1
|
Wang J, Cai R, Hu Z, Cai L, Wu J. Study on the Interaction Effect of Heavy Metal Cadmium in Soil-Plant System Controlled by Biochar and Nano-Zero-Valent Iron. Int J Mol Sci 2025; 26:4373. [PMID: 40362612 PMCID: PMC12072827 DOI: 10.3390/ijms26094373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
The accumulation of heavy metal cadmium (Cd) in farmland soil in edible parts of crops seriously threatens plant growth, human health, and even the global ecological environment. Finding stabilization remediation technology is an important means to treat Cd-contaminated soil. This study comprehensively evaluated the synergistic effects of independent or combined application of biochar (BC) (10, 30 g kg-1) and nano zero-valent iron (nZVI) (0.1% w/w) on soil properties and morphological and physiological traits of pakchoi (Brassica rapa L. subsp. chinensis) under Cd (1, 3 mg kg-1) stress by pot experiments. It was shown that Cd toxicity negatively affected soil properties, reduced pakchoi biomass and total chlorophyll content, and increased oxidative stress levels. On the contrary, the combined application of BC (30 g kg-1) and nZVI (0.1%, w/w) reduced the Cd accumulation in the shoot parts of pakchoi from 0.78 mg·kg-1 to 0.11 mg·kg-1, which was lower than the Cd limit standard of leafy vegetables (0.20 mg kg-1) in GB 2762-2017 "National Food Safety Standard". Compared with the control, the treatment group achieved a 61.66% increase in biomass and a 105.56% increase in total chlorophyll content. At the same time, the activities of catalase (CAT) and superoxide dismutase (SOD) increased by 34.86% and 44.57%, respectively, and the content of malondialdehyde (MDA) decreased by 71.27%. In addition, the application of BC alone (30 g·kg-1) increased the soil pH value by 0.43 units and the organic carbon (SOC) content by 37.82%. Overall, the synergistic effect of BC (30 g kg-1) and nZVI (0.1% w/w) helped to restore soil homeostasis and inhibit the biotoxicity of Cd, which provided a new option for soil heavy metal remediation and crop toxicity mitigation.
Collapse
Affiliation(s)
- Jiarui Wang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (Z.H.)
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Rangzhuoma Cai
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaozhao Hu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (Z.H.)
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Liqun Cai
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (Z.H.)
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (Z.H.)
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
2
|
Xu Z, Zhang T, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Research Progress and Prospects of Nanozymes in Alleviating Abiotic Stress of Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8694-8714. [PMID: 39936319 DOI: 10.1021/acs.jafc.4c10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The continuous destruction of the global ecological environment has led to increased natural disasters and adverse weather, severely affecting crop yields and quality, particularly due to abiotic stress. Nanase, a novel artificial enzyme, simulates various enzyme activities, is renewable, and shows significant potential in promoting crop growth and mitigating abiotic stress. This study reviews the classification of nanoenzymes into carbon-based, metal-based, metal oxide-based, and others based on synthesis materials. The catalytic mechanisms of these nanoenzymes are discussed, encompassing activities, such as oxidases, peroxidases, catalases, and superoxide dismutases. The catalytic mechanisms of nanoenzymes in alleviating salt, drought, high-temperature, low-temperature, heavy metal, and other abiotic stresses in crops are also highlighted. Furthermore, the challenges faced by nanoenzymes are discussed, especially in sustainable agricultural development. This review provides insights into applying nanoenzymes in sustainable agriculture and offers theoretical guidance for mitigating abiotic stress in crops.
Collapse
Affiliation(s)
- Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
3
|
Zhang X, Huang J, Chen D, Yue Y, Wang L, Yang X. A new strategy for sustainable agricultural development: Meta-analysis of the efficient interaction of plant growth-promoting rhizobacteria with nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109845. [PMID: 40186912 DOI: 10.1016/j.plaphy.2025.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Nanoparticles (NPs) and plant growth-promoting rhizobacteria (PGPR) are two kinds of additives that have obvious promotion effect on plant growth and development, but the effectiveness and influencing factors of their cooperation remain incompletely understood. Here, we conducted a global meta-analysis of 68 published studies to explore the potential effects of simultaneous exposure to NPs and PGPR on plants and the factors influencing the benefits of their cooperation. The results indicated that either individual or combined applications of PGPR and NPs were effective at promoting plant growth and development, but the advantages of cooperation were more obvious, especially for plants under stress conditions. Our results also illustrated that PGPRs species affected the efficiency of cooperation with NPs, with the Bacillus spp. and Pseudomonas spp. having the most significant positive effects. Exposure to NPs of 7-15 d and foliar application had the most significant effects on plant biomass, photosynthetic capacity and nutrient accumulation. Effects on plant antioxidant systems were associated with NPs type, size, application dose and exposure way, but were not significantly related to exposure duration. Our results emphasize the effectiveness of cooperation between PGPR and NPs, which provides a theoretical basis for the development of nano-biofertilizers (NBFs), and also provides support for the application and promotion of NBFs in agricultural production.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiurong Huang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dingyi Chen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanzheng Yue
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lianggui Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiulian Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Zaman W, Ayaz A, Park S. Nanomaterials in Agriculture: A Pathway to Enhanced Plant Growth and Abiotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2025; 14:716. [PMID: 40094659 PMCID: PMC11901503 DOI: 10.3390/plants14050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has emerged as a transformative field in agriculture, offering innovative solutions to enhance plant growth and resilience against abiotic stresses. This review explores the diverse applications of nanomaterials in agriculture, focusing on their role in promoting plant development and improving tolerance to drought, salinity, heavy metals, and temperature fluctuations. The method classifies nanomaterials commonly employed in plant sciences and examines their unique physicochemical properties that facilitate interactions with plants. Key mechanisms of nanomaterial uptake, transport, and influence on plants at the cellular and molecular levels are outlined, emphasizing their effects on nutrient absorption, photosynthetic efficiency, and overall biomass production. The molecular basis of stress tolerance is examined, highlighting nanomaterial-induced regulation of reactive oxygen species, antioxidant activity, gene expression, and hormonal balance. Furthermore, this review addresses the environmental and health implications of nanomaterials, emphasizing sustainable and eco-friendly approaches to mitigate potential risks. The integration of nanotechnology with precision agriculture and smart technologies promises to revolutionize agricultural practices. This review provides valuable insights into the future directions of nanomaterial R&D, paving the way for a more resilient and sustainable agricultural system.
