1
|
Fernández L, Duarte AC, Jurado A, Bueres L, Rodríguez A, García P. Multipronged impact of environmental temperature on Staphylococcus aureus infection by phage Kayvirus rodi: Implications for biofilm control. Biofilm 2025; 9:100248. [PMID: 39845530 PMCID: PMC11751508 DOI: 10.1016/j.bioflm.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Environmental cues sometimes have a direct impact on phage particle stability, as well as bacterial physiology and metabolism, having a profound effect on phage infection outcome. Here, we explore the impact of temperature on the interplay between phage Kayvirus rodi (phiIPLA-RODI) and its host, Staphylococcus aureus. Our results show that phiIPLA-RODI is a more effective predator at room (25 °C) compared to body temperature (37 °C) against planktonic cultures of several strains with varying degrees of phage susceptibility. This result differs from most known examples of temperature-dependent phage infection, in which optimum infection is correlated with the host growth rate. Further characterization of this phenomenon was carried out with strains IPLA15 and IPLA16, whose respective MICs were 7 log units and a 1-log unit higher at 37 °C than at 25 °C. Our results demonstrated that the phage also had a greater impact at room temperature during biofilm development and for the treatment of preformed biofilms. There was no difference in phage adsorption between the two temperatures for strain IPLA16. Conversely, adsorption of phiIPLA-RODI to IPLA15 was reduced at 37 °C compared to 25 °C. Moreover, confocal microscopy analysis indicated that the biofilm matrix of both strains has a greater content of PIA/PNAG at 37 °C than at 25 °C. Regarding infection parameters, we observed longer duration of the lytic cycle at 25 °C for both strains, and infection of IPLA15 by phiIPLA-RODI resulted in a smaller burst size at 37 °C than at 25 °C. Finally, we also found that the rate of phage resistant mutant selection was higher at 37 °C for both strains. Altogether, this information highlights the impact that bacterial responses to environmental factors have on phage-host interactions. Moreover, phage phiIPLA-RODI appears to be a highly effective candidate for biofilm disinfection at room temperature, while its efficacy in biofilm-related infections will require combination with other antimicrobials.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC)C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias, Spain
- DairySafe GroupInstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC)C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias, Spain
- DairySafe GroupInstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Andrea Jurado
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC)C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias, Spain
- DairySafe GroupInstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laura Bueres
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC)C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias, Spain
- DairySafe GroupInstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC)C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias, Spain
- DairySafe GroupInstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC)C/ Francisco Pintado Fe 26, 33011, Oviedo, Asturias, Spain
- DairySafe GroupInstituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
2
|
Morris TC, Reyneke B, Khan S, Khan W. Phage-antibiotic synergy to combat multidrug resistant strains of Gram-negative ESKAPE pathogens. Sci Rep 2025; 15:17235. [PMID: 40383795 PMCID: PMC12086229 DOI: 10.1038/s41598-025-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Bacteriophage-antibiotic-synergy (PAS) was investigated to target Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii and Enterobacter cloacae. Whole genome sequencing indicated that bacteriophage KPW17 targeting K. pneumoniae, clustered with genus Webervirus, ECSR5 targeting E. cloacae clustered with Eclunavirus, PAW33 targeting P. aeruginosa clustered with Bruynoghevirus, while ABTW1 targeting A. baumannii clustered with Vieuvirus. PAS analysis showed that the combination of ciprofloxacin (CIP) and levofloxacin (LEV) with PAW33 resulted in the synergistic eradication of all tested P. aeruginosa strains. Similarly, the combined use of doripenem (DOR) and LEV with KPW17 resulted in the synergistic eradication of the environmental and clinical K. pneumoniae strains, while the combined use of DOR and gentamicin (CN) with ECSR5 was synergistic against the clinical E. cloacae NCTC 13406. Gentamicin with ECSR5, however, only exhibited an additive effect for E. cloacae 4L, while ABTW1 with piperacillin-tazobactam (TZP) and imipenem (IPM) resulted in an indifferent interaction between the bacteriophage and tested antibiotics against the clinical A. baumannii AB3, i.e., the activity of the combination is equal to the activity of most active agent. Thus, while the observed PAS may offer an opportunity for the re-introduction or more efficient application of certain antibiotics to combat antibiotic resistance, extensive research is required to determine the optimal phage-antibiotic combinations, dosages and treatment regiments.
Collapse
Affiliation(s)
- Tinta Carmen Morris
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Faculty of Health Science, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
3
|
Dalponte A, Filor V, Lübke-Becker A, Fulde M, Alter T, Müsken M, Bäumer W. Characterization and purification of Pseudomonas aeruginosa phages for the treatment of canine infections. BMC Microbiol 2025; 25:289. [PMID: 40369432 PMCID: PMC12076904 DOI: 10.1186/s12866-025-04005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in both human and veterinary medicine, presenting significant challenges in treatment because of biofilm production and its intrinsic resistance. This problem is exacerbated by the increase in acquired antimicrobial resistance. Bacteriophage (phage) therapy has emerged as a promising alternative for treating infection classically treated with antibiotics, offering a targeted approach to combat this infection. This study aimed to evaluate the therapeutic potential of 7 phages, focusing on their suitability for treating canine infections, as well as their purification and safety analysis for therapeutic use. RESULTS Two self-isolated phages and five provided phages were analysed. All tested phages reduced bacterial load in vitro; however, their efficacy varied across different concentrations. The host range analysis revealed a spectrum between 9.8 and 68.6% of canine clinical P. aeruginosa isolates. In our in vitro tests 3 out of 7 phages were able to significantly reduce the biofilm biomass, achieving reductions up to 93.38%. The sequence analysis did not discover known virulence factors and genes connected to antimicrobial resistance mechanisms. The self-isolated phages were classified as lysogenic, whereas the other phages had a lytic infection cycle. Through the purification of the phages, high-titre phage preparations (> 1011 PFU/ml) were generated with high stability for at least 1.5 years. The tested endotoxin units are below the regulatory limits. CONCLUSION Investigating phages as alternative treatment option seems promising with lytic phages covering a broad host range and a genomic potential for biofilm degradation. These findings support the development of phage cocktails as a targeted alternative for treating canine P. aeruginosa infections, particularly in cases of antibiotic resistance, and highlight the importance of selecting well-characterized lytic phages for therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Anne Dalponte
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Viviane Filor
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mathias Müsken
- Central Facility for Microscopy (ZEIM), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Qin M, Evron E, Tran PT, Deng M, Nelson AM, Kim J, Agak GW. Immune Activation and Glycolytic Responses to Cutibacterium acnes Cell Wall Polysaccharides. J Invest Dermatol 2025:S0022-202X(25)00457-9. [PMID: 40335017 DOI: 10.1016/j.jid.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025]
Abstract
Carbohydrates are key components of many microbial cell walls and play a versatile role in immune recognition. In this study, we analyzed the carbohydrate cell wall composition of Cutibacterium acnes strains associated with healthy skin (denoted as CH) and acne-prone skin (denoted as CA) to understand their influence on host immune responses in acne. We identified glucose, mannose, and galactose as the primary monosaccharides, with minor amounts of fucose, N-acetylgalactosamine, and N-acetylglucosamine. Linkage analysis revealed structural variations between CH and CA strains: CH strains showed a balanced and diverse polysaccharide structure, whereas CA strains displayed a more rigid structure with 1→4 and branched 1→6 linkages, potentially contributing to inflammatory properties. Immunostimulatory assays revealed that C acnes carbohydrates induced IL-6 and IL-17 but not IL-1β, highlighting the role of carbohydrate structures in influencing cytokine responses. Treatment with sodium meta-periodate impaired this immunostimulatory activity, indicating that carbohydrate integrity is crucial for immune activation. In addition, analysis of single-cell RNA-sequencing data from acne lesions revealed elevated glycolytic activity in acne lesions in comparison with that in nonlesional skin, suggesting a Warburg-like effect that promotes inflammation. Our findings highlight the role of C acnes polysaccharides in immune modulation and inflammation, suggesting their potential as therapeutic targets for acne treatment.
Collapse
Affiliation(s)
- Min Qin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Evyatar Evron
- Department of Dermatology, Larkin Community Hospital, South Miami, Florida, USA
| | - Patrick Thanh Tran
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, West Carson, California, USA
| | - Min Deng
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jenny Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - George W Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
5
|
Shah T, Zhu C, Shah C, Upadhyaya I, Upadhyay A. Trans-cinnamaldehyde nanoemulsion reduces Salmonella Enteritidis biofilm on steel and plastic surfaces and downregulates expression of biofilm associated genes. Poult Sci 2025; 104:105086. [PMID: 40168703 PMCID: PMC11997393 DOI: 10.1016/j.psj.2025.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
Salmonella Enteritidis is a major poultry-associated foodborne pathogen that can form sanitizer-tolerant biofilms on various surfaces. The biofilm-forming capability of S. Enteritidis facilitates its survival on farm and food processing equipment. Conventional sanitization methods are not completely effective in killing S. Enteritidis biofilms. This study investigated the efficacy of a Generally Recognized as Safe phytochemical Trans-cinnamaldehyde (TC), and in its nanoemulsion form (TCNE), for inhibiting S. Enteritidis biofilm formation and inactivating mature biofilms developed on polystyrene and stainless-steel surfaces. Moreover, the effect of TC on Salmonella genes critical for biofilm formation was studied. TCNE was prepared using a high energy sonication method with Tween 80. For biofilm inhibition assay, S. Enteritidis was allowed to form biofilms either in the presence or absence of sub-inhibitory concentration (SIC; 0.01 %) of TCNE at 25°C and the biofilm formed was quantified at 24-h intervals for 48 h. For the inactivation assay, S. Enteritidis biofilms developed at 25°C for 48 h were exposed to TCNE (0.5, 1 %) for 1, 5, and 15 min, and surviving S. Enteritidis in the biofilm were enumerated. SIC of TCNE inhibited S. Enteritidis biofilm by 45 % on polystyrene and 75 % on steel surface after 48 h at 25°C compared to control (P < 0.05). All TCNE treatments rapidly inactivated S. Enteritidis mature biofilm on polystyrene and steel surfaces (P < 0.05). The lower concentration of TCNE (0.5 %) reduced S. Enteritidis counts by 1.5 log CFU/ml as early as 1 min of exposure on both polystyrene and stainless-steel surfaces. After 15 min of exposure, TCNE at concentration of 0.5 or 1 % reduced S. Enteritidis count significantly by 4.5 log CFU or 6 log CFU/ml on polystyrene or stainless-steel surfaces. TC downregulated the expression of S. Enteritidis genes (hilA, hilC, flhD, csgA, csgD, sdiA) responsible for biofilm formation (P < 0.05). Results suggest that TCNE has potential as a natural disinfectant for controlling S. Enteritidis biofilms on common farm and food processing surfaces, such as plastic and steel.
