1
|
Xie H, Shang M, Dong J, Li Y, Wan N, Xiong Z, Lai X. Antibiotic transport requires a renewed focus on baseflow as a critical non-point source pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126355. [PMID: 40318783 DOI: 10.1016/j.envpol.2025.126355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Current research predominantly assumes that riverine antibiotic loads primarily derive from elevated surface runoff. However, the significance of baseflow is largely overlooked due to a lack of quantitative estimation and mechanistic understanding. This study analyzed the role of baseflow on transporting tetracyclines (TCs) from non-point sources in an agricultural catchment. We found that baseflow load accounted for ∼40 % (39.8 % annually and 45.8 % monthly) of the riverine load of TCs. The threshold effect of baseflow index indicates that baseflow dominates the low-level but ongoing loading of TCs for 94.8 % of the time in a year. Baseflow yield of TCs decreased with increasing drainage area size but showed no clear pattern across source input gradients, suggesting that baseflow loading of TCs is primarily transport-limited. Export regimes of riverine and baseflow TCs registered chemodynamic pattern. Baseflow exhibited a stronger flushing pattern for tetracycline and chlorotetracycline compared to quickflow due to pool mass, hydrological transport, and biogeochemical processes in the subsurface environment. Our results highlight that baseflow is a chronic pathway that constantly transports considerable TCs to receiving rivers and significantly influence TCs export behaviors. Management and control of antibiotic pollution at the catchment scale require mediating surface and subsurface transport mechanisms and limiting sources.
Collapse
Affiliation(s)
- Hui Xie
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang, 332899, China
| | - Meiqi Shang
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianwei Dong
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yunliang Li
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang, 332899, China
| | - Nengsheng Wan
- Institute of Lake Ecology and Environment, Chaohu Lake Bureau of Anhui Province, Hefei, 238000, China
| | - Zhuyang Xiong
- Institute of Lake Ecology and Environment, Chaohu Lake Bureau of Anhui Province, Hefei, 238000, China
| | - Xijun Lai
- State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 211135, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang, 332899, China.
| |
Collapse
|
2
|
Chen Z, Wang B, Farooq U, Lu T, Qi Z, Zhang L, Miao R. pH-dependent transport of tetracycline in saturated porous media: Single and combined effects of surfactants and iron oxide colloids. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137829. [PMID: 40043401 DOI: 10.1016/j.jhazmat.2025.137829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Herein, sodium dodecyl sulfate (SDS) and rhamnolipid (Rha) were employed to investigate their influences on TC mobility and ferrihydrite colloid-mediated transport of TC at variable pH values (5.0-9.0). In the binary system, surfactants suppressed TC transport because of surfactants' bridging effects; similarly, ferrihydrite colloids also restrained TC mobility stemming from the colloid-associated TC retention. Interestingly, the degree of the inhibitory effects of colloids/surfactants increased with decreasing pH values. Surprisingly, the mutual influences of surfactants and colloids on TC movement displayed a strong pH dependence. Concretely, surfactants strengthened the repressive impacts of ferrihydrite colloids on TC mobility at pH 5.0 caused by the enhanced TC deposition on colloids attached to sand surfaces through the linking effects of surfactants. Nevertheless, at pH 7.0, adding surfactants reduced the repressive effects due to increased TC-colloid mobility and enhanced electrostatic repulsion. Unexpectedly, colloids accelerated the transport of TC with surfactants at pH 9.0 owing to colloids acting as TC carriers, the enhanced TC2-/TC- species mobility, and competitive retention. Notably, SDS exhibited a greater effect on individual TC mobility or colloid-mediated TC transport than Rha at a certain pH, which was related to the different surfactant-binding abilities of sand grains/ferrihydrite colloids.
Collapse
Affiliation(s)
- Zhiwei Chen
- Xiaoqinling Ecological Restoration Field Scientific Observation and Research Station of Yellow River Basin at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Usman Farooq
- Miami College, Jinming Campus, Henan University, Kaifeng 475004, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Li Zhang
- Xiaoqinling Ecological Restoration Field Scientific Observation and Research Station of Yellow River Basin at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Renhui Miao
- Xiaoqinling Ecological Restoration Field Scientific Observation and Research Station of Yellow River Basin at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Bottura B, McConnell G, Florek LC, Smiley MK, Martin R, Foylan S, Eana A, Dayton HT, Eckartt KN, Price-Whelan AM, Hoskisson PA, Gould GW, Dietrich LE, Rooney LM. Oxygen microenvironments in Escherichia coli biofilm nutrient transport channels: insights from complementary sensing approaches. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001543. [PMID: 40327388 PMCID: PMC12056250 DOI: 10.1099/mic.0.001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
Chemical gradients and the emergence of distinct microenvironments in biofilms are vital to the stratification, maturation and overall function of microbial communities. These gradients have been well characterized throughout the biofilm mass, but the microenvironment of recently discovered nutrient transporting channels in Escherichia coli biofilms remains unexplored. This study employs three different oxygen sensing approaches to provide a robust quantitative overview of the oxygen gradients and microenvironments throughout the biofilm transport channel networks formed by E. coli macrocolony biofilms. Oxygen nanosensing combined with confocal laser scanning microscopy established that the oxygen concentration changes along the length of biofilm transport channels. Electrochemical sensing provided precise quantification of the oxygen profile in the transport channels, showing similar anoxic profiles compared with the adjacent cells. Anoxic biosensing corroborated these approaches, providing an overview of the oxygen utilization throughout the biomass. The discovery that transport channels maintain oxygen gradients contradicts the previous literature that channels are completely open to the environment along the apical surface of the biofilm. We provide a potential mechanism for the sustenance of channel microenvironments via orthogonal visualizations of biofilm thin sections showing thin layers of actively growing cells. This complete overview of the oxygen environment in biofilm transport channels primes future studies aiming to exploit these emergent structures for new bioremediation approaches.
Collapse
Affiliation(s)
- Beatrice Bottura
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Gail McConnell
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Lindsey C. Florek
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Marina K. Smiley
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Ross Martin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Shannan Foylan
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Ash Eana
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Hannah T. Dayton
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Kelly N. Eckartt
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Alexa M. Price-Whelan
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Paul A. Hoskisson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Gwyn W. Gould
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Lars E.P. Dietrich
- Department of Biological Sciences, University of Columbia, New York City, NY, 10027, USA
| | - Liam M. Rooney
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
- Department of Bacteriology, School of Infection & Immunity, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
4
|
Xu Q, Li H, Li S, Li Z, Chen S, Liang Y, Li Y, Li J, Yuan M. Impact of Microplastics on Ciprofloxacin Adsorption Dynamics and Mechanisms in Soil. TOXICS 2025; 13:294. [PMID: 40278610 PMCID: PMC12030773 DOI: 10.3390/toxics13040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
The co-occurrence of microplastics (MPs) and antibiotics as emerging contaminants demonstrates significant ecological perturbations in soil matrices. Of particular scientific interest is the potential for MPs to mediate the environmental fate and transport dynamics of co-existing antibiotics. This study investigated MP-mediated ciprofloxacin (CIP) adsorption in lateritic soils. Batch experiments with polyethylene (PE), polypropylene (PP), and poly (ethylene-terephthalate) (PET) revealed soil components dominated CIP retention, while 10% (w/w) MPs reduced soil adsorption capacity by ≥10.8%, with inhibition intensity following PET > PE > PP. Adsorption thermodynamics exhibited significant pH dependence, achieving maximum sorption efficiency at pH 5.0 (± 0.2), which was approximately 83%. Competitive adsorption analysis demonstrated inverse proportionality between ionic strength and CIP retention, with trivalent cations exhibiting superior competitive displacement capacity compared to mono- and divalent counterparts. Isothermal modeling revealed multilayer adsorption mechanisms governed by hybrid chemisorption/physisorption processes in both soil and MP substrates. Spectroscopic characterization suggested differential adsorption pathways: MP-CIP interactions were primarily mediated through hydrophobic partitioning and π-π electron coupling, while soil-MP composite systems exhibited dominant cation exchange capacity and surface complexation mechanisms. Notably, electrostatic attraction/repulsion forces modulated adsorption efficiency across all experimental conditions, particularly under varying pH regimes. This work advances understanding of co-contaminant dynamics in soil ecosystems, informing risk assessment frameworks.
Collapse
Affiliation(s)
- Qian Xu
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Hanbing Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Sumei Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Ziyi Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
- Meteorological Bureau of Haidian District, Beijing 100080, China
| | - Sha Chen
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Yixuan Liang
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Yuyang Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Jianan Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Mengxin Yuan
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Jin H, Dai Y, Ruan Y, Chen B, Zhang M, Yu B, Xu J, Yang K, Hou J, Lin D. Underestimated Cumulative Intake Risk of Veterinary Antibiotics Across Multiple Matrices within a Coupled Breeding-Cropping Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6512-6521. [PMID: 40047542 DOI: 10.1021/acs.jafc.4c11415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The coupled breeding-cropping model has been increasingly applied in organic agriculture due to its high resource efficiency; however, the environmental risks of veterinary antibiotics within the solid-liquid-biological system remain unclear. This study focused on a typical poultry-crop system and investigated the migration patterns of enrofloxacin (ENX), ciprofloxacin (CIP), oxytetracycline (OTC), doxycycline (DOX), and florfenicol (FF) in manure, drain, paddy soil, and agricultural products. A strong source-sink relationship was established, with paddy soil identified as the primary reservoir, retaining over 40.1% of the total emissions. The migration behavior of antibiotics in the soil-rice system was primarily influenced by their organic carbon-normalized distribution coefficients, ionization forms, and soil organic carbon contents. Importantly, the cumulative risk of the five antibiotics was 1.4-828 times higher, exceeding risk thresholds by 13.9-fold. These findings emphasize the underestimated cumulative risks of mixed antibiotic use in agroecosystems.
