, Cyprus
| |
Collapse
|
35
|
COVID-19 Outcomes in Stage IV Cancer Patients Receiving Immune Checkpoint Inhibitors. SN COMPREHENSIVE CLINICAL MEDICINE 2022; 4:193. [PMID: 36043120 PMCID: PMC9411835 DOI: 10.1007/s42399-022-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer patients are a vulnerable population in the current coronavirus disease 2019 (COVID-19) outbreak. The impact of immune checkpoint inhibitors (ICIs) on the outcomes of COVID-19 infection in cancer patients remains largely unclear. We retrospectively investigated all solid cancer patients who received at least one cycle of ICIs at a single institution between August 2020 and August 2021. All stage IV solid cancer patients who were on or ceased ICI treatment when diagnosed with COVID-19 were eligible. All COVID-19 infections were confirmed by RT-PCR. Risk factors for hospitalization, severe symptoms, and death were analyzed. A total of 56 patients were included in our study. Twenty (35.7%) patients require hospitalization, 12 (21.4%) developed severe symptoms, and 10 (17.9%) died from COVID-19 infection. ICI treatment was interrupted in 37 patients (66.1%), 24 of whom (64.9%) had treatment resumed. Eight (80%) COVID-19-related death occurred in unvaccinated individuals. Reinfection occurred in seven patients (12.5%), and three of them died from their second COVID-19 infection. Factors associated with hospitalization were high Charlson comorbidity score (OR 1.56, 95% CI 1.10–2.23, p = 0.01) and lymphocyte ≤ 1500 mm3 (OR 10.05, 95% CI 2.03–49.85, p = 0.005). Age, chemoimmunotherapy, and ICI treatment duration were not associated with increased risk of hospitalization, severe symptoms, or COVID-19-related mortality. ICI therapy does not impose an increased risk for severe COVID-19 infection in stage IV cancer patients. Vaccination should be encouraged among this population. Clinicians should be cognizant of a potential worse outcome in COVID-19-reinfected patients.
Collapse
|
36
|
Lee N, Jeong S, Jeon K, Park MJ, Song W. Prognostic impacts of soluble immune checkpoint regulators and cytokines in patients with SARS-CoV-2 infection. Front Immunol 2022; 13:903419. [PMID: 36045684 PMCID: PMC9423766 DOI: 10.3389/fimmu.2022.903419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a pandemic for the past two years. Predicting patient prognosis is critical. Although immune checkpoints (ICs) were shown to be involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, quantitative studies of ICs in clinical practice are limited. In this study, various soluble ICs (sICs) and cytokine levels in patients with SARS-CoV-2 infection at different time points were compared between survivors and deaths; we also examined whether sICs are useful for predicting prognosis. sICs and cytokines were measured in serum samples from 38 patients diagnosed with COVID-19 in the first and second week post-diagnosis. All assays were performed by bead-based multiplexed immunoassay system using Luminex Bio-Plex 200 system. The correlation of sICs and cytokines with laboratory markers was evaluated, and the levels of sICs in survivors were compared with those in deaths. Among the sICs, the second-week levels of soluble cluster of differentiation (sCD27, p = 0.012), sCD40 (p< 0.001), cytotoxic T-lymphocyte-associated protein 4 (sCTLA-4, p< 0.001), herpes virus entry mediator (sHVEM, p = 0.026), and T-cell immunoglobulin and mucin-domain containing-3 (sTIM-3, p = 0.002) were significantly higher in deaths than in survivors. The levels of nine cytokines assessed in the second week of deaths were significantly higher than those in survivors. The sICs sCD27, sCD40, sCTLA-4, and sTIM-3 and cytokines chemokine CC motif ligand 2 (CCL2), GM-CSF, IL-10, and IL-8 showed significant positive correlations with the levels of C-reactive protein (CRP) and procalcitonin and were negatively correlated with the absolute lymphocyte count and platelet values. Increased levels of sICs including sCD27, sCD40, sCTLA-4, and sTIM-3 and cytokines were significant factors for poor prognosis. sICs, together with cytokines and inflammatory markers, may be useful as prognostic stratification markers in SARS-CoV-2-infected patients.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
| | - Seri Jeong
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
- *Correspondence: Seri Jeong,
| | - Kibum Jeon
- Department of Laboratory Medicine, Hallym University College of Medicine, Hangang Sacred Heart Hospital, Seoul, South Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
