1
|
Castañeda S, Tomiak J, Andersen LO, Acosta CP, Vasquez-A LR, Stensvold CR, Ramírez JD. Impact of Blastocystis carriage and colonization intensity on gut microbiota composition in a non-westernized rural population from Colombia. PLoS Negl Trop Dis 2025; 19:e0013111. [PMID: 40354411 DOI: 10.1371/journal.pntd.0013111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND The role of Blastocystis, a common intestinal parasitic protist of humans and other animals, in human health and disease remains elusive. Recent studies suggest a connection between Blastocystis colonization, healthier lifestyles, and high-diversity gut microbiota. Nevertheless, studies concerning the relationship between Blastocystis colonization, its intensity, and gut microbiota composition -involving both bacterial and eukaryotic communities- remain limited. METHODS This study examines the impact of Blastocystis carriage and colonization intensity on gut microbiota composition in a rural community in Colombia. A total of 88 human samples were collected from the rural population of Las Guacas village, located in the Cauca department in southwest Colombia. We utilized 16S and 18S rDNA sequencing to analyze both bacterial and eukaryotic microbiota, comparing Blastocystis-positive and -negative individuals, as well as groups with varying Blastocystis colonization intensity (low, medium, high), to identify distinct microbiota profiles and differentially abundant taxa linked to each condition. RESULTS The analysis revealed significant differences between Blastocystis-positive and -negative individuals. In terms of bacterial composition and structure, Blastocystis-positive individuals exhibited distinct microbiota profiles, as shown by beta diversity analysis. Taxa associated with colonization included Bacteroides, Prevotella, Oscillibacter, Faecalibacterium, and Alistipes. Higher Blastocystis colonization intensity was associated with an increased abundance of taxa such as Alistipes and Lachnospira, while lower intensities correlated with beneficial bacteria such as Akkermansia. Regarding eukaryotic composition, beta diversity analysis revealed distinct profiles associated with Blastocystis colonization. Differentially abundant taxa, including Entamoeba coli, were more prevalent in Blastocystis-positive individuals, while Blastocystis-negative individuals exhibited a higher abundance of opportunistic fungi, such as Candida albicans. Machine learning models, including random forest classifiers, supported these findings, identifying Faecalibacterium and Bacteroides as predictors of Blastocystis colonization. CONCLUSIONS These findings suggest that Blastocystis may modulate gut microbiota, contributing to microbial balance providing new insights into the ecological implications of Blastocystis in rural populations.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Jeff Tomiak
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental Engineering, Stavanger, Norway
| | - Lee O'Brien Andersen
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Claudia Patricia Acosta
- Grupo de investigación en Genética Humana, Departamento de Ciencias Fisiológicas, Facultad de Ciencias de la Salud, Universidad del Cauca
| | - Luis Reinel Vasquez-A
- Centro de Estudios en Microbiología y Parasitología, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia
| | - Christen Rune Stensvold
- Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
| |
Collapse
|
2
|
Díaz S, Eisfeld AJ, Palma-Cuero M, Dinguirard N, Owens LA, Ciuoderis KA, Pérez-Restrepo LS, Chan JD, Goldberg TL, Hite JL, Hernandez-Ortiz JP, Kawaoka Y, Zamanian M, Osorio JE. Gut Microbiota and Parasite Dynamics in an Amazonian Community Undergoing Urbanization in Colombia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.16.25325921. [PMID: 40321249 PMCID: PMC12047915 DOI: 10.1101/2025.04.16.25325921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Studies on human gut microbiota have recently highlighted a significant decline in bacterial diversity associated with urbanization, driven by shifts toward processed diets, increased antibiotic usage, and improved sanitation practices. This phenomenon has been largely overlooked in the Colombian Amazon, despite rapid urbanization in the region. In this study, we investigate the composition of gut bacterial microbiota and intestinal protozoa and soil-transmitted helminths (STHs) in both urban and rural areas of Leticia, which is located in the southern Colombian Amazon. Despite their geographic proximity, the urban population is predominantly non-indigenous, while indigenous communities mostly inhabit the rural area, resulting in notable lifestyle differences between the two settings. Our analyses reveal a reduction in bacterial families linked to non-processed diets, such as Lachnospiraceae, Spirochaetaceae, and Succinivibrionaceae, in the urban environment compared to their rural counterparts. Interestingly, Prevotellaceae, typically associated with non-processed food consumption, shows a significantly higher abundance in urban Leticia. STH infections were primarily detected in rural Leticia, while intestinal protozoa were ubiquitous in both rural and urban areas. Both types of parasites were associated with higher gut bacterial richness and diversity. Additionally, microbial metabolic prediction analysis indicated differences in pathways related to unsaturated fatty acid production and aerobic respiration between rural and urban bacterial microbiomes. This finding suggests a tendency towards dysbiosis in the urban microbiota, possibly increasing susceptibility to non-communicable chronic diseases. These findings provide new insights into the impact of urbanization on gut microbiota dynamics in the Amazonian context and underscore the need for further research to elucidate any associated health outcomes.
Collapse
Affiliation(s)
- Sebastián Díaz
- UW-GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública Departamental del Amazonas, Leticia, Colombia
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Leah A. Owens
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Karl A. Ciuoderis
- UW-GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
- Corporacion Corpotropica, Villavicencio, Colombia
| | | | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica L. Hite
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Juan Pablo Hernandez-Ortiz
- UW-GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
- Faculty of Life Sciences, Universidad Nacional de Colombia, Medellín, Colombia
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jorge E. Osorio
- UW-GHI One Health Colombia, Universidad Nacional de Colombia, Medellín, Colombia
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Zhang Y, Li Z, Wang X, Gao K, Tian L, Ayanniyi OO, Xu Q, Yang C. Epidemiology, molecular characterization, and risk factors of Acanthamoeba spp., Blastocystis spp., and Cyclospora spp. infections in snakes in China. Vet Parasitol 2025; 335:110420. [PMID: 39970835 DOI: 10.1016/j.vetpar.2025.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Snakes are widely farmed in China for medicinal purposes and as pets worldwide. Acanthamoeba spp., Blastocystis spp., and Cyclospora spp. are significant zoonotic pathogens frequently discovered in various animals, causing diseases with global public health implications. However, their prevalence and zoonotic potential in snakes remain poorly understood. In this study, 812 snake faecal samples were collected across 28 China provinces. The partial small subunit (SSU) rRNA gene was amplified using polymerase chain reaction (PCR) to assess evolutionary relationships and genetic characterization. Detection rates for Acanthamoeba spp., Blastocystis spp., and Cyclospora spp. were 6.40 %, 3.33 %, and 2.71 %, respectively. Sequencing and phylogenetic analysis revealed that Cyclospora isolates were closely related to those found in humans and cattle. Subtyping for Blastocystis species identified two zoonotic subtypes (ST4, ST6) and four host-specific subtypes (ST10, ST15, ST21, ST42). Multiple Acanthamoeba genotypes were detected, including T4, T11, and T13. Furthermore, species, age, and living conditions are key risk factors. This study provides valuable insights into these infections in snakes and underscores the need for proper hygiene and One Health measures to reduce zoonotic transmission and environmental contamination.
Collapse
Affiliation(s)
- Yilei Zhang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Zhouchun Li
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Xinyuan Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Kaili Gao
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Lijie Tian
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | | | - Qianming Xu
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China.
| | - Congshan Yang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province 230036, China.
| |
Collapse
|
4
|
Chege M, Ferretti P, Webb S, Macharia RW, Obiero G, Kamau J, Alberts SC, Tung J, Akinyi MY, Archie EA. Eukaryotic composition across seasons and social groups in the gut microbiota of wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628920. [PMID: 39763902 PMCID: PMC11702614 DOI: 10.1101/2024.12.17.628920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Background Animals coexist with complex microbiota, including bacteria, viruses, and eukaryotes (e.g., fungi, protists, and helminths). While the composition of bacterial and viral components of animal microbiota are increasingly well understood, eukaryotic composition remains neglected. Here we characterized eukaryotic diversity in the microbiomes in wild baboons and tested the degree to which eukaryotic community composition was predicted by host social group membership, sex, age, and season of sample collection. Results We analyzed a total of 75 fecal samples collected between 2012 and 2014 from 73 wild baboons in the Amboseli ecosystem in Kenya. DNA from these samples was subjected to shotgun metagenomic sequencing, revealing members of the kingdoms Protista, Chromista, and Fungi in 90.7%, 46.7%, and 20.3% of samples, respectively. Social group membership explained 11.2% of the global diversity in gut eukaryotic species composition, but we did not detect statistically significant effect of season, host age, and host sex. Across samples, the most prevalent protists were Entamoeba coli (74.66% of samples), Enteromonas hominis (53.33% of samples), and Blastocystis subtype 3 (38.66% of samples), while the most prevalent fungi included Pichia manshurica (14.66% of samples), and Ogataea naganishii (6.66% of samples). Conclusions Protista, Chromista, and Fungi are common members of the gut microbiome of wild baboons. More work on eukaryotic members of primate gut microbiota is essential for primate health monitoring and management strategies.
