1
|
Sun M, Cao D, Zhao M, Zhu X, Sun Y, Wang Q, Zhang H, Yang Y, Tian X, Wang H, Cai X, An T. Nanobody-based competitive enzyme-linked immunosorbent assay for detecting antibodies of porcine reproductive and respiratory syndrome virus. Int J Biol Macromol 2025; 312:144248. [PMID: 40379183 DOI: 10.1016/j.ijbiomac.2025.144248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
The pandemic of porcine reproductive and respiratory syndrome (PRRS) continues a global threat to the swine industry and causes huge economic losses. Large-scale serological surveillance, particularly through enzyme-linked immunosorbent assay (ELISA), is an effective measure for PRRS control. Nanobodies have been used in diagnostic immunoassays due to their high affinity and specificity. In this study, two novel nanobodies against N protein of PRRSV were generated that exhibited ability to block the recognition of serum antibodies to N protein. A high-affinity nanobody was conjugated with horseradish peroxidase (HRP), then nanobody-based competitive ELISA (cELISA) was subsequently developed to detect antibodies against both genotypes 1 and 2 PRRSV. Notably, the developed cELISA exhibited enhanced sensitivity, specificity and reproducibility. The comparative analysis demonstrated a high agreement of 96.69 % between the cELISA and a commercial ELISA kit. Collectively, the developed nanobody-based cELISA can be used for epidemiological study of PRRSV infection and immune evaluations with advantages of simple operation and low costing.
Collapse
Affiliation(s)
- Mingxia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dan Cao
- Soybean Research Institute, Heilongjiang Academy of Agricultural Science, Harbin 150086, China
| | - Man Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xulong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China.
| |
Collapse
|
2
|
Zhu H, Ding Y. Nanobodies: From Discovery to AI-Driven Design. BIOLOGY 2025; 14:547. [PMID: 40427736 PMCID: PMC12109276 DOI: 10.3390/biology14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces the historical discovery of nanobodies, highlighting key milestones in their isolation, characterization, and therapeutic development. We then explore their structure-function relationship, emphasizing features like their single-domain architecture and long CDR3 loop that contribute to their binding versatility. Additionally, we examine the growing interest in multiepitope nanobodies, in which binding to different epitopes on the same antigen not only enhances neutralization and specificity but also allows these nanobodies to be used as controllable modules for precise antigen manipulation. This review also discusses the integration of AI in nanobody design and optimization, showcasing how machine learning and deep learning approaches are revolutionizing rational design, humanization, and affinity maturation processes. With continued advancements in structural biology and computational design, nanobodies are poised to play an increasingly vital role in addressing both existing and emerging biomedical challenges.
Collapse
Affiliation(s)
- Haoran Zhu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200433, China;
- Quzhou Fudan Institute, Quzhou 324002, China
| | - Yu Ding
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200433, China;
- Quzhou Fudan Institute, Quzhou 324002, China
| |
Collapse
|
3
|
Truong A, Silberg JJ. Regulating ferredoxin electron transfer using nanobody and antigen interactions. RSC Chem Biol 2025; 6:746-753. [PMID: 40059882 PMCID: PMC11886610 DOI: 10.1039/d4cb00257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/30/2025] [Indexed: 05/10/2025] Open
Abstract
Fission and fusion can be used to generate new regulatory functions in proteins. This approach has been used to create ferredoxins (Fd) whose cellular electron transfer is dependent upon small molecule binding. To investigate whether Fd fragments can be used to monitor macromolecular binding reactions, we investigated the effects of fusing fragments of Mastigocladus laminosus Fd to single domain antibodies, also known as nanobodies, and their protein antigens. When Fd fragments arising from fission were fused to green fluorescent protein (GFP) and three different anti-GFP nanobodies, split proteins were identified that supported Fd-mediated electron transfer from Fd-NADP reductase (FNR) to sulfite reductase (SIR) in Escherichia coli. However, the order of nanobody and antigen fusion to the Fd fragments affected cellular electron transfer. Insertion of these anti-GFP nanobodies within Fd had differing effects on electron transfer. One domain-insertion variant was unable to support cellular electron transfer unless it was coexpressed with GFP, while others supported electron transfer in the absence of GFP. These findings show how Fds can be engineered so that their electron transfer is regulated by macromolecules, and they reveal the importance of exploring different nanobody homologs and fusion strategies when engineering biomolecular switches.