Programmed Cell Death Protein-1 Upregulation in Response to SARS-CoV-2 in Juvenile Idiopathic Arthritis: A Case-Control Study. J Clin Med 2022; 11:jcm11144060. [PMID: 35887824 PMCID: PMC9319559 DOI: 10.3390/jcm11144060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, data regarding the impact of COVID-19 disease (caused by SARS-CoV-2) on patients with childhood rheumatic diseases are significantly limited. To assess the possible connection, we measured levels of IgA and IgG anti-SARS-CoV-2 antibodies in children with juvenile idiopathic arthritis (JIA) and a control group during the pandemic, prior to the introduction of anti-COVID-19 vaccination. We assessed levels of PD-1 suppressive molecule and inflammatory markers in patients and correlated those results with serological response to SARS-CoV-2. In JIA patients, the activity of the disease was assessed using the Juvenile Arthritis Disease Activity Score 71 (JADAS 71) scale. The study consisted of 96 children, 65 diagnosed with JIA, treated with antirheumatic drugs, and 31 healthy volunteers. In patients with JIA, significantly higher levels of SARS-CoV-2 antibodies in the IgA and IgG were demonstrated compared to the control group. We also found significantly higher serum PD-1 levels in JIA patients and control volunteers who were seropositive for SARS-CoV-2 IgA or IgG antibodies compared to those who were seronegative. The humoral immune response to SARS-CoV-2 infection is associated with the persistent upregulation of PD-1 expression in both JIA patients and healthy children. The clinical significance of the detected disorder requires further careful observation.
Collapse
|
38
|
Zavvar M, Yahyapoor A, Baghdadi H, Zargaran S, Assadiasl S, Abdolmohammadi K, Hossein Abooei A, Reza Sattarian M, JalaliFarahani M, Zarei N, Farahvash A, Fatahi Y, Deniz G, Zarebavani M, Nicknam MH. COVID-19 immunotherapy: Treatment based on the immune cell-mediated approaches. Int Immunopharmacol 2022; 107:108655. [PMID: 35248946 PMCID: PMC8872837 DOI: 10.1016/j.intimp.2022.108655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Multiple efforts are currently underway to control and treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19) worldwide. Despite all efforts, the virus that emerged in Wuhan city has rapidly spread globally and led to a public health emergency of international concern (PHEIC) due to the lack of approved antiviral therapy. Nevertheless, SARS-CoV-2 has had a significant influence on the evolution of cellular therapeutic approaches. Adoptive immune cell therapy is innovative and offers either promising prophylactic or therapy for patients with moderate-to-severe COVID-19. This approach is aimed at developing safety and providing secure and effective therapy in combination with standard therapy for all COVID-19 infected individuals. Based on the effective results of previous studies on both inflammatory and autoimmune diseases, various immune cell therapies against COVID-19 have been reviewed and discussed. It must be considered that the application of cell therapy for treatment and to eliminate infected respiratory cells could result in excessive inflammation, so this treatment must be used in combination with other treatments, despite its many beneficial efforts.
Collapse
|
39
|
Bahmani M, Chegini R, Ghanbari E, Sheykhsaran E, Shiri Aghbash P, Leylabadlo HE, Moradian E, Kazemzadeh Houjaghan AM, Bannazadeh Baghi H. Severe acute respiratory syndrome coronavirus 2 infection: Role of interleukin-6 and the inflammatory cascade. World J Virol 2022; 11:113-128. [PMID: 35665236 PMCID: PMC9150027 DOI: 10.5501/wjv.v11.i3.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a novel coronavirus that represents a serious threat to human lives has emerged. There is still no definite treatment for severe cases of the disease caused by this virus, named coronavirus disease 2019 (COVID-19). One of the most considered treatment strategies targets the exaggerated immune regulator, and interleukin (IL)-6 is a crucial pro-inflammatory mediator. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases show an elevated level of IL-6 related to disease severity. IL-6 activity can be inhibited by the following: IL-6 itself, IL-6 signaling pathways such as Janus kinase and signal transducer and activator of transcription (JAK-STAT), gp130, IL-6R, and downstream activated ILs, such as IL-17 and IL-6 cytokine. Currently, according to these studies and their results, IL-6 blockade with anti-IL-6 or its receptor antibodies such as tocilizumab in COVID-19 is beneficial in severe cases and may reduce the mortality rate. JAK-STAT inhibitors block the cytokine storm by inhibiting several crucial pro-inflammatory mediators such as TNF-α and IL-6 and have shown various results in clinical trials. IL-6 induces IL-17 secretion, and IL-17 is involved in the pathogenesis of inflammatory processes. Clinical trials of anti-IL-17 drugs are currently recruiting, and anti-gp130 antibody is preclinical. However, this agent has shown positive effects in inflammatory bowel disease clinical trials and could be tested for SARS-CoV-2. This study aimed to review the role of IL-6 in the cytokine storm and studies regarding IL-6 and blockade of its inflammatory pathways in COVID-19 to determine if any of these agents are beneficial for COVID-19 patients.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Department of Virology, Student Research Committee, Tabriz Univer-sity of Medical Sciences, Tabriz 15731, Iran
| | - Rojin Chegini
- Department of Medical Science, Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan 81745-33871, Iran
| | - Elham Ghanbari
- Department of Medical Science, Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67159-59167, Iran
| | - Elham Sheykhsaran
- Department of Microbiology, Student Research Committee, Tabriz University of Medical Sciences, Tabriz 15731, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | | | - Ehsan Moradian
- Department of Medical Science, Medical Faculty, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | | | - Hossein Bannazadeh Baghi
- Department of Virology, Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| |
Collapse
|
40
|
Farzi R, Aghbash PS, Eslami N, Azadi A, Shamekh A, Hemmat N, Entezari-Maleki T, Baghi HB. The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathol Res Pract 2022; 233:153848. [PMID: 35338971 PMCID: PMC8941975 DOI: 10.1016/j.prp.2022.153848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is one of the three lethal coronavirus outbreaks in the recent two decades and a serious threat to global health all over the world. The principal feature of the COVID-19 infection is the so-called "cytokine storm" exaggerated molecular response to virus distribution, which plays massive tissue and organ injury roles. Immunological treatments, including monoclonal antibodies and vaccines, have been suggested as the main approaches in treating and preventing this disease. Therefore, a proper investigation of the roles of antigen-presenting cells (APCs) in the aforementioned immunological responses appears essential. The present review will provide detailed information about APCs' role in the infection and pathogenesis of SARS-CoV-2 and the effect of monoclonal antibodies in diagnosis and treatment.
Collapse
Affiliation(s)
- Rana Farzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Eslami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Azadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Intermediate Monocytes with PD-L1 and CD62L Expression as a Possible Player in Active SARS-CoV-2 Infection. Viruses 2022; 14:v14040819. [PMID: 35458548 PMCID: PMC9031659 DOI: 10.3390/v14040819] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Monocytes play a role in viral biology, but little is known about the monocyte subpopulation in the course of COVID-19 disease. The aim of the study was the analysis of classical, intermediate and non-classical monocytes with expression of PD-L1 and CD62L, TIM-3 and CD86 molecules in peripheral blood (PB) to distinguish patients with SARS-CoV-2 infection from convalescent patients. The study group consisted of 55 patients with SARS-CoV-2 infection and 51 convalescent patients. The cells were analyzed by flow cytometry. The number and proportion of monocytes were lower in patients with COVID-19 than convalescent patients. We observed a lower proportion of non-classical monocytes in COVID-19 patients than convalescent ones. There was a higher proportion of PDL-1-positive intermediate monocytes in COVID-19 patients than convalescent ones. We noticed a higher geometric mean fluorescence intensity (GeoMean) of PD-L1 on intermediate monocytes in COVID-19 patients than convalescent patients, and a higher proportion of CD62L-positive monocytes in COVID-19 patients in comparison with convalescent ones. We found a higher GeoMean of CD62L on monocytes in COVID-19 patients than convalescent ones. Assessment of PD-L1- and CD62L-positive monocyte subsets may identify patients with a possible predisposition for rapid recovery. The monitoring of monocyte subsets in PB might be a useful test in COVID-19 patients.