Collapse
Affiliation(s)
- Trushenkumar Shah
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Chen Zhu
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Chetna Shah
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Indu Upadhyaya
- Department of Extension, University of Connecticut, Storrs, Connecticut, USA
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
6
|
Mohammed Aggad FZ, Ilias F, Elghali F, Mrabet R, El Haci IA, Aifa S, Mnif S. Evaluation of Antibacterial Activity in Some Algerian Essential Oils and Selection of Thymus vulgaris as a Potential Biofilm and Quorum Sensing Inhibitor Against Pseudomonas aeruginosa. Chem Biodivers 2025; 22:e202402691. [PMID: 39777967 DOI: 10.1002/cbdv.202402691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Biofilm formation and virulence factor production by Pseudomonas aeruginosa are identified as the main mechanisms of its antibiotic resistance and pathogenicity. In this context, the study of the chemical composition of three Algerian essential oils (EOs) and the screening of their antibacterial, antibiofilm, and virulence factor inhibitory activities enabled us to select the thyme EO as the best oil to control the P. aeruginosa strain isolated from hospital environments. This EO, composed essentially of thymol (55.82%) associated with carvacrol, had an anti-adhesive activity of 69.8% at a concentration of 5 µL/mL and a biofilm eradication activity of 74.86% at a concentration of 2.5 µL/mL. In addition, this EO was able to inhibit P. aeruginosa twitching motility by 100% at a concentration of 2.5 µL/mL. Pyocyanin was inhibited by 99.33% at a thyme EO concentration of 1.25 µL/mL. Rhamnolipids were significantly inhibited by 63.33% in the presence of thyme EO at a concentration of 1.25 µL/mL after 24 h of incubation. Molecular docking showed that carvacrol and thymol can bind to the three quorum sensing receptors in P. aeruginosa, RhlR, LasR, and PqsR, with good affinities, which can inhibit or modulate biofilm formation and the production of certain virulence factors.
Collapse
Affiliation(s)
- Fatima Zahra Mohammed Aggad
- Laboratory of Applied Hydrology and Environment, Faculty of Science and Technology, University of Ain Temouchent, Ain Temouchent, Algeria
| | - Faiza Ilias
- Laboratory of Applied Hydrology and Environment, Faculty of Science and Technology, University of Ain Temouchent, Ain Temouchent, Algeria
- Laboratory of Applied Genetic in Agriculture, Ecology and Public Health, University of Tlemcen, Tlemcen, Algeria
| | - Fares Elghali
- Laboratory of Molecular and Cellular Screening Processes at Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Rania Mrabet
- Laboratory of Molecular and Cellular Screening Processes at Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Imad Abdelhamid El Haci
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, Bou-Ismail, Tipaza, Algeria
- Laboratoire des Produits Naturels, Faculté SNV-STU, Université de Tlemcen, Tlemcen, Algeria
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes at Centre of Biotechnology of Sfax, Sfax, Tunisia
| | - Sami Mnif
- Laboratory of Molecular and Cellular Screening Processes at Centre of Biotechnology of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Fellner M, Randall G, Bitac IRCG, Warrender AK, Sethi A, Jelinek R, Kass I. Similar but Distinct-Biochemical Characterization of the Staphylococcus aureus Serine Hydrolases FphH and FphI. Proteins 2025; 93:1009-1021. [PMID: 39726198 PMCID: PMC11971002 DOI: 10.1002/prot.26785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Staphylococcus aureus is a major cause of infections like bacteremia, pneumonia, and endocarditis. These infections are often linked to the ability of S. aureus to form biofilms. Several S. aureus serine hydrolases have previously been identified to be active during biofilm-forming conditions. Here, we present the biochemical characterization of two of these enzymes-fluorophosphonate binding hydrolase H and I (FphH, FphI). Cryogenic and room-temperature X-ray crystallography, enzymatic substrate profiling, small-angle X-ray scattering analysis, and molecular dynamics simulations provide new insights into similarities and differences between these two hydrolase_4 domain family members. We discover that these enzymes share an overall fold, including a flexible lid or cap region above the active site, which can be seen to be mobile in solution. Differences in the active site pocket and lid residues differentiate them and explain speed differences in their carboxyesterase substrate profile toward small unbranched carbon chain ester molecules. The first analysis of FphI is also compared to our previous knowledge of FphH and its association to stress conditions. These results enable the future precise targeting of Fph serine hydrolase family members with a long-term goal to significantly improve the health and wellbeing of individuals and populations worldwide.
Collapse
Affiliation(s)
- Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - George Randall
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ianah R. C. G. Bitac
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Annmaree K. Warrender
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Ashish Sethi
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Itamar Kass
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Cuzzucoli Crucitti V, Hajiali H, Dundas AA, Jayawarna V, Tomolillo D, Francolini I, Vuotto C, Salmeron-Sanchez M, Dalby MJ, Alexander MR, Wildman RD, Rose FRAJ, Irvine DJ. Modulation of the biological response to surfaces through the controlled deposition of 3D polymeric surfactants. J Mater Chem B 2025; 13:4657-4670. [PMID: 40130352 DOI: 10.1039/d4tb01941e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Biomaterials play a crucial role in modern medicine through their use as medical implants and devices. However, they can support biofilm formation and infection, and lack integration with the surrounding human tissue at the implant site. This work reports the development of novel poly(ethyl acrylate) (PEA) based copolymers that address both issues. These PEA materials were molecularly designed polymeric surfactants (surfmers) synthesised via controlled radical polymerisations to achieve different polymeric architectures, (i.e., statistical and block copolymers). These were both deposited as structured 2D films on glass coverslips and used to manufacture monodisperse 3D micro-particles with functional surfaces (via microfluidics). ToF-SIMS was used to analyse these 2D and 3D surfaces to understand: (a) the surface arrangement of the monomer sequences exhibited by the different polymer structures and (b) how this surface monomer arrangement influenced mammalian fibroblast cell and/or Staphylococcus aureus behaviour at these film/particle surfaces. In addition, the form of the fibronectin (FN) network assembly's importance in promoting growth factor (GF) binding was probed using atomic force microscopy (AFM) on the 2D films. This confirmed that specific surfmer molecular surface organisations were achieved during film/micro-particle fabrication, which presented exterior functionalities that either prevent biofilm attachment or promote the formation of structured FN networks for GF binding.
Collapse
Affiliation(s)
- Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Hadi Hajiali
- School of Pharmacy, Nottingham Biodiscovery Institute, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Adam A Dundas
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vineetha Jayawarna
- Centre for the Cellular Microenvironment, School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Dario Tomolillo
- Neuromicrobiology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Iolanda Francolini
- Dept of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Claudia Vuotto
- Neuromicrobiology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Morgan R Alexander
- School of Pharmacy, Nottingham Biodiscovery Institute, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Ricky D Wildman
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Felicity R A J Rose
- School of Pharmacy, Nottingham Biodiscovery Institute, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Derek J Irvine
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
9
|
Ghanem DM, Okba MM, Ammar NM, Mohamed DA, El-Desoky AH, Hussein RA, El-Hawary SS. Genus Carissa L.: a newly explored sustainable source of virulence inhibitors: a mini review. Nat Prod Res 2025; 39:1696-1713. [PMID: 39082374 DOI: 10.1080/14786419.2024.2385698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 03/14/2025]
Abstract
Misuse of antibiotics led to the world wide spread of antimicrobial resistance threatening human lives. The notable resistance of bacterial cells to antibiotics and immune system is the difficulty associated with biofilm-linked illnesses. Natural products from plant origin with antibiofilm activity could provide more therapeutic activity with fewer adverse effects. Carissa L. is a potential drug candidate that can be considered as an agro-food waste sustainable virulence inhibitor source. This mini-review sheds light on recent studies dealing with the anti-virulence potential of Carissa species and its different mechanisms of action. The traced articles revealed that Carissa species exhibited potent antibiofilm, anti-quorum sensing, hyaluronidase inhibitory and anti-adhesion potentials, in addition to violacein, and swimming motility inhibition activities. Ursolic acid, oleanolic acid, and methyl oleanate are the main phytoconstituents of Carissa with claimed virulence inhibitory potentials. Carissa species are safe, valuable, and effective anti-virulence drugs suppressing pathogenicity when compared to conventional antibiotics.
Collapse
Affiliation(s)
- Dina M Ghanem
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nagwa M Ammar
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Doha A Mohamed
- Department of Food Science and Nutrition, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed H El-Desoky
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Rehab A Hussein
- Department of Pharmacognosy, National Research Centre, Dokki, Giza, Egypt
| | - Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Hao Y, Li L, Du W, Lu J. Shifting of Distribution and Changing of Antibiotic Resistance in Gram-Positive Bacteria from Bile of Patients with Acute Cholangitis. Infect Drug Resist 2025; 18:1187-1197. [PMID: 40034266 PMCID: PMC11874747 DOI: 10.2147/idr.s482375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Gram-negative bacteria are the predominant pathogens responsible for biliary infections; however, the prevalence of Gram-positive bacteria is currently increasing. Investigating the bacterial spectrum and evolving antibiotic resistance patterns of Gram-positive bacteria is crucial for optimizing the management of acute cholangitis, particularly in the context of the global rise in antibiotic resistance. Methods This retrospective analysis focused on Gram-positive bacteria isolated from the bile of patients undergoing biliary drainage with acute cholangitis at our hospital from January 1, 2018, to March 31, 2024. In total, 342 strains of Gram-positive bacteria were examined. Results The main Gram-positive bacteria detected included Enterococcus (57.23%), Staphylococcus (23.41%), and Streptococcus (13.01%). The most common species detected were Enterococcus faecium (36.42%), Enterococcus faecalis (14.16%), and Staphylococcus epidermidis (7.80%). Trend analysis revealed a decrease in the proportion of Enterococcus and an increase in Streptococcus. Additionally, the detection rate of methicillin-resistant Staphylococcus (MRS) showed a significant rise. Gram-positive bacteria exhibited high resistance to erythromycin and penicillin but remained highly susceptible to linezolid and vancomycin. Further, resistance to quinolones among Gram-positive bacteria was notably elevated. Conclusion The bacterial spectrum and antibiotic resistance patterns of Gram-positive bacteria in acute cholangitis have undergone significant changes. Penicillin is not recommended for the treatment of Gram-positive bacterial infections. Antibiotic resistance should be closely monitored when using quinolones. Particular attention is warranted regarding the markedly increasing antibiotic resistance of Enterococcus faecium.