Collapse
Affiliation(s)
- Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
5
|
Sun C, Zhao C, Wang G, Han R. Cerium oxide nanoparticles ameliorate Arabidopsis thaliana root damage under UV-B stress by modulating the cell cycle and auxin pathways. PROTOPLASMA 2025:10.1007/s00709-025-02038-0. [PMID: 39907780 DOI: 10.1007/s00709-025-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Cerium oxide nanoparticles (CeO2-NPs) have been widely applied worldwide. In the field of agriculture, they have gained attention for their ability to promote seed germination, root elongation, and biomass accumulation in plants, as well as to increase plant resistance to various abiotic stresses. However, the underlying molecular mechanisms remain to be elucidated. Limited research has been conducted on whether CeO2-NPs can help plants mitigate damage caused by UV-B stress. In this study, Arabidopsis thaliana was selected as the research subject to investigate the effects of CeO2-NPs on the resistance of plant roots to UV-B stress at both the physiological and molecular levels. Our findings demonstrated that 120 mg/mL CeO2-NPs significantly alleviated UV-B-induced damage to the root system of Arabidopsis thaliana. Specifically, CeO2-NPs increased the activities of the root tip antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), reducing oxidative stress. The results from GUS staining and GFP fluorescence assays conducted on the transgenic lines CYCB1;1-GUS, DR5-GUS, QC25-GUS, and WOX5-GFP indicated that CeO2-NPs could increase the cell division activity, auxin accumulation, and stem cell niche activity of Arabidopsis thaliana root tips under UV-B stress. Furthermore, observations of GFP fluorescence in the transgenic lines PIN1-GFP, PIN2-GFP, and PIN7-GFP revealed that CeO2-NPs promoted root growth by inducing the accumulation of auxin transporters. Quantitative real-time PCR (qRT-PCR) analysis revealed that under UV-B stress, CeO2-NPs upregulated the expression of genes related to antioxidant enzymes, the cell cycle and auxin biosynthesis-related genes in Arabidopsis thaliana root tips while downregulating the expression of genes related to DNA damage repair and stress response. Therefore, CeO2-NPs have potential value for promoting plant growth and mitigating UV-B stress.
Collapse
Affiliation(s)
- Cheng Sun
- College of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030000, China
- Shanxi Provincial Key Laboratory of Plant Macromolecular Adversity Response, Shanxi Normal University, Taiyuan, 030000, China
| | - Chen Zhao
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, China
- Shanxi Provincial Key Laboratory of Plant Macromolecular Adversity Response, Shanxi Normal University, Taiyuan, 030000, China
| | - Guohua Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, China
- Shanxi Provincial Key Laboratory of Plant Macromolecular Adversity Response, Shanxi Normal University, Taiyuan, 030000, China
| | - Rong Han
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, China.
- Shanxi Provincial Key Laboratory of Plant Macromolecular Adversity Response, Shanxi Normal University, Taiyuan, 030000, China.
| |
Collapse
|
6
|
Kulkov L, Arkhipov R, Abramova A, Vereshchagin M, Voronkov A, Khalilova L, Kartashov A, Tarakanov I, Kreslavski V, Kuznetsov V, Pashkovskiy P, Allakhverdiev SI. Long-term effects of silver nanoparticles and mineral nutrition components on the photosynthetic processes, chloroplast ultrastructure and productivity of Solanum lycopersicum plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113038. [PMID: 39366295 DOI: 10.1016/j.jphotobiol.2024.113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
The effects of silver nanoparticles (AgNPs), both alone and in combination with mineral nutrients, on the growth and photosynthesis of Solanum lycopersicum plants during ontogeny were studied. The experiment involved weekly applications of 10 μmol of AgNPs for 15 weeks in a greenhouse over a summer period. A comprehensive characterization of the AgNPs was performed via TEM, ESI/EELS, and zeta potential measurements before and throughout the experiment. The activity of PSII, stomatal conductivity, photosynthesis, transpiration and respiration rates were measured, and the photosynthetic pigments, chloroplast ultrastructure, and dry and fresh masses of leaves, roots, and fruits were assessed. The results indicated that combining AgNPs with mineral nutrients increased PSII activity and the photosynthesis rate and altered the chloroplast ultrastructure. However, the use of mineral nutrients or AgNPs alone did not induce these changes. Atomic absorption spectrometry detected AgNPs in all the plant organs except the fruits. The highest fruit yield was associated with Veni Prisma®, a commercial product containing colloidal silver, which also caused desynchronized fruit maturation. This study hypothesizes that the synergistic effect of AgNPs and mineral nutrients enhances silver accumulation in chloroplasts, improving light utilization and photosynthetic efficiency, particularly under low light, thus increasing fruit quantity and dry mass. Conversely, long-term use of AgNPs alone was accompanied by silver accumulation outside the chloroplasts and did not lead to increased photosynthesis or an increase in fresh fruit mass.