Collapse
|
42
|
Ahmad R, Haque M. Surviving the Storm: Cytokine Biosignature in SARS-CoV-2 Severity Prediction. Vaccines (Basel) 2022; 10:vaccines10040614. [PMID: 35455363 PMCID: PMC9026643 DOI: 10.3390/vaccines10040614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The world has been stricken mentally, physically, and economically by the COVID-19 virus. However, while SARS-CoV-2 viral infection results in mild flu-like symptoms in most patients, a number of those infected develop severe illness. These patients require hospitalization and intensive care. The severe disease can spiral downwards with eventual severe damage to the lungs and failure of multiple organs, leading to the individual’s demise. It is necessary to identify those who are developing a severe form of illness to provide early management. Therefore, it is crucial to learn about the mechanisms and chemical mediators that lead to critical conditions in SARS-CoV-2 infection. This paper reviews studies regarding the individual chemical mediators, pathways, and means that contribute to worsening health conditions in SARS-CoV-2 infection. Abstract A significant part of the world population has been affected by the devastating SARS-CoV-2 infection. It has deleterious effects on mental and physical health and global economic conditions. Evidence suggests that the pathogenesis of SARS-CoV-2 infection may result in immunopathology such as neutrophilia, lymphopenia, decreased response of type I interferon, monocyte, and macrophage dysregulation. Even though most individuals infected with the SARS-CoV-2 virus suffer mild symptoms similar to flu, severe illness develops in some cases, including dysfunction of multiple organs. Excessive production of different inflammatory cytokines leads to a cytokine storm in COVID-19 infection. The large quantities of inflammatory cytokines trigger several inflammation pathways through tissue cell and immune cell receptors. Such mechanisms eventually lead to complications such as acute respiratory distress syndrome, intravascular coagulation, capillary leak syndrome, failure of multiple organs, and, in severe cases, death. Thus, to devise an effective management plan for SARS-CoV-2 infection, it is necessary to comprehend the start and pathways of signaling for the SARS-CoV-2 infection-induced cytokine storm. This article discusses the current findings of SARS-CoV-2 related to immunopathology, the different paths of signaling and other cytokines that result in a cytokine storm, and biomarkers that can act as early signs of warning for severe illness. A detailed understanding of the cytokine storm may aid in the development of effective means for controlling the disease’s immunopathology. In addition, noting the biomarkers and pathophysiology of severe SARS-CoV-2 infection as early warning signs can help prevent severe complications.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Plot No 4 Road 8/9, Sector-1, Dhaka 1230, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
43
|
The Prevalence and Impact of Coinfection and Superinfection on the Severity and Outcome of COVID-19 Infection: An Updated Literature Review. Pathogens 2022; 11:pathogens11040445. [PMID: 35456120 PMCID: PMC9027948 DOI: 10.3390/pathogens11040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Patients with viral illness are at higher risk of secondary infections—whether bacterial, viral, or parasitic—that usually lead to a worse prognosis. In the setting of Corona Virus Disease 2019 (COVID-19), the Severe Acute Respiratory Syndrome Coronavirus-type 2 (SARS-CoV-2) infection may be preceded by a prior microbial infection or has a concurrent or superinfection. Previous reports documented a significantly higher risk of microbial coinfection in SARS-CoV-2-positive patients. Initial results from the United States (U.S.) and Europe found a significantly higher risk of mortality and severe illness among hospitalized patients with SARS-CoV-2 and bacterial coinfection. However, later studies found contradictory results concerning the impact of coinfection on the outcomes of COVID-19. Thus, we conducted the present literature review to provide updated evidence regarding the prevalence of coinfection and superinfection amongst patients with SARS-CoV-2, possible mechanisms underlying the higher risk of coinfection and superinfection in SARS-CoV-2 patients, and the impact of coinfection and superinfection on the outcomes of patients with COVID-19.
Collapse
|
44
|
Aygun H. Vitamin D can reduce severity in COVID-19 through regulation of PD-L1. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:487-494. [PMID: 35099571 PMCID: PMC8802291 DOI: 10.1007/s00210-022-02210-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
COVID-19 is a highly contagious viral infection that has killed millions of people around the world. The most important diagnostic feature of COVID-19 is lymphocyte depletion, particularly the depletion of T cells. In COVID-19 infections, there is a link between destruction of T cells and increased expression of inhibitory immune checkpoint molecules (PD-1/PD-L1) on T cell surfaces. It was shown that PD-1/PD-L1 levels increase in severely COVID-19 infected individuals. Higher proinflammatory cytokine levels cause increased PD-1/PD-L1 expression. In severe COVID-19, higher proinflammatory cytokine levels may increase PD-1/PD-L1. Vitamin-D is an important immune regulator. It is known that the numbers of CD4+ and CD8+ T lymphocytes decrease in vitamin D deficiency while vitamin D supplementation increases CD + 4 lymphocytes. Vitamin D can increase regulatory T cell (Treg) activity. Vitamin D also has a diminishing effect on proinflammatory cytokines. In severe COVID-19 cases, vitamin D supplementation may inhibit the increase of PD-L1 expression through reducing proinflammatory cytokine levels. Thus, vitamin D supplementation could eliminate the suppressive effect of PD-L1 on CD4+ and CD8+ T cells, preventing lymphopenia and reducing disease severity and mortality in patients infected with COVID-19. Besides, vitamin D supplementation can reduce inflammation by increasing Treg activity. The aim of this letter is to discuss the functions of inhibitory immune checkpoint molecules and their effects on dysfunction and depletion of T-cells as well as to explain the possible modulatory effect of vitamin D on these checkpoints and T cells.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, 60030, Tokat, Turkey.