Collapse
Affiliation(s)
- Albert Truong
- Biochemistry and Cell Biology Graduate Program, Rice University 6100 Main Street, MS-180 Houston Texas 77005 USA
- Department of Biosciences, Rice University 6100 Main Street, MS-140 Houston TX 77005 USA
| | - Jonathan J Silberg
- Department of Biosciences, Rice University 6100 Main Street, MS-140 Houston TX 77005 USA
- Department of Bioengineering, Rice University 6100 Main Street, MS-142 Houston TX 77005 USA
- Department of Chemical and Biomolecular Engineering, Rice University 6100 Main Street, MS-362 Houston TX 77005 USA
| |
Collapse
|
4
|
Hu J, Tan H, Wang M, Deng S, Liu M, Zheng P, Wang A, Guo M, Wang J, Li J, Qiu H, Yao C, Zhu Z, Hasi C, Pan D, He H, Huang C, Shang Y, Zhu S, Jin T. A potent protective bispecific nanobody targeting Herpes simplex virus gD reveals vulnerable epitope for neutralizing. Nat Commun 2025; 16:4196. [PMID: 40328740 PMCID: PMC12055985 DOI: 10.1038/s41467-025-58669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Herpes simplex virus (HSV) causes significant health burden worldwide. Currently used antiviral drugs are effective but resistance can occur. Here, we report two high-affinity neutralizing nanobodies, namely Nb14 and Nb32, that target non-overlapping epitopes in HSV gD. Nb14 binds a neutralization epitope located in the N-A' interloop, which prevents the interaction between gD and gH/gL during the second step of conformational changes during membrane fusion after virus attachment. The bispecific nanobody dimer (Nb14-32-Fc) exhibits high potency in vitro and in vivo. Mechanistically, Nb14-32-Fc neutralizes HSVs at both the pre-and post-attachment stages and prevents cell-to-cell spread in vitro. Administration of Nb14-32-Fc at low dosage of 1 mg/kg provides 100% protection in an HSV-1 infection male mouse model and an HSV-2 infection female mouse model. Our results demonstrate that Nb14-32-Fc could serve as a promising drug candidate for treatment of HSV infection, especially in the cases of antiviral drug resistance and severe herpes encephalitis.
Collapse
MESH Headings
- Animals
- Epitopes/immunology
- Female
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/pharmacology
- Mice
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/drug effects
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Male
- Viral Envelope Proteins/immunology
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpes Simplex/prevention & control
- Herpes Simplex/drug therapy
- Humans
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/drug effects
- Antibodies, Viral/immunology
- Vero Cells
- Antiviral Agents/pharmacology
- Disease Models, Animal
- Chlorocebus aethiops
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Jing Hu
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Haoyuan Tan
- National Key Laboratory of immune response and immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Meihua Wang
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shasha Deng
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Mengyao Liu
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Anmin Wang
- National Key Laboratory of immune response and immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Meng Guo
- National Key Laboratory of immune response and immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jin Wang
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayin Li
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Huanwen Qiu
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | | | - Zhongliang Zhu
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Anhui Genebiol Biotech. LTD, Hefei, 230000, China
| | - Chaolu Hasi
- Sonid Suoqi Animal Husbandry Workstation, Xilinhot City, Inner Mongolia Xilin Gol League, Xilinhot, China
| | - Dongli Pan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongliang He
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuhua Shang
- Anhui Genebiol Biotech. LTD, Hefei, 230000, China
| | - Shu Zhu
- National Key Laboratory of immune response and immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| | - Tengchuan Jin
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
- National Key Laboratory of immune response and immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Laboratory of Structural Immunology, National Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Genebiol Biotech. LTD, Hefei, 230000, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
5
|
Wang K, Cao D, Liu L, Fan X, Lin Y, He W, Zhai Y, Xu P, Yan X, Wang H, Zhang X, Yang P. Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2. Front Med 2025:10.1007/s11684-025-1128-4. [PMID: 40317451 DOI: 10.1007/s11684-025-1128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/16/2024] [Indexed: 05/07/2025]
Abstract
Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lanlan Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Fan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihuan Lin
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenting He
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunze Zhai
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Pingyong Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyun Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikun Wang
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pengyuan Yang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Long X, Cheng S, Lan X, Wei W, Jiang D. Trends in nanobody radiotheranostics. Eur J Nucl Med Mol Imaging 2025; 52:2225-2238. [PMID: 39800806 DOI: 10.1007/s00259-025-07077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/04/2025] [Indexed: 04/23/2025]
Abstract
As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis. Moreover, we emphasize the indispensable role of molecular imaging as a tool for evaluating and optimizing nanobodies, thereby expanding their therapeutic potential in cancer treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xingru Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200233, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| |
Collapse
|
7
|
Mirzaei M, Mirhoseini S, Heidari MM, Khatami M. Design and Production of a Novel Anti-PD-1 Nanobody by CDR Grafting and Site-Directed Mutagenesis Approach. Mol Biotechnol 2025; 67:1843-1851. [PMID: 38736021 DOI: 10.1007/s12033-024-01162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
Programmed cell death protein-1 (PD-1) is a membrane protein expressed on the surface of activated T-cells, B-cells, natural killer cells, dendritic cells, macrophages, and monocytes. Inhibition of the PD-1/PD-L1 interaction by monoclonal antibodies (mAbs) has many therapeutic benefits and has led to a major advance in the treatment of various types of tumors. Due to the large size and immunogenicity of the antibodies (Abs), using small molecules such as nanobodies (nanobodies or VHH) is more appropriate for this purpose. In this research, the complementarity determining regions (CDR) grafting method was used to produce anti-PD-1 nanobody. For producing the grafted anti-PD-1 nanobody, CDRs from the tislelizumab mAb were grafted into the frameworks of a nanobody whose sequence is similar to the tislelizumab mAb. Also, the site-directed mutagenesis method was used to produce two mutated anti-PD-1 nanobodies which increased the affinity of grafted anti-PD-1 nanobodies. Two amino acid substitutions (Tyr97Arg and Tyr102Arg) in the VHH-CDR3 were used to improve grafted nanobody affinity and the binding capacity of the mutated nanobodies. The binding of the anti-PD-1 nanobodies and PD-1 antigen (Ag) was confirmed by Dot blot, western blot, and indirect ELISA analysis. According to the results of these in silico and in vitro studies, the binding between grafted and mutated nanobodies with PD-1 was confirmed. Also, our findings show that site-directed mutagenesis can increase the affinity of nanobodies.
Collapse
|
8
|
Sheng L, Sheng K, Lü P. Applications of Nanobodies in Biological Imaging. Cancer Biother Radiopharm 2025. [PMID: 40274307 DOI: 10.1089/cbr.2025.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Background: Nanobodies (Nbs), derived from Camelidae heavy-chain antibodies, are single-domain fragments (15 kDa) with high antigen-binding specificity, enhanced tissue penetration, and low immunogenicity. These attributes address limitations of conventional antibodies, positioning Nbs as pivotal tools for targeted molecular imaging in diagnostics and therapeutics. Methods: Nbs are screened through phage/mRNA display or single B-cell sequencing, expressed in prokaryotic or yeast systems, and humanized via CDR grafting. Functional probes are engineered by conjugating Nbs with radionuclides (68Ga, 99mTc) or fluorophores (IRDye 800CW) for compatibility with PET, SPECT, NIRF, and ultrasound modalities. Results: Clinical trials validated Nb efficacy: 68Ga-HER2-Nb PET/CT achieved tumor-specific uptake in HER2+ cancers (NCT04467515), while 99mTc-PD-L1-Nb enabled quantitative SPECT-guided immunotherapy in NSCLC. NIRF-Nb conjugates (e.g., 11A4-800CW) enhanced intraoperative tumor delineation in murine models. Dual-targeted ultrasound microbubbles demonstrated multi-biomarker imaging via acoustic pressure modulation. Conclusion: Nbs advance biological imaging through superior resolution and rapid pharmacokinetics. Challenges persist in optimizing probe stability, minimizing immunogenicity, and scaling production. Future priorities include integrating multi-modal platforms, expanding applications to neurodegenerative disorders, and refining personalized diagnostic paradigms, underscoring their transformative potential in precision medicine.