Collapse
Affiliation(s)
- Leonid Kulkov
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Russia
| | - Roman Arkhipov
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Russia
| | - Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Voronkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila Khalilova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Kartashov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Tarakanov
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
7
|
Venzhik Y, Deryabin A, Dykman L. Nanomaterials in plant physiology: Main effects in normal and under temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112148. [PMID: 38838991 DOI: 10.1016/j.plantsci.2024.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Global climate change and high population growth rates lead to problems of food security and environmental pollution, which require new effective methods to increase yields and stress tolerance of important crops. Nowadays the question of using artificial chemicals is very relevant in theoretical and practical terms. It is important that such substances in low concentrations protect plants under stress conditions, but at the same time inflict minimal damage on the environment and human health. Nanotechnology, which allows the production of a wide range of nanomaterials (NM), provides novel techniques in this direction. NM include structures less than 100 nm. The review presents data on the methods of NM production, their properties, pathways for arrival in plants and their use in human life. It is shown that NM, due to their unique physical and chemical properties, can cross biological barriers and accumulate in cells of live organisms. The influence of NM on plant organism can be both positive and negative, depending on the NM chemical nature, their size and dose, the object of study, and the environmental conditions. This review provides a comparative analysis of the effect of artificial metal nanoparticles (NPm), the commonly employed NMs in plant physiology, on two important aspects of plant life: photosynthetic apparatus activity and antioxidant system function. According to studies, NM affect not only the functional activity of photosynthetic apparatus, but also structural organization of chloroplats. In addition, the literature analysis reflects the dual action of NM on oxidative processes, and antioxidant status of plants. These facts considerably complicate the ideas about possible mechanisms and further use of NPm in biology. In this regard, data on the effects of NM on plants under abiotic stressors are of great interest. Separate section is devoted to the use of NM as adaptogens that increase plant stress tolerance to unfavorable temperatures. Possible mechanisms of NM effects on plants are discussed, as well as the strategies for their further use in basic science and sustainable agriculture.
Collapse
Affiliation(s)
- Yliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
8
|
Huang F, Chen L, Zeng Y, Dai W, Wu F, Hu Q, Zhou Y, Shi S, Fang L. Unveiling influences of metal-based nanomaterials on wheat growth and physiology: From benefits to detriments. CHEMOSPHERE 2024; 364:143212. [PMID: 39222697 DOI: 10.1016/j.chemosphere.2024.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metal-based nanomaterials (MNs) are widely used in agricultural production. However, our current understanding of the overall effects of MNs on crop health is insufficient. A global meta-analysis of 144 studies involving approximately 2000 paired observations was conducted to explore the impacts of MNs on wheat growth and physiology. Our analysis revealed that the MN type plays a key role in influencing wheat growth. Ag MNs had significant negative effects on wheat growth and physiology, whereas Fe, Ti, and Zn MNs significantly increased wheat biomass and photosynthesis. Our study also observed a clear dose-specific effect, with a decrease in wheat shoot biomass with increasing MN concentrations. Meanwhile, MNs with small sizes (<25 nm) have no significant impacts on wheat growth. Furthermore, both the root and foliar applications significantly improved wheat growth, with no considerable differences. Using a machine learning approach, we found that the MN type was the main driving factor affecting wheat shoot biomass, followed by MN dose and size. Overall, wheat growth and physiology can be negatively influenced by specific MNs, for which a high dose and small size should be avoided in practical applications. Therefore, our study can provide insights into the future design and safe use of MNs in agriculture and increase the public acceptance of nano-agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Shunmei Shi
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
M D, K S VB, R R, P J. Sorghum drought tolerance is enhanced by cerium oxide nanoparticles via stomatal regulation and osmolyte accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108733. [PMID: 38761547 DOI: 10.1016/j.plaphy.2024.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] yield is limited by the coincidence of drought during its sensitive stages. The use of cerium oxide nanoparticles in agriculture is minimal despite its antioxidant properties. We hypothesize that drought-induced decreases in photosynthetic rate in sorghum may be associated with decreased tissue water content and organelle membrane damage. We aimed to quantify the impact of foliar application of nanoceria on transpiration rate, accumulation of compatible solutes, photosynthetic rate and reproductive success under drought stress in sorghum. In order to ascertain the mechanism by which nanoceria mitigate drought-induced inhibition of photosynthesis and reproductive success, experiments were undertaken in a factorial completely randomized design or split-plot design. Foliar spray of nanoceria under progressive soil drying conserved soil moisture by restricting the transpiration rate than water spray, indicating that nanoceria exerted strong stomatal control. Under drought stress at the seed development stage, foliar application of nanoceria at 25 mg L-1 significantly improved the photosynthetic rate (19%) compared to control by maintaining a higher tissue water content (18%) achieved by accumulating compatible solutes. The nanoceria-sprayed plants exhibited intact chloroplast and thylakoid membranes because of increased heme enzymes [catalase (53%) and peroxidase (45%)] activity, which helped in the reduction of hydrogen peroxide content (74%). Under drought, compared to water spray, nanoceria improved the seed-set percentage (24%) and individual seed mass (27%), eventually causing a higher seed yield. Thus, foliar application of nanoceria at 25 mg L-1 under drought can increase grain yield through increased photosynthesis and reproductive traits.