Collapse
Affiliation(s)
- Mary Chege
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Pamela Ferretti
- Department of Medicine, Genetic Medicine Section, University of Chicago, Chicago, USA
| | - Shasta Webb
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Joseph Kamau
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Susan C. Alberts
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Mercy Y. Akinyi
- One Health Centre, Kenya Institute of Primate Research, Nairobi, Kenya
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Antonetti L, Berrilli F, Di Cristanziano V, Farowski F, Daeumer M, Eberhardt KA, Santoro M, Federici M, D'Alfonso R. Investigation of gut microbiota composition in humans carrying blastocystis subtypes 1 and 2 and Entamoeba hartmanni. Gut Pathog 2024; 16:72. [PMID: 39614306 DOI: 10.1186/s13099-024-00661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024] Open
Abstract
The composition of human gut microbiota is dominated by bacteria which have been extensively studied. The role of intestinal eukaryote microorganisms like Blastocystis, however, remains under investigation. Moreover, the potential impact on gut health related to Blastocystis presence was primarily investigated in symptomatic individuals mainly from industrialized countries, and appears to be mostly beneficial to the host microbiota. Data from surveys conducted in underdeveloped countries with higher prevalence and from asymptomatic individuals could therefore be valuable. The aim of this preliminary study was to analyze the composition of the gut microbiota in relation to the protozoa Blastocystis ST1 and ST2 and Entamoeba hartmanni carriage in asymptomatic subjects living in a semi-urban area of Côte d'Ivoire to add data into the ongoing debate on the role of Blastocystis in host health. The amplification of the V3 and V4 regions of bacterial 16S rDNA genes was performed to obtain the gut microbiota composition, and differential analyses on alpha and beta diversity were performed from the phylum to genus taxonomic level. The analysis revealed that individuals positive for both protozoa exhibited higher alpha and beta diversity compared to those who tested negative. Additionally, their bacterial composition showed a reduction in Bacteroides and an increase in Prevotella 9. Relative abundances of some OTUs, particularly Faecalibacterium, observed in individuals who tested positive for protozoa, were correlated with a good state of health of the gut microbiota. Blastocystis ST1 and ST2 associated with E. hartmanni thus appeared to be related to a state of intestinal eubiosis.
Collapse
Affiliation(s)
- Lorenzo Antonetti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Fedja Farowski
- Department I of Internal Medicine , University Hospital of Cologne, 50937, Cologne, Germany
- Department of Internal Medicine II, Infectious Diseases, Goethe University, University Hospital Frankfurt, 60596, Frankfurt am Main, Germany
| | | | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20539, Hamburg, Germany
| | - Maristella Santoro
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Rossella D'Alfonso
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
6
|
Li L, Cai F, Guo C, Liu Z, Qin J, Huang J. Gut microbiome and NAFLD: impact and therapeutic potential. Front Microbiol 2024; 15:1500453. [PMID: 39664063 PMCID: PMC11632136 DOI: 10.3389/fmicb.2024.1500453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) affects approximately 32.4% of the global population and poses a significant health concern. Emerging evidence underscores the pivotal role of the gut microbiota-including bacteria, viruses, fungi, and parasites-in the development and progression of NAFLD. Dysbiosis among gut bacteria alters key biological pathways that contribute to liver fat accumulation and inflammation. The gut virome, comprising bacteriophages and eukaryotic viruses, significantly shapes microbial community dynamics and impacts host metabolism through complex interactions. Similarly, gut fungi maintain a symbiotic relationship with bacteria; the relationship between gut fungi and bacteria is crucial for overall host health, with certain fungal species such as Candida in NAFLD patients showing detrimental associations with metabolic markers and liver function. Additionally, the "hygiene hypothesis" suggests that reduced exposure to gut parasites may affect immune regulation and metabolic processes, potentially influencing conditions like obesity and insulin resistance. This review synthesizes current knowledge on the intricate interactions within the gut microbiota and their associations with NAFLD. We highlight the therapeutic potential of targeting these microbial communities through interventions such as probiotics, prebiotics, and fecal microbiota transplantation. Addressing the complexities of NAFLD requires comprehensive strategies that consider the multifaceted roles of gut microorganisms in disease pathology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Daisley BA, Allen‐Vercoe E. Microbes as medicine. Ann N Y Acad Sci 2024; 1541:63-82. [PMID: 39392836 PMCID: PMC11580781 DOI: 10.1111/nyas.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Over the last two decades, advancements in sequencing technologies have significantly deepened our understanding of the human microbiome's complexity, leading to increased concerns about the detrimental effects of antibiotics on these intricate microbial ecosystems. Concurrently, the rise in antimicrobial resistance has intensified the focus on how beneficial microbes can be harnessed to treat diseases and improve health and offer potentially promising alternatives to traditional antibiotic treatments. Here, we provide a comprehensive overview of both established and emerging microbe-centric therapies, from probiotics to advanced microbial ecosystem therapeutics, examine the sophisticated ways in which microbes are used medicinally, and consider their impacts on microbiome homeostasis and health outcomes through a microbial ecology lens. In addition, we explore the concept of rewilding the human microbiome by reintroducing "missing microbes" from nonindustrialized societies and personalizing microbiome modulation to fit individual microbial profiles-highlighting several promising directions for future research. Ultimately, the advancements in sequencing technologies combined with innovative microbial therapies and personalized approaches herald a new era in medicine poised to address antibiotic resistance and improve health outcomes through targeted microbiome management.
Collapse
Affiliation(s)
- Brendan A. Daisley
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Emma Allen‐Vercoe
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
8
|
Partida-Rodríguez O, Brown EM, Woodward SE, Cirstea M, Reynolds LA, Petersen C, Vogt SL, Peña-Díaz J, Thorson L, Arrieta MC, Hernández EG, Rojas-Velázquez L, Moran P, González Rivas E, Serrano-Vázquez A, Pérez-Juárez H, Torres J, Ximénez C, Finlay BB. Fecal microbiota transplantation from protozoa-exposed donors downregulates immune response in a germ-free mouse model, its role in immune response and physiology of the intestine. PLoS One 2024; 19:e0312775. [PMID: 39466773 PMCID: PMC11515975 DOI: 10.1371/journal.pone.0312775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Intestinal parasites are part of the intestinal ecosystem and have been shown to establish close interactions with the intestinal microbiota. However, little is known about the influence of intestinal protozoa on the regulation of the immune response. In this study, we analyzed the regulation of the immune response of germ-free mice transplanted with fecal microbiota (FMT) from individuals with multiple parasitic protozoans (P) and non-parasitized individuals (NP). We determined the production of intestinal cytokines, the lymphocyte populations in both the colon and the spleen, and the genetic expression of markers of intestinal epithelial integrity. We observed a general downregulation of the intestinal immune response in mice receiving FMT-P. We found significantly lower intestinal production of the cytokines IL-6, TNF, IFN-γ, MCP-1, IL-10, and IL-12 in the FMT-P. Furthermore, a significant decrease in the proportion of CD3+, CD4+, and Foxp3+ T regulatory cells (Treg) was observed in both, the colon and spleen with FMT-P in contrast to FMT-NP. We also found that in FMT-P mice there was a significant decrease in tjp1 expression in all three regions of the small intestine; ocln in the ileum; reg3γ in the duodenum and relmβ in both the duodenum and ileum. We also found an increase in colonic mucus layer thickness in mice colonized with FMT-P in contrast with FMT-NP. Finally, our results suggest that gut protozoa, such as Blastocystis hominis, Entamoeba coli, Endolimax nana, Entamoeba histolytica/E. dispar, Iodamoeba bütschlii, and Chilomastix mesnili consortia affect the immunoinflammatory state and induce functional changes in the intestine via the gut microbiota. Likewise, it allows us to establish an FMT model in germ-free mice as a viable alternative to explore the effects that exposure to intestinal parasites could have on the immune response in humans.
Collapse
Affiliation(s)
- Oswaldo Partida-Rodríguez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Eric M. Brown
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Sarah E. Woodward
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Lisa A. Reynolds
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Microbiology, Faculty of Science, University of Victoria, Victoria, Canada
| | - Charisse Petersen
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Stefanie L. Vogt
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Jorge Peña-Díaz
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Lisa Thorson
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Marie-Claire Arrieta
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Eric G. Hernández
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Patricia Moran
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Enrique González Rivas
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Instituto Mexicano del Seguro Social (IMSS), Mexico, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - B. B. Finlay
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Gomes-Gonçalves S, Rodrigues D, Santos N, Gantois N, Chabé M, Viscogliosi E, Mesquita JR. Molecular Screening and Characterization of Enteric Protozoan Parasites and Microsporidia in Wild Ducks from Portugal. Animals (Basel) 2024; 14:2956. [PMID: 39457886 PMCID: PMC11503927 DOI: 10.3390/ani14202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Enteric parasites pose significant threats to both human and veterinary health, ranking among the top causes of mortality worldwide. Wild migratory waterfowl, such as ducks, may serve as hosts and vectors for these parasites, facilitating their transmission across ecosystems. This study conducted a molecular screening of enteric parasites in three species of wild ducks of the genus Anas (A. acuta, A. platyrhynchos and A. crecca) from Portugal, targeting Blastocystis sp., Balantioides coli, Cryptosporidium spp., Encephalitozoon spp., and Enterocytozoon bieneusi. Fecal samples from 71 ducks were analyzed using PCR and sequencing techniques. The results revealed a 2.82% occurrence of Blastocystis sp. subtype 7 and Cryptosporidium baileyi, marking the first molecular detection of these pathogens in wild ducks in Portugal. While previous studies have documented these parasites in Anas spp. in other regions, this study contributes novel data specific to the Portuguese context. No evidence of Balantioides coli, Encephalitozoon spp. or Enterocytozoon bieneusi was found. These findings highlight the potential role of migratory ducks as vectors for zoonotic protozoa, emphasizing the need for enhanced surveillance of avian populations to mitigate cross-species transmission risks. Further research is warranted to understand the global public health implications associated with migratory waterfowl.