Collapse
Affiliation(s)
- Liangjü Sheng
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kai Sheng
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Maltseva M, Rossotti MA, Tanha J, Langlois MA. Characterization of Nanobody Binding to Distinct Regions of the SARS-CoV-2 Spike Protein by Flow Virometry. Viruses 2025; 17:571. [PMID: 40285013 PMCID: PMC12030927 DOI: 10.3390/v17040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Nanobodies, or single-domain antibodies (VHHs) from camelid heavy-chain-only antibodies, offer significant advantages in therapeutic and diagnostic applications due to their small size and ability to bind cryptic protein epitopes inaccessible to conventional antibodies. In this study, we examined nanobodies specific to regions of the SARS-CoV-2 spike glycoprotein, including the receptor-binding domain (RBD), N-terminal domain (NTD), and subunit 2 (S2). Using flow virometry, a high-throughput technique for viral quantification, we achieved the efficient detection of pseudotyped viruses expressing the spike glycoprotein. RBD-targeting nanobodies showed the most effective staining, followed by NTD-targeting ones, while S2-specific nanobodies exhibited limited resolution. The simple genetic structure of nanobodies enables the creation of multimeric formats, improving binding specificity and avidity. Bivalent VHH-Fc constructs (VHHs fused to the Fc region of human IgG) outperformed monovalent formats in resolving viral particles from background noise. However, S2-specific monovalent VHHs demonstrated improved staining efficiency, suggesting their smaller size better accesses restricted antigenic sites. Furthermore, direct staining of cell supernatants was possible without virus purification. This versatile nanobody platform, initially developed for antiviral therapy against SARS-CoV-2, can be readily adapted for flow virometry applications and other diagnostic assays.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.M.); (J.T.)
| | - Martin A. Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON K1N 1J1, Canada;
| | - Jamshid Tanha
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.M.); (J.T.)
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON K1N 1J1, Canada;
- uOttawa Center for Infection, Immunity, and Inflammation (CI3), Ottawa, ON K1H 8L1, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.M.); (J.T.)
- uOttawa Center for Infection, Immunity, and Inflammation (CI3), Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
10
|
Yamamoto K, Nagatoishi S, Matsunaga R, Nakakido M, Kuroda D, Tsumoto K. Affinity-stability trade-off mechanism of residue 35 in framework region 2 of V HH antibodies with β-hairpin CDR3. Protein Sci 2025; 34:e70095. [PMID: 40099854 PMCID: PMC11915348 DOI: 10.1002/pro.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Single-domain VHH antibodies are promising therapeutic and diagnostic tools. The third complementarity-determining region (CDR3) is usually the most critical region for antigen recognition by VHH antibodies. When CDR3 adopts a short and extended β-hairpin conformation, framework region 2 (FR2) often interacts directly with the antigen. However, the importance of these interactions in antigen recognition remains unclear. In this research, we investigated the role of FR2 residues in VHH antibodies with β-hairpin CDR3s. We found that several FR2 residues, particularly at positions 35 and 37, are critical for high-affinity antigen binding. Notably, a trade-off was observed: introducing a charged residue at position 35 enhanced binding affinity but reduced thermal stability. These findings provide insights into optimizing FR2 in single-domain antibodies to improve their functionality for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Koichi Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Chiani M, Abedini R, Ahangari-Cohan R, Behdani M, Barzi SM, Mohseni N, Kazemi-Lomedasht F. Encapsulation of anti-VEGF nanobody into niosome nanoparticles: a novel approach to enhance circulation half life and efficacy. J Microencapsul 2025; 42:132-141. [PMID: 39716725 DOI: 10.1080/02652048.2024.2443435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
This study aimed to encapsulate an anti-VEGF nanobody (Nb) within niosome nanoparticles (NNPs) to enhance its circulation half life. Key parameters such as encapsulation efficiency, stability, Nb release, cytotoxicity, and cell migration inhibition in HUVEC cells were evaluated, along with pharmacokinetic studies in mice. Nb-loaded NNPs (Nb-NNPs) were successfully prepared with an encapsulation efficiency of 78.3 ± 3.2% and demonstrated stability over one month. In vitro assays revealed that Nb-NNPs enhanced cytotoxicity and significantly reduced cell migration in HUVEC cells compared to free Nb (P < 0.05). Pharmacokinetic studies in mice demonstrated a dramatically reduced elimination rate constant (0.025 h-1 vs. 0.843 h-1) and an extended terminal half life (27.721 h vs. 0.822 h), indicating slower clearance and prolonged systemic presence. In conclusion, these findings underscore the potential of Nb-NNPs to provide sustained and potent therapeutic effects, contributing valuable insights for advancing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Mohsen Chiani