Collapse
Affiliation(s)
- Yuqi Hao
- Department of General Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Lianxin Li
- Endoscopy Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Wenting Du
- Department of General Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Jinshuai Lu
- Department of General Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
11
|
Isaksson H, Lind P, Libby E. Adaptive evolutionary trajectories in complexity: Transitions between unicellularity and facultative differentiated multicellularity. Proc Natl Acad Sci U S A 2025; 122:e2411692122. [PMID: 39841150 PMCID: PMC11789074 DOI: 10.1073/pnas.2411692122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Multicellularity spans a wide gamut in terms of complexity, from simple clonal clusters of cells to large-scale organisms composed of differentiated cells and tissues. While recent experiments have demonstrated that simple forms of multicellularity can readily evolve in response to different selective pressures, it is unknown if continued exposure to those same selective pressures will result in the evolution of increased multicellular complexity. We use mathematical models to consider the adaptive trajectories of unicellular organisms exposed to periodic bouts of abiotic stress, such as drought or antibiotics. Populations can improve survival in response to the stress by evolving multicellularity or cell differentiation-or both; however, these responses have associated costs when the stress is absent. We define a parameter space of fitness-relevant traits and identify where multicellularity, differentiation, or their combination is fittest. We then study the effects of adaptation by allowing populations to fix mutations that improve their fitness. We find that while the same mutation can be beneficial to populations of different complexity, e.g., strict unicellularity or life cycles with stages of differentiated multicellularity, the magnitudes of their effects can differ and alter which is fittest. As a result, we observe adaptive trajectories that gain and lose complexity. We also show that the order of mutations, historical contingency, can cause some transitions to be permanent in the absence of neutral evolution. Ultimately, we find that continued exposure to a selective driver for multicellularity can either lead to increasing complexity or a return to unicellularity.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå90187, Sweden
- IceLab, Umeå University, Umeå90187, Sweden
| | - Peter Lind
- IceLab, Umeå University, Umeå90187, Sweden
- Department of Molecular Biology, Umeå University, Umeå90187, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå90187, Sweden
- IceLab, Umeå University, Umeå90187, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| |
Collapse
|
12
|
Hanot M, Lohou E, Sonnet P. Anti-Biofilm Agents to Overcome Pseudomonas aeruginosa Antibiotic Resistance. Pharmaceuticals (Basel) 2025; 18:92. [PMID: 39861155 PMCID: PMC11768670 DOI: 10.3390/ph18010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Pseudomonas aeruginosa is one of world's most threatening bacteria. In addition to the emerging prevalence of multi-drug resistant (MDR) strains, the bacterium also possesses a wide variety of virulence traits that worsen the course of the infections. Particularly, its ability to form biofilms that protect colonies from antimicrobial agents is a major cause of chronic and hard-to-treat infections in immune-compromised patients. This protective barrier also ensures cell growth on abiotic surfaces and thus enables bacterial survival on medical devices. Hence, as the WHO alerted to the need to develop new treatments, the use of anti-biofilm agents (ABAs) appeared as a promising approach. Given the selection pressure imposed by conventional antibiotics, a new therapeutic strategy has emerged that aims at reducing bacterial virulence without inhibiting cell growth. So-called anti-virulence agents (AVAs) would then restore the efficacy of conventional antibiotics (ATBs) or potentiate the effectiveness of the immune system. The last decade has seen the development of ABAs as AVAs against P. aeruginosa. This review aims to highlight the design strategy and critical features of these molecules to pave the way for further discoveries of highly potent compounds.
Collapse
Affiliation(s)
| | | | - Pascal Sonnet
- AGIR, UR 4294, Faculté de Pharmacie, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France; (M.H.); (E.L.)
| |
Collapse
|
13
|
You HS, Jang YS, Sathiyaseelan A, Ryu SJ, Lee HY, Baek JS. Antibiofilm and Anticancer Activity of Multi-Walled Carbon Nanotubes Fabricated with Hot-Melt Extruded Astaxanthin-Mediated Synthesized Silver Nanoparticles. Int J Nanomedicine 2025; 20:343-366. [PMID: 39802378 PMCID: PMC11725252 DOI: 10.2147/ijn.s485722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs. In this process, AST was extracted from Haematococcus pluvialis (H. pluvialis) and processed by hot melt extrusion (HME) to enhance the AST content of H. pluvialis. AST has strong antioxidative properties, which leads to anticancer activity. In addition, AgNPs are well known for their strong antibacterial properties. The antibiofilm and anticancer effects were studied comprehensively by loading the AST AgNPs onto MWCNT-Silica. Methods AgNPs-loaded MWCNT-silica (MWCNT-Ag) was prepared through the binding reaction of TSD and silanol groups and the aggregation interaction of Ag and TSD. To enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs, HME-treated H. pluvialis extract (HME-AST) was used as a reducing solution of silver ions. The increased AST content of HME-AST was confirmed by high-performance liquid chromatography (HPLC) analysis, and the total phenol and flavonoid content analysis confirmed that HME enhanced the active components of H. pluvialis. The antibiofilm activity of MWCNT-AST was investigated by biofilm inhibition and destruction test, SEM, and CLSM analysis, and the anticancer activity was investigated by WST assay, fluorescent staining analysis, and flow cytometry analysis. Results MWCNT-AST showed higher antioxidant activity and antibiofilm activity than MWCNT-Ag against E. coli, S. aureus, and methicillin-resistant S. aureus (MRSA). MWCNT-AST showed higher anticancer activity against breast cancer cells (MDA-MB-231) than MWCNT-Ag, and lower toxicity in normal cells HaCaT and NIH3T3. Conclusion MWCNT-AST exhibits higher antioxidant, antibiofilm, and anticancer activities than MWCNT-Ag, and exhibits lower toxicity to normal cells.
Collapse
Affiliation(s)
- Han-Sol You
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young-Sun Jang
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Su-Ji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ha-Yeon Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
- BeNatureBioLab, Chuncheon, 24206, Republic of Korea
| |
Collapse
|
14
|
Liu X, Ming Z, Ding Y, Guan P, Shao Y, Wang L, Wang X. Characterization of a novel phage SPX1 and biological control for biofilm of Shewanella in shrimp and food contact surfaces. Int J Food Microbiol 2025; 426:110911. [PMID: 39288570 DOI: 10.1016/j.ijfoodmicro.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Shewanella putrefaciens, commonly found in seafood, forms tenacious biofilms on various surfaces, contributing to spoilage and cross-contamination. Bacteriophages, owing to their potent lytic capabilities, have emerged as novel and safe options for preventing and eliminating contaminants across various foods and food processing environments. In this study, a novel phage SPX1 was isolated, characterized by a high burst size (43.81 ± 3.01 PFU/CFU) and a short latent period (10 min). SPX1 belongs to the Caudoviricetes class, exhibits resistance to chloroform, and sensitivity to ultraviolet. It shows stability over a wide range of temperatures (30-50 °C) and pH levels (3-11). The genome of phage SPX1 consists of 53,428 bp with 49.72 % G + C composition, and lacks tRNAs or virulence factors. Genome analysis revealed the presence of two endolysins, confirming its biofilm-removal capacity. Following the treatment of shrimp surface biofilm with the optimal MOI of 0.001 of phage SPX1 for 5 h, the bacterial count decreased by 1.84 ± 0.1 log10 CFU/cm2 (> 98.5 %). Biofilms on the surfaces of the three common materials used in shrimp processing and transportation also showed varying degrees of reduction: glass (1.98 ± 0.01 log10 CFU/cm2), stainless steel (1.93 ± 0.05 log10 CFU/cm2), and polyethylene (1.38 ± 0.1 log10 CFU/cm2). The study will contribute to phage as a novel and potent biocontrol agent for effectively managing S. putrefaciens and its biofilm, ensuring a reduction in spoilage bacteria contamination during the aquaculture, processing, and transportation of seafood products.
Collapse
Affiliation(s)
- Xi Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zixin Ming
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yifeng Ding
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Sharma S, Jhalora V, Mathur S, Bist R. A Comparison of Antibiotics' Resistance Patterns of E. coli and B. subtilis in their Biofilms and Planktonic Forms. Infect Disord Drug Targets 2025; 25:e310724232507. [PMID: 39092644 DOI: 10.2174/0118715265278809240101073539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 08/04/2024]
Abstract
BACKGROUND A biofilm refers to a community of microbial cells that adhere to surfaces that are surrounded by an extracellular polymeric substance. Bacteria employ various defence mechanisms, including biofilm formation, to enhance their survival and resistance against antibiotics. OBJECTIVE The current study aims to investigate the resistance patterns of Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) in both biofilms and their planktonic forms. METHODS E. coli and B. subtilis were used to compare resistance patterns in biofilms versus planktonic forms of bacteria. An antibiotic disc diffusion test was performed to check the resistance pattern of biofilm and planktonic bacteria against different antibiotics such as penicillin G, streptomycin, and ampicillin. Biofilm formation and its validation were done by using quantitative (microtiter plate assay) and qualitative analysis (Congo red agar media). RESULTS A study of surface-association curves of E. coli and B. subtilis revealed that surface adhesion in biofilms was continuously constant as compared to their planktonic forms, thereby confirming the increased survival of bacteria in biofilms. Also, biofilms have shown high resistance towards the penicillin G, ampicillin and streptomycin as compared to their planktonic form. CONCLUSION It is safely inferred that E. coli and B. subtilis, in their biofilms, become increasingly resistant to penicillin G, ampicillin and streptomycin.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Zoology, Centre of Advanced Studies, University of Rajasthan, 302004, Jaipur, India
| | - Vandana Jhalora
- Department of Zoology, Centre of Advanced Studies, University of Rajasthan, 302004, Jaipur, India
| | - Shubhita Mathur
- Department of Zoology, Centre of Advanced Studies, University of Rajasthan, 302004, Jaipur, India
| | - Renu Bist
- Department of Zoology, Centre of Advanced Studies, University of Rajasthan, 302004, Jaipur, India
| |
Collapse
|
16
|
Kim S, Kim TJ. Inhibitory Effect of Moringa oleifera Seed Extract and Its Behenic Acid Component on Staphylococcus aureus Biofilm Formation. Antibiotics (Basel) 2024; 14:19. [PMID: 39858305 PMCID: PMC11762368 DOI: 10.3390/antibiotics14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Inhibiting biofilm formation without killing cells facilitates the physical removal of contaminating bacteria while minimizing the opportunity for resistant bacteria to emerge. Results: The M. oleifera methanolic seed extract contained 1.48% behenic acid, significantly inhibiting S. aureus biofilm formation. Although behenic acid did not affect cell growth, it inhibited biofilm formation in a concentration-dependent manner, up to 20 mg/L. The cell physiology changes caused by behenic acid are potentially unrelated to biofilm formation inhibition, as no correlation was noted between cell hydrophobicity, polysaccharide production, extracellular DNA production, or protein production and behenic acid concentration. Thus, it was hypothesized that the surfactant properties of behenic acid contribute to its ability to inhibit biofilm formation, as a similar biofilm-inhibitory effect was observed when S. aureus was administered 1% Tween 80, a surfactant. Methods: A methanolic extract of Moringa oleifera seeds was selected from a library of edible plant extracts to inhibit Staphylococcus aureus biofilm formation without cell killing. Conclusions: Behenic acid is a saturated fatty acid that is used as an ingredient in cosmetics and ointments; thus, behenic acid may benefit the skin by inhibiting the biofilm formation of S. aureus, a commensal skin pathogen.
Collapse
Affiliation(s)
| | - Tae-Jong Kim
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea;
| |
Collapse
|
17
|
Agarwal H, Gurnani B, Pippal B, Jain N. Capturing the micro-communities: Insights into biogenesis and architecture of bacterial biofilms. BBA ADVANCES 2024; 7:100133. [PMID: 39839441 PMCID: PMC11750278 DOI: 10.1016/j.bbadva.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Biofilm is an assemblage of microorganisms embedded within the extracellular matrix that provides mechanical stability, nutrient absorption, antimicrobial resistance, cell-cell interactions, and defence against host immune system. Various biomolecules such as lipids, carbohydrates, protein polymers (amyloid), and eDNA are present in the matrix playing significant role in determining the distinctive properties of biofilm. The formation of biofilms contributes to resistance against antimicrobial therapy in most of the human infections and exacerbates existing diseases. Therefore, this field requires several state-of-the-art techniques to fully understand the 3-D organization of biofilms, their cell behaviour and responses to pharmaceutical treatments. Here, we explore the assembly and regulation of biofilm biogenesis in the context of matrix components and highlight the significance of high-resolution imaging and analysing techniques for monitoring complex biofilm architecture. Our review also emphasizes the novelty and advancements in techniques to visualise biofilm structure and composition, providing valuable insights to understand biofilm-related infections.