Collapse
Affiliation(s)
- Sara Gomes-Gonçalves
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
| | - David Rodrigues
- Coimbra College of Agriculture, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1649-004 Lisboa, Portugal
| | - Nuno Santos
- Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université Lille, F-59000Lille, France (M.C.); (E.V.)
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université Lille, F-59000Lille, France (M.C.); (E.V.)
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université Lille, F-59000Lille, France (M.C.); (E.V.)
| | - João R. Mesquita
- School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
10
|
Piperni E, Nguyen LH, Manghi P, Kim H, Pasolli E, Andreu-Sánchez S, Arrè A, Bermingham KM, Blanco-Míguez A, Manara S, Valles-Colomer M, Bakker E, Busonero F, Davies R, Fiorillo E, Giordano F, Hadjigeorgiou G, Leeming ER, Lobina M, Masala M, Maschio A, McIver LJ, Pala M, Pitzalis M, Wolf J, Fu J, Zhernakova A, Cacciò SM, Cucca F, Berry SE, Ercolini D, Chan AT, Huttenhower C, Spector TD, Segata N, Asnicar F. Intestinal Blastocystis is linked to healthier diets and more favorable cardiometabolic outcomes in 56,989 individuals from 32 countries. Cell 2024; 187:4554-4570.e18. [PMID: 38981480 DOI: 10.1016/j.cell.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.
Collapse
Affiliation(s)
- Elisa Piperni
- Department CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Hanseul Kim
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alberto Arrè
- Department CIBIO, University of Trento, Trento, Italy; Zoe Ltd, London, UK
| | - Kate M Bermingham
- Zoe Ltd, London, UK; Department of Nutritional Sciences, King's College London, London, UK
| | | | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | | | - Emily R Leeming
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Monia Lobina
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Marco Masala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Mauro Pala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Maristella Pitzalis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy; Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tim D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| | | |
Collapse
|
11
|
Liu J, Jiang X, Lei W, Xi Y, Zhang Q, Cai H, Ma X, Liu Y, Wang W, Liu N, Zhang X, Ma W, Zhao C, Ni B, Zhang W, Wang Y. Differences between the intestinal microbial communities of healthy dogs from plateau and those of plateau dogs infected with Echinococcus. Virol J 2024; 21:116. [PMID: 38783310 PMCID: PMC11112841 DOI: 10.1186/s12985-024-02364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE Cystic echinococcosis (CE) represents a profoundly perilous zoonotic disease. The advent of viral macrogenomics has facilitated the exploration of hitherto uncharted viral territories. In the scope of this investigation, our objective is to scrutinize disparities in the intestinal microbiotic ecosystems of canines dwelling in elevated terrains and those afflicted by Echinococcus infection, employing the tool of viral macrogenomics. METHODS In this study, we collected a comprehensive total of 1,970 fecal samples from plateau dogs infected with Echinococcus, as well as healthy control plateau dogs from the Yushu and Guoluo regions in the highland terrain of China. These samples were subjected to viral macrogenomic analysis to investigate the viral community inhabiting the canine gastrointestinal tract. RESULTS Our meticulous analysis led to the identification of 136 viral genomic sequences, encompassing eight distinct viral families. CONCLUSION The outcomes of this study hold the potential to enhance our comprehension of the intricate interplay between hosts, parasites, and viral communities within the highland canine gut ecosystem. Through the examination of phage presence, it may aid in early detection or assessment of infection severity, providing valuable insights into Echinococcus infection and offering prospects for potential treatment strategies.
Collapse
Affiliation(s)
- Jia Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wen Lei
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qing Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Huixia Cai
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiao Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Yufang Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Wei Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Na Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Xiongying Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Wanli Ma
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Cunzhe Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China
| | - Bin Ni
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Yongshun Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, China.
| |
Collapse
|
12
|
Menezes SA, Tasca T. Extracellular vesicles in parasitic diseases - from pathogenesis to future diagnostic tools. Microbes Infect 2024; 26:105310. [PMID: 38316376 DOI: 10.1016/j.micinf.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Parasitic diseases are still a major public health problem especially among individuals of low socioeconomic status in underdeveloped countries. In recent years it has been demonstrated that parasites can release extracellular vesicles that participate in the host-parasite communication, immune evasion, and in governing processes associated with host infection. Extracellular vesicles are membrane-bound structures released into the extracellular space that can carry several types of biomolecules, including proteins, lipids, nucleic acids, and metabolites, which directly impact the target cells. Extracellular vesicles have attracted wide attention due to their relevance in host-parasite communication and for their potential value in applications such as in the diagnostic biomarker discovery. This review of the literature aimed to join the current knowledge on the role of extracellular vesicles in host-parasite interaction and summarize its molecular content, providing information for the acquisition of new tools that can be used in the diagnosis of parasitic diseases. These findings shed light to the potential of extracellular vesicle cargo derived from protozoan parasites as novel diagnostic tools.
Collapse
Affiliation(s)
- Saulo Almeida Menezes
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| | - Tiana Tasca
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil.
| |
Collapse
|
13
|
d'Humières C, Delavy M, Alla L, Ichou F, Gauliard E, Ghozlane A, Levenez F, Galleron N, Quinquis B, Pons N, Mullaert J, Bridier-Nahmias A, Condamine B, Touchon M, Rainteau D, Lamazière A, Lesnik P, Ponnaiah M, Lhomme M, Sertour N, Devente S, Docquier JD, Bougnoux ME, Tenaillon O, Magnan M, Ruppé E, Grall N, Duval X, Ehrlich D, Mentré F, Denamur E, Rocha EPC, Le Chatelier E, Burdet C. Perturbation and resilience of the gut microbiome up to 3 months after β-lactams exposure in healthy volunteers suggest an important role of microbial β-lactamases. MICROBIOME 2024; 12:50. [PMID: 38468305 DOI: 10.1186/s40168-023-01746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/20/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the β-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience. RESULTS While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of β-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the β-lactamase activity of the microbiota. The level of β-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools. CONCLUSIONS In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous β-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.
Collapse
Affiliation(s)
- Camille d'Humières
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - Margot Delavy
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
| | - Laurie Alla
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Farid Ichou
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Emilie Gauliard
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Amine Ghozlane
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, F-75015, France
| | - Florence Levenez
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Nathalie Galleron
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Benoit Quinquis
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Nicolas Pons
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
| | - Jimmy Mullaert
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France
| | | | | | - Marie Touchon
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - Dominique Rainteau
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Antonin Lamazière
- Sorbonne Université, INSERM U938, Centre de Recherche Saint-Antoine, Paris, F-75012, France
| | - Philippe Lesnik
- INSERM UMR-S 1166, Institute of Cardiometabolism and Nutrition, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, F-75013, France
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Maharajah Ponnaiah
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Marie Lhomme
- ICANomics, Foundation of Innovation in Cardiometabolism and Nutrition (IHU ICAN), Paris, F-75013, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
| | - Savannah Devente
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, I-53100, Italy
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie Et Pathogénicité Fongiques, Paris, F-75015, France
- AP-HP, Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Paris, F-75015, France
| | | | - Mélanie Magnan
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
| | - Etienne Ruppé
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, F-75018, France
| | - Nathalie Grall
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Bactériologie, Hôpital Bichat, Paris, F-75018, France
| | - Xavier Duval
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Centre d'Investigation Clinique, INSERM CIC 1425, Hôpital Bichat, Paris, F-75018, France
| | - Dusko Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, F-78350, France
- University College London, Institute for Neurology, London, UK
| | - France Mentré
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France
| | - Erick Denamur
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, F-75018, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | | | - Charles Burdet
- Université Paris Cité, IAME, INSERM, Paris, F-75018, France.
- AP-HP, Département d'Epidemiologie, Biostatistique and Recherche Clinique, Hôpital Bichat, Paris, F-75018, France.
| |
Collapse
|
14
|
Candeliere F, Sola L, Raimondi S, Rossi M, Amaretti A. Good and bad dispositions between archaea and bacteria in the human gut: New insights from metagenomic survey and co-occurrence analysis. Synth Syst Biotechnol 2024; 9:88-98. [PMID: 38292760 PMCID: PMC10824687 DOI: 10.1016/j.synbio.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Archaea are an understudied component of the human microbiome. In this study, the gut archaeome and bacteriome of 60 healthy adults from different region were analyzed by whole-genome shotgun sequencing. Archaea were ubiquitously found in a wide range of abundances, reaching up to 7.2 %. The dominant archaeal phylum was Methanobacteriota, specifically the family Methanobacteriaceae, encompassing more than 50 % of Archaea in 50 samples. The previously underestimated Thermoplasmatota, mostly composed of Methanomassiliicoccaceae, dominated in 10 subjects (>50 %) and was present in all others except one. Halobacteriota, the sole other archaeal phylum, occurred in negligible concentration, except for two samples (4.6-4.8 %). This finding confirmed that the human gut archaeome is primarily composed of methanogenic organisms and among the known methanogenic pathway: i) hydrogenotrophic reduction of CO2 is the predominant, being the genus Methanobrevibacter and the species Methanobrevibacter smithii the most abundant in the majority of the samples; ii) the second pathway, that involved Methanomassiliicoccales, was the hydrogenotrophic reduction of methyl-compounds; iii) dismutation of acetate or methyl-compounds seemed to be absent. Co-occurrence analysis allowed to unravel correlations between Archaea and Bacteria that shapes the overall structure of the microbial community, allowing to depict a clearer picture of the human gut archaeome.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
15
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
16
|
Geng X, Liu Y, Xu W, Li G, Xue B, Feng Y, Tang S, Wei W, Yuan H. Eukaryotes may play an important ecological role in the gut microbiome of Graves' disease. Front Immunol 2024; 15:1334158. [PMID: 38455050 PMCID: PMC10917987 DOI: 10.3389/fimmu.2024.1334158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
The prevalence of autoimmune diseases worldwide has risen rapidly over the past few decades. Increasing evidence has linked gut dysbiosis to the onset of various autoimmune diseases. Thanks to the significant advancements in high-throughput sequencing technology, the number of gut microbiome studies has increased. However, they have primarily focused on bacteria, so our understanding of the role and significance of eukaryotic microbes in the human gut microbial ecosystem remains quite limited. Here, we selected Graves' disease (GD) as an autoimmune disease model and investigated the gut multi-kingdom (bacteria, fungi, and protists) microbial communities from the health control, diseased, and medication-treated recovered patients. The results showed that physiological changes in GD increased homogenizing dispersal processes for bacterial community assembly and increased homogeneous selection processes for eukaryotic community assembly. The recovered patients vs. healthy controls had similar bacterial and protistan, but not fungal, community assembly processes. Additionally, eukaryotes (fungi and protists) may play a more significant role in gut ecosystem functions than bacteria. Overall, this study gives brief insights into the potential contributions of eukaryotes to gut and immune homeostasis in humans and their potential influence in relation to therapeutic interventions.