Collapse
Affiliation(s)
- Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Vidhya Bharathi K S
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Raghu R
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jeyakumar P
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
10
|
Guo S, Hu X, Yu F, Mu L. Heat Waves Coupled with Nanoparticles Induce Yield and Nutritional Losses in Rice by Regulating Stomatal Closure. ACS NANO 2024; 18:14276-14289. [PMID: 38781572 DOI: 10.1021/acsnano.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The frequency, duration, and intensity of heat waves (HWs) within terrestrial ecosystems are increasing, posing potential risks to agricultural production. Cerium dioxide nanoparticles (CeO2 NPs) are garnering increasing attention in the field of agriculture because of their potential to enhance photosynthesis and improve stress tolerance. In the present study, CeO2 NPs decreased the grain yield, grain protein content, and amino acid content by 16.2, 23.9, and 10.4%, respectively, under HW conditions. Individually, neither the CeO2 NPs nor HWs alone negatively affected rice production or triggered stomatal closure. However, under HW conditions, CeO2 NPs decreased the stomatal conductance and net photosynthetic rate by 67.6 and 33.5%, respectively. Moreover, stomatal closure in the presence of HWs and CeO2 NPs triggered reactive oxygen species (ROS) accumulation (increased by 32.3-57.1%), resulting in chloroplast distortion and reduced photosystem II activity (decreased by 9.4-36.4%). Metabolic, transcriptomic, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed that, under HW conditions, CeO2 NPs activated a stomatal closure pathway mediated by abscisic acid (ABA) and ROS by regulating gene expression (PP2C, NCED4, HPCA1, and RBOHD were upregulated, while CYP707A and ALMT9 were downregulated) and metabolite levels (the content of γ-aminobutyric acid (GABA) increased while that of gallic acid decreased). These findings elucidate the mechanism underlying the yield and nutritional losses induced by stomatal closure in the presence of CeO2 NPs and HWs and thus highlight the potential threat posed by CeO2 NPs to rice production during HWs.
Collapse
Affiliation(s)
- Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
11
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
12
|
Wang Y, Jia X, An S, Yin W, Huang J, Jiang X. Nanozyme-Based Regulation of Cellular Metabolism and Their Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301810. [PMID: 37017586 DOI: 10.1002/adma.202301810] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Metabolism is the sum of the enzyme-dependent chemical reactions, which produces energy in catabolic process and synthesizes biomass in anabolic process, exhibiting high similarity in mammalian cell, microbial cell, and plant cell. Consequently, the loss or gain of metabolic enzyme activity greatly affects cellular metabolism. Nanozymes, as emerging enzyme mimics with diverse functions and adjustable catalytic activities, have shown attractive potential for metabolic regulation. Although the basic metabolic tasks are highly similar for the cells from different species, the concrete metabolic pathway varies with the intracellular structure of different species. Here, the basic metabolism in living organisms is described and the similarities and differences in the metabolic pathways among mammalian, microbial, and plant cells and the regulation mechanism are discussed. The recent progress on regulation of cellular metabolism mainly including nutrient uptake and utilization, energy production, and the accompanied redox reactions by different kinds of oxidoreductases and their applications in the field of disease therapy, antimicrobial therapy, and sustainable agriculture is systematically reviewed. Furthermore, the prospects and challenges of nanozymes in regulating cell metabolism are also discussed, which broaden their application scenarios.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Wenbo Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Jiahao Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Fang J, Peng Y, Zheng L, He C, Peng S, Huang Y, Wang L, Liu H, Feng G. Chitosan-Se Engineered Nanomaterial Mitigates Salt Stress in Plants by Scavenging Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:176-188. [PMID: 38127834 DOI: 10.1021/acs.jafc.3c06185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Soil salinity seriously hinders the sustainable development of green agriculture. The emergence of engineered nanomaterials has revolutionized agricultural research, providing a new means to overcome the limitations associated with current abiotic stress management and achieve highly productive agriculture. Herein, we synthesized a brand-new engineered nanomaterial (Cs-Se NMs) through the Schiff base reaction of oxidized chitosan with selenocystamine hydrochloride to alleviate salt stress in plants. After the addition of 300 mg/L Cs-Se NMs, the activity of superoxide dismutase, catalase, and peroxidase in rice shoots increased to 3.19, 1.79, and 1.85 times those observed in the NaCl group, respectively. Meanwhile, the MDA levels decreased by 63.9%. Notably, Cs-Se NMs also raised the transcription of genes correlated with the oxidative stress response and MAPK signaling in the transcriptomic analysis. In addition, Cs-Se NMs augmented the abundance and variety of rhizobacteria and remodeled the microbial community structure. These results provide insights into applying engineered nanomaterials in sustainable agriculture.