- Department of NanoBiotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Raha Abedini
- Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari-Cohan
- Department of NanoBiotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nastaran Mohseni
- Department of NanoBiotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Bae J, Ryu Y, Choi J, Jeong MS, Lee CK, Hong CA, Ji S, Heo S, Kim S, Jo SM, Lee JJ. Exploring multivalency-driven sensitivity modulation for optimization and fine-tuning of avidity-based biosensors. Biosens Bioelectron 2025; 271:116989. [PMID: 39615224 DOI: 10.1016/j.bios.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025]
Abstract
The development of multivalent nanoprobes has garnered considerable interest due to their enhanced sensitivity and precision in diagnosing and monitoring diverse diseases. Despite significant advances in nanobiotechnology, the optimal density of binding motifs to maximize the diagnostic efficacy of biosensors remains incompletely understood. Herein, we investigate the influence of multivalency in the functional performance of avidity-based biosensors. By post-translationally modifying the surface of M13 bacteriophages, we achieved multivalent displays of epidermal growth factor receptor-specific repebodies and enhanced green fluorescent proteins in a controlled configuration. Through an array of phage-based nanoprobes, our findings reveal an inverted U-shaped correlation between the degree of multivalency and biosensor sensitivity. Briefly, excessive multivalency negatively impacts analytical performance, likely due to irreversible target depletion, while fine-tuned multivalency significantly enhances antigen recognition and signal amplification. Additionally, the advantages of avidity-demonstrated as improved targeting specificity and sensing capability-are especially prominent in nanoprobes incorporating low-affinity repebodies. This work underscores the critical role of multivalency optimization in biosensor design, providing valuable insights for the development of highly sensitive and reliable diagnostic tools in clinical settings.
Collapse
Affiliation(s)
- Juhyeon Bae
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Yiseul Ryu
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon, 24341, South Korea
| | - Junho Choi
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Myeong Seon Jeong
- Center for Bio-imaging & Translational Research, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Cheol-Ki Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Cheol Am Hong
- Department of Chemistry, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Seoha Ji
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seungnyeong Heo
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seongjoon Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seong-Min Jo
- Department of Biomaterial Science, Pusan National University, Miryang, 50463, South Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, South Korea; Institute of Life Sciences (ILS), Kangwon National University, Chuncheon, 24341, South Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
13
|
Bu F, Ye G, Morsheimer K, Mendoza A, Turner-Hubbard H, Herbst M, Spiller B, Wadzinski BE, Eaton B, Anantpadma M, Yang G, Liu B, Davey R, Li F. Discovery of Nanosota-EB1 and -EB2 as Novel Nanobody Inhibitors Against Ebola Virus Infection. PLoS Pathog 2024; 20:e1012817. [PMID: 39715280 PMCID: PMC11723632 DOI: 10.1371/journal.ppat.1012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP). Cryo-EM and biochemical data revealed that Nanosota-EB1 binds to the glycan cap of GP1, preventing its protease cleavage, while Nanosota-EB2 binds to critical membrane-fusion elements in GP2, stabilizing it in the pre-fusion state. Nanosota-EB2 is a potent neutralizer of EBOV infection in vitro and offers excellent protection in a mouse model of EBOV challenge, while Nanosota-EB1 provides moderate neutralization and protection. Nanosota-EB1 and Nanosota-EB2 are the first nanobodies shown to inhibit authentic EBOV. Combined with our newly developed structure-guided in vitro evolution approach, they lay the foundation for nanobody-based therapies against EBOV and other viruses within the ebolavirus genus.