Collapse
Affiliation(s)
- Xiwen Geng
- Department of the Clinical Research Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yalei Liu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbo Xu
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gefei Li
- Department of Blood Transfusion, Henan Provincial People's Hospital, Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Xue
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Feng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
McGuinness AJ, Loughman A, Foster JA, Jacka F. Mood Disorders: The Gut Bacteriome and Beyond. Biol Psychiatry 2024; 95:319-328. [PMID: 37661007 DOI: 10.1016/j.biopsych.2023.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Knowledge of the microbiome-gut-brain axis has revolutionized the field of psychiatry. It is now well recognized that the gut bacteriome is associated with, and likely influences, the pathogenesis of mental disorders, including major depressive disorder and bipolar disorder. However, while substantial advances in the field of microbiome science have been made, we have likely only scratched the surface in our understanding of how these ecosystems might contribute to mental disorder pathophysiology. Beyond the gut bacteriome, research into lesser explored components of the gut microbiome, including the gut virome, mycobiome, archaeome, and parasitome, is increasingly suggesting relevance in psychiatry. The contribution of microbiomes beyond the gut, including the oral, lung, and small intestinal microbiomes, to human health and pathology should not be overlooked. Increasing both our awareness and understanding of these less traversed fields of research are critical to improving the therapeutic benefits of treatments targeting the gut microbiome, including fecal microbiome transplantation, postbiotics and biogenics, and dietary intervention. Interdisciplinary collaborations integrating systems biology approaches are required to fully elucidate how these different microbial components and distinct microbial niches interact with each other and their human hosts. Excitingly, we may be at the start of the next microbiome revolution and thus one step closer to informing the field of precision psychiatry to improve outcomes for those living with mental illness.
Collapse
Affiliation(s)
- Amelia J McGuinness
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Amy Loughman
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Felice Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
18
|
Baquero F, Rodríguez-Beltrán J, Coque TM, del Campo R. Boosting Fitness Costs Associated with Antibiotic Resistance in the Gut: On the Way to Biorestoration of Susceptible Populations. Biomolecules 2024; 14:76. [PMID: 38254676 PMCID: PMC10812938 DOI: 10.3390/biom14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The acquisition and expression of antibiotic resistance implies changes in bacterial cell physiology, imposing fitness costs. Many human opportunistic pathogenic bacteria, such as those causing urinary tract or bloodstream infections, colonize the gut. In this opinionated review, we will examine the various types of stress that these bacteria might suffer during their intestinal stay. These stresses, and their compensatory responses, probably have a fitness cost, which might be additive to the cost of expressing antibiotic resistance. Such an effect could result in a disadvantage relative to antibiotic susceptible populations that might replace the resistant ones. The opinion proposed in this paper is that the effect of these combinations of fitness costs should be tested in antibiotic resistant bacteria with susceptible ones as controls. This testing might provide opportunities to increase the bacterial gut stress boosting physiological biomolecules or using dietary interventions. This approach to reduce the burden of antibiotic-resistant populations certainly must be answered empirically. In the end, the battle against antibiotic resistance should be won by antibiotic-susceptible organisms. Let us help them prevail.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Rosa del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| |
Collapse
|
19
|
Zhao W, Bu X, Zhou W, Zeng Q, Qin T, Wu S, Li W, Zou H, Li M, Wang G. Interactions between Balantidium ctenopharyngodoni and microbiota reveal its low pathogenicity in the hindgut of grass carp. BMC Microbiol 2024; 24:7. [PMID: 38172646 PMCID: PMC10762984 DOI: 10.1186/s12866-023-03154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hosts, parasites, and microbiota interact with each other, forming a complex ecosystem. Alterations to the microbial structure have been observed in various enteric parasitic infections (e.g. parasitic protists and helminths). Interestingly, some parasites are associated with healthy gut microbiota linked to the intestinal eubiosis state. So the changes in bacteria and metabolites induced by parasite infection may offer benefits to the host, including protection from other parasitesand promotion of intestinal health. The only ciliate known to inhabit the hindgut of grass carp, Balantidium ctenopharyngodoni, does not cause obvious damage to the intestinal mucosa. To date, its impact on intestinal microbiota composition remains unknown. In this study, we investigated the microbial composition in the hindgut of grass carp infected with B. ctenopharyngodoni, as well as the changes of metabolites in intestinal contents resulting from infection. RESULTS Colonization by B. ctenopharyngodoni was associated with an increase in bacterial diversity, a higher relative abundance of Clostridium, and a lower abundance of Enterobacteriaceae. The family Aeromonadaceae and the genus Citrobacter had significantly lower relative abundance in infected fish. Additionally, grass carp infected with B. ctenopharyngodoni exhibited a significant increase in creatine content in the hindgut. This suggested that the presence of B. ctenopharyngodoni may improve intestinal health through changes in microbiota and metabolites. CONCLUSIONS We found that grass carp infected with B. ctenopharyngodoni exhibit a healthy microbiota with an increased bacterial diversity. The results suggested that B. ctenopharyngodoni reshaped the composition of hindgut microbiota similarly to other protists with low pathogenicity. The shifts in the microbiota and metabolites during the colonization and proliferation of B. ctenopharyngodoni indicated that it may provide positive effects in the hindgut of grass carp.
Collapse
Affiliation(s)
- Weishan Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xialian Bu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weitian Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingwen Zeng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Qin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shangong Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenxiang Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hong Zou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Guitang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
20
|
Evrensel A. Probiotics and Fecal Microbiota Transplantation in Major Depression: Doxa or Episteme? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:67-83. [PMID: 39261424 DOI: 10.1007/978-981-97-4402-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In the human body, eukaryotic somatic cells and prokaryotic microorganisms live together. In this state, the body can be viewed as a "superorganism." Symbiotic life with commensal microorganisms can be observed in almost every part of the body. Intestinal microbiota plays an important role in health and disease, and in shaping and regulating neuronal functions from the intrauterine period to the end of life. Microbiota-based treatment opportunities are becoming more evident in both understanding the etiopathogenesis and treatment of neuropsychiatric disorders, especially depression. Antidepressant drugs, which are the first choice in the treatment of depression, also have antimicrobial and immunomodulatory mechanisms of action. From these perspectives, direct probiotics and fecal microbiota transplantation are treatment options to modulate microbiota composition. There are few preclinical and clinical studies on the effectiveness and safety of these applications in depression. The information obtained from these studies may still be at a doxa level. However, the probability that this information will become episteme in the future seems to be increasing.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey.
- NP Brain Hospital, Istanbul, Turkey.
| |
Collapse
|
21
|
Dapa T, Xavier KB. Effect of diet on the evolution of gut commensal bacteria. Gut Microbes 2024; 16:2369337. [PMID: 38904092 PMCID: PMC11195494 DOI: 10.1080/19490976.2024.2369337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The gut microbiota, comprising trillions of diverse microorganisms inhabiting the intestines of animals, forms a complex and indispensable ecosystem with profound implications for the host's well-being. Its functions include contributing to developing the host's immune response, aiding in nutrient digestion, synthesizing essential compounds, acting as a barrier against pathogen invasion, and influencing the development or regression of various pathologies. The dietary habits of the host directly impact this intricate community of gut microbes. Diet influences the composition and function of the gut microbiota through alterations in gene expression, enzymatic activity, and metabolome. While the impact of diet on gut ecology is well-established, the investigation into the relationship between dietary consumption and microbial genotypic diversity has been limited. This review provides an overview of the relationship between diet and gut microbiota, emphasizing the impact of host nutrition on both short- and long-term evolution in the mammalian gut. It is evident that the evolution of the gut microbiota occurs even on short timescales through the acquisition of novel mutations, within the gut bacteria of individual hosts. Consequently, we discuss the importance of considering alterations in bacterial genomic diversity when analyzing microbiota-dependent effects on host physiology. Future investigations into the various microbiota-related traits shall greatly benefit from a deeper understanding of commensal bacterial evolutionary adaptation.