Collapse
Affiliation(s)
- Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chang He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lixiang Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Huipeng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
15
|
Zhang MX, Zhao LY, He YY, Hu JP, Hu GW, Zhu Y, Khan A, Xiong YC, Zhang JL. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). BIORESOURCE TECHNOLOGY 2024; 391:129987. [PMID: 37951551 DOI: 10.1016/j.biortech.2023.129987] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Iron (Fe) is one of the essential nutrient elements for plant growth and development. However, the potential roles of iron nanomaterials in regulating growth and nitrogen fixation and modulating rhizomicrobiome in legume plants are poorly known. In this study, we reported that 10 mg L-1 is the optimal concentration for the application of iron nanoparticles (FeNPs) and seed soaking plus leaf spraying is the optimal application method of FeNPs in alfalfa (Medicago sativa L.); FeNPs had more positive effects on the growth and nitrogen fixation capability in alfalfa than FeCl2; FeNPs enhanced the intensity of corporations and competitions among rhizosphere fungal taxa of alfalfa. This work provides insights into the regulation mechanism of FeNPs on growth, nitrogen fixation, and the composition and function of rhizosphere microbial community in legume plants as well as the potential application value of FeNPs in agriculture system.
Collapse
Affiliation(s)
- Ming-Xu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ling-Yu Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuan-Yuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Peng Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Guo-Wen Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
16
|
Gattupalli M, Dashora K, Mishra M, Javed Z, Tripathi GD. Microbial bioprocess performance in nanoparticle-mediated composting. Crit Rev Biotechnol 2023; 43:1193-1210. [PMID: 36510336 DOI: 10.1080/07388551.2022.2106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Microbial composting is one of the most cost-effective techniques for degradation, remediation, nutrition, etc. Currently, there is faster growth and development in nanotechnology in different sectors. This development leads nanoparticles (NPs) to enter into the composts in different ways. First, unintentional entry of NPs into the composts via: waste discharge, buried solid waste, surface runoff, direct disposal into wastes (consumer goods, food, pharmaceuticals, and personal care products). Second, intentional mediation of the NPs in the composting process is a novel approach developed to enhance the degradation rate of wastes and as a nutrient for plants. The presence of NPs in the composts can cause nanotoxicity. Conversely, their presence might also be beneficial, such as soil reclamations, degradation, etc. Alternatively, metal NPs are also helpful for all living organisms, including microorganisms, in various biological processes, such as DNA replication, precursor biosynthesis, respiration, oxidative stress responses, and transcription. NPs show exemplary performance in multiple fields, whereas their role in composting process is worth studying. Consequently, this article aids the understanding of the role of NPs in the composting process and how far their presence can be beneficial. This article reviews the significance of NPs in: the composting process, microbial bioprocess performance during nano composting, basic life cycle assessment (LCA) of NP-mediated composting, and mode of action of the NPs in the soil matrix. This article also sheds insight on the notion of nanozymes and highlights their biocatalytic characterization, which will be helpful in future composting research.
Collapse
Affiliation(s)
- Meghana Gattupalli
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Mansi Mishra
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Zoya Javed
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Gyan Datta Tripathi
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
17
|
Dey G, Patil MP, Banerjee A, Sharma RK, Banerjee P, Maity JP, Singha S, Taharia M, Shaw AK, Huang HB, Kim GD, Chen CY. The role of bacterial exopolysaccharides (EPS) in the synthesis of antimicrobial silver nanomaterials: A state-of-the-art review. J Microbiol Methods 2023; 212:106809. [PMID: 37597775 DOI: 10.1016/j.mimet.2023.106809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
The emergence of multi-drug resistant (MDR) pathogens poses a significant global health concern due to the failure of conventional medical treatment. As a result, the development of several metallic (Ag, Au, Zn, Ti, etc.) nanoparticles, has gained prominence as an alternative to conventional antimicrobial therapies. Among these, green-synthesized silver nanoparticles (AgNPs) have gained significant attention due to their notable efficiency and broad spectrum of antimicrobial activity. Bacterial exopolysaccharides (EPS) have recently emerged as a promising biological substrate for the green synthesis of AgNPs. EPS possess polyanionic functional groups (hydroxyl, carboxylic, sulfate, and phosphate) that effectively reduce and stabilize AgNPs. EPS-mediated AgNPs exhibit a wide range of antimicrobial activity against various pathogenic microbes, including Gram-positive and Gram-negative bacteria, as well as fungi. The extraction and purification of bacterial EPS play a vital role in obtaining high-quality and -quantity EPS for industrial applications. This study focuses on the comprehensive methodology of EPS extraction and purification, encompassing screening, fermentation optimization, pretreatment, protein elimination, precipitation, and purification. The review specifically highlights the utilization of bacterial EPS-mediated AgNPs, covering EPS extraction, the synthesis mechanism of green EPS-mediated AgNPs, their characterization, and their potential applications as antimicrobial agents against pathogens. These EPS-mediated AgNPs offer numerous advantages, including biocompatibility, biodegradability, non-toxicity, and eco-friendliness, making them a promising alternative to traditional antimicrobials and opening new avenues in nanotechnology-based approaches to combat microbial infections.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Maheshkumar Prakash Patil
- Industry-University Cooperation Foundation, Pukyong National University, 45 Yongso-ro, Busan 48513, Republic of Korea
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India.