Collapse
Affiliation(s)
- Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kimberly Morsheimer
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Manu Anantpadma
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Robert Davey
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
14
|
Zhang Y, Tian C, Yu X, Yu G, Han X, Wang Y, Zhou H, Zhang S, Li M, Yang T, Sun Y, Tai W, Yin Q, Zhao G. Lung-Selective Delivery of mRNA-Encoding Anti-MERS-CoV Nanobody Exhibits Neutralizing Activity Both In Vitro and In Vivo. Vaccines (Basel) 2024; 12:1315. [PMID: 39771977 PMCID: PMC11680347 DOI: 10.3390/vaccines12121315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic virus causing severe respiratory illness, with limited treatment options that are mostly supportive. The success of mRNA technology in COVID-19 vaccines has opened avenues for antibody development against MERS-CoV. mRNA-based antibodies, expressed in vivo, offer rapid adaptability to viral mutations while minimizing long-term side effects. This study aimed to develop a lung-targeted lipid nanoparticle (LNP) system for mRNA-encoding neutralizing nanobodies against MERS-CoV, proposing a novel therapeutic strategy. Methods: An mRNA-encoding nanobody NbMS10 (mRNA-NbMS10) was engineered for enhanced stability and reduced immunogenicity. This mRNA was encapsulated in lung-selective LNPs using microfluidics to form the LNP-mRNA-NbMS10 system. Efficacy was assessed through in vitro assays and in vivo mouse studies, focusing on antigen-binding, neutralization, and sustained nanobody expression in lung tissues. Results: The LNP-mRNA-NbMS10 system expressed the nanobody in vitro, showing strong antigen-binding and significant MERS-CoV pseudovirus neutralization. In vivo studies confirmed selective lung mRNA delivery, with high nanobody expression sustained for up to 24 h, confirming lung specificity and prolonged antiviral activity. Conclusions: Extensive in vitro and in vivo evaluations demonstrate the LNP-mRNA-NbMS10 system's potential as a scalable, cost-effective, and adaptable alternative to current MERS-CoV therapies. This innovative platform offers a promising solution for preventing and treating respiratory infections, and countering emerging viral threats.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
| | - Chongyu Tian
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China;
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030031, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (G.Y.)
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (G.Y.)
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haisheng Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
| | - Shuai Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tiantian Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yali Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guangyu Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Y.Z.); (H.Z.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (X.H.); (Y.W.); (M.L.); (T.Y.); (Y.S.)
- Laboratory of Advanced Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
15
|
Meng Q, Li H, Zhao W, Song M, Zhang W, Li X, Chen J, Wang L. Overcoming Debye screening effect in field-effect transistors for enhanced biomarker detection sensitivity. NANOSCALE 2024; 16:20864-20884. [PMID: 39452895 DOI: 10.1039/d4nr03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Field-effect transistor (FET)-based biosensors not only enable label-free detection by measuring the intrinsic charges of biomolecules, but also offer advantages such as high sensitivity, rapid response, and ease of integration. This enables them to play a significant role in disease diagnosis, point-of-care detection, and drug screening, among other applications. However, when FET sensors detect biomolecules in physiological solutions (such as whole blood, serum, etc.), the charged molecules will be surrounded by oppositely charged ions in the solution. This causes the effective charge carried by the biomolecules to be shielded, thereby significantly weakening their ability to induce charge rearrangement at the sensing interface. Such shielding hinders the change of carriers inside the sensing material, reduces the variation of current between the source and drain electrodes of the FET, and seriously limits the sensitivity and reliability of the device. In this article, we summarize the research progress in overcoming the Debye screening effect in FET-based biosensors over the past decade. Here, we first elucidate the working principles of FET sensors for detecting biomarkers and the mechanism of the Debye screening. Subsequently, we emphasize optimization strategies to overcome the Debye screening effect. Finally, we summarize and provide an outlook on the research on FET biosensors in overcoming the Debye screening effect, hoping to help the development of FET electronic devices with high sensitivity, specificity, and stability. This work is expected to provide new ideas for next-generation biosensing technology.
Collapse
Affiliation(s)
- Qi Meng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
16
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
17
|
Pan B, He Q, Yu X, De Choch D, Lam KS, Hammock BD, Sun G. Versatility and stability of melamine foam-based biosensors (f-ELISA) using antibodies, nanobodies, and peptides as sensing probes. Talanta 2024; 279:126634. [PMID: 39121553 DOI: 10.1016/j.talanta.2024.126634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Macroporous three-dimensional (3D) framework structured melamine foam-based Enzyme-Linked Immunosorbent Assay (f-ELISA) biosensors were developed for rapid, reliable, sensitive, and on-site detection of trace amount of biomolecules and chemicals. Various ligands can be chemically immobilized onto the melamine foam, which brings in the possibility of working with antibodies, nanobodies, and peptides, respectively, as affinity probes for f-ELISA biosensors with improved stability. Different chemical reagents can be used to modify the foam materials, resulting in varied reactivities with antibodies, nanobodies, and peptides. As a result, the f-ELISA sensors produced from these modified foams exhibit varying levels of sensitivity and performance. This study demonstrated that the chemical reagents used for immobilizing antibodies, nanobodies, and peptides could affect the sensitivities of the f-ELISA sensors, and their storage stabilities under different temperatures varied depending on the sensing probes used, with f-ELISA sensors employing nanobodies as probes exhibiting the highest stability. This study not only showcases the versatility of the f-ELISA system but also opens new avenues for developing cost-effective, portable, and user-friendly diagnostic tools with optimized sensitivity and stability.