Collapse
Affiliation(s)
- Tanja Dapa
- Andalusian Center for Developmental Biology (CABD), Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
22
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
23
|
Han G, Vaishnava S. Microbial underdogs: exploring the significance of low-abundance commensals in host-microbe interactions. Exp Mol Med 2023; 55:2498-2507. [PMID: 38036729 PMCID: PMC10767002 DOI: 10.1038/s12276-023-01120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 12/02/2023] Open
Abstract
Our understanding of host-microbe interactions has broadened through numerous studies over the past decades. However, most investigations primarily focus on the dominant members within ecosystems while neglecting low-abundance microorganisms. Moreover, laboratory animals usually do not have microorganisms beyond bacteria. The phenotypes observed in laboratory animals, including the immune system, have displayed notable discrepancies when compared to real-world observations due to the diverse microbial community in natural environments. Interestingly, recent studies have unveiled the beneficial roles played by low-abundance microorganisms. Despite their rarity, these keystone taxa play a pivotal role in shaping the microbial composition and fulfilling specific functions in the host. Consequently, understanding low-abundance microorganisms has become imperative to unravel true commensalism. In this review, we provide a comprehensive overview of important findings on how low-abundance commensal microorganisms, including low-abundance bacteria, fungi, archaea, and protozoa, interact with the host and contribute to host phenotypes, with emphasis on the immune system. Indeed, low-abundance microorganisms play vital roles in the development of the host's immune system, influence disease status, and play a key role in shaping microbial communities in specific niches. Understanding the roles of low-abundance microbes is important and will lead to a better understanding of the true host-microbe relationships.
Collapse
Affiliation(s)
- Geongoo Han
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| | - Shipra Vaishnava
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
24
|
Muhsin-Sharafaldine MR, Abdel Rahman L, Suwanarusk R, Grant J, Parslow G, French N, Tan KSW, Russell B, Morgan XC, Ussher JE. Dientamoeba fragilis associated with microbiome diversity changes in acute gastroenteritis patients. Parasitol Int 2023; 97:102788. [PMID: 37482266 DOI: 10.1016/j.parint.2023.102788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
This study examined the correlation between intestinal protozoans and the bacterial microbiome in faecal samples collected from 463 patients in New Zealand who were diagnosed with gastroenteritis. In comparison to traditional microscopic diagnosis methods, Multiplexed-tandem PCR proved to be more effective in detecting intestinal parasites. Among the identified protozoans, Blastocystis sp. and Dientamoeba fragilis were the most prevalent. Notably, D. fragilis was significantly associated with an increase in the alpha-diversity of host prokaryotic microbes. Although the exact role of Blastocystis sp. and D. fragilis as the primary cause of gastroenteritis remains debatable, our data indicates a substantial correlation between these protozoans and the prokaryote microbiome of their hosts, particularly when compared to other protists or patients with gastroenteritis but no detectable parasitic cause. These findings underscore the significance of comprehending the contributions of intestinal protozoans, specifically D. fragilis, to the development of gastroenteritis and their potential implications for disease management.
Collapse
Affiliation(s)
| | - L Abdel Rahman
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - R Suwanarusk
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - J Grant
- Southern Community Laboratories, Dunedin, New Zealand
| | - G Parslow
- Southern Community Laboratories, Dunedin, New Zealand
| | - N French
- Massey University, Palmerston North, New Zealand
| | - K S W Tan
- Department of Microbiology & Immunology, National University of Singapore, Singapore
| | - B Russell
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan,.
| | - X C Morgan
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - J E Ussher
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand; Southern Community Laboratories, Dunedin, New Zealand
| |
Collapse
|
25
|
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, Yuki M, Ohkuma M, Hongoh Y. Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. THE ISME JOURNAL 2023; 17:1895-1906. [PMID: 37653056 PMCID: PMC10579323 DOI: 10.1038/s41396-023-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.
Collapse
Affiliation(s)
- Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yutaro Horikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kazuki Izawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Daiki Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Tatsuya Inagaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
26
|
Gad M, Fawzy ME, Al-Herrawy AZ, Abdo SM, Nabet N, Hu A. PacBio next-generation sequencing uncovers Apicomplexa diversity in different habitats. Sci Rep 2023; 13:15063. [PMID: 37699953 PMCID: PMC10497610 DOI: 10.1038/s41598-023-40895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
The phylum Apicomplexa comprises a large group of intracellular protozoan parasites. These microorganisms are known to infect a variety of vertebrate and invertebrate hosts, leading to significant medical and veterinary conditions such as toxoplasmosis, cryptosporidiosis, theileriosis, and eimeriosis. Despite their importance, comprehensive data on their diversity and distribution, especially in riverine environments, remain scant. To bridge this knowledge gap, we utilized next-generation high-throughput 18S rRNA amplicon sequencing powered by PacBio technology to explore the diversity and composition of the Apicomplexa taxa. Principal component analysis (PCA) and principal coordinate analysis (PCoA) indicated the habitat heterogeneity for the physicochemical parameters and the Apicomplexa community. These results were supported by PERMANOVA (P < 0.001), ANOSIM (P < 0.001), Cluster analysis, and Venn diagram. Dominant genera of Apicomplexa in inlet samples included Gregarina (38.54%), Cryptosporidium (32.29%), and Leidyana (11.90%). In contrast, outlet samples were dominated by Babesia, Cryptosporidium, and Theileria. While surface water samples revealed 16% and 8.33% relative abundance of Toxoplasma and Cryptosporidium, respectively. To our knowledge, the next-generation high throughput sequencing covered a wide range of parasites in Egypt for the first time, which could be useful for legislation of the standards for drinking water and wastewater reuse.
Collapse
Affiliation(s)
- Mahmoud Gad
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt.
| | - Mariam E Fawzy
- Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| | - Ahmad Z Al-Herrawy
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| | - Sayeda M Abdo
- Hydrobiology Laboratory, Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| | - Noura Nabet
- Zoology Department, Faculty of Science, Menoufia University, Menofia, Egypt
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
27
|
Jagare L, Rozenberga M, Silamikelis I, Ansone L, Elbere I, Briviba M, Megnis K, Konrade I, Birka I, Straume Z, Klovins J. Metatranscriptome analysis of blood in healthy individuals and irritable bowel syndrome patients. J Med Microbiol 2023; 72. [PMID: 37335601 DOI: 10.1099/jmm.0.001719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Introduction. Although the presence of micro-organisms in the blood of healthy humans is a relatively new concept, there is a growing amount of evidence that blood might have its own microbiome.Gap Statement. Previous research has targeted the taxonomic composition of the blood microbiome using DNA-based sequencing methods, while little information is known about the presence of microbial transcripts obtained from the blood and their relation to conditions connected with increased gut permeability.Aim. To detect potentially alive and active micro-organisms and investigate differences in taxonomic composition between healthy people and patients with irritable bowel syndrome (IBS), we used the metatranscriptomics approach.Methodology. We collected blood samples from 23 IBS patients and 26 volunteers from the general population, and performed RNAseq on the isolated RNA. Reads corresponding to microbial genomes were identified with Kraken 2's standard plus protozoa and fungi database, and re-estimated at genus level with Bracken 2.7. We looked for trends in the taxonomic composition, making a comparison between the IBS and control groups, accounting for other different factors.Results. The dominant genera in the blood microbiome were found to be Cutibacterium, Bradyrhizobium, Escherichia, Pseudomonas, Micrococcus, Delftia, Mediterraneibacter, Staphylococcus, Stutzerimonas and Ralstonia. Some of these are typical environmental bacteria and could partially represent contamination. However, analysis of sequences from the negative controls suggested that some genera which are characteristic of the gut microbiome (Mediterraneibacter, Blautia, Collinsella, Klebsiella, Coprococcus, Dysosmobacter, Anaerostipes, Faecalibacterium, Dorea, Simiaoa, Bifidobacterium, Alistipes, Prevotella, Ruminococcus) are less likely to be a result of contamination. Differential analysis of microbes between groups showed that some taxa associated with the gut microbiome (Blautia, Faecalibacterium, Dorea, Bifidobacterium, Clostridium, Christensenella) are more prevalent in IBS patients compared to the general population. No significant correlations with any other factors were identified.Conclusion. Our findings support the existence of the blood microbiome and suggest the gut and possibly the oral microbiome as its origin, while the skin microbiome is a possible but less certain source. The blood microbiome is likely influenced by states of increased gut permeability such as IBS.