| | - Shuvendu Singha
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Md Taharia
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Arun Kumar Shaw
- Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, 45 Yongso-ro, Busan 48513, Republic of Korea
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
18
|
Yuan X, Cheng S, Chen L, Cheng Z, Liu J, Zhang H, Yang J, Li Y. Iron oxides based nanozyme sensor arrays for the detection of active substances in licorice. Talanta 2023; 258:124407. [PMID: 36871515 DOI: 10.1016/j.talanta.2023.124407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
With the increasing applications of traditional Chinese medicines worldwide, authenticity identification and quality control are significant for them to go global. Licorice is a kind of medicinal material with various functions and wide applications. In this work, colorimetric sensor arrays based on iron oxide nanozymes were constructed to discriminate active indicators in licorice. Fe2O3, Fe3O4, and His-Fe3O4 nanoparticles were synthesized by a hydrothermal method, possessing excellent peroxidase-like activity that can catalyze the oxidation of 3,3',5,5' -tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue product. When licorice active substances were introduced in the reaction system, they showed competitive effect on peroxidase-mimicking activity of nanozymes, resulting in inhibitory effect on the oxidation of TMB. Based on this principle, four licorice active substances including glycyrrhizic acid, liquiritin, licochalcone A, and isolicoflavonol with the concentration ranging from 1 μM to 200 μM were successfully discriminated by the proposed sensor arrays. This work supplies a low cost, rapid and accurate method for multiplex discrimination of active substances to guarantee the authenticity and quality of licorice, which is also expected to be applied to distinguish other substances.
Collapse
Affiliation(s)
- Xiaohua Yuan
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Shaochun Cheng
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Linyi Chen
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Ziyu Cheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Liu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Jiao Yang
- Flexible Printed Electronics Technology Center and College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Yingchun Li
- Flexible Printed Electronics Technology Center and College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Ji Y, Yue L, Cao X, Chen F, Li J, Zhang J, Wang C, Wang Z, Xing B. Carbon dots promoted soybean photosynthesis and amino acid biosynthesis under drought stress: Reactive oxygen species scavenging and nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159125. [PMID: 36181808 DOI: 10.1016/j.scitotenv.2022.159125] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
With global warming and water scarcity, improving the drought tolerance and quality of crops is critical for food security and human health. Here, foliar application of carbon dots (CDs, 5 mg·L-1) could scavenge reactive oxygen species accumulation in soybean leaves under drought stress, thereby enhancing photosynthesis and carbohydrate transport. Moreover, CDs stimulated root secretion (e.g., amino acids, organic acids, and auxins) and recruited beneficial microorganisms (e.g., Actinobacteria, Ascomycota, Acidobacteria and Glomeromycota), which facilitate nitrogen (N) activation in the soil. Meanwhile, the expression of GmNRT, GmAMT, and GmAQP genes were up-regulated, indicating enhanced N and water uptake. The results demonstrated that CDs could promote nitrogen metabolism and enhance amino acid biosynthesis. Particularly, the N content in soybean shoots and roots increased significantly by 13.2 % and 30.5 %, respectively. The amino acids content in soybean shoots and roots increased by 257.5 % and 57.5 %, respectively. Consequently, soybean yields increased significantly by 21.5 %, and the protein content in soybean kernels improved by 3.7 %. Therefore, foliar application of CDs can support sustainable nano-enabled agriculture to combat climate change.
Collapse
Affiliation(s)
- Yahui Ji
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiangshan Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
20
|
Singh R, Umapathi A, Patel G, Patra C, Malik U, Bhargava SK, Daima HK. Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158771. [PMID: 36108853 DOI: 10.1016/j.scitotenv.2022.158771] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Nanozymes are defined as nanomaterials exhibiting enzyme-like properties, and they possess both catalytic functions and nanomaterial's unique physicochemical characteristics. Due to the excellent stability and improved catalytic activity in comparison to natural enzymes, nanozymes have established a wide base for applications in environmental pollutants monitoring and remediation. Nanozymes have been applied in the detection of heavy metal ions, molecules, and organic compounds, both quantitatively and qualitatively. Additionally, within the natural environment, nanozymes can be employed for the degradation of organic and persistent pollutants such as antibiotics, phenols, and textile dyes. Further, the potential sphere of applications for nanozymes traverses from indoor air purification to anti-biofouling agents, and even they show promise in combatting pathogenic bacteria. However, nanozymes may have inherent toxicity, which can restrict their widespread utility. Thus, it is important to evaluate and monitor the interaction and transformation of nanozymes towards biosphere damage when employed within the natural environment in a cradle-to-grave manner, to assure their utmost safety. In this context, various studies have concluded that the green synthesis of nanozymes can efficiently overcome the toxicity limitations in real life applications, and nanozymes can be well utilized in the sensing and degradation of several toxic pollutants including metal ions, pesticides, and chemical warfare agents. In this seminal review, we have explored the great potential of nanozymes, whilst addressing a range of concerns, which have often been overlooked and currently restrict widespread applications and commercialization of nanozymes.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, 252059, Shandong, China
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Gaurang Patel
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Chayan Patra
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Uzma Malik
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne 3000, Victoria, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India.