Collapse
Affiliation(s)
- Harshita Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Bharat Gurnani
- Centre of Excellence-AyurTech, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Bhumika Pippal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
18
|
Zubair M, Fatima F, Rahman S, Alrasheed T, Alatawy R, Mesaik MA. Disruption of Biofilm Formation by Dead Sea Soil Extracts: A Novel Approach Against Diabetic Foot Wound Isolates. MICROBIOLOGY RESEARCH 2024; 15:2535-2553. [DOI: 10.3390/microbiolres15040169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Bacterial biofilms are closely associated with the rising threat of antimicrobial resistance, which is becoming a global concern. Recently, there has been increased interest in natural extracts as potential antimicrobial agents. One such extract is Dead Sea mud. While there is some evidence of its antimicrobial properties, it has not been extensively studied. Therefore, we designed a study to evaluate the potential of Dead Sea soil as an antimicrobial agent. For this purpose, three bacterial species (Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) were isolated from the ulcerated foot of a patient in a hospital in Tabuk. P. aeruginosa exhibited significant antibiotic resistance, particularly to Levofloxacin (90%) and Tobramycin (80%), while S. aureus showed 70% resistance to Levofloxacin but no vancomycin resistance. Biofilm activity varied among bacterial strains, with P. aeruginosa showing 30% strong biofilm production. MIC values indicated resistance levels, with P. aeruginosa strain PA8 having the highest MIC at 650 µL/mL. All strains showed significant differences in exopolysaccharide (EPS) production at 0.25 × MIC (p ≤ 0.05) and 0.5 × MIC (p ≤ 0.005). Similarly, alginate production was significantly reduced at 0.25 × MIC (p ≤ 0.05), with even greater inhibition at 0.5 × MIC for combinations such as EC7 + SA5 (p ≤ 0.001). Hydrophobicity significantly changed at 0.25 × MIC (p ≤ 0.05), and combinations revealed highly significant reductions at 0.5 × MIC (p ≤ 0.001). Additionally, significant differences in outer membrane disruption were observed (p ≤ 0.05) with greater effects at 0.5 × MIC (p ≤ 0.005). Swarming motility was notably reduced for SA5 at 0.25 × MIC (p ≤ 0.05) and for PA2 at 0.5 × MIC (p ≤ 0.001). Chitinase activity showed greater reductions at 0.5 × MIC, with EC7 exhibiting the highest decrease. Lastly, sub-MIC concentrations enhanced reactive oxygen species (ROS) production, particularly for strains PA2 and SA5. Our results demonstrate the excellent potential of Dead Sea soil extract as an antimicrobial compound. Future studies should incorporate in vivo models to validate these findings clinically.
Collapse
Affiliation(s)
- Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
- Molecular Microbiology and Infectious Diseases Research Center, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Farha Fatima
- Department of Zoology, Faculty of Life Science, Aligarh Muslim University, Aligarh 202001, India
| | - Sumbul Rahman
- Department of Ilmul Advia, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh 202001, India
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
- Molecular Microbiology and Infectious Diseases Research Center, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - M. Ahmed Mesaik
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
- Molecular Microbiology and Infectious Diseases Research Center, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
19
|
Gao N, Fang C, Bai P, Wang J, Dong N, Shan A, Zhang L. De novo design of Na +-activated lipopeptides with selective antifungal activity: A promising strategy for antifungal drug discovery. Int J Biol Macromol 2024; 283:137894. [PMID: 39571872 DOI: 10.1016/j.ijbiomac.2024.137894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
In recent years, invasive fungal infections have posed a significant threat to human health, particularly due to the limited availability of effective antifungal medications. This study responds to the urgent need for powerful and selective antifungal agents by designing and synthesizing a series of lipopeptides with lipoylation at the N-terminus of the antimicrobial peptide I6. Compared to the parent peptide I6, lipopeptides exhibited selective antifungal efficacy in the presence of Na+. Among the variants tested, C8-I6 emerged as the most effective, with an average effective concentration of 5.3 μM against 12 different fungal species. C8-I6 combated fungal infections by disrupting both cytoplasmic and mitochondrial membranes, impairing the proton motive force, generating reactive oxygen species, and triggering apoptosis in fungal cells. Importantly, C8-I6 exhibited minimal hemolysis and cytotoxicity while effectively inhibiting fungal biofilm formation. In vivo experiments further validated the safety and therapeutic potential of C8-I6 in treating fungal skin infections. These findings underscore the significance of lipoylation in enhancing the efficacy of antimicrobial peptides, positioning C8-I6 as a promising candidate in fighting against drug-resistant fungal infections.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyang Fang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
20
|
Allen-Taylor D, Boro G, Cabato P, Mai C, Nguyen K, Rijal G. Staphylococcus epidermidis biofilm in inflammatory breast cancer and its treatment strategies. Biofilm 2024; 8:100220. [PMID: 39318870 PMCID: PMC11420492 DOI: 10.1016/j.bioflm.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bacterial biofilms represent a significant challenge in both clinical and industrial settings because of their robust nature and resistance to antimicrobials. Biofilms are formed by microorganisms that produce an exopolysaccharide matrix, protecting function and supporting for nutrients. Among the various bacterial species capable of forming biofilms, Staphylococcus epidermidis, a commensal organism found on human skin and mucous membranes, has emerged as a prominent opportunistic pathogen, when introduced into the body via medical devices, such as catheters, prosthetic joints, and heart valves. The formation of biofilms by S. epidermidis on these surfaces facilitates colonization and provides protection against host immune responses and antibiotic therapies, leading to persistent and difficult-to-treat infections. The possible involvement of biofilms for breast oncogenesis has recently created the curiosity. This paper therefore delves into S. epidermidis biofilm involvement in breast cancer. S. epidermidis biofilms can create a sustained inflammatory environment through their metabolites and can break DNA in breast tissue, promoting cellular proliferation, angiogenesis, and genetic instability. Preventing biofilm formation primarily involves preventing bacterial proliferation using prophylactic measures and sterilization of medical devices and equipment. In cancer treatment, common modalities include chemotherapy, surgery, immunotherapy, alkylating agents, and various anticancer drugs. Understanding the relationship between anticancer drugs and bacterial biofilms is crucial, especially for those undergoing cancer treatment who may be at increased risk of bacterial infections, for improving patient outcomes. By elucidating these interactions, strategies to prevent or disrupt biofilm formation, thereby reducing the incidence of infections associated with medical devices and implants, can be identified.
Collapse
Affiliation(s)
- D. Allen-Taylor
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Boro
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - P.M. Cabato
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - C. Mai
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - K. Nguyen
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Rijal
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| |
Collapse
|
21
|
Roy R, Paul P, Chakraborty P, Malik M, Das S, Chatterjee S, Maity A, Dasgupta M, Sarker RK, Sarkar S, Das Gupta A, Tribedi P. Cuminaldehyde and Tobramycin Forestall the Biofilm Threats of Staphylococcus aureus: A Combinatorial Strategy to Evade the Biofilm Challenges. Appl Biochem Biotechnol 2024; 196:7588-7613. [PMID: 38526664 DOI: 10.1007/s12010-024-04914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Staphylococcus aureus, an opportunistic Gram-positive pathogen, is known for causing various infections in humans, primarily by forming biofilms. The biofilm-induced antibiotic resistance has been considered a significant medical threat. Combinatorial therapy has been considered a reliable approach to combat antibiotic resistance by using multiple antimicrobial agents simultaneously, targeting bacteria through different mechanisms of action. To this end, we examined the effects of two molecules, cuminaldehyde (a natural compound) and tobramycin (an antibiotic), individually and in combination, against staphylococcal biofilm. Our experimental observations demonstrated that cuminaldehyde (20 μg/mL) in combination with tobramycin (0.05 μg/mL) exhibited efficient reduction in biofilm formation compared to their individual treatments (p < 0.01). Additionally, the combination showed an additive interaction (fractional inhibitory concentration value 0.66) against S. aureus. Further analysis revealed that the effective combination accelerated the buildup of reactive oxygen species (ROS) and increased the membrane permeability of the bacteria. Our findings also specified that the cuminaldehyde in combination with tobramycin efficiently reduced biofilm-associated pathogenicity factors of S. aureus, including fibrinogen clumping ability, hemolysis property, and staphyloxanthin production. The selected concentrations of tobramycin and cuminaldehyde demonstrated promising activity against the biofilm development of S. aureus on catheter models without exerting antimicrobial effects. In conclusion, the combination of tobramycin and cuminaldehyde presented a successful strategy for combating staphylococcal biofilm-related healthcare threats. This combinatorial approach holds the potential for controlling biofilm-associated infections caused by S. aureus.
Collapse
Affiliation(s)
- Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
22
|
Zhang Q, Feng Y, Zhao J, Sun S, Zheng T, Wang J, Chen H, Ye H, Lv S, Zhang Y, Wang S, Li Y, Dong Z. Caffeic acid-mediated photodynamic multifunctional hyaluronic acid-gallic acid hydrogels with instant and enduring bactericidal potency accelerate bacterial infected wound healing. Int J Biol Macromol 2024; 282:136877. [PMID: 39461641 DOI: 10.1016/j.ijbiomac.2024.136877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
The emergence of drug-resistant bacteria poses significant challenges in wound treatment. Antimicrobial photodynamic therapy has emerged as an effective approach to eliminating bacteria by inducing oxidative stress without causing drug resistance. Here, we developed a natural hyaluronic acid (HA)-gallic acid (GA) conjugation-based hydrogel combined with herbal photosensitizer-caffeic acid (CA), which exhibits self-healing ability, shape adaptability, biodegradability, and robust tissue adhesion. Under exposure to 400 nm light, caffeic acid acts as a photosensitizer, generating reactive oxygen species and oxidative damage to bacterial cell membranes. Furthermore, the presence of GA and CA displayed a continuous inhibitory effect on bacterial growth, along with antioxidant properties that promote wound healing even after the cessation of light exposure. The antibacterial mechanism of the HA-GA/CA hydrogel against MRSA, S. aureus, and E. coli was investigated through various assays measuring ATP levels, Zeta potential, hydroxyl radicals (·OH) generated by light irradiation, and biofilm clearance rate. Additionally, hydrogel's application in treating MRSA-infected wounds in mice under light irradiation demonstrated rapid wound-healing effects and biocompatibility. Overall, HA-GA/CA hydrogel provides a sustainable, antibiotic-free alternative for treating MRSA-infected wounds.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Yifan Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Jixiang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Shuhui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Tingting Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Jinrui Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Huan Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hanyi Ye
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Shun Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Yinghua Zhang
- Jilin Provincial Academy of Chinese Medicine, Changchun 130012, PR China
| | - Siming Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ying Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, PR China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, PR China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, PR China.