Collapse
Affiliation(s)
- Lauma Jagare
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Maija Rozenberga
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ivars Silamikelis
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Laura Ansone
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ilze Elbere
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Monta Briviba
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| | - Ilze Konrade
- Riga Stradins University, Dzirciema iela 16, Riga, LV-1007, Latvia
| | - Ilze Birka
- Pauls Stradins Clinical University Hospital, Pilsonu iela 13, Riga, LV-1002, Latvia
| | - Zane Straume
- Ogre Regional Hospital, Slimnicas iela 2, Ogre, LV-5001, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Human Genetics and Disease Mechanisms Group, Ratsupites iela 1, Riga, LV-1067, Latvia
| |
Collapse
|
28
|
Omar M, Abdelal H. NETosis in Parasitic Infections: A Puzzle That Remains Unsolved. Int J Mol Sci 2023; 24:ijms24108975. [PMID: 37240321 DOI: 10.3390/ijms24108975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the key players in the innate immune system, being weaponized with numerous strategies to eliminate pathogens. The production of extracellular traps is one of the effector mechanisms operated by neutrophils in a process called NETosis. Neutrophil extracellular traps (NETs) are complex webs of extracellular DNA studded with histones and cytoplasmic granular proteins. Since their first description in 2004, NETs have been widely investigated in different infectious processes. Bacteria, viruses, and fungi have been shown to induce the generation of NETs. Knowledge is only beginning to emerge about the participation of DNA webs in the host's battle against parasitic infections. Referring to helminthic infections, we ought to look beyond the scope of confining the roles of NETs solely to parasitic ensnarement or immobilization. Hence, this review provides detailed insights into the less-explored activities of NETs against invading helminths. In addition, most of the studies that have addressed the implications of NETs in protozoan infections have chiefly focused on their protective side, either through trapping or killing. Challenging this belief, we propose several limitations regarding protozoan-NETs interaction. One of many is the duality in the functional responses of NETs, in which both the positive and pathological aspects seem to be closely intertwined.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines, Esch-Belval, L-4366 Luxembourg, Luxembourg
| |
Collapse
|
29
|
Deng L, Wojciech L, Png CW, Kioh YQD, Ng GC, Chan ECY, Zhang Y, Gascoigne NRJ, Tan KSW. Colonization with ubiquitous protist Blastocystis ST1 ameliorates DSS-induced colitis and promotes beneficial microbiota and immune outcomes. NPJ Biofilms Microbiomes 2023; 9:22. [PMID: 37185924 PMCID: PMC10130167 DOI: 10.1038/s41522-023-00389-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Blastocystis is a species complex that exhibits extensive genetic diversity, evidenced by its classification into several genetically distinct subtypes (ST). Although several studies have shown the relationships between a specific subtype and gut microbiota, there is no study to show the effect of the ubiquitous Blastocystis ST1 on the gut microbiota and host health. Here, we show that Blastocystis ST1 colonization increased the proportion of beneficial bacteria Alloprevotella and Akkermansia, and induced Th2 and Treg cell responses in normal healthy mice. ST1-colonized mice showed decreases in the severity of DSS-induced colitis when compared to non-colonized mice. Furthermore, mice transplanted with ST1-altered gut microbiota were refractory to dextran sulfate sodium (DSS)-induced colitis via induction of Treg cells and elevated short-chain fat acid (SCFA) production. Our results suggest that colonization with Blastocystis ST1, one of the most common subtypes in humans, exerts beneficial effects on host health through modulating the gut microbiota and adaptive immune responses.
Collapse
Affiliation(s)
- Lei Deng
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Lukasz Wojciech
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Chin Wen Png
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Yan Qin Dorinda Kioh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Geok Choo Ng
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Yongliang Zhang
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Kevin Shyong Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
| |
Collapse
|
30
|
Wilson A, Bogie B, Chaaban H, Burge K. The Nonbacterial Microbiome: Fungal and Viral Contributions to the Preterm Infant Gut in Health and Disease. Microorganisms 2023; 11:909. [PMID: 37110332 PMCID: PMC10144239 DOI: 10.3390/microorganisms11040909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
The intestinal microbiome is frequently implicated in necrotizing enterocolitis (NEC) pathogenesis. While no particular organism has been associated with NEC development, a general reduction in bacterial diversity and increase in pathobiont abundance has been noted preceding disease onset. However, nearly all evaluations of the preterm infant microbiome focus exclusively on the bacterial constituents, completely ignoring any fungi, protozoa, archaea, and viruses present. The abundance, diversity, and function of these nonbacterial microbes within the preterm intestinal ecosystem are largely unknown. Here, we review findings on the role of fungi and viruses, including bacteriophages, in preterm intestinal development and neonatal intestinal inflammation, with potential roles in NEC pathogenesis yet to be determined. In addition, we highlight the importance of host and environmental influences, interkingdom interactions, and the role of human milk in shaping fungal and viral abundance, diversity, and function within the preterm intestinal ecosystem.
Collapse
Affiliation(s)
| | | | - Hala Chaaban
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathryn Burge
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
31
|
Parker W, Patel E, Jirků-Pomajbíková K, Laman JD. COVID-19 morbidity in lower versus higher income populations underscores the need to restore lost biodiversity of eukaryotic symbionts. iScience 2023; 26:106167. [PMID: 36785786 PMCID: PMC9908430 DOI: 10.1016/j.isci.2023.106167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The avoidance of infectious disease by widespread use of 'systems hygiene', defined by hygiene-enhancing technology such as sewage systems, water treatment facilities, and secure food storage containers, has led to a dramatic decrease in symbiotic helminths and protists in high-income human populations. Over a half-century of research has revealed that this 'biota alteration' leads to altered immune function and a propensity for chronic inflammatory diseases, including allergic, autoimmune and neuropsychiatric disorders. A recent Ethiopian study (EClinicalMedicine 39: 101054), validating predictions made by several laboratories, found that symbiotic helminths and protists were associated with a reduced risk of severe COVID-19 (adjusted odds ratio = 0.35; p<0.0001). Thus, it is now apparent that 'biome reconstitution', defined as the artificial re-introduction of benign, symbiotic helminths or protists into the ecosystem of the human body, is important not only for alleviation of chronic immune disease, but likely also for pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Kateřina Jirků-Pomajbíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jon D. Laman
- Department of Pathology and Medical Biology, University Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Zorbozan O, Turgay N. Monitoring the Trends in Intestinal Parasite Frequencies; 2018 and 2022 Data. TURKIYE PARAZITOLOJII DERGISI 2023; 47:59-63. [PMID: 36872488 DOI: 10.4274/tpd.galenos.2023.66376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Objective Monitoring intestinal parasite frequencies is effective on diagnosis, treatment, and prevention strategies to be developed against these parasites. In this study, it was aimed to reveal the parasite species and frequency data of stool samples in parasitology direct diagnosis laboratory. Methods Stool parasitological examination results were obtained retrospectively from our laboratory internal quality control data tables. Data belonging to the year 2018 and 2022 were compared retrospectively. Results Annual parasites detected in stool samples were 388 of 4.518, and 710 of 3.537, in 2018 and 2022, respectively. Frequency of parasite detection in stool samples was found to be significantly higher in 2022 (p<0.0001). Number of stools with more than one parasite was 12 and 30 in 2018 and 2022, respectively. Incidence of infection with more than one parasite was significantly higher in 2022 (p=0.0003). Five most common parasite species were Blastocystis spp., Enterobius vermicularis, Cryptosporidium spp., Giardia intestinalis and Entamoeba histolytica in 2018, respectively; and Cryptosporidium spp., Blastocystis spp., Cyclospora spp., Entamoeba dispar and Giardia intestinalis, in 2022, respectively. Cryptosporidium spp., Cyclospora spp. and Entamoeba dispar increased significantly, while Blastocystis spp. and Enterobius vermicularis decreased significantly, in 2022. Conclusion According to the data obtained, causative agents for intestinal parasitic infections were protozoans, especially Cryptosporidium spp. It has been concluded that tightening the measures for protection of water with one health approach and improving the education and habits of society on personal hygiene and food safety can be effective in reducing the frequency of intestinal parasite infections in our region.
Collapse
Affiliation(s)
- Orçun Zorbozan
- Ege Üniversitesi Tıp Fakültesi, Tıbbi Parazitoloji Anabilim Dalı, İzmir, Türkiye
| | - Nevin Turgay
- Ege Üniversitesi Tıp Fakültesi, Tıbbi Parazitoloji Anabilim Dalı, İzmir, Türkiye
| |
Collapse
|
33
|
Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes 2023; 15:2226916. [PMID: 37365731 PMCID: PMC10305517 DOI: 10.1080/19490976.2023.2226916] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
A diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
Abstract
Trillions of microbes are indigenous to the human gastrointestinal tract, together forming an ecological community known as the gut microbiota. The gut microbiota is involved in dietary digestion to produce various metabolites. In healthy condition, microbial metabolites have unneglectable roles in regulating host physiology and intestinal homeostasis. However, increasing studies have reported the correlation between metabolites and the development of colorectal cancer (CRC), with the identification of oncometabolites. Meanwhile, metabolites can also influence the efficacy of cancer treatments. In this review, metabolites derived from microbes-mediated metabolism of dietary carbohydrates, proteins, and cholesterol, are introduced. The roles of pro-tumorigenic (secondary bile acids and polyamines) and anti-tumorigenic (short-chain fatty acids and indole derivatives) metabolites in CRC development are then discussed. The impacts of metabolites on chemotherapy and immunotherapy are further elucidated. Collectively, given the importance of microbial metabolites in CRC, therapeutic approaches that target metabolites may be promising to improve patient outcome.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
35
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
36
|
Dubik M, Pilecki B, Moeller JB. Commensal Intestinal Protozoa-Underestimated Members of the Gut Microbial Community. BIOLOGY 2022; 11:1742. [PMID: 36552252 PMCID: PMC9774987 DOI: 10.3390/biology11121742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
The human gastrointestinal microbiota contains a diverse consortium of microbes, including bacteria, protozoa, viruses, and fungi. Through millennia of co-evolution, the host-microbiota interactions have shaped the immune system to both tolerate and maintain the symbiotic relationship with commensal microbiota, while exerting protective responses against invading pathogens. Microbiome research is dominated by studies describing the impact of prokaryotic bacteria on gut immunity with a limited understanding of their relationship with other integral microbiota constituents. However, converging evidence shows that eukaryotic organisms, such as commensal protozoa, can play an important role in modulating intestinal immune responses as well as influencing the overall health of the host. The presence of several protozoa species has recently been shown to be a common occurrence in healthy populations worldwide, suggesting that many of these are commensals rather than invading pathogens. This review aims to discuss the most recent, conflicting findings regarding the role of intestinal protozoa in gut homeostasis, interactions between intestinal protozoa and the bacterial microbiota, as well as potential immunological consequences of protozoa colonization.