Collapse
Affiliation(s)
- Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yuyu Ruan
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bingning Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Mei Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bingzhi Yu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
6
|
Du J, Zhan L, Zhang G, Zhou Q, Wu W. Antibiotic sorption onto MPs in terrestrial environment: a critical review of the transport, bioaccumulation, ecotoxicological effects and prospects. Drug Chem Toxicol 2025; 48:266-280. [PMID: 39686663 DOI: 10.1080/01480545.2024.2433075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) and antibiotics are prevalent contaminants in terrestrial environment. MPs possess the ability to absorb antibiotics, resulting in the formation of complex pollutants. While the accumulation and fate of MPs and antibiotics in marine ecosystems have been extensively studied, their combined pollution behavior in terrestrial environments remains relatively underexplored. This paper describes the sources, migration, and compound pollution of MPs and antibiotics in soil. It reviews the mechanisms of compound toxicity associated with antibiotics and MPs, combining different biological classifications. Moreover, we highlight the factors that influence the effects of MPs as vectors and the critical elements driving the spread of antibiotic resistance genes (ARGs). These information suggests the potential mitigation measures for MPs contamination from different perspectives to reduce the impact of ARGs-carrying MPs on human health, specifically through transmission via plants, microbes, or terrestrial vertebrates. Finally, we identify gaps in scientific knowledge regarding the interaction between MPs and antibiotics in soil environments, including the need for standardized research methods, multi-dimensional studies on complex ecological effects, and more comprehensive risk assessments of other pollutants on human health. In summary, this paper provides foundational information for assessing their combined toxicity, offers insights into the distribution of these emerging pollutants in soil, and contributes to a better understanding of the environmental impact of these contaminants.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Lichuan Zhan
- Shengzhou Agricultural Technology Extension Center, Shengzhou, China
| | - Gengmiao Zhang
- Agricultural Technology Extension Center of Zhuji City, Zhuji, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
7
|
Alam M, Basir MS, Sultan MB, Murshed MF, Hossain S, Anik AH. Ecological footprint of ionophores in livestock production: Environmental pathways and effects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70052. [PMID: 40056089 DOI: 10.1002/wer.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
Ionophores, a class of animal antibiotics, are widely used in intensive livestock farming to enhance feed efficiency and control coccidiosis. These compounds, known for their ability to transport cations across biological membranes, are crucial in maintaining cellular homeostasis. However, their extensive use raises environmental and human health concerns. This manuscript offers a comprehensive review of ionophores in livestock production, highlighting their environmental impact and potential to contribute to antimicrobial resistance (AMR). It emphasizes the fate and transport of ionophores in various environmental matrices, providing a holistic framework for assessing ecological risks. The study calls for improved management practices like enhanced waste management through anaerobic digestion, and composting is essential. Establishing Maximum Residue Limits (MRLs) and using LC-MS/MS for residue detection will help manage exposure. Educating livestock producers and researching alternatives like probiotics can decrease reliance on ionophores to mitigate the ecological footprint of ionophores, making it a timely and relevant piece of research. Ionophores can persist in the environment, potentially contributing to AMR in gram-positive bacteria. Furthermore, their presence in manure, runoff, and agricultural soils has been documented, leading to contamination of water bodies and sediments. Ionophores pose risks to terrestrial and aquatic ecosystems, with studies revealing hazardous effects even at low concentrations. This review highlights the need for improved management practices to mitigate the environmental impacts of ionophores, particularly regarding AMR development and ecosystem disruption. Careful monitoring and sustainable use of these antibiotics are essential to reduce their ecological footprint in livestock production. PRACTITIONER POINTS: Ionophores enhance feed efficiency, but pose environmental health risks. Their persistence may lead to antimicrobial resistance in gram-positive bacteria. Ionophore contamination threatens both terrestrial and aquatic ecosystems. Monitoring and management are crucial to mitigate ionophore-related risks.
Collapse
Affiliation(s)
- Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Md Samium Basir
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Md Fahim Murshed
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| | - Shabiha Hossain
- Department of Geography and Sustainability, University of Tennessee, Knoxville, Tennessee, USA
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, Bangladesh
| |
Collapse
|
8
|
Camara FA, Ramézani H, Mathieu N, Delpeux-Ouldriane S, Bhatia SK. Unraveling Ofloxacin Behavior in Aqueous Environments: Molecular Dynamics of Colloidal Formation and Surface Adsorption Mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3334-3355. [PMID: 39879228 DOI: 10.1021/acs.langmuir.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Ofloxacin, a commonly prescribed antibiotic, raises serious environmental concerns due to its persistence in aquatic systems. This study offers new insights into the environmental behavior of ofloxacin and its interactions with carbon-based adsorbents with the aim of enhancing our understanding of its removal mechanisms via adsorption processes. Using a comprehensive computational approach, we analyzed the speciation, pKa values, and solubility of ofloxacin across various pH conditions, accounting for all four microspecies, including the often-overlooked neutral form. Our findings indicate that clustering of ofloxacin in water is influenced not only by solubility but also by electrostatic repulsion, dipole creation, and π-π interactions. At extreme pH levels, clustering is primarily driven by Coulombic forces and strong π-π interactions between different ofloxacin molecules. Density functional theory (DFT) was employed to optimize the molecular structures, and molecular dynamics (MD) simulations explored interactions among ofloxacin, water, and carbon surfaces. Hybrid Reverse Monte Carlo (HRMC) simulations were used to determine the disordered structure of an activated carbon cloth (ACC), specifically, KIP1200 (Dacarb company, France), for use in MD simulations. KIP1200 contains a small amount of oxygen (less than 2%), which supports our assumption of a predominantly carbon-based structure. Surface interactions were found to vary significantly depending on the ofloxacin form. The neutral form exhibited strong π-π interactions with flat surfaces, whereas the zwitterionic form displayed a greater affinity for curved surfaces. On KIP1200, adsorption was pH-dependent: acidic conditions enhanced adsorption due to reduced repulsion, while adsorption decreased under basic conditions. The aromatic rings in ofloxacin, combined with the high electronegativity of its fluorine atoms, played a critical role in facilitating adsorption through π-π interactions. These results deepen our understanding of ofloxacin microspecies, colloid formation, and adsorption mechanisms under diverse conditions.
Collapse
Affiliation(s)
- Fatokhoma A Camara
- ICMN, UMR 7374, CNRS - Université d'Orléans, Interfaces, Confinement, Matériaux et Nanostructures, 1b rue de la Férollerie, CS 40059, 45071 Cedex Orléans, France
| | - Hamidréza Ramézani
- ICMN, UMR 7374, CNRS - Université d'Orléans, Interfaces, Confinement, Matériaux et Nanostructures, 1b rue de la Férollerie, CS 40059, 45071 Cedex Orléans, France
- Polytech d'Orléans, ICMN, UMR 7374, CNRS - Université d'Orléans, Interfaces, Confinement, Matériaux et Nanostructures, 8 rue Léonard de Vinci, 45072 Cedex 2 Orléans, France
| | - Nathalie Mathieu
- ICMN, UMR 7374, CNRS - Université d'Orléans, Interfaces, Confinement, Matériaux et Nanostructures, 1b rue de la Férollerie, CS 40059, 45071 Cedex Orléans, France
| | - Sandrine Delpeux-Ouldriane
- ICMN, UMR 7374, CNRS - Université d'Orléans, Interfaces, Confinement, Matériaux et Nanostructures, 1b rue de la Férollerie, CS 40059, 45071 Cedex Orléans, France
| | - Suresh K Bhatia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Xie H, Shang M, Dong J, Li Y, Lai X. A distributed and process-based model coupling water-sediment-antibiotic interactions to simulate dynamic source-transport-fate of antibiotics at catchment scale. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136681. [PMID: 39616843 DOI: 10.1016/j.jhazmat.2024.136681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025]
Abstract
A lack of hydro-biogeochemical models for catchment-scale antibiotic dynamics limits our mechanistic understanding of the transport and fate of antibiotics. This study addresses this gap by developing a distributed and process-based model that focuses on the complex water-sediment-antibiotic interactions. We applied the model to a typical agricultural catchment and selected tetracyclines (TCs) as the target antibiotics. Parameter sensitivity analysis demonstrated that source distribution, groundwater discharge, and water-soil/sediment partitioning were crucial processes. The multi-site performance evaluation generally proved the model's validity, though some overestimation of riverine concentration dynamics was observed. The grid-based distribution of the annual source inputs of the summation of the four TCs (∑4TCs) highly varied in space (μ = 3494.92 mg·ha-1·yr-1, σ = 4761.20 mg·ha-1·yr-1). About 99 % of the source inputs were retained in soil, with mixing layer as the largest reservoir and degradation as the primary loss pathway. Daily terrestrial discharged loading of ∑4TCs peaked with rainfall events. Surface runoff contributed more than 50 % of the terrestrial load of ∑4TCs in summer, while groundwater discharge dominated in other seasons. These results imply that the catchment-scale TCs dynamics are transport-limited rather than source-limited. Our model offers new insights into the high-resolution sources-transport-fate of antibiotics, aiding in developing strategies to mitigate antibiotic contamination.
Collapse
Affiliation(s)
- Hui Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China.
| | - Meiqi Shang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianwei Dong
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yunliang Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China
| | - Xijun Lai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China
| |
Collapse
|
10
|
Chen X, Chen J, Zhang Y, Ling C, Shen Y. Biochar Nanoparticles Reduce Ciprofloxacin Accumulation and Restore Growth and Hormonal Balance in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2025; 14:380. [PMID: 39942942 PMCID: PMC11819727 DOI: 10.3390/plants14030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, poses a growing environmental concern due to its persistence in agricultural soils and potential adverse effects on crop production. While previous studies have documented CIP's negative impacts on plant growth, effective strategies to protect crops from antibiotic stress remain limited. Biochar-based approaches show promise, but their application at the nanoscale for antibiotic stress management is largely unexplored. This study demonstrates how biochar nanoparticles (BNPs) effectively mitigate CIP-induced stress in rice seedlings through adsorption mechanisms. Rice seedlings were treated with 5 and 10 mg L-1 CIP, with and without 0.2 g L-1 BNPs. Results showed that CIP significantly disrupted plant growth, decreasing shoot length by 20.5% and root length by 45.2%, along with reduced biomass. Application of BNPs effectively reduced CIP bioavailability by over 80%, leading to a decreased CIP accumulation of 49.7% in shoots and 33.1% in roots. The addition of BNPs mitigated these growth impacts by restoring shoot length to 98.2% of control levels at 5 mg L-1 CIP and improving root growth and biomass accumulation. BNPs also mitigated CIP-induced hormone imbalance, evidenced by a recovery in IAA levels by 8.9%, an increase in 6-BA by 152.6%, and an enhancement in SA levels by 12.7-13.6%. These findings demonstrate the significant potential of nanoscale biochar in reducing antibiotic stress in agricultural systems and provide insights into plant responses under these conditions. This research offers a promising strategy for enhancing crop resilience in areas affected by pharmaceutical pollutants.
Collapse
Affiliation(s)
- Xiaohan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing 210037, China; (X.C.); (J.C.)
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jieyu Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing 210037, China; (X.C.); (J.C.)
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanhong Zhang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210037, China;
| | - Chen Ling
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing 210037, China; (X.C.); (J.C.)
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Nanjing 210037, China; (X.C.); (J.C.)
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Zhang Q, Li Y, Kroeze C, van de Schans MG, Baartman J, Yang J, Li S, Xu W, Wang M, Ma L, Zhang F, Strokal M. More inputs of antibiotics into groundwater but less into rivers as a result of manure management in China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100513. [PMID: 39759771 PMCID: PMC11697712 DOI: 10.1016/j.ese.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
Antibiotics are extensively used in livestock production to prevent and treat diseases, but their environmental impact through contamination of rivers and groundwater is a growing concern. The specific antibiotics involved, their sources, and their geographic distribution remain inadequately documented, hindering effective mitigation strategies for river and groundwater pollution control caused by livestock production. Here we develope the spatially explicit MARINA-Antibiotics (China-1.0) model to estimate the flows of 24 antibiotics from seven livestock species into rivers and leaching into groundwater across 395 sub-basins in China, and examine changes between 2010 and 2020. We find that 8364 tonnes and 3436 tonnes of antibiotics entered rivers and groundwater nationwide in 2010 and 2020, respectively. Approximately 50-90% of these amounts originated from about 40% of the basin areas. Antibiotic inputs to rivers decreased by 59% from 2010 to 2020, largely due to reduced manure point sources. Conversely, antibiotic leaching into groundwater increased by 15%, primarily because of enhanced manure recycling practices. Pollution varied by antibiotic groups and livestock species: fluoroquinolones contributed approximately 55% to river pollution, mainly from pig, cattle, and chicken manure; sulfonamides accounted for over 90% of antibiotics in groundwater, predominantly from pig and sheep manure. While our findings support existing policies promoting manure recycling to mitigate river pollution in China, they highlight the need for greater attention to groundwater pollution. This aspect is essential to consider in developing and designing future reduction strategies for antibiotic pollution from livestock production.