| |
Collapse
|
21
|
Cui Z, Li Y, Zhang H, Qin P, Hu X, Wang J, Wei G, Chen C. Lighting Up Agricultural Sustainability in the New Era through Nanozymology: An Overview of Classifications and Their Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13445-13463. [PMID: 36226740 DOI: 10.1021/acs.jafc.2c04882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the concept of sustainable agriculture receiving increasing attention from humankind, nanozymes, nanomaterials with enzyme-like activity but higher environmental endurance and longer-term stability than natural enzymes, have enabled agricultural technologies to be reformative, economic, and portable. Benefiting from their multiple catalytic activities and renewable nanocharacteristics, nanozymes can shine in agricultural scenarios using enzyme engineering and nanoscience, acting as sustainable toolboxes to improve agricultural production and reduce the risk to agricultural systems. Herein, we comprehensively discuss the classifications of nanozymes applied in current agriculture, including peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, and laccase-like nanozymes, as well as their biocatalytic mechanisms. Especially, different applications of nanozymes in agriculture are deeply reviewed, covering crop protection and nutrition, agroenvironmental remediation and monitoring, and agroproduct quality monitoring. Finally, the challenges faced by nanozymes in agricultural applications are proposed, and we expect that our review can further enhance agricultural sustainability through nanozymology.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Peiyan Qin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Xiao Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| |
Collapse
|
22
|
Li J, Yue L, Zhao Q, Cao X, Tang W, Chen F, Wang C, Wang Z. Prediction models on biomass and yield of rice affected by metal (oxide) nanoparticles using nano-specific descriptors. NANOIMPACT 2022; 28:100429. [PMID: 36130713 DOI: 10.1016/j.impact.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The use of in silico tools to investigate the interactions between metal (oxide) nanoparticles (NPs) and plant biological responses is preferred because it allows us to understand molecular mechanisms and improve prediction efficiency by saving time, labor, and cost. In this study, four models (C5.0 decision tree, discriminant function analysis, random forest, and stepwise multiple linear regression analysis) were applied to predict the effect of NPs on rice biomass and yield. Nano-specific descriptors (size-dependent molecular descriptors and image-based descriptors) were introduced to estimate the behavior of NPs in plants to appropriately represent the wide space of NPs. The results showed that size-dependent molecular descriptors (e.g., E-state and connectivity indices) and image-based descriptors (e.g., extension, area, and minimum ferret diameter) were associated with the behavior of NPs in rice. The performance of the constructed models was within acceptable ranges (correlation coefficient ranged from 0.752 to 0.847 for biomass and from 0.803 to 0.905 for yield, while the accuracy ranged from 64% to 77% for biomass and 81% to 89% for yield). The developed model can be used to quickly and efficiently evaluate the impact of NPs under a wide range of experimental conditions and sufficient training data.
Collapse
Affiliation(s)
- Jing Li
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Zhao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Xuesong Cao
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weihao Tang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Feiran Chen
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
23
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
24
|
Deng Y, Qian X, Wu Y, Ma T, Xu X, Li J, Wang G, Yan Y. Effects of ciprofloxacin on Eichhornia crassipes phytoremediation performance and physiology under hydroponic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47363-47372. [PMID: 35179691 DOI: 10.1007/s11356-022-19008-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics can be absorbed by aquatic plants, but they seriously affect the health of aquatic plants and threaten the steady state of aquatic ecosystem. The phytoremediation performance and physiology of floating macrophyte (Eichhornia crassipes) under antibiotic ciprofloxacin (CIP) hydroponic conditions were investigated. It was found that CIP absorption of E. crassipes was up to 84.38% and the root was the main absorption tissue. Hydrolysis and microbial degradation were the second removal pathway of CIP followed the plant absorption. After 7 days of CIP exposure, the photosynthesis efficiency of E. crassipes remained stable, and the presence of CIP did not inhibit the growth of the plant. On the 14th day, the superoxide dismutase and catalase activities were increased in response to the CIP stress. However, the tender leaves of E. crassipes turned white and shrivel, attributed to a decrease in chlorophyll content and chlorophyll fluorescence parameters after 21 days of CIP exposure. These findings will have significant implications for E. crassipes to absorb CIP on a limited time-scale and provide a phytoremediation technology for antibiotics in water.
Collapse
Affiliation(s)
- Yang Deng
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Xiyi Qian
- School of Geographical Sciences, Nantong University, Nantong, 226019, China
| | - Yiting Wu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Tian Ma
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Jiayi Li
- College of Zhong Bei, Nanjing Normal University, Zhenjiang, 210046, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China.
| | - Yan Yan
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China.
| |
Collapse
|
25
|
Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118900. [PMID: 35085650 DOI: 10.1016/j.envpol.2022.118900] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress seriously threatens agricultural productivity and food security worldwide. This work reports on the mechanisms of alleviating salinity stress by cerium oxide nanomaterials (CeO2 NMs) in maize (Zea may L.). Soil-grown maize plants were irrigated with deionized water or 100 mM NaCl solution as the control or the salinity stress treatment. CeO2 NMs (1, 5, 10, 20, and 50 mg/L) with antioxidative enzyme mimicking activities were foliarly applied on maize leaves for 7 days. The morphological, physiological, biochemical, and transcriptomic responses of maize were evaluated. Specifically, salinity stress significantly reduced 59.0% and 63.8% in maize fresh and dry biomass, respectively. CeO2 NMs at 10, 20, and 50 mg/L improved the salt tolerance of maize by 69.5%, 69.1%, and 86.8%, respectively. Also, 10 mg/L CeO2 NMs maintained Na+/K+ homeostasis, enhanced photosynthetic efficiency by 30.8%, and decreased reactive oxygen species (ROS) level by 58.5% in salt-stressed maize leaves. Transcriptomic analysis revealed that the antioxidative defense system-related genes recovered to the normal control level after CeO2 NMs application, indicating that CeO2 NMs eliminated ROS through their intrinsic antioxidative enzyme properties. The down-regulation of genes related to lignin synthesis in the phenylpropanoid biosynthesis pathway accelerated leaf cell elongation. In addition, CeO2 NMs increased the rhizobacteria richness and diversity through the increment of carbon source in root exudates and improved the abundance of halotolerant plant growth-promoting rhizobacteria (HT-PGPR). Importantly, the yield of salt-stressed maize was enhanced by 293.3% after 10 mg/L CeO2 NMs foliar application. These results will provide new insights for the application of CeO2 NMs in management to reduce the salinity-caused crop loss.