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, PR China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, PR China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, PR China.
| |
Collapse
|
23
|
Yang J, Mao L, Gulfam Y, Zeeshan M, Wang X, Fan T. Effect of Acetic Acid on Biofilm Formation in Paracidovorax citrulli, Causal Agent of Bacterial Fruit Blotch. J Basic Microbiol 2024:e2400188. [PMID: 39428671 DOI: 10.1002/jobm.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
The unique tissue structure of pathogenic bacteria biofilm plays an important role in its pathogenicity and bactericide resistance. Inhibition or destruction of biofilm formation of pathogenic bacteria is of great significance for the control of plant bacterial diseases. In this study, Paracidovorax citrulli was inoculated into KB medium containing acetic acid, and after shaking at 28°C and 55 r/min for 48 h, it was found that the content of extracellular polysaccharide, extracellular protein and extracellular DNA (eDNA) decreased with the increase of acetic acid concentration, which resulted in the decrease of biofilm formation, it is not even possible to form biofilms on plastic slides. When the final concentration of acetic acid in the culture medium was greater than or equal to 0.5 mg/mL, there was no biofilm on the plastic slides. Therefore, the use of acetic acid as an inhibitor of P. citrulli has a good potential for control of bacterial fruit blotch.
Collapse
Affiliation(s)
- Jincheng Yang
- Key Laboratory for Oasis Agricultural Pest Management and Plant Resource Utilization at Universities of Xinjiang Uygur Autonomous Region, Shihezi, China
- College of Agronomy, Shihezi University, Shihezi, China
| | - Liang Mao
- Xinjiang Turpan Agricultural Technology Promotion Center, Turpan, China
| | - Yousaf Gulfam
- Key Laboratory for Oasis Agricultural Pest Management and Plant Resource Utilization at Universities of Xinjiang Uygur Autonomous Region, Shihezi, China
- College of Agronomy, Shihezi University, Shihezi, China
| | - Muhammad Zeeshan
- Key Laboratory for Oasis Agricultural Pest Management and Plant Resource Utilization at Universities of Xinjiang Uygur Autonomous Region, Shihezi, China
- College of Agronomy, Shihezi University, Shihezi, China
| | - Xiaodong Wang
- Key Laboratory for Oasis Agricultural Pest Management and Plant Resource Utilization at Universities of Xinjiang Uygur Autonomous Region, Shihezi, China
- College of Agronomy, Shihezi University, Shihezi, China
| | - Ting Fan
- College of Sciences, Shihezi University, Shihezi, Xinjiang, China
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
24
|
Biswas T, Ahmed M, Mondal S. Mixed species biofilm: Structure, challenge and its intricate involvement in hospital associated infections. Microb Pathog 2024; 195:106866. [PMID: 39159773 DOI: 10.1016/j.micpath.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Hospital associated infections or healthcare associated infections (HAIs) are a major threat to healthcare and medical management, mostly because of their recalcitrant nature. The primary cause of these HAIs is bacterial associations, especially the interspecies interactions. In interspecies interactions, more than one species co-exists in a common platform of extracellular polymeric substances (EPS), establishing a strong interspecies crosstalk and thereby lead to the formation of mixed species biofilms. In this process, the internal microenvironment and the surrounding EPS matrix of the biofilms ensure the protection of the microorganisms and allow them to survive under antagonistic conditions. The communications between the biofilm members as well as the interactions between the bacterial cells and the matrix polymers, also aid in the rigidity of the biofilm structure and allow the microorganisms to evade both the host immune response and a wide range of anti-microbials. Therefore, to design a treatment protocol for HAIs is difficult and it has become a growing point of concern. This review therefore first aims to discuss the role of microenvironment, molecular structure, cell-cell communication, and metabolism of mixed species biofilms in manifestation of HAIs. In addition, we discuss the electrochemical properties of mixed-species biofilms and their mechanism in developing drug resistance. Then we focus on the most dreaded bacterial HAI including oral and gut multi-species infections, catheter-associated urinary tract infections, surgical site infections, and ventilator-associated pneumonia. Further, we highlight the challenges to eradication of the mixed species biofilms and the current and prospective future strategies for the treatment of mixed species-associated HAI. Together, the review presents a comprehensive understanding of mixed species biofilm-mediated infections in clinical scenario, and summarizes the current challenge and prospect of therapeutic strategies against HAI.
Collapse
Affiliation(s)
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
25
|
Liu T, Li M, Tang L, Wang B, Li T, Huang Y, Xu Y, Li Y. Epidemiological, clinical and microbiological characteristics of patients with biliary tract diseases with positive bile culture in a tertiary hospital. BMC Infect Dis 2024; 24:1010. [PMID: 39300331 DOI: 10.1186/s12879-024-09799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE The prevalence of biliary tract diseases, which are common gastrointestinal disorders, is steadily rising. If it progresses to sepsis or septic shock, it can endanger the patient's life. Therefore, it is crucial to promptly diagnose bacterial infection in individuals suffering from biliary diseases and comprehend the risk factors associated with infection. The objective of this study was to examine the types of bacteria present in the bile of patients with biliary tract diseases, assess any alterations in their susceptibility to antimicrobial agents, and identify the risk factors contributing to the development of infection in these patients. PATIENTS AND METHODS From June 2019 to November 2022, 317 patients of biliary tract diseases with positive bile culture were included in this hospital-based descriptive analysis. The hospital's computerized medical records were used to collect data on demographic information (including gender, age, and occupation), laboratory, and clinical findings, physical examination results, comorbidities, basic diseases, treatment history, complications, and in-hospital outcomes. The study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) principles. RESULTS Of the 317 patients with positive biliary tract diseases, 247 had benign diseases and 70 had malignant diseases. Patients with benign disease experienced a higher prevalence of statistically significant symptoms such as abdominal pain (81.4% vs. 57.1%, P = 0.000), nausea (31.2% vs. 14.3%, P = 0.005), vomiting (30.0% vs. 12.9%, P = 0.004), and chills (10.9% vs. 2.9%, P = 0.039), while jaundice (12.6% vs. 37.1%, P = 0.000) was more common in patients with malignant disease. At the species level, Escherichia coli (105; 40.5%), Klebsiella pneumoniae (41; 15.8%), and Pseudomonas aeruginosa (30; 11.6%) were the most commonly found Gram-negative bacterial strains in biliary tract infection. Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa were most susceptible to tigecycline, ertapenem and ceftazidime/avibactam, respectively. CONCLUSION Gram-negative bacteria are the most commonly isolated biliary bacteria. Clinical doctors should pay attention to patients with malignant diseases with low hemoglobin, high total bilirubin and high alkaline phosphatase. Carbapenems, tigecycline, and minocycline are the recommended antibiotics for Enterobacteriaceae. In recent years, the proportion of enterococcus has gradually increased, and clinical attention should be paid to enterococcus infection. Linezolid and vancomycin were recommended for the treatment of Enterococci infections. Overall, this work can provide reference for clinical diagnosis, treatment and effective interventions.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Moyan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Tang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yajuan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
27
|
Yin W, Yao J, Leng X, Ma C, Chen X, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, Wang L. Enhancement of Antimicrobial Function by L/D-Lysine Substitution on a Novel Broad-Spectrum Antimicrobial Peptide, Phylloseptin-TO2: A Structure-Related Activity Research Study. Pharmaceutics 2024; 16:1098. [PMID: 39204443 PMCID: PMC11360180 DOI: 10.3390/pharmaceutics16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Antibiotic resistance poses a serious threat to public health globally, reducing the effectiveness of conventional antibiotics in treating bacterial infections. ESKAPE pathogens are a group of highly transmissible bacteria that mainly contribute to the spread of antibiotic resistance and cause significant morbidity and mortality in humans. Phylloseptins, a class of antimicrobial peptides (AMPs) derived from Phyllomedusidae frogs, have been proven to have antimicrobial activity via membrane interaction. However, their relatively high cytotoxicity and low stability limit the clinical development of these AMPs. This project aims to study the antimicrobial activity and mechanisms of a phylloseptin-like peptide, phylloseptin-TO2 (PSTO2), following rational amino acid modification. Here, PSTO2 (FLSLIPHAISAVSALAKHL-NH2), identified from the skin secretion of Phyllomedusa tomopterna, was used as the template for modification to enhance antimicrobial activity. Adding positive charges to PSTO2 through substitution with L-lysines enhanced the interaction of the peptides with cell membranes and improved their antimicrobial efficacy. The analogues SRD7 and SR2D10, which incorporated D-lysines, demonstrated significant antimicrobial effects against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) while also showing reduced haemolytic activity and cytotoxicity, resulting in a higher therapeutic index. Additionally, SRD7, modified with D-lysines, exhibited notable anti-proliferative properties against human lung cancer cell lines, including H838 and H460. This study thus provides a potential development model for new antibacterial and anti-cancer drugs combating antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (W.Y.); (J.Y.); (X.L.); (C.M.); (Y.J.); (T.W.); (T.C.); (C.S.); (M.Z.); (L.W.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Firoozbahr M, Palombo EA, Kingshott P, Zaferanloo B. Antibacterial and Antibiofilm Properties of Native Australian Plant Endophytes against Wound-Infecting Bacteria. Microorganisms 2024; 12:1710. [PMID: 39203552 PMCID: PMC11357646 DOI: 10.3390/microorganisms12081710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The wound management field faces significant challenges due to antimicrobial resistance (AMR) and the complexity of chronic wound care. Effective wound treatment requires antimicrobial dressings to prevent bacterial infections. However, the rise of AMR necessitates new antimicrobial agents for wound dressings, particularly for addressing bacterial pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Endophytic fungi, known for producing diverse bioactive compounds, represent a promising source of such new agents. This study tested thirty-two endophytic fungi from thirteen distinct Australian native plants for their antibacterial activity against S. aureus. Ethyl acetate (EtOAc) extracts from fungal culture filtrates exhibited inhibitory effects against both methicillin-sensitive S. aureus ATCC 25923 (MIC = 78.1 µg/mL) and MRSA M180920 (MIC = 78.1 µg/mL). DNA sequence analysis was employed for fungal identification. The most active sample, EL 19 (Chaetomium globosum), was selected for further analysis, revealing that its EtOAc extracts reduced S. aureus ATCC 25923 biofilm formation by 55% and cell viability by 57% to 68% at 12 × MIC. Furthermore, cytotoxicity studies using the brine shrimp lethality test demonstrated low cytotoxicity up to 6 × MIC (25% mortality rate) with an LC50 value of 639.1 µg/mL. Finally, the most active sample was incorporated into polycaprolactone (PCL) fiber mats via electrospinning, with resultant inhibition of S. aureus species. This research underscores the potential of endophytic fungi from Australian plants as sources of substances effective against common wound pathogens. Further exploration of the responsible compounds and their mechanisms could facilitate the development of wound dressings effective against MRSA and innovative biofilm-resistant electrospun fibers, contributing to the global efforts to combat AMR.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
- ARC Training Center for Biofilm Research and Innovation, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
| |
Collapse
|
29
|
Wei J, Zhang X, Ismael M, Zhong Q. Anti-Biofilm Effects of Z102-E of Lactiplantibacillus plantarum against Listeria monocytogenes and the Mechanism Revealed by Transcriptomic Analysis. Foods 2024; 13:2495. [PMID: 39200422 PMCID: PMC11354177 DOI: 10.3390/foods13162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Lactic acid bacteria (LAB) are the most common probiotics, and they present excellent inhibitory effects on pathogenic bacteria. This study aimed to explore the anti-biofilm potential of the purified active substance of Lactiplantibacillus plantarum, named Z102-E. The effects of Z102-E on Listeria monocytogenes were investigated in detail, and a transcriptomic analysis was conducted to reveal the anti-biofilm mechanism. The results indicated that the sub-MIC of Z102-E (3.2, 1.6, and 0.8 mg/mL) decreased the bacterial growth and effectively reduced the self-aggregation, surface hydrophobicity, sugar utilization, motility, biofilm formation, AI-2 signal molecule, contents of extracellular polysaccharides, and extracellular protein of L. monocytogenes. Moreover, the inverted fluorescence microscopy observation confirmed the anti-biofilm effect of Z102-E. The transcriptomic analysis indicated that 117 genes were up-regulated and 214 were down-regulated. Z102-E regulated the expressions of genes related to L. monocytogenes quorum sensing, biofilm formation, etc. These findings suggested that Z102-E has great application potential as a natural bacteriostatic agent.