Collapse
Affiliation(s)
- Qi Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, China
- Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands
| | - Yanan Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, China
- Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands
| | - Carolien Kroeze
- Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands
| | - Milou G.M. van de Schans
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Jantiene Baartman
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, Wageningen, 6708 PB, the Netherlands
| | - Jing Yang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Hebei, 050021, China
| | - Shiyang Li
- Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Tiansheng Road 02, Chongqing, 400715, China
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, China
| | - Mengru Wang
- Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Hebei, 050021, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193, China
| | - Maryna Strokal
- Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands
| |
Collapse
|
12
|
Lu B, Wang P, Zhu Y, Hu J, Qian J, Huang Y, Shen J, Tang S, Liu Y. Interaction between root exudates and PFOS mobility: Effects on rhizosphere microbial health in wetland ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125324. [PMID: 39557356 DOI: 10.1016/j.envpol.2024.125324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Perfluorooctanesulfonate (PFOS), a persistent organic pollutant, poses significant ecological risks. This study investigates the effects of PFOS on rhizosphere microbial communities of two wetland plants, Lythrum salicaria (LS) and Phragmites communis (PC). We conducted microcosm experiments to analyze the physiological status of soil microbes under varying PFOS concentrations and examined the role of root exudates in modulating PFOS mobility. Flow cytometry and soil respiration measurements revealed that PFOS exposure increased microbial mortality, with differential impacts observed between LS and PC rhizospheres. LS root exudates intensified microbial stress, whereas PC exudates mitigated PFOS toxicity. Thin-layer chromatography indicated that LS exudates decreased PFOS mobility, leading to higher local concentrations and increased microbial toxicity, while PC exudates enhanced PFOS mobility, reducing its local impact. Fourier-transform infrared spectroscopy and excitation-emission matrix fluorescence spectroscopy of root exudates identified compositional shifts under PFOS stress, highlighting distinct defense strategies in LS and PC. These findings underscore the importance of plant-microbe interactions and root exudate composition in determining microbial resilience to PFOS contamination.
Collapse
Affiliation(s)
- Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yueming Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Hu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, USA, Orlando, FL, 32816, USA
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yuanyuan Huang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chineses Academy of Sciences, Beijing, 100101, China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
13
|
Chang D, Yu L, Mao Y, Wu Y, Cai B. Improvement of biochemical characteristics of tetracycline-contaminated soil for stimulating soybean growth using Arbuscular mycorrhizal fungi. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:22. [PMID: 39699773 DOI: 10.1007/s10653-024-02343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Tetracycline (TC), as a new type of environmental pollutant, poses a great threat to human food safety and health, thus becoming the focus of human environmental protection issues. In this study, we selected an environmentally friendly microbial remediation method to degrade the residual TC in soil. An experiment was conducted with Funneliformis mosseae (F. mosseae) and artificial TC-contaminated soil to analyze the physiology, antimicrobial enzyme activities, and TC residues in soybean plants and rhizomatous soil. The results showed that the presence of TC in the soil inhibited the enzyme activities of soybean root system and soil, and suppressed the biomass of soybean. Inoculation of F. mosseae in TC-contaminated soil promoted the degradation of TC in the soil, enhanced soil resistance enzyme and urease activities (12.53-43.48%) around the root soil, and enhanced the soil resistance enzymes and promoted the uptake of nutrients in the soybean root system.We conclude that F. mosseae may reduce antibiotics or promote nutrient uptake to enhance plant resistance by altering inter-root enzyme activity. Therefore, this study provides a new theoretical basis for using AMF to remediate TC-contaminated soil and retard the stress of TC on the growth of soybean.
Collapse
Affiliation(s)
- Donghao Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Lina Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yizhi Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yunshu Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Baiyan Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
14
|
Ashraf M, Abbasi N, Gupta PK, Chakma S, Ziauddin Ahammad S. Effect of Soil-pH, temperature and moisture content on sorption dynamics of metformin and erythromycin. ENVIRONMENTAL RESEARCH 2024; 263:120270. [PMID: 39481784 DOI: 10.1016/j.envres.2024.120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
The rising soil-groundwater quality issues due to pharmaceuticals and personal care products (PPCPs) contamination have spurred significant concern. To understand the sorption characteristics of metformin (MTN) and erythromycin (ETM) in sandy and sandy loam soils with varying organic matter and particle composition, sorption kinetics (single and competitive), isotherms, and thermodynamics were studied. The effects of pH and soil moisture content (SMC) were also investigated at environmentally relevant concentrations. The equilibrium time of MTN and ETM sorption by the three soils in a competitive solute system was about 4 h, and the sorption process was in line with a pseudo-second-order model. The rate-determining step in the process involved both intraparticle diffusion and liquid film diffusion mechanisms for the two PPCPs. The highest pollutant uptake occurred in soils with higher organic matter, driven by enhanced H-bonding, electrostatic interactions, and π-π and n-π interactions facilitated by the organic matter. The equilibrium data in the three soils was well described by the Freundlich model and confirmed favourable adsorption (1/nf = 1.01-1.90). The sorption coefficient (Kd) on the three soils ranged from 2.1 to 332 L/kg for MTN and from 6.25 to 845 L/kg for ETM. The adsorption process was feasible at 293 K and 303 K (ΔG° = - 0.16 to -10.24 kJ/mol), physical and exothermic in nature (ΔH° = -75.21 to -10.30 kJ/mol) for both the contaminants. Observed alterations in Qe with pH confirmed the participation of electrostatic interactions. A low SMC favoured both MTN and ETM sorption onto the sandy soil. Overall, ETM exhibits higher expected sorption, whereas MTN has a greater tendency for migration in the soils and is thus liable to contaminate the groundwater. The study accentuates novel insights into the transport and fate of MTN and ETM in soil-groundwater systems at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Neha Abbasi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pankaj Kumar Gupta
- Centre of Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Faculty of Environment, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
15
|
Azuma T, Usui M, Hasei T, Hayashi T. Occurrence and environmental fate of anti-influenza drugs in a subcatchment of the Yodo River Basin, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176086. [PMID: 39260509 DOI: 10.1016/j.scitotenv.2024.176086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Understanding the current situation and risk of environmental contamination by anti-influenza drugs in aquatic environments is key to prevent the unexpected emergence and spread of drug-resistant viruses. However, few reports have been focused on newer drugs that have recently been introduced in clinical settings. In this study, the behaviour of the prodrug baloxavir marboxil (BALM)-the active ingredient of Xofluza, an increasingly popular anti-influenza drug-and its pharmacologically active metabolite baloxavir (BAL) in the aquatic environment was evaluated. Additionally, their presence in urban rivers and a wastewater treatment plant (WWTP) in the Yodo River basin was investigated and compared with those of the major anti-influenza drugs used to date (favipiravir (FAV), peramivir (PER), laninamivir (LAN), and its active metabolite, laninamivir octanoate (LANO), oseltamivir (OSE), and its active metabolite, oseltamivir carboxylate (OSEC), and zanamivir (ZAN)) to comprehensively assess their environmental fate in the aquatic environment. The results clearly showed that BALM, FAV, and BAL were rapidly degraded through photolysis (2-h, 0.6-h, and 0.4-h half-lives, respectively), followed by LAN, which was gradually biodegraded (7-h half-life). In addition, BALM and BAL decreased by up to 47 % after 4 days and 34 % after 2 days of biodegradation in river water. However, the remaining conventional drugs, except for LANO (<1 % after 10 days), were persistent, being transported from the upstream to downstream sites. The LogKd values for the rates of sorption of BALM (0.5-1.6) and BAL (1.8-3.1) on river sediment were higher than those of conventional drugs (-0.5 to 1.7). Notably, all anti-influenza drugs were effectively removed by ozonation (>90-99.9 % removal) after biological treatment at a WWTP. Thus, these findings suggest the importance of introducing ozonation to reduce pollution loads in rivers and the environmental risks associated with drug-resistant viruses in aquatic environments, thereby promoting safe river environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tomohiro Hasei
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
16
|
Chen X, Song Y, Ling C, Shen Y, Zhan X, Xing B. Fate of emerging antibiotics in soil-plant systems: A case on fluoroquinolones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175487. [PMID: 39153616 DOI: 10.1016/j.scitotenv.2024.175487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Fluoroquinolones (FQs), a class of broad-spectrum antibiotics widely used to treat human and animal diseases globally, have limited adsorption and are often excreted unchanged or as metabolites. These compounds enter the soil environment through feces, urban wastewater, or discharge of biological solids. The fluorine atoms in FQs impart high electronegativity, chemical stability, and resistance to microbial degradation, allowing them to potentially enter food chains. The persistence of FQs in soils raises questions about their impacts on plant growth, an aspect not yet conclusively determined. We reviewed whether, like other organic compounds, FQs are actively absorbed by plants, resulting in bioaccumulation and posing threats to human health. The influx of FQs has led to antibiotic resistance in soil microbes by exerting selective pressure and contributing to multidrug-resistant bacteria. Therefore, the environmental risks of FQs warrant further attention. This work provides a comprehensive review of the fate and behavior of FQs at the plant-environment interface, their migration and transport from the environment into plants, and associated toxicity. Current limitations in research are discussed and prospects for future investigations outlined. Thus, understanding antibiotic behavior in plants and translocation within tissues is not only crucial for ecosystem health (plant health), but also assessing potential human health risks. In addition, it can offer insights into the fate of emerging soil pollutants in plant-soil systems.
Collapse
Affiliation(s)
- Xiaohan Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yixuan Song
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Ling
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
17
|
Rutkoski CF, Vergara-Luis I, Urionabarrenetxea E, García-Velasco N, Zaldibar B, Anza M, Olivares M, Prieto A, Epelde L, Garbisu C, Almeida EA, Soto M. Effects of sulfamethazine and tetracycline at molecular, cellular and tissue levels in Eisenia fetida earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175579. [PMID: 39154996 DOI: 10.1016/j.scitotenv.2024.175579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Soil contamination by antibiotics is a global issue of great concern that contributes to the rise of bacterial antibiotic resistance and can have toxic effects on non-target organisms. This study evaluated the variations of molecular, cellular, and histological parameters in Eisenia fetida earthworms exposed to sulfamethazine (SMZ) and tetracycline (TC), two antibiotics commonly found in agricultural soils. The earthworms were exposed for 14 days to a series of concentrations (0, 10, 100, and 1000 mg/kg) of both antibiotics. SMZ and TC did not affect the survival of E. fetida, however, other effects at different levels of biological complexity were detected. The two highest concentrations of SMZ reduced the viability of coelomocytes. At the highest TC concentration, there was a noticeable decline in cell viability, acetylcholinesterase activity (neurotoxicity), and the relative presence of mucopolysaccharides in the epidermis (mucous production). Glutathione S-transferase activity decreased in all TC treatments and at the highest SMZ concentration. However, levels of malondialdehyde and protein carbonyls did not change, suggesting an absence of oxidative stress. Tetracycline was neurotoxic to E. fetida and changed the integrity of the epidermis. Both antibiotics altered the intestinal microbiota of E. fetida, leading to a reduction in the relative abundance of bacteria from the phyla Proteobacteria and Bacteroidetes, while causing an increase in the phylum Actinobacteroidota. All observed changes indicate that both SMZ and TC can disrupt the earthworms' immune system and gut microbiome, while fostering the growth of bacteria that harbour antibiotic resistance genes. Finally, both antibiotics exerted additional metabolic and physiological effects that increased the vulnerability of E. fetida to pathogens.