Collapse
Affiliation(s)
- Yinglin Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
26
|
Cao X, Yue L, Wang C, Luo X, Zhang C, Zhao X, Wu F, White JC, Wang Z, Xing B. Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS NANO 2022; 16:1170-1181. [PMID: 35023717 DOI: 10.1021/acsnano.1c08977] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sustainable strategies for the management of iron deficiency in agriculture are warranted because of the low use efficiency of commercial iron fertilizer, which confounds global food security and induces negative environmental consequences. The impact of foliar application of differently sized γ-Fe2O3 nanomaterials (NMs, 4-15, 8-30, and 40-215 nm) on the growth and physiology of soybean seedlings was investigated at different concentrations (10-100 mg/L). Importantly, the beneficial effects on soybean were size- and concentration-dependent. Foliar application with the smallest size γ-Fe2O3 NMs (S-Fe2O3 NMs, 4-15 nm, 30 mg/L) yielded the greatest growth promotion, significantly increasing the shoot and nodule biomass by 55.4 and 99.0%, respectively, which is 2.0- and 2.6-fold greater than the commercially available iron fertilizer (EDTA-Fe) with equivalent molar Fe. In addition, S-Fe2O3 NMs significantly enhanced soybean nitrogen fixation by 13.2% beyond that of EDTA-Fe. Mechanistically, transcriptomic and metabolomic analyses revealed that (1) S-Fe2O3 NMs increased carbon assimilation in nodules to supply more energy for nitrogen fixation; (2) S-Fe2O3 NMs activated the antioxidative system in nodules, with subsequent elimination of excess reactive oxygen species; (3) S-Fe2O3 NMs up-regulated the synthesis of cytokinin and down-regulated ethylene and jasmonic acid content in nodules, promoting nodule development and delaying nodule senescence. S-Fe2O3 NMs also improved 13.7% of the soybean yield and promoted the nutritional quality (e.g., free amino acid content) of the seeds as compared with EDTA-Fe with an equivalent Fe dose. Our findings demonstrate the significant potential of γ-Fe2O3 NMs as a high-efficiency and sustainable crop fertilizer strategy.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xing Luo
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chenchi Zhang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
27
|
Sarraf M, Vishwakarma K, Kumar V, Arif N, Das S, Johnson R, Janeeshma E, Puthur JT, Aliniaeifard S, Chauhan DK, Fujita M, Hasanuzzaman M. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:316. [PMID: 35161297 PMCID: PMC8839771 DOI: 10.3390/plants11030316] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 05/09/2023]
Abstract
In agriculture, abiotic stress is one of the critical issues impacting the crop productivity and yield. Such stress factors lead to the generation of reactive oxygen species, membrane damage, and other plant metabolic activities. To neutralize the harmful effects of abiotic stress, several strategies have been employed that include the utilization of nanomaterials. Nanomaterials are now gaining attention worldwide to protect plant growth against abiotic stresses such as drought, salinity, heavy metals, extreme temperatures, flooding, etc. However, their behavior is significantly impacted by the dose in which they are being used in agriculture. Furthermore, the action of nanomaterials in plants under various stresses still require understanding. Hence, with this background, the present review envisages to highlight beneficial role of nanomaterials in plants, their mode of action, and their mechanism in overcoming various abiotic stresses. It also emphasizes upon antioxidant activities of different nanomaterials and their dose-dependent variability in plants' growth under stress. Nevertheless, limitations of using nanomaterials in agriculture are also presented in this review.
Collapse
Affiliation(s)
- Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran;
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban 182144, India;
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India; (N.A.); (D.K.C.)
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India;
| | - Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kozhikode 673635, India; (R.J.); (E.J.); (J.T.P.)
| | - Edappayil Janeeshma
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kozhikode 673635, India; (R.J.); (E.J.); (J.T.P.)
| | - Jos T. Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kozhikode 673635, India; (R.J.); (E.J.); (J.T.P.)
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran 33916-53755, Iran;
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India; (N.A.); (D.K.C.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
28
|
Huang XL. What are the inorganic nanozymes? Artificial or inorganic enzymes! NEW J CHEM 2022. [DOI: 10.1039/d2nj02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research on inorganic nanozymes remains very active since the first paper on the “intrinsic peroxidase-like properties of ferromagnetic nanoparticles” was published in Nature Nanotechnology in 2007. However, there is...
Collapse
|
29
|
Skiba E, Pietrzak M, Glińska S, Wolf WM. The Combined Effect of ZnO and CeO 2 Nanoparticles on Pisum sativum L.: A Photosynthesis and Nutrients Uptake Study. Cells 2021; 10:3105. [PMID: 34831328 PMCID: PMC8624121 DOI: 10.3390/cells10113105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| |
Collapse
|