Collapse
Affiliation(s)
| | | | | | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.); (M.I.)
| |
Collapse
|
30
|
Duarte AC, Fernández L, Jurado A, Campelo AB, Shen Y, Rodríguez A, García P. Synergistic removal of Staphylococcus aureus biofilms by using a combination of phage Kayvirus rodi with the exopolysaccharide depolymerase Dpo7. Front Microbiol 2024; 15:1438022. [PMID: 39171257 PMCID: PMC11335607 DOI: 10.3389/fmicb.2024.1438022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Bacteriophages have been shown to penetrate biofilms and replicate if they find suitable host cells. Therefore, these viruses appear to be a good option to tackle the biofilm problem and complement or even substitute more conventional antimicrobials. However, in order to successfully remove biofilms, in particular mature biofilms, phages may need to be administered along with other compounds. Phage-derived proteins, such as endolysins or depolymerases, offer a safer alternative to other compounds in the era of antibiotic resistance. Methods This study examined the interactions between phage Kayvirus rodi with a polysaccharide depolymerase (Dpo7) from another phage (Rockefellervirus IPLA7) against biofilms formed by different Staphylococcus aureus strains, as determined by crystal violet staining, viable cell counts and microscopy analysis. Results and discussion Our results demonstrated that there was synergy between the two antimicrobials, with a more significant decreased in biomass and viable cell number with the combination treatment compared to the phage and enzyme alone. This observation was confirmed by microscopy analysis, which also showed that polysaccharide depolymerase treatment reduced, but did not eliminate extracellular matrix polysaccharides. Activity assays on mutant strains did not identify teichoic acids or PNAG/PIA as the exclusive target of Dpo7, suggesting that may be both are degraded by this enzyme. Phage adsorption to S. aureus cells was not significantly altered by incubation with Dpo7, indicating that the mechanism of the observed synergistic interaction is likely through loosening of the biofilm structure. This would allow easier access of the phage particles to their host cells and facilitate infection progression within the bacterial population.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Andrea Jurado
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Belén Campelo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Yang Shen
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
31
|
Thomas G, Kay WT, Fones HN. Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biol 2024; 22:168. [PMID: 39113027 PMCID: PMC11304629 DOI: 10.1186/s12915-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.
Collapse
Affiliation(s)
| | - William T Kay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
32
|
Aljowaie RM, Alsayed MF, Alkubaisi NA, Almarfadi OM, Farrag MA, Abdulmanea AA, Alfuraydi AA, Abalkhail T, Aboul-Soud MAM, Aziz IM. In vitro and in silico evaluation of bioactivities and chemical composition of the aerial parts of Anchusa officinalis L. methanol extract. Cell Biochem Funct 2024; 42:e4093. [PMID: 38978319 DOI: 10.1002/cbf.4093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The main objective of the study is to evaluate the antioxidant, anticancer, and antimicrobial activities of Anchusa officinalis L. in vitro and in silico. The dried aerial parts of A. officinalis L. were extracted with methanol. Total phenolic and flavonoid content was analyzed. Antioxidant and antimicrobial effects were tested against both gram-positive and gram-negative bacteria. Gas chromatography-mass spectrometry analysis revealed the presence of 10 phytochemical compounds, and cyclobutane (26.07%) was identified as the major photochemical compound. The methanol extract exhibited the maximum amount of total phenolic content (118.24 ± 4.42 mg QE/g dry weight of the dry extract) (R2 = 0.994) and the total flavonoid content was 94 ± 2.34 mg QE/g dry weight of the dry extract (R2 = 0.999). The IC50 value for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid was 107.12 ± 3.42 μg/mL, and it was high for 1,1-diphenyl-2-picryl hydrazyl (123.94 ± 2.31 μg/mL). The IC50 value was 72.49 ± 3.14 against HepG2 cell lines, and a decreased value was obtained (102.54 ± 4.17 g/mL) against MCF-7 cell lines. The methanol extract increased the expression of caspase mRNA and Bax mRNA levels when compared to the control experiment (p < .05). The conclusions, A. officinalis L. aerial parts extract exhibited antibacterial, antifungal, and antioxidant activities.
Collapse
Affiliation(s)
- Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mashail Fahad Alsayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adel A Abdulmanea
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tarad Abalkhail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Cao H, Shi Y, Wang J, Niu Z, Wei L, Tian H, Yu F, Gao L. The intestinal microbiota and metabolic profiles of Strauchbufo raddei underwent adaptive changes during hibernation. Integr Zool 2024; 19:612-630. [PMID: 37430430 DOI: 10.1111/1749-4877.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The intestinal microbiota help regulate hibernation in vertebrates. However, it needs to be established how hibernation modulates the gut microbiome and intestinal metabolism. In the present study, we used an artificial hibernation model to examine the responses of the gut microbiota of the Strauchbufo raddei to the environmental changes associated with this behavior. Hibernation significantly lowered the diversity of the microbiota and altered the microbial community of the gut. Proteobacteria, Firmicutes, and Bacteroidota were the major bacterial phyla in the intestines of S. raddei. However, Firmicutes and Proteobacteria predominated in the gut of active and hibernating S. raddei, respectively. Certain bacterial genera such as Pseudomonas, Vibrio, Ralstonia, and Rhodococcus could serve as biomarkers distinguishing hibernating and non-hibernating S. raddei. The gut microbiota was more resistant to environmental stress in hibernating than active S. raddei. Moreover, metabolomics revealed that metabolites implicated in fatty acid biosynthesis were highly upregulated in the intestines of hibernating S. raddei. The metabolites that were enriched during hibernation enabled S. raddei to adapt to the low temperatures and the lack of exogenous food that are characteristic of hibernation. A correlation analysis of the intestinal microbiota and their metabolites revealed that the gut microbiota might participate in the metabolic regulation of hibernating S. raddei. The present study clarified the modifications that occur in the intestinal bacteria and their symbiotic relationship with their host during hibernation. These findings are indicative of the adaptive changes in the metabolism of amphibians under different environmental conditions.
Collapse
Affiliation(s)
- Hanwen Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ji Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhanyu Niu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Wei
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huabing Tian
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feifei Yu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Azad MA, Patel R. Practical Guidance for Clinical Microbiology Laboratories: Microbiologic diagnosis of implant-associated infections. Clin Microbiol Rev 2024; 37:e0010423. [PMID: 38506553 PMCID: PMC11237642 DOI: 10.1128/cmr.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYImplant-associated infections (IAIs) pose serious threats to patients and can be associated with significant morbidity and mortality. These infections may be difficult to diagnose due, in part, to biofilm formation on device surfaces, and because even when microbes are found, their clinical significance may be unclear. Despite recent advances in laboratory testing, IAIs remain a diagnostic challenge. From a therapeutic standpoint, many IAIs currently require device removal and prolonged courses of antimicrobial therapy to effect a cure. Therefore, making an accurate diagnosis, defining both the presence of infection and the involved microorganisms, is paramount. The sensitivity of standard microbial culture for IAI diagnosis varies depending on the type of IAI, the specimen analyzed, and the culture technique(s) used. Although IAI-specific culture-based diagnostics have been described, the challenge of culture-negative IAIs remains. Given this, molecular assays, including both nucleic acid amplification tests and next-generation sequencing-based assays, have been used. In this review, an overview of these challenging infections is presented, as well as an approach to their diagnosis from a microbiologic perspective.
Collapse
Affiliation(s)
- Marisa Ann Azad
- Division of Infectious Diseases, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - Robin Patel
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Bowden LC, Finlinson J, Jones B, Berges BK. Beyond the double helix: the multifaceted landscape of extracellular DNA in Staphylococcus aureus biofilms. Front Cell Infect Microbiol 2024; 14:1400648. [PMID: 38903938 PMCID: PMC11188362 DOI: 10.3389/fcimb.2024.1400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Staphylococcus aureus forms biofilms consisting of cells embedded in a matrix made of proteins, polysaccharides, lipids, and extracellular DNA (eDNA). Biofilm-associated infections are difficult to treat and can promote antibiotic resistance, resulting in negative healthcare outcomes. eDNA within the matrix contributes to the stability, growth, and immune-evasive properties of S. aureus biofilms. eDNA is released by autolysis, which is mediated by murein hydrolases that access the cell wall via membrane pores formed by holin-like proteins. The eDNA content of S. aureus biofilms varies among individual strains and is influenced by environmental conditions, including the presence of antibiotics. eDNA plays an important role in biofilm development and structure by acting as an electrostatic net that facilitates protein-cell and cell-cell interactions. Because of eDNA's structural importance in biofilms and its ubiquitous presence among S. aureus isolates, it is a potential target for therapeutics. Treatment of biofilms with DNase can eradicate or drastically reduce them in size. Additionally, antibodies that target DNABII proteins, which bind to and stabilize eDNA, can also disperse biofilms. This review discusses the recent literature on the release, structure, and function of eDNA in S. aureus biofilms, in addition to a discussion of potential avenues for targeting eDNA for biofilm eradication.
Collapse
Affiliation(s)
| | | | | | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
36
|
Guragain M, Schmidt JW, Bagi LK, Paoli GC, Kalchayanand N, Bosilevac JM. Antibiotic Resistance and Disinfectant Resistance Among Escherichia coli Isolated During Red Meat Production. J Food Prot 2024; 87:100288. [PMID: 38697484 DOI: 10.1016/j.jfp.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Escherichia coli commonly found in the gastrointestinal tracts of food animals include Shiga toxin-producing E. coli (STEC, stx+, eae-), Enterohemorrhagic E. coli (EHEC, stx+, eae+), Enteropathogenic E. coli (EPEC, stx-, eae+), and "nondiarrheagenic" E. coli (NDEC, stx-, eae-). EHEC, EPEC, and STEC are associated with foodborne disease outbreaks. During meat processing, disinfectants are employed to control various bacteria, including human pathogens. Concerns exist that E. coli resistant to antibiotics are less susceptible to disinfectants used during meat processing. Since EHEC, EPEC, and STEC with reduced susceptibility to disinfectants are potential public health risks, the goal of this study was to evaluate the association of antibiotic resistant (ABR) E. coli with increased tolerance to 4% lactic acid (LA) and 150 ppm quaternary ammonium compounds (QACs). A pool of 3,367 E. coli isolated from beef cattle, veal calves, swine, and sheep at various processing stages was screened to identify ABR E. coli. Resistance to ≥1 of the six antibiotics examined was identified in 27.9%, 36.1%, 54.5%, and 28.7% among the NDEC (n = 579), EHEC (n = 693), EPEC (n = 787), and STEC (n = 1308) isolates evaluated, respectively. Disinfectant tolerance did not differ (P > 0.05) between ABR and antibiotic susceptible EHEC isolates. Comparable frequencies (P > 0.05) of biofilm formation or congo red binding were observed between ABR and antibiotic susceptible strains of E. coli. Understanding the frequencies of ABR and disinfectant tolerance among E. coli present in food-animal is a critically important component of meat safety.