Collapse
Affiliation(s)
- C F Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - E Urionabarrenetxea
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - N García-Velasco
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - B Zaldibar
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - M Anza
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - L Epelde
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - C Garbisu
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - E A Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - M Soto
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain.
| |
Collapse
|
18
|
Mejías C, Martín-Pozo L, Santos JL, Martín J, Aparicio I, Alonso E. Occurrence, dissipation kinetics and environmental risk assessment of antibiotics and their metabolites in agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135586. [PMID: 39191017 DOI: 10.1016/j.jhazmat.2024.135586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Antibiotics are among the emerging contaminants of greatest concern to the scientific community. However, the occurrence and behaviour of their metabolites in soils have been scarcely studied. To address this research gap, this study investigates the occurrence, sorption, dissipation kinetics, and environmental risk of highly important antibiotics (sulfamethazine, sulfadiazine, sulfamethoxazole, trimethoprim) and their main metabolites in Mediterranean agricultural soils. Batch experiments were conducted under natural conditions for 120 days. Five different dissipation kinetics models were applied to elucidate antibiotics degradation. The sorption isotherms were evaluated by three different models. Most of the antibiotics and metabolites tested showed a good fit with the Linear Isotherm model (R2 >0.96) and biphasic dissipation kinetic models (R2 >0.90). The dissipation and the endpoints values (DT50 and DT90) depended on the soil type properties. A Lixisol soil demonstrated reduced degradation of the investigated compounds. Trimethoprim showed the highest persistence, followed by sulfamethazine, sulfamethoxazole, and sulfadiazine. Parent compounds exhibited lower degradation rates than their metabolites. Remaining antibiotic concentrations were found to be below the predicted no-effect concentration in soil, suggesting that they may not pose a risk to terrestrial biota. This study provides valuable insights into the behaviour of these antibiotics and their metabolites in soil.
Collapse
Affiliation(s)
- Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Laura Martín-Pozo
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain.
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| |
Collapse
|
19
|
Wang Z, Li Y, Wang J, Li S. Tetracycline antibiotics in agricultural soil: Dissipation kinetics, transformation pathways, and structure-related toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175126. [PMID: 39084385 DOI: 10.1016/j.scitotenv.2024.175126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Tetracyclines (TCs) are the most common antibiotics in agricultural soil, due to their widespread usage and strong persistence. Biotic and abiotic degradation of TCs may generate toxic transformation products (TPs), further threatening soil ecological safety. Despite the increasing attention on the environmental behavior of TCs, a systematic review on the dissipation of TCs, evolution of TPs, and structure-toxicity relationship of TCs in agricultural soil remains lacking. This review aimed to provide a comprehensive overview of the environmental fate of TCs in agricultural soil. We first introduced the development history and structural features of different generations of TCs. Then, we comparatively evaluated the dissipation kinetics, transportation pathways, and ecological impacts of three representative TCs, namely tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), in agricultural soil. The results showed that the dissipation kinetics of TCs generally followed the first-order kinetic model, with the median dissipation half-lives ranging from 20.0 to 38.8 days. Among the three TCs, OTC displayed the lowest dissipation rates due to its structural stability. The typical degradation pathways of TCs in soil included epimerization/isomerization, demethylation, and dehydration. Isomerization and dehydration reactions may lead to the formation of more toxic TPs, while demethylation was accompanied by the alteration of the minimal pharmacophore of TCs thus potentially reducing the toxicity. Toxicological experiments are urgently needed in future to comprehensively evaluate the ecological risks of TCs in agricultural soil.
Collapse
Affiliation(s)
- Zhu Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Haque MA, Nath ND, Johnston TV, Haruna S, Ahn J, Ovissipour R, Ku S. Harnessing biotechnology for penicillin production: Opportunities and environmental considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174236. [PMID: 38942308 DOI: 10.1016/j.scitotenv.2024.174236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the discovery of antibiotics, penicillin has remained the top choice in clinical medicine. With continuous advancements in biotechnology, penicillin production has become cost-effective and efficient. Genetic engineering techniques have been employed to enhance biosynthetic pathways, leading to the production of new penicillin derivatives with improved properties and increased efficacy against antibiotic-resistant pathogens. Advances in bioreactor design, media formulation, and process optimization have contributed to higher yields, reduced production costs, and increased penicillin accessibility. While biotechnological advances have clearly benefited the global production of this life-saving drug, they have also created challenges in terms of waste management. Production fermentation broths from industries contain residual antibiotics, by-products, and other contaminants that pose direct environmental threats, while increased global consumption intensifies the risk of antimicrobial resistance in both the environment and living organisms. The current geographical and spatial distribution of antibiotic and penicillin consumption dramatically reveals a worldwide threat. These challenges are being addressed through the development of novel waste management techniques. Efforts are aimed at both upstream and downstream processing of antibiotic and penicillin production to minimize costs and improve yield efficiency while lowering the overall environmental impact. Yield optimization using artificial intelligence (AI), along with biological and chemical treatment of waste, is also being explored to reduce adverse impacts. The implementation of strict regulatory frameworks and guidelines is also essential to ensure proper management and disposal of penicillin production waste. This review is novel because it explores the key remaining challenges in antibiotic development, the scope of machine learning tools such as Quantitative Structure-Activity Relationship (QSAR) in modern biotechnology-driven production, improved waste management for antibiotics, discovering alternative path to reducing antibiotic use in agriculture through alternative meat production, addressing current practices, and offering effective recommendations.
Collapse
Affiliation(s)
- Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA.
| | - Tony Vaughn Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Samuel Haruna
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Jaehyun Ahn
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| |
Collapse
|
21
|
Zhou Z, Xu J, Zou L, Wang X, Chen Y, Sun P, Zhu X, Sheng L, Lu N. Removal of sulfonamide antibiotics by constructed wetland substrate with NaOH-modified corn straw biochar under different operating conditions. BIORESOURCE TECHNOLOGY 2024; 410:131274. [PMID: 39147106 DOI: 10.1016/j.biortech.2024.131274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
This study examined the elimination of sulfonamide antibiotics (SAs) by constructed wetland substrates with NaOH-modified corn straw biochar and assessed the impact of environmental conditions on the effectiveness of SAs removal. The study demonstrated that the constructed wetland substrate with NaOH-modified biochar significantly eliminated eight SAs, with a removal rate of over 94 %. During the removal process, the intermediates will undergo regeneration of the parent compounds under low DO concentrations. This was based on the linear stepwise regression analysis and Geodetector models. The results showed that SA types COD, NH4+-N, TN, and DO had a stronger influence. The dominant bacteria in the constructed wetland system were mainly affected by antibiotic concentration, DO, NH4+-N and NO3--N, which affected the removal of antibiotics. Overall, the constructed wetland substrate with NaOH-modified corn straw biochar can be effectively employed as an ecological method for eliminating SAs from the environment.
Collapse
Affiliation(s)
- Zegang Zhou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China; Laboratory for Coastal Marine Eco-Environment Process and Carbon, Sink of Hainan Province/Yazhou Bay Innovation Institute/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; JiLin Agricultural Science and Technology University, No. 77 Hanlin Road, Jilin Economic and Technological Development Zone, Jilin 132101, China.
| | - Li Zou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Yue Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Peng Sun
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Xiaoguang Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China.
| | - Nan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Jingyue Street 2555, Changchun 130017, China
| |
Collapse
|
22
|
Song L, Wang B, Li J, Wang T, Li W, Xu X, Feng T, Yang H, Hou L. A self-cleaning photocatalytic membrane loaded with Bi 2O 2CO 3/In(OH) 3 S-scheme heterojunction composites for removing tetracycline from aqueous solutions. J Colloid Interface Sci 2024; 671:664-679. [PMID: 38820850 DOI: 10.1016/j.jcis.2024.05.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Bi2O2CO3/In(OH)3 (BON) photocatalysts were synthesized by a one-pot method and loaded onto polyvinylidene fluoride (PVDF) membranes to obtain a Bi2O2CO3/In(OH)3/PVDF (BON-M) catalytic membrane system. The catalytic membranes demonstrated complete degradation of tetracycline within 40 min under visible light. They demonstrated robust photocatalytic activity across a broad pH range (5-11) and in the presence of coexisting ions. The membranes demonstrated excellent self-cleaning performance. Following exposure to light, the irreversible contamination decreased from 27.1% to 4.7% and the membrane's permeability was almost completely restored. Moreover, the charge transfer mechanism at the S-scheme heterojunction interface of BON was demonstrated by Density functional theory and in-situ X-ray Photoelectron Spectroscopy characterisation, and the active sites involved in tetracycline's degradation were identified. Meanwhile, the mechanism of the "anemone effect" of BON-M was demonstrated in conjunction with Electron paramagnetic resonance, and the intrinsic Some factors enhancing the membranes' photocatalytic activity are specified.
Collapse
Affiliation(s)
- Lei Song
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China; Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wenjia Li
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Taotao Feng
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li'an Hou
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
23
|
Allegrini M, Zabaloy MC. Anaerobic digestates in agricultural soils: A systematic review of their effects on antibiotic resistance genes. Rev Argent Microbiol 2024; 56:394-401. [PMID: 39299828 DOI: 10.1016/j.ram.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/05/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024] Open
Abstract
Tackling the dissemination of antibiotic resistance is one of the main global challenges. Manures from animal production are a recognized source of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) requiring appropriate treatment methods. One of the main approaches for manure treatment is anaerobic digestion (AD). Meta-analyses have demonstrated that AD can significantly reduce the load of ARGs. However, antibiotics, ARGs and MGEs still remain in the final product (digestate). A sustainable agricultural use of digestates under the One Health framework requires wide assessments of their effects in the soil resistome. The objective of this review was to present the state of the art of digestate effects on ARGs of agricultural soils, focusing exclusively on digestates from animal manures. A systematic review was conducted. The examination of the resulting literature indicated that although temporal decays are observed for a variety of ARGs in single-application and repeated-applications experiments, for certain ARGs the pre-treatment or control levels are not restored. However, the low number of studies and the heterogeneous experimental conditions preclude a clear understanding of the fate of ARGs in soil and their risk for agroecosystems. The inclusion of multiple MGEs and the assessment of the long-term influence of digestates on soil properties and microbial communities could be keystones for a better understanding of the risks associated with digestate-induced changes in the soil resistome.
Collapse
Affiliation(s)
- Marco Allegrini
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina; Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
24
|
Majid S, Ahmad KS, Yusuf K, Ashraf GA. Exploring the sorption and degradation dynamics of validamycin-A in agricultural soils for environmental management. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:340. [PMID: 39073647 DOI: 10.1007/s10653-024-02124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Validamycin A (VA) is one of the antibiotics that have been utilized in agriculture in Asia; nevertheless, there haven't been many investigations on what happens to VA in soil. The rate at which pesticides are adsorbed into the soil must be determined, since their usage in agriculture is growing. In order to accomplish this, the current study investigated the sorption and degradation of VA in ten distinct soil samples via batch equilibrium studies while maintaining strict laboratory controls. In thermodynamic analysis with a C-type curve, the negative values of Gibbs free energy (ΔG) are thoroughly evaluated using both linear and Freundlich models. These values vary from - 16.8 to - 22.2 kJ/mol. Impact of temperature (18, 23, and 30 °C) and pH (5, 7, and 9) on the degradation of this antibiotic in soil was also scrutinized. Our findings demonstrated that, as a result of enhanced microbial activity at higher temperatures, VA deteriorated more quickly at 23 °C and 30 °C than at 18 °C. In comparison to lower pH values, the VA removal efficiencies with sample-4 was significantly greater at pH 7.4 (92.9%) and pH 9 (97.4%). Moreover, first order reaction kinetics were followed in the degradation of VA. The results demonstrated that VA bound to the selected soils, resulting in medium to low persistence as demonstrated by degradation values. In summary, this study provides important information regarding the behavior and fate of VA in different types of soil, information that might be useful in developing workable management strategies and environmental risk assessments.