| |
Collapse
|
45
|
Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Sadri Nahand J, Piroozmand A, Jajarmi V, Mirzaei H. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 2022; 148:112743. [PMID: 35228065 PMCID: PMC8872819 DOI: 10.1016/j.biopha.2022.112743] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Kargar Jahromi
- Central Research Laboratory, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19395-4818, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,Corresponding author at: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
46
|
Mirenayat MS, Abedini A, Kiani A, Eslaminejad A, Adimi naghan P, Malekmohammad M, Heshmatnia J, Nadji SA, Idani E, Zahiri R, Lookzadeh S, Sheikhzade H, Dastan F, Porabdollah Toutkaboni M, Rezaei MS, Askari E, Tabarsi P, Marjani M, Moniri A, Hashemian SMR, Farzanegan B, Abtahian Z, Yassari F, Mansouri N, Mansouri D, Vasheghani M, Mansourafshar B, Mokhber Dezfoli M, Soleimani S, Seifi S, Naghashzadeh F, Fakharian A, Varahram M, Jamaati H, Zali A, Velayati AA. National Research Institute of Tuberculosis and Lung Disease (NRITLD) Protocol for the Treatment of Patients with COVID-19. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123947. [PMID: 35765502 PMCID: PMC9191225 DOI: 10.5812/ijpr.123947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022]
Abstract
: More than a year after the onset of the coronavirus disease pandemic in 2019, the disease remains a major global health issue. During this time, health organizations worldwide have tried to provide integrated treatment guidelines to control coronavirus disease 2019 (COVID-19) at different levels. However, due to the novel nature of the disease and the emergence of new variants, medical teams' updating medical information and drug prescribing guidelines should be given special attention. This version is an updated instruction of the National Research Institute of Tuberculosis and Lung Disease (NRITLD) in collaboration with a group of specialists from Masih Daneshvari Hospital in Tehran, Iran, which is provided to update the information of caring clinicians for the treatment and care of COVID-19 hospitalized patients.
Collapse
Affiliation(s)
- Maryam Sadat Mirenayat
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arda Kiani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Eslaminejad
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Adimi naghan
- Department of Pulmonary and Sleep Medicine, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Malekmohammad
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Heshmatnia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Nadji
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Idani
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Zahiri
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Lookzadeh
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Sheikhzade
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dastan
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Porabdollah Toutkaboni
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Sadat Rezaei
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Askari
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Reza Hashemian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Farzanegan
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abtahian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yassari
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Mansouri
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vasheghani
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Mansourafshar
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mokhber Dezfoli
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Soleimani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Seifi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farah Naghashzadeh
- Lung Transplantation Research Center(LTRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD) Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Fakharian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Zali
- Research Center for Neurosurgery and Functional Nerves, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Eslami N, Aghbash PS, Shamekh A, Entezari-Maleki T, Nahand JS, Sales AJ, Baghi HB. SARS-CoV-2: Receptor and Co-receptor Tropism Probability. Curr Microbiol 2022; 79:133. [PMID: 35292865 PMCID: PMC8923825 DOI: 10.1007/s00284-022-02807-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
The recent pandemic which arose from China, is caused by a pathogenic virus named "severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2)". Its rapid global expansion has inflicted an extreme public health concern. The attachment of receptor-binding domains (RBD) of the spike proteins (S) to the host cell's membrane, with or without the help of other cellular components such as proteases and especially co-receptors, is required for the first stage of its pathogenesis. In addition to humans, angiotensin-converting enzyme 2 (ACE2) is found on a wide range of vertebrate host's cellular surface. SARS-CoV-2 has a broad spectrum of tropism; thus, it can infect a vast range of tissues, organs, and hosts; even though the surface amino acids of the spike protein conflict in the receptor-binding region. Due to the heterogeneous ACE2 distribution and the presence of different domains on the SARS-CoV-2 spike protein for binding, the virus entry into diverse host cell types may depend on the host cells' receptor presentation with or without co-receptors. This review investigates multiple current types of receptor and co-receptor tropisms, with other molecular factors alongside their respective mechanisms, which facilitate the binding and entry of SARS-CoV-2 into the cells, extending the severity of the coronavirus disease 2019 (COVID-19). Understanding the pathogenesis of COVID-19 from this perspective can effectively help prevent this disease and provide more potent treatment strategies, particularly in vulnerable people with various cellular-level susceptibilities.