Collapse
Affiliation(s)
- Manita Guragain
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA.
| | - John W Schmidt
- Meat Safety and Quality Research Unit, Meat Animal Research Center, Agricultural Research Service, US Department of Agriculture, Clay Center, NE, USA
| | - Lori K Bagi
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - George C Paoli
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Norasak Kalchayanand
- Meat Safety and Quality Research Unit, Meat Animal Research Center, Agricultural Research Service, US Department of Agriculture, Clay Center, NE, USA
| | - Joseph M Bosilevac
- Meat Safety and Quality Research Unit, Meat Animal Research Center, Agricultural Research Service, US Department of Agriculture, Clay Center, NE, USA
| |
Collapse
|
37
|
Ma T, Rothschild J, Halabeya F, Zilman A, Milstein JN. Mechanics limits ecological diversity and promotes heterogeneity in confined bacterial communities. Proc Natl Acad Sci U S A 2024; 121:e2322321121. [PMID: 38728226 PMCID: PMC11098131 DOI: 10.1073/pnas.2322321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Jeremy Rothschild
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Faisal Halabeya
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Joshua N. Milstein
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| |
Collapse
|
38
|
Kion-Crosby W, Barquist L. Network depth affects inference of gene sets from bacterial transcriptomes using denoising autoencoders. BIOINFORMATICS ADVANCES 2024; 4:vbae066. [PMID: 39027639 PMCID: PMC11256956 DOI: 10.1093/bioadv/vbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024]
Abstract
Summary The increasing number of publicly available bacterial gene expression data sets provides an unprecedented resource for the study of gene regulation in diverse conditions, but emphasizes the need for self-supervised methods for the automated generation of new hypotheses. One approach for inferring coordinated regulation from bacterial expression data is through neural networks known as denoising autoencoders (DAEs) which encode large datasets in a reduced bottleneck layer. We have generalized this application of DAEs to include deep networks and explore the effects of network architecture on gene set inference using deep learning. We developed a DAE-based pipeline to extract gene sets from transcriptomic data in Escherichia coli, validate our method by comparing inferred gene sets with known pathways, and have used this pipeline to explore how the choice of network architecture impacts gene set recovery. We find that increasing network depth leads the DAEs to explain gene expression in terms of fewer, more concisely defined gene sets, and that adjusting the width results in a tradeoff between generalizability and biological inference. Finally, leveraging our understanding of the impact of DAE architecture, we apply our pipeline to an independent uropathogenic E.coli dataset to identify genes uniquely induced during human colonization. Availability and implementation https://github.com/BarquistLab/DAE_architecture_exploration.
Collapse
Affiliation(s)
- Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
39
|
Ekhtiari-Sadegh S, Samani S, Barneh F, Dashtbin S, Shokrgozar MA, Pooshang Bagheri K. Rapid eradication of vancomycin and methicillin-resistant Staphylococcus aureus by MDP1 antimicrobial peptide coated on photocrosslinkable chitosan hydrogel: in vitro antibacterial and in silico molecular docking studies. Front Bioeng Biotechnol 2024; 12:1385001. [PMID: 38681961 PMCID: PMC11047131 DOI: 10.3389/fbioe.2024.1385001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Antibiotic resistance and weak bioavailability of antibiotics in the skin due to systemic administration leads to failure in eradication of vancomycin- and methicillin-resistant Staphylococcus aureus (VRSA and MRSA)-associated wound infections and subsequent septicemia and even death. Accordingly, this study aimed at designing a photocrosslinkable methacrylated chitosan (MECs) hydrogel coated by melittin-derived peptide 1 (MDP1) that integrated the antibacterial activity with the promising skin regenerative capacity of the hydrogel to eradicate bacteria by burst release strategy. Methods The MECs was coated with MDP1 (MECs-MDP1), characterized, and the hydrogel-peptide interaction was evaluated by molecular docking. Antibacterial activities of MECs-MDP1 were evaluated against VRSA and MRSA bacteria and compared to MECs-vancomycin (MECs-vanco). Antibiofilm activity of MECs-MDP1 was studied by our novel 'in situ biofilm inhibition zone (IBIZ)' assay, and SEM. Biocompatibility with human dermal fibroblast cells (HDFs) was also evaluated. Results and Discussion Molecular docking showed hydrogen bonds as the most interactions between MDP1 and MECs at a reasonable affinity. MECs-MDP1 eradicated the bacteria rapidly by burst release strategy whereas MECs-vanco failed to eradicate them at the same time intervals. Antibiofilm activity of MECs-MDP1 were also proved successfully. As a novel report, molecular docking analysis has demonstrated that MDP1 covers the structure of MECs and also binds to lysozyme with a reasonable affinity, which may explain the inhibition of lysozyme. MECs-MDP1 was also biocompatible with human dermal fibroblast skin cells, which indicates its safe future application. The antibacterial properties of a photocrosslinkable methacrylated chitosan-based hydrogel coated with MDP1 antimicrobial peptide were successfully proved against the most challenging antibiotic-resistant bacteria causing nosocomial wound infections; VRSA and MRSA. Molecular docking analysis revealed that MDP1 interacts with MECs mainly through hydrogen bonds with reasonable binding affinity. MECs-MDP1 hydrogels eradicated the planktonic state of bacteria by burst release of MDP1 in just a few hours whereas MECs-vanco failed to eradicate them. inhibition zone assay showed the anti-biofilm activity of the MECs-MDP1 hydrogel too. These findings emphasize that MECs-MDP1 hydrogel would be suggested as a biocompatible wound-dressing candidate with considerable and rapid antibacterial activities to prevent/eradicate VRSA/MRSA bacterial wound infections.
Collapse
Affiliation(s)
- Sarvenaz Ekhtiari-Sadegh
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Barneh
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Reffuveille F, Dghoughi Y, Colin M, Torres MDT, de la Fuente-Nunez C. Antibiofilm approaches as a new paradigm for treating infections. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:023001. [PMID: 39506977 PMCID: PMC11540418 DOI: 10.1088/2516-1091/ad1cd6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The lack of effective antibiotics for drug-resistant infections has led the World Health Organization to declare antibiotic resistance a global priority. Most bacterial infections are caused by microbes growing in structured communities called biofilms. Bacteria growing in biofilms are less susceptible to antibiotics than their planktonic counterparts. Despite their significant clinical implications, bacterial biofilms have not received the attention they warrant, with no approved antibiotics specifically designed for their eradication. In this paper, we aim to shed light on recent advancements in antibiofilm strategies that offer compelling alternatives to traditional antibiotics. Additionally, we will briefly explore the potential synergy between computational approaches, including the emerging field of artificial intelligence, and the accelerated design and discovery of novel antibiofilm molecules in the years ahead.
Collapse
Affiliation(s)
- Fany Reffuveille
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Service de Microbiologie, 51097 Reims, France
| | - Yasser Dghoughi
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
| | - Marius Colin
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Service de Microbiologie, 51097 Reims, France
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
41
|
De los Santos L, Beckman RL, DeBarro C, Keener JE, Torres MD, de la Fuente-Nunez C, Brodbelt JS, Fleeman RM. Polyproline peptide targets Klebsiella pneumoniae polysaccharides to collapse biofilms. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101869. [PMID: 38605913 PMCID: PMC11008256 DOI: 10.1016/j.xcrp.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hypervirulent Klebsiella pneumoniae is known for its increased extracellular polysaccharide production. Biofilm matrices of hypervirulent K. pneumoniae have increased polysaccharide abundance and are uniquely susceptible to disruption by peptide bactenecin 7 (bac7 (1-35)). Here, using confocal microscopy, we show that polysaccharides within the biofilm matrix collapse following bac7 (1-35) treatment. This collapse led to the release of cells from the biofilm, which were then killed by the peptide. Characterization of truncated peptide analogs revealed that their interactions with polysaccharide were responsible for the biofilm matrix changes that accompany bac7 (1-35) treatment. Ultraviolet photodissociation mass spectrometry with the parental peptide or a truncated analog bac7 (10-35) reveal the important regions for bac7 (1-35) complexing with polysaccharides. Finally, we tested bac7 (1-35) using a murine skin abscess model and observed a significant decrease in the bacterial burden. These findings unveil the potential of bac7 (1-35) polysaccharide interactions to collapse K. pneumoniae biofilms.
Collapse
Affiliation(s)
- Laura De los Santos
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Robert L. Beckman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Christina DeBarro
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - James E. Keener
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Marcelo D.T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Renee M. Fleeman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- X (formerly Twitter): @FleemanLab
- Lead contact
| |
Collapse
|
42
|
Silva-Bea S, Romero M, Parga A, Fernández J, Mora A, Otero A. Comparative analysis of multidrug-resistant Klebsiella pneumoniae strains of food and human origin reveals overlapping populations. Int J Food Microbiol 2024; 413:110605. [PMID: 38308879 DOI: 10.1016/j.ijfoodmicro.2024.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Given the increasing incidence of multidrug-resistant (MDR) Klebsiella pneumoniae infections, it is of great interest to investigate the risk of transmission associated with the prevalence of this pathogen. Some studies have described fresh raw poultry meat as a reservoir of MDR K. pneumoniae, including clinically relevant sequence types (ST) and extended-spectrum β-lactamase (ESBL) strains, indicating possible consumer exposure. This study compared 47 MDR strains of K. pneumoniae from poultry meat and human clinical isolates to assess similarities, including analysis of antimicrobial resistance profiles and virulence factors involved in infection. In addition, several biofilm culture methods were evaluated for reproducible assessment of biofilm formation in K. pneumoniae strains. Globally, no association between strain origin and STs, hypermucoviscosity, biofilm formation or serum resistance could be found between isolates of food and clinical origin, nor an associated AMR pattern, suggesting overlapping populations. We found that LB supplemented with glucose in microaerobiosis was the best discrimination condition for biofilm formation in the active attachment biofilm cultivation model. The biofilm formation capacity was strongly dependent on culture conditions, with a strain-specific response, but only a minor increase in biofilm levels was recorded in clinical K. pneumoniae populations. Our results suggest that a similar risk of zoonosis transmission from potentially virulent foodborne strains previously observed in E. coli is also present in this high-priority pathogen. This study further confirms that foodborne isolates of K. pneumoniae pose a risk to consumers and therefore this pathogen should be included in the surveillance of foodborne pathogens with high risk of MDR infections and therapeutic failure.