Collapse
Affiliation(s)
- Sara Majid
- Department of Environmental Sciences, Fatima Jinnah Women University, Old Presidency, The Mall, Rawalpindi, 46000, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Old Presidency, The Mall, Rawalpindi, 46000, Pakistan.
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing, 210098, China
- New Uzbekistan University, Muustaqillik Ave. 54, 100007, Tashkent, Uzbekistan
| |
Collapse
|
25
|
Tang XY, Yin WM, Yang G, Cui JF, Cheng JH, Yang F, Li XY, Wu CY, Zhu SG. Biochar reduces antibiotic transport by altering soil hydrology and enhancing antibiotic sorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134468. [PMID: 38703680 DOI: 10.1016/j.jhazmat.2024.134468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
The performance of biochar (BC) in reducing the transport of antibiotics under field conditions has not been sufficiently explored. In repacked sloping boxes of a calcareous soil, the effects of different BC treatments on the discharge of three relatively weakly sorbing antibiotics (sulfadiazine, sulfamethazine, and florfenicol) via runoff and drainage were monitored for three natural rain events. Surface application of 1 % BC (1 %BC-SA) led to the most effective reduction in runoff discharge of the two sulfonamide antibiotics, which can be partly ascribed to the enhanced water infiltration. The construction of 5 % BC amended permeable reactive wall (5 %BC-PRW) at the lower end of soil box was more effective than the 1 %BC-SA treatment in reducing the leaching of the most weakly sorbing antibiotic (florfenicol), which can be mainly ascribed to the much higher plant available and drainable water contents in the 5 %BC-PRW soil than in the unamended soil. The results of this study highlight the importance of BC's ability to regulate flow pattern by modifying soil hydraulic properties, which can make a significant contribution to the achieved reduction in the transport of antibiotics offsite or to groundwater.
Collapse
Affiliation(s)
- Xiang-Yu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| | - Wen-Min Yin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Guang Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Fang Cui
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Jian-Hua Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Yang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiao-Yu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chun-Yan Wu
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sen-Gen Zhu
- Zhejiang Honggaitou Agricultural Science and Technology Co., Ltd, Quzhou 324109, China
| |
Collapse
|
26
|
Fučík J, Jarošová R, Baumeister A, Rexroth S, Navrkalová J, Sedlář M, Gargošová HZ, Mravcová L. Assessing earthworm exposure to a multi-pharmaceutical mixture in soil: unveiling insights through LC-MS and MALDI-MS analyses, and impact of biochar on pharmaceutical bioavailability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48351-48368. [PMID: 39028457 PMCID: PMC11297825 DOI: 10.1007/s11356-024-34389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
In the European circular economy, agricultural practices introduce pharmaceutical (PhAC) residues into the terrestrial environment, posing a potential risk to earthworms. This study aimed to assess earthworm bioaccumulation factors (BAFs), the ecotoxicological effects of PhACs, the impact of biochar on PhAC bioavailability to earthworms, and their persistence in soil and investigate earthworm uptake mechanisms along with the spatial distribution of PhACs. Therefore, earthworms were exposed to contaminated soil for 21 days. The results revealed that BAFs ranged from 0.0216 to 0.329, with no significant ecotoxicological effects on earthworm weight or mortality (p > 0.05). Biochar significantly influenced the uptake of 14 PhACs on the first day (p < 0.05), with diminishing effects over time, and affected significantly the soil-degradation kinetics of 16 PhACs. Moreover, MALDI-MS analysis revealed that PhAC uptake occurs through both the dermal and oral pathways, as pharmaceuticals were distributed throughout the entire earthworm tissue without specific localization. In conclusion, this study suggests ineffective PhAC accumulation in earthworms, highlights the influence of biochar on PhAC degradation rates in soil, and suggests that uptake can occur through both earthworm skin and oral ingestion.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Rea Jarošová
- Veterinary Research Institute Brno, Hudcova 296/70, 621 00, Brno, Czech Republic
| | | | - Sascha Rexroth
- Shimadzu Europa GmbH, Albert-Hahn-Straße 6, 472 69, Duisburg, Germany
| | - Jitka Navrkalová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
27
|
Abedi-Firoozjah R, Alizadeh-Sani M, Zare L, Rostami O, Azimi Salim S, Assadpour E, Azizi-Lalabadi M, Zhang F, Lin X, Jafari SM. State-of-the-art nanosensors and kits for the detection of antibiotic residues in milk and dairy products. Adv Colloid Interface Sci 2024; 328:103164. [PMID: 38703455 DOI: 10.1016/j.cis.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly seen as a future concern, but antibiotics are still commonly used in animals, leading to their accumulation in humans through the food chain and posing health risks. The development of nanomaterials has opened up possibilities for creating new sensing strategies to detect antibiotic residues, resulting in the emergence of innovative nanobiosensors with different benefits like rapidity, simplicity, accuracy, sensitivity, specificity, and precision. Therefore, this comprehensive review provides pertinent and current insights into nanomaterials-based electrochemical/optical sensors for the detection of antibitic residues (ANBr) across milk and dairy products. Here, we first discuss the commonly used ANBs in real products, the significance of ANBr, and also their binding/biological properties. Then, we provide an overview of the role of using different nanomaterials on the development of advanced nanobiosensors like fluorescence-based, colorimetric, surface-enhanced Raman scattering, surface plasmon resonance, and several important electrochemical nanobiosensors relying on different kinds of electrodes. The enhancement of ANB electrochemical behavior for detection is also outlined, along with a concise overview of the utilization of (bio)recognition units. Ultimately, this paper offers a perspective on the future concepts of this research field and commercialized nanomaterial-based sensors to help upgrade the sensing techniques for ANBr in dairy products.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Alizadeh-Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Zare
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamimeh Azimi Salim
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran..
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
28
|
Hamdi S, Mosbahi M, Issaoui M, Barreiro A, Cela-Dablanca R, Brahmi J, Tlili A, Jamoussi F, J Fernández-Sanjurjo M, Núñez-Delgado A, Álvarez-Rodríguez E, Gharbi-Khelifi H. Experimental data and modeling of sulfadiazine adsorption onto raw and modified clays from Tunisia. ENVIRONMENTAL RESEARCH 2024; 248:118309. [PMID: 38301763 DOI: 10.1016/j.envres.2024.118309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
In recent years, the increasing detection of emerging pollutants (particularly antibiotics, such as sulfonamides) in agricultural soils and water bodies has raised growing concern about related environmental and health problems. In the current research, sulfadiazine (SDZ) adsorption was studied for three raw and chemically modified clays. The experiments were carried out for increasing doses of the antibiotic (0, 1, 5, 10, 20, and 40 μmol L-1) at ambient temperature and natural pH with a contact time of 24 h. The eventual fitting to Freundlich, Langmuir and Linear adsorption models, as well as residual concentrations of antibiotics after adsorption, was assessed. The results obtained showed that one of the clays (HJ1) adsorbed more SDZ (reaching 99.9 % when 40 μmol L-1 of SDZ were added) than the other clay materials, followed by the acid-activated AM clay (which reached 99.4 % for the same SDZ concentration added). The adsorption of SDZ followed a linear adsorption isotherm, suggesting that hydrophobic interactions, rather than cation exchange, played a significant role in SDZ retention. Concerning the adsorption data, the best adjustment corresponded to the Freundlich model. The highest Freundlich KF scores were obtained for the AM acid-treated and raw HJ1 clays (606.051 and 312.969 Ln μmol1-n kg-1, respectively). The Freundlich n parameter ranged between 0.047 and 1.506. Regarding desorption, the highest value corresponded to the AM clay, being generally <10 % for raw clays, <8 % for base-activated clays, and <6 % for acid-activated clays. Chemical modifications contributed to improve the adsorption capacity of the AM clay, especially when the highest concentrations of the antibiotic were added. The results of this research can be considered relevant as regard environmental and public health assessment since they estimate the feasibility of three Tunisian clays in SDZ removal from aqueous solutions.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27 Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia.
| | - Mohamed Mosbahi
- Dpartment of Geology, GEOGLOB Research Unit, Faculty of Science and Technology of Sfax, Sokra Street 3038 Sfax, Tunisia
| | - Manel Issaoui
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Jihen Brahmi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia
| | - Ali Tlili
- Dpartment of Geology, GEOGLOB Research Unit, Faculty of Science and Technology of Sfax, Sokra Street 3038 Sfax, Tunisia
| | - Faker Jamoussi
- Georesources Laboratory, CERTE, Borj Cedria, Bp 273, 8020, Solimen, Tunisia
| | - María J Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Hakima Gharbi-Khelifi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27 Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| |
Collapse
|
29
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
30
|
Xu Y, Liu Y, Liang C, Guo W, Ngo HH, Peng L. Favipiravir biotransformation by a side-stream partial nitritation sludge: Transformation mechanisms, pathways and toxicity evaluation. CHEMOSPHERE 2024; 353:141580. [PMID: 38430943 DOI: 10.1016/j.chemosphere.2024.141580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yaxuan Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
31
|
Wang J, Huang R, Liang Y, Long X, Wu S, Han Z, Liu H, Huangfu X. Prediction of antibiotic sorption in soil with machine learning and analysis of global antibiotic resistance risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133563. [PMID: 38262323 DOI: 10.1016/j.jhazmat.2024.133563] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Although the sorption of antibiotics in soil has been extensively studied, their spatial distribution patterns and sorption mechanisms still need to be clarified, which hinders the assessment of antibiotic resistance risk. In this study, machine learning was employed to develop the models for predicting the soil sorption behavior of three classes of antibiotics (sulfonamides, tetracyclines, and fluoroquinolones) in 255 soils with 2203 data points. The optimal independent models obtained an accurate predictive performance with R2 of 0.942 to 0.977 and RMSE of 0.051 to 0.210 on test sets compared to combined models. Besides, a global map of the antibiotic sorption capacity of soil predicted with the optimal models revealed that the sorption potential of fluoroquinolones was the highest, followed by tetracyclines and sulfonamides. Additionally, 14.3% of regions had higher antibiotic sorption potential, mainly in East and South Asia, Central Siberia, Western Europe, South America, and Central North America. Moreover, a risk index calculated with the antibiotic sorption capacity of soil and population density indicated that about 3.6% of soils worldwide have a high risk of resistance, especially in South and East Asia with high population densities. This work has significant implications for assessing the antibiotic contamination potential and resistance risk.
Collapse
Affiliation(s)
- Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Youheng Liang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Xinlong Long
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhengpeng Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
32
|
Li Y, Rong Q, Han C, Li H, Luo J, Yan L, Wang D, Jones KC, Zhang H. Development and validation of an in situ high-resolution technique for measuring antibiotics in sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133551. [PMID: 38301441 DOI: 10.1016/j.jhazmat.2024.133551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Important biogeochemical processes occur in sediments at fine scales. Sampling techniques capable of yielding information with high resolution are therefore needed to investigate chemical distributions and fluxes and to elucidate key processes affecting chemical fates. In this study, a high-resolution diffusive gradients in thin-films (DGT) technique was systematically developed and tested in a controlled sediment system to measure organic contaminants, antibiotics, for the first time. The DGT probe was used to resolve compound distributions at the mm scale. It also reflected the fluxes from the sediment pore-water and remobilization from the solid phase, providing more dynamic information. Through the fine scale detection, a reduction of re-supply was observed over time, which was concentration and location dependent. Compared to the Rhizon sampling method, antibiotic concentrations obtained by DGT probes were less than the pore-water concentrations, as DGT measures the labile fraction of the compounds. The DGT probe was also tested on an intact sediment core sampled from a lake in China and used to measure the distribution of labile antibiotics with depth in the core at the mm scale. ENVIRONMENTAL IMPLICATION: The abuse of antibiotics and widespread of their residues influences the ecosystem, induces the generation of super-bacteria, and finally poses threat to human health. Sediments adsorbs pollutants from the aquatic environment, while may also release them back to the environment. We systematically developed DGT probe approach for measuring antibiotics in sediment in situ in high resolving power, it provides information at fine scale to help us investigate biogeochemical processes take place in sediment and sediment-water interface.