Collapse
Affiliation(s)
- Magdalena Dubik
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Jesper Bonnet Moeller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
37
|
Donnelly S. The immunology of parasite infections: Grand challenges. FRONTIERS IN PARASITOLOGY 2022; 1:1069205. [PMID: 39816470 PMCID: PMC11732110 DOI: 10.3389/fpara.2022.1069205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 01/18/2025]
Affiliation(s)
- Sheila Donnelly
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Sardinha-Silva A, Alves-Ferreira EVC, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol 2022; 13:963723. [PMID: 36211380 PMCID: PMC9533738 DOI: 10.3389/fimmu.2022.963723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.
Collapse
|
39
|
Ramanan V, Mechery S, Sarkar IN. GenBank as a source to monitor and analyze Host-Microbiome data. Bioinformatics 2022; 38:4172-4177. [PMID: 35801940 PMCID: PMC9438952 DOI: 10.1093/bioinformatics/btac487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Microbiome datasets are often constrained by sequencing limitations. GenBank is the largest collection of publicly available DNA sequences, which is maintained by the National Center of Biotechnology Information (NCBI). The metadata of GenBank records are a largely understudied resource and may be uniquely leveraged to access the sum of prior studies focused on microbiome composition. Here, we developed a computational pipeline to analyze GenBank metadata, containing data on hosts, microorganisms and their place of origin. This work provides the first opportunity to leverage the totality of GenBank to shed light on compositional data practices that shape how microbiome datasets are formed as well as examine host-microbiome relationships. RESULTS The collected dataset contains multiple kingdoms of microorganisms, consisting of bacteria, viruses, archaea, protozoa, fungi, and invertebrate parasites, and hosts of multiple taxonomical classes, including mammals, birds and fish. A human data subset of this dataset provides insights to gaps in current microbiome data collection, which is biased towards clinically relevant pathogens. Clustering and phylogenic analysis reveals the potential to use these data to model host taxonomy and evolution, revealing groupings formed by host diet, environment and coevolution. AVAILABILITY AND IMPLEMENTATION GenBank Host-Microbiome Pipeline is available at https://github.com/bcbi/genbank_holobiome. The GenBank loader is available at https://github.com/bcbi/genbank_loader. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vivek Ramanan
- Center of Computational Molecular Biology Brown University, Providence, RI, USA
- Center for Biomedical Informatics Brown University, Providence, RI, USA
| | - Shanti Mechery
- Center for Biomedical Informatics Brown University, Providence, RI, USA
| | - Indra Neil Sarkar
- Center of Computational Molecular Biology Brown University, Providence, RI, USA
- Center for Biomedical Informatics Brown University, Providence, RI, USA
- Rhode Island Quality Institute, Providence, RI, USA
| |
Collapse
|
40
|
Investigating the Potential Effects of COVID-19 Pandemic on Intestinal Coccidian Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
New infectious agents pose a global threat to the healthcare system, and studies are conducted to estimate their health and epidemiological outcomes in the long run. The SARS-CoV-2 virus, which has caused the COVID-19 disease, was formerly assumed to be a respiratory virus; however, it can have serious systemic effects, affecting organs such as the gastrointestinal tract (GIT). Viral RNA was reported in the stool in a subset of patients, indicating another mode of transmission and diagnosis. In COVID-19, prolonged GIT symptoms, especially diarrhea, were associated with reduced diversity and richness of gut microbiota, immunological dysregulation, and delayed viral clearance. Intestinal coccidian parasites are intracellular protozoa that are most typically transmitted to humans by oocysts found in fecally contaminated food and water. Their epidemiological relevance is coupled to opportunistic infections, which cause high morbidity and mortality among immunocompromised individuals. Among immunocompetent people, intestinal coccidia is also involved in acute diarrhea, which is usually self-limiting. Evaluating the available evidence provided an opportunity to carefully consider that; the COVID-19 virus and coccidian protozoan parasites: namely, Cryptosporidium spp., Cyclospora cayetanensis, and Isospora belli, could mutually influence each other from the microbiological, clinical, diagnostic, and elimination aspects. We further systemically highlighted the possible shared pathogenesis mechanisms, transmission routes, clinical manifestations, parasite-driven immune regulation, and intestinal microbiota alteration. Finally, we showed how this might impact developing and developed countries prevention and vaccination strategies. To the best of our knowledge, there is no review that has discussed the reciprocal effect between coccidian parasites and COVID-19 coinfection.
Collapse
|
41
|
Changes in Gut Microbiota Composition Associated with the Presence of Enteric Protist Blastocystis in Captive Forest Musk Deer ( Moschus Berezovskii). Microbiol Spectr 2022; 10:e0226921. [PMID: 35736237 PMCID: PMC9430526 DOI: 10.1128/spectrum.02269-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blastocystis is a common protistan parasite inhabiting the gastrointestinal tract of a wide range of hosts including humans and domestic and wild animals. Many studies have revealed the associations between Blastocystis and gut microbiome in humans. However, only a few studies have focused on the associations between Blastocystis and gut microbiome of animals, especially in forest musk deer (Moschus berezovskii). We investigated the effects of the Blastocystis colonization on the intestinal bacterial community compositions using amplicon sequencing targeting the V4 variable region of the 16S rRNA. Two subtypes of Blastocystis (ST5 and ST10) and Blastocystis-free (control) were included in this study. We found that compared with the forest musk deer without Blastocystis, ST10-colonized forest musk deer had higher bacterial richness and diversity, while ST5-colonized forest musk deer showed a comparable bacterial diversity. Likewise, beta diversity revealed significant differences in bacterial community structure between ST10-colonized and Blastocystis-free forest musk deer. The proportion of Bacteroidetes were significantly enriched in ST10-colonized forest musk deer. Bacterial community structure between ST5-colonized and Blastocystis-free forest musk deer did not differ significantly. The present study explored the associations between Blastocystis and gut microbial community of forest musk deer for the first time, and revealed ST10 colonization, instead of ST5, is associated with higher bacterial diversity and shifted microbial structure. Our data provides valuable insights into the associations between gut microbiomes and parasites. IMPORTANCE Forest musk deer is listed as an endangered species by International Union for Conservation of Nature Red List, and the Chinese government has introduced captivity breeding measures to curb the rapid decline of the musk deer population since the 1950s. It has been suggested that Blastocystis colonization can modulate the composition of the host's intestinal microbiota, thereby affecting the host health. The present study investigated the effects of the Blastocystis colonization on the gut microbiota in the feces of forest musk deer in Sichuan Province, China. Two subtypes (ST5 and ST10) have differential effects on the bacterial diversity and community composition, suggesting that the study of Blastocystis should be distinguished at the subtype level. Because the pathogenicity of Blastocystis is controversial, pathogenic, or commensal, continuous monitoring of the impact of Blastocystis colonization on the intestinal microbiota is of great significance to assess its health effects on forest musk deer.
Collapse
|
42
|
Šloufová M, Lhotská Z, Jirků M, Petrželková KJ, Stensvold CR, Cinek O, Pomajbíková KJ. Comparison of molecular diagnostic approaches for the detection and differentiation of the intestinal protist Blastocystis sp. in humans. Parasite 2022; 29:30. [PMID: 35638752 PMCID: PMC9153396 DOI: 10.1051/parasite/2022029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Blastocystis is the most commonly found intestinal protist in the world. Accurate detection and differentiation of Blastocystis including its subtypes (arguably species) are essential to understand its epidemiology and role in human health. We compared (i) the sensitivity of conventional PCR (cPCR) and qPCR in a set of 288 DNA samples obtained from stool samples of gut-healthy individuals, and (ii) subtype diversity as detected by next-generation sequencing (NGS) versus Sanger sequencing. Real-time PCR resulted in more positive samples than cPCR, revealing high fecal load of Blastocystis based on the quantification curve in most samples. In subtype detection, NGS was largely in agreement with Sanger sequencing but showed higher sensitivity for mixed subtype colonization within one host. This fact together with use of the combination of qPCR and NGS and obtaining information on the fecal protist load will be beneficial for epidemiological and surveillance studies.
Collapse
Affiliation(s)
- Martina Šloufová
- Institute of Parasitology, Biology Centre, the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic - Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Zuzana Lhotská
- Institute of Parasitology, Biology Centre, the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic - Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Milan Jirků
- Institute of Parasitology, Biology Centre, the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Klára J Petrželková
- Institute of Parasitology, Biology Centre, the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic - Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic
| | - C Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Ondřej Cinek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 150 06, Czech Republic
| | - Kateřina Jirků Pomajbíková
- Institute of Parasitology, Biology Centre, the Czech Academy of Sciences, České Budějovice 370 05, Czech Republic - Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| |
Collapse
|
43
|
Alberdi A, Andersen SB, Limborg MT, Dunn RR, Gilbert MTP. Disentangling host-microbiota complexity through hologenomics. Nat Rev Genet 2022; 23:281-297. [PMID: 34675394 DOI: 10.1038/s41576-021-00421-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.