Collapse
Affiliation(s)
- Narges Eslami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Jafari Sales
- Department of Microbiology School of Basic Sciences, Islamic Azad University, Kazerun BranchKazerun, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Majidpoor J, Mortezaee K. Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomed Pharmacother 2022; 145:112419. [PMID: 34781146 PMCID: PMC8585600 DOI: 10.1016/j.biopha.2021.112419] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin-6 (IL-6) is a multi-tasking cytokine that represents high activity in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cancer. High concentration of this pleiotropic cytokine accounts for hyperinflammation and cytokine storm, and is related to multi-organ failure in patients with SARS-CoV-2 induced disease. IL-6 promotes lymphopenia and increases C-reactive protein (CRP) in such cases. However, blockade of IL-6 is not a full-proof of complete response. Hypoxia, hypoxemia, aberrant angiogenesis and chronic inflammation are inter-related events occurring as a response to the SARS-CoV-2 stimulatory effect on high IL-6 activity. Taking both pro- and anti-inflammatory activities will make complex targeting IL-6 in patient with SARS-CoV-2 induced disease. The aim of this review was to discuss about interactions occurring within the body of patients with SARS-CoV-2 induced disease who are representing high IL-6 levels, and to determine whether IL-6 inhibition therapy is effective for such patients or not. We also address the interactions and targeted therapies in cancer patients who also have SARS-CoV-2 induced disease.
Collapse
Affiliation(s)
- Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
49
|
Intrauterine Fetal Demise After Uncomplicated COVID-19: What Can We Learn from the Case? Viruses 2021; 13:v13122545. [PMID: 34960815 PMCID: PMC8708385 DOI: 10.3390/v13122545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Background: SARS-CoV-2 infection in pregnant women can lead to placental damage and transplacental infection transfer, and intrauterine fetal demise is an unpredictable event. Case study: A 32-year-old patient in her 38th week of pregnancy reported loss of fetal movements. She overcame mild COVID-19 with positive PCR test 22 days before. A histology of the placenta showed deposition of intervillous fibrinoid, lympho-histiocytic infiltration, scant neutrophils, clumping of villi, and extant infarctions. Immunohistochemistry identified focal SARS-CoV-2 nucleocapsid and spike protein in the syncytiotrophoblast and isolated in situ hybridization of the virus’ RNA. Low ACE2 and TMPRSS2 contrasted with strong basigin/CD147 and PDL-1 positivity in the trophoblast. An autopsy of the fetus showed no morphological abnormalities except for lung interstitial infiltrate, with prevalent CD8-positive T-lymphocytes and B-lymphocytes. Immunohistochemistry and in situ hybridization proved the presence of countless dispersed SARS-CoV-2-infected epithelial and endothelial cells in the lung tissue. The potential virus-receptor protein ACE2, TMPRSS2, and CD147 expression was too low to be detected. Conclusion: Over three weeks’ persistence of trophoblast viral infection lead to extensive intervillous fibrinoid depositions and placental infarctions. High CD147 expression might serve as the dominant receptor for the virus, and PDL-1 could limit maternal immunity in placental tissue virus clearance. The presented case indicates that the SARS-CoV-2 infection-induced changes in the placenta lead to ischemia and consecutive demise of the fetus. The infection of the fetus was without significant impact on its death. This rare complication of pregnancy can appear independently to the severity of COVID-19’s clinical course in the pregnant mother.
Collapse
|
50
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:5815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| |
Collapse
|