Collapse
Affiliation(s)
- Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Chao Han
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Hanbing Li
- Department of Environmental Science, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
33
|
Liu X, Zhu H, Song W, Rao Q, Xu X. Mineralization and residue characteristics of chloramphenicol in aerobic soils: evidence from a carbon-14 study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22917-22924. [PMID: 38416351 DOI: 10.1007/s11356-024-32617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Chloramphenicol, a broad-spectrum antibiotic employed for controlling bacterial infections, presents an intriguing aspect in terms of its environmental fate in soils. 14C-labeled chloramphenicol was used to explore its mineralization and residue characteristics in three distinct agricultural soils in China. The findings revealed a nuanced pattern in the fate of 14C-chloramphenicol, with notable variations among the different soils under investigation. The chloramphenicol extract residue exhibited a reduction of 18.04% in sandy clay soil, 23.04% in clay loam soil, and 21.73% in loamy clay soil. Notably, the mineralization rate in sandy clay soil was 25.22% surpassed that in the other two soils, particularly during the initial stages of incubation. Over time, the diminishing extract residue underwent conversion into minerals and bound residue. The formation rate of bound residue was increased from 44.59 to 53.65% after adding 10% manure, suggesting that chloramphenicol easily binds with soils rich in organic matter. The bound residue is predominantly localized in the humin fraction across all soils. Additionally, the sterilized soil experiments indicated the pivotal role of microorganisms in influencing the fate of chloramphenicol under the specified experimental conditions. In conclusion, this study offers valuable insights into the environmental dynamics of chloramphenicol in soils, emphasizing the importance of soil composition, organic matter content, and microbial activity. The findings contribute to a scientific understanding of the environmental safety implications associated with chloramphenicol usage.
Collapse
Affiliation(s)
- Xunyue Liu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Haojie Zhu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wenyang Song
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qiong Rao
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xiaoxiao Xu
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
34
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
35
|
Fučík J, Amrichová A, Brabcová K, Karpíšková R, Koláčková I, Pokludová L, Poláková Š, Mravcová L. Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20017-20032. [PMID: 38367114 PMCID: PMC10927849 DOI: 10.1007/s11356-024-32492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L-1 of ENR) and poultry litter (up to 70 mg∙kg-1 of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg-1 to 9 μg∙kg-1 after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Anna Amrichová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Kristýna Brabcová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
- Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Renata Karpíšková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivana Koláčková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucie Pokludová
- Institute for State Control of Veterinary Biologicals and Medicines (ISCVBM), Hudcova 56 A, Brno, Czech Republic
| | - Šárka Poláková
- Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
36
|
Han W, Zhang M, Zhao Y, Chen W, Sha H, Wang L, Diao Y, Tan Y, Zhang Y. Tetracycline removal from soil by phosphate-modified biochar: Performance and bacterial community evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168744. [PMID: 38007113 DOI: 10.1016/j.scitotenv.2023.168744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Since the remediation performance of soil tetracycline pollution by original biochar is not ideal, many modified methods have been proposed to improve its performance. Considering the cost, complex modification process and environmental friendliness, many modified biochar are difficult to be used in soil environments. In this work, biochar derived from corn stover was modified using phosphate to increase the adsorption ability of soil tetracycline and alleviate the negative effects caused by tetracycline. The results showed that pyrolysis temperatures and anion types of phosphate (PO43-, HPO42-, H2PO4-) played important roles in the performance of modified biochar. Compared with original biochar, phosphate modified biochar not only improved the adsorption capacity, but also changed the adsorption behavior of tetracycline. Via SEM, BET and FTIR techniques, the intrinsic reasons for the increase of adsorption capacity were explained by the change of morphological structures as well as functional groups of the modified biochar. K3PO4 and high temperature (800 °C) maximally improved the surface morphology, increased the pore structure, changed the surface functional groups of biochar, and then increased the adsorption capacity of tetracycline (124.51 mg/g). Subsequently, the optimal material (K3PO4-800) was selected and applied for tetracycline contaminated soil remediation. Compared to the soil without remediation, K3PO4-800 modified biochar effectively reduced the effective concentration of tetracycline in soil, and improved soil K and P nutrition, and reshaped microbial communities. Our study showed that K3PO4-800 modified biochar was not only a good tetracycline resistant material, but also a good soil amendment.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Ying Zhao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Weichang Chen
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Huixin Sha
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Yiran Diao
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Yuanji Tan
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Heilongjiang Province 150030, PR China.
| |
Collapse
|
37
|
Liu C, Sun Y, Zhou Z, Fan J, Yuan J. Simultaneous determination of 13 sulfonamides at trace levels in soil by modified QuEChERS with HPLC-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:378-385. [PMID: 38117310 DOI: 10.1039/d3ay01564e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The pretreatment of samples was vital for enhancing the sensitivity and accuracy of analytical methods. An efficient and sensitive method, based on modified QuEChERS with high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of the 13 sulfonamides (SAs) in soil, was developed. After extraction by sonication with methanol, the clean-up procedure was achieved using QuEChERS with a primary secondary amine (PSA). The quantification of the 13 SAs was performed by HPLC-MS/MS in electrospray ionization (ESI) and multiple reaction monitoring (MRM) modes. Under optimized conditions, the standard solution exhibited good linearity within the range of 0.01-0.5 μg mL-1. The limits of detection and the limits of quantification of the developed method were 0.007-0.030 μg kg-1 and 0.022-0.101 μg kg-1, respectively. The spiked recoveries for the 13 SAs were in the range of 74.5-111.7% with RSD less than 15%. Furthermore, the developed method was successfully applied for the determination of SAs in real soil samples. The above results showed that the proposed method would be an ideal analytical method for SAs in environmental ecological research.
Collapse
Affiliation(s)
- Chen Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China.
| | - YouMin Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - ZhaoTing Zhou
- Yantai Food and Drug Inspection and Testing Center, Yantai, Shandong 264005, China
| | - Jing Fan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - JinPeng Yuan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, Shandong 250014, China.
| |
Collapse
|
38
|
Yu W, Li Y, Shu M, Liu C, Liang Y, Mao Y, Tan J, Liu Y, Ai T. CS/CoFe 2O 4 nanocomposite as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxymonosulfate activation: performance and mechanism. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:40. [PMID: 38227058 DOI: 10.1007/s10653-023-01785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 01/17/2024]
Abstract
Tetracycline becomes a crucial measure for managing and treating communicable diseases in both human and animal sectors due to its beneficial antibacterial properties and cost-effectiveness. However, it is important not to trivialize the associated concerns of environmental contamination following the antibiotic's application. In this study, cobalt ferrate (CoFe2O4) nanoparticles were loaded into chitosan (CS), which can avoid the agglomeration problem caused by high surface energy and thus improve the catalytic performance of cobalt ferrate. And it can avoid the problem of secondary contamination caused by the massive leaching of metal ions. The resulting product was used as a catalyst to activate peroxymonosulfate (PMS) for the degradation of tetracycline (TC). To determine the potential effects on TC degradation, various factors such as PMS dosing, catalyst dosing, TC concentration, initial solution pH, temperature, and inorganic anions (Cl-, H2PO4- and HCO3-) were investigated. The CS/CoFe2O4/PMS system exhibited superior performance compared to the CoFe2O4-catalyzed PMS system alone, achieving a 92.75% TC removal within 120 min. The catalyst displayed high stability during the recycling process, with the efficiency observed after five uses remaining at a stable 73.1%, and only minor leaching of dissolved metal ions from the catalyst. This confirms the high stability of the catalyst. The activation mechanism study showed that there are free radical and non-free radical pathways in the reaction system to degrade TC together, and SO4•- and 1O2 are the primary reactive oxygen radicals involved in the reaction, allowing for effective treatment of contaminated water by TC.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist., Chongqing, 400074, China.
| | - Yueqi Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist., Chongqing, 400074, China
| | - Minghui Shu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist., Chongqing, 400074, China
| | - Cong Liu
- Southwest Institute of Technology and Engineering, Chongqing, 400039, China
| | - Yue Liang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist., Chongqing, 400074, China
| | - Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist., Chongqing, 400074, China
| | - JiangLin Tan
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist., Chongqing, 400074, China
| | - Yang Liu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist., Chongqing, 400074, China
| | - Ting Ai
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist., Chongqing, 400074, China
| |
Collapse
|
39
|
Rietra RPJJ, Berendsen BJA, Mi-Gegotek Y, Römkens PFAM, Pustjens AM. Prediction of the mobility and persistence of eight antibiotics based on soil characteristics. Heliyon 2024; 10:e23718. [PMID: 38187236 PMCID: PMC10767508 DOI: 10.1016/j.heliyon.2023.e23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Antibiotics are widely used in intensive animal husbandry in the Netherlands and are subsequently emitted to soil via manure. To predict degradation and mobility in soil, generic sorption models have been derived. However, most of the coefficients used in generic models are based on a limited range of soils and have not been validated for agricultural soils in the Netherlands. To improve model predictions and assess to what extent differences among soils affect sorption and degradation, an experimental study has been performed. Using a recently developed experimental approach, both the degradation (DT50) and mobility (Kd) of eight selected commonly used antibiotics were determined in 29 typical Dutch agricultural soils. Median DT50 values range from 5.3 days for Sulfadiazine to 120 days for Trimethoprim but are affected by soil type. The ratio of the lowest and highest DT50 for a given antibiotic among soils can be as large as 151, for Tylosin. Measured values of the logKd also range from 0.19 for Sulfadiazine to more than 2 for Doxycycline, Flumequine, Trimethoprim, Tylosin and Enrofloxacine. The impact of soil on Kd is large, especially for more mobile antibiotics such as Sulfadoxine and Sulfadiazine. Both the range in DT50 and Kd can be predicted reasonably well using a Freundlich type regression model that accounts for the variation in soil type and sampling depth. Organic matter, iron oxides, pH and clay content appear to be the main constituents and explain between 29 % (Trimethoprim) and 77 % of the variation in DT50 and between 64 % (Lincomycin) and 87 % (Sulfadoxine and Sulfadiazine) of the variation of Kd. The effect of depth on DT50 and Kd is however limited. The information thus obtained in combination with local data on soil type can be used to more accurately predict the potential risk of relevant antibiotics in soil and transport to ground- and nearby surface waters.