Collapse
Affiliation(s)
- Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Sandra B Andersen
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
44
|
Cao LH, He HJ, Zhao YY, Wang ZZ, Jia XY, Srivastava K, Miao MS, Li XM. Food Allergy-Induced Autism-Like Behavior is Associated with Gut Microbiota and Brain mTOR Signaling. J Asthma Allergy 2022; 15:645-664. [PMID: 35603013 PMCID: PMC9122063 DOI: 10.2147/jaa.s348609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Food allergy-induced autism-like behavior has been increasing for decades, but the causal drivers of this association are unclear. We sought to test the association of gut microbiota and mammalian/mechanistic target of rapamycin (mTOR) signaling with cow’s milk allergy (CMA)-induced autism pathogenesis. Methods Mice were sensitized intragastrically with whey protein containing cholera toxin before sensitization on intraperitoneal injection with whey-containing alum, followed by intragastric allergen challenge to induce experimental CMA. The food allergic immune responses, ASD-like behavioral tests and changes in the mTOR signaling pathway and gut microbial community structure were performed. Results CMA mice showed autism-like behavioral abnormalities and several distinct biomarkers. These include increased levels of 5-hydroxymethylcytosine (5-hmC) in the hypothalamus; c-Fos were predominantly located in the region of the lateral orbital prefrontal cortex (PFC), but not ventral; decreased serotonin 1A in amygdala and PFC. CMA mice exhibited a specific microbiota signature characterized by coordinate changes in the abundance of taxa of several bacterial genera, including the Lactobacillus. Interestingly, the changes were accompanied by promoted mTOR signaling in the brain of CMA mice. Conclusion We found that disease-associated microbiota and mTOR activation may thus play a pathogenic role in the intestinal, immunological, and psychiatric Autism Spectrum Disorder (ASD)-like symptoms seen in CAM associated autism. However, this is only a preliminary study, and their mechanisms require further investigation.
Collapse
Affiliation(s)
- Li-Hua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Hong-Juan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Zhen-Zhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Xing-Yuan Jia
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Kamal Srivastava
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- General Nutraceutical Technology, Elmsford, NY, 10523, USA
| | - Ming-San Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY, 10595, USA
- Correspondence: Xiu-Min Li; Ming-San Miao, Tel +1 914-594-4197, Fax +1 371-65962546, Email ;
| |
Collapse
|
45
|
Ianiro G, Iorio A, Porcari S, Masucci L, Sanguinetti M, Perno CF, Gasbarrini A, Putignani L, Cammarota G. How the gut parasitome affects human health. Therap Adv Gastroenterol 2022; 15:17562848221091524. [PMID: 35509426 PMCID: PMC9058362 DOI: 10.1177/17562848221091524] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
The human gut microbiome (GM) is a complex ecosystem that includes numerous prokaryotic and eukaryotic inhabitants. The composition of GM can influence an array of host physiological functions including immune development. Accumulating evidence suggest that several members of non-bacterial microbiota, including protozoa and helminths, that were earlier considered as pathogens, could have a commensal or beneficial relationship with the host. Here we examine the most recent data from omics studies on prokaryota-meiofauna-host interaction as well as the impact of gut parasitome on gut bacterial ecology and its role as 'immunological driver' in health and disease to glimpse new therapeutic perspectives.
Collapse
Affiliation(s)
| | - Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Serena Porcari
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Luca Masucci
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario ‘A. Gemelli’ IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, and Multimodal Laboratory Medicine Research Area, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Antonio Gasbarrini
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Gastroenterology Unit, Fondazione Policlinico Gemelli IRCCS, Roma, Italy
| |
Collapse
|
46
|
Solomon R, Wein T, Levy B, Eshed S, Dror R, Reiss V, Zehavi T, Furman O, Mizrahi I, Jami E. Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem. THE ISME JOURNAL 2022; 16:1187-1197. [PMID: 34887549 PMCID: PMC8941083 DOI: 10.1038/s41396-021-01170-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community-either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.
Collapse
Affiliation(s)
- Ronnie Solomon
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel ,grid.7489.20000 0004 1937 0511Institute of Natural Sciences, Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Tanita Wein
- grid.13992.300000 0004 0604 7563Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Levy
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel ,grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shahar Eshed
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Rotem Dror
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Veronica Reiss
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Tamar Zehavi
- grid.7489.20000 0004 1937 0511Institute of Natural Sciences, Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ori Furman
- grid.7489.20000 0004 1937 0511Institute of Natural Sciences, Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Itzhak Mizrahi
- grid.7489.20000 0004 1937 0511Institute of Natural Sciences, Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
47
|
Freudenthal J, Ju F, Bürgmann H, Dumack K. Microeukaryotic gut parasites in wastewater treatment plants: diversity, activity, and removal. MICROBIOME 2022; 10:27. [PMID: 35139924 PMCID: PMC8827150 DOI: 10.1186/s40168-022-01225-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND During wastewater treatment, the wastewater microbiome facilitates the degradation of organic matter, reduction of nutrients, and removal of gut parasites. While the latter function is essential to minimize public health risks, the range of parasites involved and how they are removed is still poorly understood. RESULTS Using shotgun metagenomic (DNA) and metatranscriptomic (RNA) sequencing data from ten wastewater treatment plants in Switzerland, we were able to assess the entire wastewater microbiome, including the often neglected microeukaryotes (protists). In the latter group, we found a surprising richness and relative abundance of active parasites, particularly in the inflow. Using network analysis, we tracked these taxa across the various treatment compartments and linked their removal to trophic interactions. CONCLUSIONS Our results indicate that the combination of DNA and RNA data is essential for assessing the full spectrum of taxa present in wastewater. In particular, we shed light on an important but poorly understood function of wastewater treatment - parasite removal. Video Abstract.
Collapse
Affiliation(s)
- Jule Freudenthal
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024 China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| |
Collapse
|
48
|
Advances in therapeutic and vaccine targets for Cryptosporidium: Challenges and possible mitigation strategies. Acta Trop 2022; 226:106273. [PMID: 34906550 DOI: 10.1016/j.actatropica.2021.106273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Cryptosporidium is known to be the second most common diarrheal pathogen in children, causing potentially fatal diarrhea and associated with long-term growth stunting and cognitive deficits. The only Food and Drug Administration-approved treatment for cryptosporidiosis is nitazoxanide, but this drug has not shown potentially effective results in susceptible hosts. Therefore, a safe and effective drug for cryptosporidiosis is urgently needed. Cryptosporidium genome sequencing analysis may help develop an effective drug, but both in vitro and in vivo approaches to drug evaluation are not fully standardized. On the other hand, the development of partial immunity after exposure suggests the possibility of a successful and effective vaccine, but protective surrogates are not precise. In this review, we present our current perspectives on novel cryptosporidiosis therapies, vaccine targets and efficacies, as well as potential mitigation plans, recommendations and perceived challenges.
Collapse
|
49
|
Guzzo GL, Andrews JM, Weyrich LS. The Neglected Gut Microbiome: Fungi, Protozoa, and Bacteriophages in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1112-1122. [PMID: 35092426 PMCID: PMC9247841 DOI: 10.1093/ibd/izab343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/14/2022]
Abstract
The gut microbiome has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Studies suggest that the IBD gut microbiome is less diverse than that of the unaffected population, a phenomenon often referred to as dysbiosis. However, these studies have heavily focused on bacteria, while other intestinal microorganisms-fungi, protozoa, and bacteriophages-have been neglected. Of the nonbacterial microbes that have been studied in relation to IBD, most are thought to be pathogens, although there is evidence that some of these species may instead be harmless commensals. In this review, we discuss the nonbacterial gut microbiome of IBD, highlighting the current biases, limitations, and outstanding questions that can be addressed with high-throughput DNA sequencing methods. Further, we highlight the importance of studying nonbacterial microorganisms alongside bacteria for a comprehensive view of the whole IBD biome and to provide a more precise definition of dysbiosis in patients. With the rise in popularity of microbiome-altering therapies for the treatment of IBD, such as fecal microbiota transplantation, it is important that we address these knowledge gaps to ensure safe and effective treatment of patients.
Collapse
Affiliation(s)
- Gina L Guzzo
- Address correspondence to: Gina L. Guzzo, The University of Adelaide, Adelaide, South Australia, Australia ()
| | - Jane M Andrews
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital and School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura S Weyrich
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia,Department of Anthropology and Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
50
|
A murine commensal protozoan influences host glucose homeostasis by facilitating free choline generation. Appl Environ Microbiol 2022; 88:e0241321. [PMID: 35080909 PMCID: PMC8939315 DOI: 10.1128/aem.02413-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent progress indicates that the gut microbiota plays important role in regulating the host’s glucose homeostasis. However, the mechanisms remain unclear. Here, we reported that one integral member of the murine gut microbiota, the protozoan Tritrichomonas musculis could drive the host’s glucose metabolic imbalance. Using metabolomics analysis and in vivo assays, we found that mechanistically this protozoan influences the host glucose metabolism by facilitating the production of a significant amount of free choline. Free choline could be converted sequentially by choline-utilizing bacteria and then the host to a final product trimethylamine N-oxide, which promoted hepatic gluconeogenesis. Together, our data reveal a previously underappreciated gut eukaryotic microorganism by working together with other members of microbiota to influence the host’s metabolism. Our study underscores the importance and prevalence of metabolic interactions between the gut microbiota and the host in modulating the host’s metabolic health. IMPORTANCE Blood glucose levels are important for human health and can be influenced by gut microbes. However, its mechanism of action was previously unknown. In this study, researchers identify a unique member of the gut microbes in mice that can influence glucose metabolism by promoting the host’s ability to synthesis glucose by using nonglucose materials. This is because of its ability to generate the essential nutrient choline, and choline, aided by other gut bacteria and the host, is converted to trimethylamine N-oxide, which promotes glucose production. These studies show how gut microbes promote metabolic dysfunction and suggest novel approaches for treating patients with blood glucose abnormality.
Collapse
|