Collapse
Affiliation(s)
- Sergio Silva-Bea
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Parga
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Fernández
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, Lugo, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
43
|
Yang J, Ran Y, Liu S, Ren C, Lou Y, Ju P, Li G, Li X, Zhang D. Synergistic D-Amino Acids Based Antimicrobial Cocktails Formulated via High-Throughput Screening and Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307173. [PMID: 38126652 PMCID: PMC10916672 DOI: 10.1002/advs.202307173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Antimicrobial resistance (AMR) from pathogenic bacterial biofilms has become a global health issue while developing novel antimicrobials is inefficient and costly. Combining existing multiple drugs with enhanced efficacy and/or reduced toxicity may be a promising approach to treat AMR. D-amino acids mixtures coupled with antibiotics can provide new therapies for drug-resistance infection with reduced toxicity by lower drug dosage requirements. However, iterative trial-and-error experiments are not tenable to prioritize credible drug formulations, owing to the extremely large number of possible combinations. Herein, a new avenue is provide to accelerate the exploration of desirable antimicrobial formulations via high-throughput screening and machine learning optimization. Such an intelligent method can navigate the large search space and rapidly identify the D-amino acid mixtures with the highest anti-biofilm efficiency and also the synergisms between D-amino acid mixtures and antibiotics. The optimized drug cocktails exhibit high antimicrobial efficacy while remaining non-toxic, which is demonstrated not only from in vitro assessments but also the first in vivo study using a lung infection mouse model.
Collapse
Affiliation(s)
- Jingzhi Yang
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
| | - Yami Ran
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
- BRI Southeast Asia Network for Corrosion and ProtectionShunde Graduate School of University of Science and Technology BeijingFoshan528000China
| | - Shaopeng Liu
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
| | - Chenhao Ren
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
| | - Yuntian Lou
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
- BRI Southeast Asia Network for Corrosion and ProtectionShunde Graduate School of University of Science and Technology BeijingFoshan528000China
| | - Pengfei Ju
- Shanghai Aerospace Equipment ManufacturerShanghai200245China
| | - Guoliang Li
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaogang Li
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
- BRI Southeast Asia Network for Corrosion and ProtectionShunde Graduate School of University of Science and Technology BeijingFoshan528000China
| | - Dawei Zhang
- Beijing Advanced Innovation Center for Materials Genome EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
- National Materials Corrosion and Protection Data CenterUniversity of Science and Technology BeijingBeijing100083China
- BRI Southeast Asia Network for Corrosion and ProtectionShunde Graduate School of University of Science and Technology BeijingFoshan528000China
| |
Collapse
|
44
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
45
|
Uppal G, Vural DC. On the possibility of engineering social evolution in microfluidic environments. Biophys J 2024; 123:407-419. [PMID: 38204167 PMCID: PMC10870175 DOI: 10.1016/j.bpj.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Many species of microbes cooperate by producing public goods from which they collectively benefit. However, these populations are under the risk of being taken over by cheating mutants that do not contribute to the pool of public goods. Here we present theoretical findings that address how the social evolution of microbes can be manipulated by external perturbations to inhibit or promote the fixation of cheaters. To control social evolution, we determine the effects of fluid-dynamical properties such as flow rate or domain geometry. We also study the social evolutionary consequences of introducing beneficial or harmful chemicals at steady state and in a time-dependent fashion. We show that by modulating the flow rate and by applying pulsed chemical signals, we can modulate the spatial structure and dynamics of the population in a way that can select for more or less cooperative microbial populations.
Collapse
Affiliation(s)
- Gurdip Uppal
- Harvard Medical School, Boston, Massachusetts; Division of Computational Pathology, Brigham and Women's hospital, Boston, Massachusetts
| | - Dervis Can Vural
- Department of Physics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
46
|
Thirumoorthy G, Balasubramanian B, George JA, Nizam A, Nagella P, Srinatha N, Pappuswamy M, Alanazi AM, Meyyazhagan A, Rengasamy KRR, Veerappa Lakshmaiah V. Phytofabricated bimetallic synthesis of silver-copper nanoparticles using Aerva lanata extract to evaluate their potential cytotoxic and antimicrobial activities. Sci Rep 2024; 14:1270. [PMID: 38218918 PMCID: PMC10787839 DOI: 10.1038/s41598-024-51647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
In this study, we demonstrate the green synthesis of bimetallic silver-copper nanoparticles (Ag-Cu NPs) using Aerva lanata plant extract. These NPs possess diverse biological properties, including in vitro antioxidant, antibiofilm, and cytotoxic activities. The synthesis involves the reduction of silver nitrate and copper oxide salts mediated by the plant extract, resulting in the formation of crystalline Ag-Cu NPs with a face-centered cubic structure. Characterization techniques confirm the presence of functional groups from the plant extract, acting as stabilizing and reducing agents. The synthesized NPs exhibit uniform-sized spherical morphology ranging from 7 to 12 nm. They demonstrate significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, inhibiting extracellular polysaccharide secretion in a dose-dependent manner. The Ag-Cu NPs also exhibit potent cytotoxic activity against cancerous HeLa cell lines, with an inhibitory concentration (IC50) of 17.63 µg mL-1. Additionally, they demonstrate strong antioxidant potential, including reducing capability and H2O2 radical scavenging activity, particularly at high concentrations (240 µg mL-1). Overall, these results emphasize the potential of A. lanata plant metabolite-driven NPs as effective agents against infectious diseases and cancer.
Collapse
Affiliation(s)
- Gopishankar Thirumoorthy
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | | | - Jincy A George
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - N Srinatha
- Department of Physics, RV Institute of Technology and Management, Bengaluru, 560 076, India
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Rd, Bengaluru, Karnataka, 560029, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India.
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| | | |
Collapse
|
47
|
Aguilera-Puga MDC, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence. Methods Mol Biol 2024; 2714:329-352. [PMID: 37676607 DOI: 10.1007/978-1-0716-3441-7_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Peptides modulate many processes of human physiology targeting ion channels, protein receptors, or enzymes. They represent valuable starting points for the development of new biologics against communicable and non-communicable disorders. However, turning native peptide ligands into druggable materials requires high selectivity and efficacy, predictable metabolism, and good safety profiles. Machine learning models have gradually emerged as cost-effective and time-saving solutions to predict and generate new proteins with optimal properties. In this chapter, we will discuss the evolution and applications of predictive modeling and generative modeling to discover and design safe and effective antimicrobial peptides. We will also present their current limitations and suggest future research directions, applicable to peptide drug design campaigns.
Collapse
Affiliation(s)
- Mariana D C Aguilera-Puga
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico
| | - Natalia L Cancelarich
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Fabien Plisson
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico.
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
48
|
Dehari D, Kumar DN, Chaudhuri A, Kumar A, Kumar R, Kumar D, Singh S, Nath G, Agrawal AK. Bacteriophage entrapped chitosan microgel for the treatment of biofilm-mediated polybacterial infection in burn wounds. Int J Biol Macromol 2023; 253:127247. [PMID: 37802451 DOI: 10.1016/j.ijbiomac.2023.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria are most commonly present in burn wound infections. Multidrug resistance (MDR) and biofilm formation make it difficult to treat these infections. Bacteriophages (BPs) are proven as an effective therapy against MDR as well as biofilm-associated wound infections. In the present work, a naturally inspired bacteriophage cocktail loaded chitosan microparticles-laden topical gel has been developed for the effective treatment of these infections. Bacteriophages against MDR S. aureus (BPSAФ1) and P. aeruginosa (BPPAФ1) were isolated and loaded separately and in combination into the chitosan microparticles (BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs), which were later incorporated into the SEPINEO™ P 600 gel (BPSAФ1-CHMPs-gel, BPPAФ1-CHMPs-gel, and MBP-CHMPs-gel). BPs were characterized for their morphology, lytic activity, burst size, and hemocompatibility, and BPs belongs to Caudoviricetes class. Furthermore, BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs had an average particle size of 1.19 ± 0.11, 1.42 ± 0.21, and 2.84 ± 0.28 μm, respectively, and expressed promising in vitro antibiofilm eradication potency. The ultrasound and photoacoustic imaging in infected burn wounds demonstrated improved wound healing reduced inflammation and increased oxygen saturation following treatment with BPs formulations. The obtained results suggested that the incorporation of the BPs in the MP-gel protected the BPs, sustained the BPs release, and improved the antibacterial activity.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Akshay Kumar
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Rajesh Kumar
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
49
|
Crisp AR, Short B, Rowan L, Ramage G, Rehman IU, Short RD, Williams C. Investigating the chemical pathway to the formation of a single biofilm using infrared spectroscopy. Biofilm 2023; 6:100141. [PMID: 37449091 PMCID: PMC10336410 DOI: 10.1016/j.bioflm.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diagnosing biofilm infections has remained a constant challenge for the last 50 years. Existing diagnostic methods struggle to identify the biofilm phenotype. Moreover, most methods of biofilm analysis destroy the biofilm making the resultant data interpretation difficult. In this study we introduce Fourier Transform Infra-Red (FTIR) spectroscopy as a label-free, non-destructive approach to monitoring biofilm progression. We have utilised FTIR in a novel application to evaluate the chemical composition of bacterial biofilms without disrupting the biofilm architecture. S. epidermidis (RP62A) was grown onto calcium fluoride slides for periods of 30 min-96 h, before semi-drying samples for analysis. We report the discovery of a chemical marker to distinguish between planktonic and biofilm samples. The appearance of new proteins in biofilm samples of varying maturity is exemplified in the spectroscopic data, highlighting the potential of FTIR for identifying the presence and developmental stage of a single biofilm.
Collapse
Affiliation(s)
- Amy R. Crisp
- Engineering Department, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| | - Bryn Short
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laurence Rowan
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Robert D. Short
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | | |
Collapse
|
50
|
Lin S, Li X, Zhang Y, Zhang W, Shu G, Li H, Xu F, Lin J, Fu H. Rhamnolipid Micelles Assist Azithromycin in Efficiently Disrupting Staphylococcus aureus Biofilms and Impeding Their Re-Formation. Int J Nanomedicine 2023; 18:7403-7415. [PMID: 38090363 PMCID: PMC10712337 DOI: 10.2147/ijn.s436971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Biofilm is highly resistant to antibiotics due to its heterogeneity and is implicated in over 80% of chronic infections; these refractory and relapse-prone infections pose a huge medical burden. Methods In this study, rhamnolipid (RHL), a biosurfactant with antibiofilm activity, was loaded with the antibiotic azithromycin (AZI) to construct a stable nanomicelle (AZI@RHL) that promotes Staphylococcus aureus (S. aureus) biofilm disruption. Results AZI@RHL micelles made a destruction in biofilms. The biofilm biomasses were reduced significantly by 48.2% (P<0.05), and the main components polysaccharides and proteins were reduced by 47.5% and 36.8%, respectively. These decreases were about 3.1 (15.9%), 7.3 (6.5%), and 1.9 (19.5%) times higher compared with those reported for free AZI. The disruption of biofilm structure was observed under a confocal microscope with fluorescent labeling, and 48.2% of the cells in the biofilm were killed. By contrast, the clearance rates of cells were only 20% and 17% when treated alone with blank micelles or free AZI. Biofilm formation was inhibited up to 92% in the AZI@RHL group due to effects on cell auto-aggregation and eDNA release. The rates for the other groups were significantly lower, with only 27.7% for the RHL group and 12% for the AZI group (P<0.05). The low cell survival and great formation inhibition could reduce biofilm recolonization and re-formation. Conclusion The antibiofilm efficacy of rhamnolipid was improved through micellar nanoparticle effects when loading azithromycin. AZI@RHL provides a one-step solution that covers biofilm disruption, bacteria inactivation, recolonization avoidance, and biofilm re-formation inhibition.
Collapse
Affiliation(s)
- Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| | - Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People’s Republic of China
| |
Collapse
|