Collapse
Affiliation(s)
- R P J J Rietra
- Wageningen Environmental Research, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - B J A Berendsen
- Wageningen Food Safety Research, Wageningen University & Research, PO Box 230, 6700 AE, Wageningen, the Netherlands
| | - Y Mi-Gegotek
- Wageningen Environmental Research, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - P F A M Römkens
- Wageningen Environmental Research, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - A M Pustjens
- Wageningen Food Safety Research, Wageningen University & Research, PO Box 230, 6700 AE, Wageningen, the Netherlands
| |
Collapse
|
40
|
Mansilla S, Escolà M, Piña B, Portugal J, Iakovides IC, Beretsou VG, Christou A, Fatta-Kassinos D, Bayona JM, Matamoros V. Linking the use of reclaimed water to indicators of crop stress by metabolomic and transcriptomic analyses. A tool to compare water irrigation quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168182. [PMID: 37907106 DOI: 10.1016/j.scitotenv.2023.168182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The occurrence of contaminants of emerging concern (CECs) or heavy metals in reclaimed water used for agricultural irrigation may affect crop morphology and physiology. Here, we analyzed lettuce (Lactuca sativa) grown in outdoor lysimeters and irrigated with either tap water, used as a control, or reclaimed water: CAS-reclaimed water, an effluent from a conventional activated sludge system (CAS) followed by chlorination and sand filtration, or MBR-reclaimed water, an effluent from a membrane biological reactor (MBR). Chemical analyses identified seven CECs in the reclaimed waters, but only two of them were detected in lettuce (carbamazepine and azithromycin). Metabolomic and transcriptomic analyses revealed that irrigation with reclaimed water increased the concentrations of several crop metabolites (5-oxoproline, leucine, isoleucine, and fumarate) and of transcripts codifying for the plant stress-related genes Heat-Shock Protein 70 (HSP70) and Manganese Superoxide Dismutase (MnSOD). In both cases, MBR-water elicited the strongest response in lettuce, perhaps related to its comparatively high sodium adsorption ratio (4.5), rather than to its content in CECs or heavy metals. Our study indicates that crop metabolomic and transcriptomic profiles depend on the composition of irrigating water and that they could be used for testing the impact of water quality in agriculture.
Collapse
Affiliation(s)
- Sylvia Mansilla
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Mònica Escolà
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - José Portugal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Iakovos C Iakovides
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Vasiliki G Beretsou
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, 1516 Nicosia, Cyprus
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Josep M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
41
|
Lee SM, Kim JG, Jeong WG, Alessi DS, Baek K. Adsorption of antibiotics onto low-grade charcoal in the presence of organic matter: Batch and column tests. CHEMOSPHERE 2024; 346:140564. [PMID: 38303384 DOI: 10.1016/j.chemosphere.2023.140564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Antibiotics contaminate diverse ecosystems and threaten human health. In ecosystems including water, sediment, and soil, the amount of antibiotics present is tiny compared to the amount of natural organic matter. However, most studies have ignored the co-presence of natural organic matter in the adsorption of target antibiotics. In this study, we quantitatively evaluated the effect of co-presenting natural organic matter on the adsorption of sulfamethazine (SMZ) through batch and column experiments using low-grade charcoal, an industrial by-product. SMZ was used as a model antibiotic compound and humic acid (HA) was used to represent natural organic matter. The co-presence of 2000 mg/L HA (400 times the concentration of SMZ) lowered the adsorption rate of SMZ from 0.023 g/mg·min to 0.007 g/mg·min, and the maximum adsorption capacity from 39.8 mg/g to 15.6 mg/g. HA blocked the charcoal's pores and covered its surface adsorption sites, which dramatically lowered its capacity to adsorb SMZ. Similar results were obtained in the flow-through column experiments, where the co-presence of natural organic matter shortened the lifetime of the charcoal. As a result, the co-presence of a relatively high concentration of natural organic matter can inhibit the adsorption of SMZ and likely other antibiotic compounds, and thus the presence of natural organic matter should be accounted for in the design of adsorption processes to treat antibiotics in water.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA
| | - Won-Gune Jeong
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kitae Baek
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| |
Collapse
|
42
|
Moody AH, Lerch RN, Goyne KW, Anderson SH, Mendoza-Cózatl DG, Alvarez DA. Degradation kinetics of veterinary antibiotics and estrogenic hormones in a claypan soil. CHEMOSPHERE 2024; 346:140501. [PMID: 38303378 DOI: 10.1016/j.chemosphere.2023.140501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/15/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024]
Abstract
Veterinary antibiotics and estrogens are excreted in livestock waste before being applied to agricultural lands as fertilizer, resulting in contamination of soil and adjacent waterways. The objectives of this study were to 1) investigate the degradation kinetics of the VAs sulfamethazine and lincomycin and the estrogens estrone and 17β-estradiol in soil mesocosms, and 2) assess the effect of the phytochemical DIBOA-Glu, secreted in eastern gamagrass (Tripsacum dactyloides) roots, on antibiotic degradation due to the ability of DIBOA-Glu to facilitate hydrolysis of atrazine in solution assays. Mesocosm soil was a silt loam representing a typical claypan soil in portions of Missouri and the Central United States. Mesocosms (n = 133) were treated with a single target compound (antibiotic concentrations at 125 ng g-1 dw, estrogen concentrations at 1250 ng g-1 dw); a subset of mesocosms treated with antibiotics were also treated with DIBOA-Glu (12,500 ng g-1 dw); all mesocosms were kept at 60% water-filled pore space and incubated at 25 °C in darkness. Randomly chosen mesocosms were destructively sampled in triplicate for up to 96 days. All targeted compounds followed pseudo first-order degradation kinetics in soil. The soil half-life (t0.5) of sulfamethazine ranged between 17.8 and 30.1 d and ranged between 9.37 and 9.90 d for lincomycin. The antibiotics results showed no significant differences in degradation kinetics between treatments with or without DIBOA-Glu. For estrogens, degradation rates of estrone (t0.5 = 4.71-6.08 d) and 17β-estradiol (t0.5 = 5.59-6.03 d) were very similar; however, results showed that estrone was present as a metabolite in the 17β-estradiol treated mesocosms and vice-versa within 24 h. The antibiotics results suggest that sulfamethazine has a greater potential to persist in soil than lincomycin. The interconversion of 17β-estradiol and estrone in soil increased their overall persistence and sustained soil estrogenicity. This study demonstrates the persistence of these compounds in a typical claypan soil representing portions of the Central United States.
Collapse
Affiliation(s)
- Adam H Moody
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 E New Haven Rd., Columbia, MO, 65201, USA.
| | - Robert N Lerch
- United States Department of Agriculture - Agricultural Research Service, Cropping Systems and Water Quality Research Unit, 1406 Rollins St., Columbia, MO, 65211, USA
| | - Keith W Goyne
- Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | | | | | - David A Alvarez
- U.S. Geological Survey, Columbia Environmental Research Center, 4200 E New Haven Rd., Columbia, MO, 65201, USA
| |
Collapse
|
43
|
Hong H, Liu C, Li Z. Chemistry of soil-type dependent soil matrices and its influence on behaviors of pharmaceutical compounds (PCs) in soils. Heliyon 2023; 9:e22931. [PMID: 38076171 PMCID: PMC10703727 DOI: 10.1016/j.heliyon.2023.e22931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 05/07/2025] Open
Abstract
Behaviors of pharmaceutical compounds (PCs) in soil are usually determined by experimental extrapolation of results from separate constitutes to the soil, or from a special soil to other regional soil conditions. However, such extrapolation is problematic due to variations in soil clay mineral and organic matter (OM) compositions with soil types, which dominate the interaction mechanisms of PCs in soil. It is essential to review current literature to enhance our understanding of the soil-type dependent surface chemistry of soil matrices and the environmental behavior of PCs in different soil types. Major types of soils occur globally in parallel to the latitudinal or altitudinal zonation due to regional climate conditions with distinct clay mineral and OM compositions. The soil-type dependent surface chemistry results in variations in retention, distribution, transport, and transformation PCs in soil. The mixture of PCs of different classes usually exhibited enhanced sorption due to the cooperative multilayer sorption on soil constituents, and that of the same class often caused differential adsorption capacity compared to the sorption from single compound due to competitive sorption. PCs preferentially adsorb to a soil component, or to a special soil type, and exhibit notably soil-type dependent sorption affinity, mobility, and dissipation. The soil-dependent surface chemistry of soil is critical to predict the persistence and bioavailability of PCs in soil. In the future, more detailed studies of influence of individual soil factor on the behaviors of PCs and especially the practical field site investigation are required to better understand the sorption, transport, transformation, and ecotoxicology of PCs in typical soil types.
Collapse
Affiliation(s)
- Hanlie Hong
- School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Chen Liu
- School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Zhaohui Li
- Department of Geosciences, University of Wisconsin-Parkside, 900 Wood Road, Kenosha, WI, 53144, USA
| |
Collapse
|
44
|
García-Delgado C, Delgado-Moreno L, Toro M, Puñal M, Martín-Trueba M, Eymar E, Ruíz AI. The role of biochar and green compost amendments in the adsorption, leaching, and degradation of sulfamethoxazole in basic soil. CHEMOSPHERE 2023; 344:140364. [PMID: 37797895 DOI: 10.1016/j.chemosphere.2023.140364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
The fate of the antibiotic sulfamethoxazole in amended soils remains unclear, moreover in basic soils. This work aimed to assess the adsorption, leaching, and biodegradation of sulfamethoxazole in unamended and biochar from holm oak pruning (BC)- and green compost from urban pruning (CG)-amended basic soil. Adsorption properties of the organic amendments and soil were determined by adsorption isotherms of sulfamethoxazole. The leachability of this antibiotic from unamended (Soil) and BC- (Soil + BC) and GC- (Soil + GC) amended soil was determined by leaching columns using water as solvent up to 250 mL. Finally, Soil, Soil + BC, and Soil + GC were spiked with sulfamethoxazole and incubated for 42 days. The degradation rate and microbial activity were periodically monitored. Adsorption isotherms showed poor adsorption of sulfamethoxazole in unamended basic soil. BC and CG showed good adsorption capacity. Soil + BC and Soil + GC increased the sulfamethoxazole adsorption capacity of the soil. The low sulfamethoxazole adsorption of Soil produced quick and intense sulfamethoxazole leaching. Soil + BC reduced the sulfamethoxazole leaching, unlike to Soil + GC which enhanced it concerning Soil. The pH of adsorption isotherms and leachates indicate that the anion of sulfamethoxazole was the major specie in unamended and amended soil. CG enhanced the microbial activity of the soil and promoted the degradability of sulfamethoxazole. In contrast, the high adsorption and low biostimulation effect of BC in soil reduced the degradation of sulfamethoxazole. The half-life of sulfamethoxazole was 2.6, 6.9, and 11.9 days for Soil + GC, Soil, and Soil + BC, respectively. This work shows the benefits and risks of two organic amendments, BC and GC, for the environmental fate of sulfamethoxazole. The different nature of the organic carbon of the amendments was responsible for the different effects on the soil.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Laura Delgado-Moreno
- Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marta Toro
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marcos Puñal
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Martín-Trueba
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Enrique Eymar
- Department of Agricultural Chemistry and Food Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Ana I Ruíz
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
45
|
Zhang Y, Wang M, Cheng W, Huang C, Ren J, Wan T, Gao K. Effects of water environmental factors and antibiotics on bacterial community in urban landscape lakes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106740. [PMID: 37925787 DOI: 10.1016/j.aquatox.2023.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The presence of antibiotics can affect the natural microbial community and exert selective pressure on the environment's microorganisms. This study focused on three types of urban landscape lakes in Xi'an that were closely related to human activities. By combining basic water quality indicators, antibiotic occurrence status, bacterial communities and their potential metabolic functions, Spearman correlation coefficient and redundancy analysis were used to explore the relationship between them, and further explore the impact mechanism of environmental factors and antibiotics on bacterial community structure. The results showed that ofloxacin, erythromycin, and roxithromycin were the main types of antibiotics in the three landscape lakes, with low ecological risks, and there was a clear clustering of antibiotic occurrence. Proteobacteria was the most abundant bacterial phylum, and each lake had its own unique dominant bacteria, which indicates that they are influenced by varying water sources, pollution, and other nearby environments. Statistical analysis showed that pH and nitrogen nutrients were the most critical environmental factors affecting bacterial communities (P<0.01), while tetracyclines and lincomycins were the antibiotics that had a significant impact on bacterial communities (P<0.05). Antibiotics mainly promote defense- and signal transduction-related functions, and inhibit the metabolic activity of bacterial communities. However, the impact of antibiotics on bacterial diversity, community structure, and potential metabolic function in the three urban lakes was less than that of environmental factors. These results help to clarify the mechanism and degree of impact of different interference factors (environmental factors, conventional pollutants, and antibiotics) on bacterial communities in the water environment and are important for the management of urban landscape lake water environments.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Chen Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Tian Wan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Kangyi Gao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
46
|
Lisiecka N, Ciesielski T, Sopata O, Parus A, Woźniak-Karczewska M, Simpson M, Frankowski R, Zgoła-Grześkowiak A, Kloziński A, Siwińska-Ciesielczyk K, Klapiszewski Ł, Niemczak M, Owsianiak M, Heipieper HJ, Chrzanowski Ł. Sorption of ionic liquids in soil enriched with polystyrene microplastic reveals independent behavior of cations and anions. CHEMOSPHERE 2023; 341:139927. [PMID: 37633614 DOI: 10.1016/j.chemosphere.2023.139927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Recently, much attention has been focused on the application of the Ionic Liquids (ILs) with herbicidal activity in agriculture. It has been suggested that through the appropriate selection of cations and anions, one can adjust the properties of ILs, particularly the hydrophobicity, solubility, bioavailability, toxicity. In practical agricultural conditions, it will be beneficial to reduce the mobility of herbicidal anions, such as the commonly applied 2,4-dichlorophenoxyacetic acid [2,4-D] in the soil. Furthermore, microplastics are becoming increasingly prevalent in the soil, potentially stimulating herbicidal sorption. Therefore, we investigated whether cations in ILs influence the mobility of anions in OECD soil supplemented with polystyrene microplastic (PS). For this purpose, we used the 2,4-D based ILs consisting of: a hydrophilic choline cation [Chol][2,4-D] and a hydrophobic choline cation with a C12chain [C12Chol][2,4-D]. Characterization of selected micropolystyrene was carried out using the BET sorption-desorption isotherm, particle size distribution and changes in soil sorption parameters such as soil sorption capacity and cation exchange capacity. Based on the batch sorption experiment, the effect of microplastic on the sorption of individual cations and anions in soil contaminated with micropolystyrene was evaluated. The results obtained indicate that the introduction of a 1-10% (w/w) PS resulted in an 18-23% increase of the soil sorption capacity. However, the sorption of both ILs' cations increased only by 3-5%. No sorption of the [2,4-D] anion was noted. This suggests that cations and anions forming ILs, behave independently of each other in the environment. The results indicate the fact that ILs upon introduction into the environment are not a new type of emerging contaminant, but rather a typical mixture of ions. It is worth noting that when analyzing the behavior of ILs in the environment, it is necessary to follow the fate of both cations and anions.
Collapse
Affiliation(s)
- Natalia Lisiecka
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Tomasz Ciesielski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Olga Sopata
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Anna Parus
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Marta Woźniak-Karczewska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Simpson
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Robert Frankowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | | | - Arkadiusz Kloziński
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | | | - Łukasz Klapiszewski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment Division, Department of Environmental and Resources Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
47
|
Cela-Dablanca R, Míguez-González A, Barreiro A, Rodríguez-López L, Arias-Estévez M, Núñez-Delgado A, Fernández-Sanjurjo MJ, Castillo-Ramos V, Álvarez-Rodríguez E. Simultaneous adsorption of amoxicillin and ciprofloxacin on agricultural soils and by-products used as bio-adsorbents: Unraveling the interactions in complex systems. ENVIRONMENTAL RESEARCH 2023; 240:117535. [PMID: 39492492 DOI: 10.1016/j.envres.2023.117535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The presence of pharmaceuticals in agricultural soils, like amoxicillin (AMX) and ciprofloxacin (CIP), poses a significant environmental challenge with potential implications for ecosystems and human well-being. This study explores the simultaneous adsorption of AMX and CIP on crop soils and bio-adsorbents, focusing on competitive adsorption dynamics. Tests were conducted with varying pharmaceutical concentrations in six soils and three bio-adsorbents. CIP consistently exhibited higher adsorption than AMX, particularly at higher concentrations. In the binary system, AMX's adsorption exceeded the individual system at higher concentrations, implying a synergistic effect. Bio-adsorbents, especially pine bark and oak ash, displayed superior adsorption capacities compared to soils. Some soils exhibited enhanced adsorption and retention of both antibiotics simultaneously, aligning with the cooperative adsorption model. Freundlich's adsorption model described the competitive adsorption systems well. These findings have implications for addressing antibiotic contamination in agricultural ecosystems, offering insights into complex interactions in soil environments amid rising pharmaceutical concerns.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ainoa Míguez-González
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Lucia Rodríguez-López
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Avelino Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - María J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ventura Castillo-Ramos
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain.
| | - Esperanza Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
48
|
Han B, Yang F, Shen S, Mu M, Zhang K. Effects of soil habitat changes on antibiotic resistance genes and related microbiomes in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165109. [PMID: 37385504 DOI: 10.1016/j.scitotenv.2023.165109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The changes of paddy soil habitat profoundly affect the structure and function of soil microorganisms, but how this process drives the growth and spread of manure- derived antibiotic resistance genes (ARGs) after entering the soil is unclear. Herein, this study explored the environmental fate and behavior of various ARGs in the paddy soil during rice growth period. Results showed that most ARG abundances in flooded soil was lower than that in non-flooded soil during rice growth (decreased by 33.4 %). And soil dry-wet alternation altered microbial community structure in paddy field (P < 0.05), showing that Actinobacteria and Firmicutes increased in proportion under non-flooded conditions, and Chloroflexi, Proteobacteria and Acidobacteria evolved into the dominant groups in flooded soil. Meanwhile, the correlation between ARGs and bacterial communities was stronger than that with mobile genetic elements (MGEs) in both flooded and non-flooded paddy soils. Furthermore, soil properties, especially oxidation reduction potential (ORP), were proved to be an essential factor in regulating the variability of ARGs in the whole rice growth stage by structural equation model, with a direct influence (λ = 0.38, P < 0.05), following by similar effects of bacterial communities and MGEs (λ = 0.36, P < 0.05; λ = 0.29, P < 0.05). This study demonstrated that soil dry-wet alternation effectively reduced the proliferation and dissemination of most ARGs in paddy fields, providing a novel agronomic measure for pollution control of antibiotic resistance in farmland ecosystem.
Collapse
Affiliation(s)
- Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Meirui Mu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China.
| |
Collapse
|
49
|
Míguez-González A, Cela-Dablanca R, Barreiro A, Rodríguez-López L, Rodríguez-Seijo A, Arias-Estévez M, Núñez-Delgado A, Fernández-Sanjurjo MJ, Castillo-Ramos V, Álvarez-Rodríguez E. Adsorption of antibiotics on bio-adsorbents derived from the forestry and agro-food industries. ENVIRONMENTAL RESEARCH 2023; 233:116360. [PMID: 37295584 DOI: 10.1016/j.envres.2023.116360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Antibiotic consumption at high levels in both human and veterinary populations pose a risk to their eventual entry into the food chain and/or water bodies, which will adversely affect the health of living organisms. In this work, three materials from forestry and agro-food industries (pine bark, oak ash and mussel shell) were investigated as regards their potential use as bio-adsorbents in the retention of the antibiotics amoxicillin (AMX), ciprofloxacin (CIP) and trimethoprim (TMP). Batch adsorption/desorption tests were conducted, adding increasing concentrations of the pharmaceuticals individually (from 25 to 600 μmol L-1), reaching maximum adsorption capacities of ≈ 12000 μmol kg-1 for the three antibiotics, with removal percentages of ≈ 100% for CIP, 98-99% adsorption for TMP onto pine bark, and 98-100% adsorption for AMX onto oak ash. The presence of high calcium contents and alkaline conditions in the ash favored the formation of cationic bridges with AMX, whereas the predominance of hydrogen bonds between pine bark and TMP and CIP functional groups explain the strong affinity and retention of these antibiotics. The Freundlich's model provided the best prediction for AMX adsorption onto oak ash and mussel shell (heterogeneous adsorption), whereas the Langmuir's model described well AMX adsorption onto pine bark, as well as CIP adsorption onto oak ash (homogeneous and monolayer adsorption), while all three models provided satisfactory results for TMP. In the present study, the results obtained were crucial in terms of valorization of these adsorbents and their subsequent use to improve the retention of antibiotics of emerging concern in soils, thereby preventing contamination of waters and preserving environment quality.
Collapse
Affiliation(s)
- Ainoa Míguez-González
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Lucia Rodríguez-López
- Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain
| | - Andrés Rodríguez-Seijo
- Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - María J Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ventura Castillo-Ramos
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain.
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
50
|
Rodríguez-López L, Santás-Miguel V, Cela-Dablanca R, Núñez-Delgado A, Álvarez-Rodríguez E, Rodríguez-Seijo A, Arias-Estévez M. Clarithromycin as soil and environmental pollutant: Adsorption-desorption processes and influence of pH. ENVIRONMENTAL RESEARCH 2023; 233:116520. [PMID: 37390951 DOI: 10.1016/j.envres.2023.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Antibiotics pollution is a growing environmental issue, as high amounts of these compounds are found in soil, water and sediments. This work studies the adsorption/desorption of the macrolide antibiotic clarithromycin (CLA) for 17 agricultural soils with different edaphic characteristics. The research was carried out using batch-type experiments, with an additional assessment of the specific influence of pH for 6 of the soils. The results show that CLA adsorption reaches between 26 and 95%. In addition, the fit of the experimental data to adsorption models provided values between 1.9 and 19.7 Ln μmol1-n kg-1 for the KF, Freundlich affinity coefficient, and between 2.5 and 10.5 L kg-1 for Kd, distribution constant of Linear model. Regarding the linearity index, n, it varied between 0.56 and 1.34. Desorption showed lower scores than adsorption, with an average of 20%, and with values of 3.1 and 93.0 Ln μmol1-n kg-1 for KF(des) and 4.4 and 95.0 L kg-1 for Kd(des). The edaphic characteristics with the highest influence on adsorption were the silt fraction content and the exchangeable Ca content, while in the case of desorption, they were the total nitrogen, organic carbon, and exchangeable Ca and Mg contents. Regarding the pH, within the range studied (between 3 and 10), its value did not decisively affect the adsorption/desorption process. Overall, the set of these results could be of help to program appropriate measures leading to the retention/elimination of this antibiotic when it reaches the environment as a pollutant.
Collapse
Affiliation(s)
- Lucía Rodríguez-López
- Department of Plant Biology and Soil Science, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Vanesa Santás-Miguel
- Department of Plant Biology and Soil Science, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| | - Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Andrés Rodríguez-Seijo
- Department of Plant Biology and Soil Science, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Department of Plant Biology and Soil Science, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| |
Collapse
|