Collapse
Affiliation(s)
- Bofeng Pan
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Qiyi He
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Xingjian Yu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Dylan De Choch
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Gang Sun
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
18
|
Ye G, Bu F, Saxena D, Turner-Hubbard H, Herbst M, Spiller B, Wadzinski BE, Du L, Liu B, Zheng J, Li F. Discovery of Nanosota-9 as anti-Omicron nanobody therapeutic candidate. PLoS Pathog 2024; 20:e1012726. [PMID: 39591462 PMCID: PMC11630572 DOI: 10.1371/journal.ppat.1012726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/10/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model. Cryo-EM data revealed that Nanosota-9 neutralizes Omicron through a unique mechanism: two Nanosota-9 molecules crosslink two receptor-binding domains (RBDs) of the trimeric Omicron spike protein, preventing the RBDs from binding to the ACE2 receptor. This mechanism explains its strong anti-Omicron potency. Additionally, the Nanosota-9 binding epitopes on the spike protein are relatively conserved among Omicron subvariants, contributing to its broad anti-Omicron spectrum. Combined with our recently developed structure-guided in vitro evolution approach for nanobodies, Nanosota-9 has the potential to serve as the foundation for a superior anti-Omicron therapeutic.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Kentucky, United States of America
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Jian Zheng
- Center for Predictive Medicine, University of Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
19
|
Sun B, Li G, Wu Y, Gai J, Zhu M, Ji W, Wang X, Zhang F, Li W, Hu J, Lou Y, Feng G, Han X, Dong J, Peng J, Pei J, Wan Y, Li Y, Ma L. Ce-MOF@Au-Based Electrochemical Immunosensor for Apolipoprotein A1 Detection Using Nanobody Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58405-58416. [PMID: 39413767 DOI: 10.1021/acsami.4c14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Apolipoprotein A1 (Apo-A1) is a well-recognized biomarker in tissues, closely associated with cardiovascular diseases such as atherosclerosis, coronary artery disease, and heart failure. However, existing methods for Apo-A1 determination are limited by costly equipment and intricate operational procedures. Given the distinct advantages of electrochemical immunosensors, including affordability and high sensitivity, along with the unique attributes of nanobodies (Nbs), such as enhanced specificity and better tissue permeability, we developed an electrochemical immunosensor for Apo-A1 detection utilizing Nb technology. In our study, Ce-MOF@AuNPs nanocomposites were synthesized by using ultrasonic methods and applied to modify a glassy carbon electrode. The Nb6, screened from an Apo-A1 immunized phage library, was immobilized onto the nanocomposite material, establishing a robust binding interaction with Apo-A1. The recorded peak current values demonstrated a logarithmic increase corresponding to Apo-A1 concentrations ranging from 1 to 100,000 pg/mL, with a detection limit of 36 fg/mL. Additionally, the developed immunosensors demonstrated high selectivity, good stability, and reproducibility. Our methodology was also effectively utilized for serum sample analysis, showing good performance in clinical assessments. This electrochemical immunosensor represents a promising tool for Apo-A1 detection, with significant potential for advancing cardiovascular disease diagnostics.
Collapse
Affiliation(s)
- Baihe Sun
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Yue Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Weiwei Ji
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Xiaoying Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fenghua Zhang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Wanting Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jingjin Hu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yuxin Lou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Gusheng Feng
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xijun Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jinwen Dong
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jiayuan Peng
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jiawei Pei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co, Ltd, Shanghai 201318, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Linlin Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
20
|
Zu Y, Ren Q, Zhang J, Su H, Lu Q, Song Y, Zhou J. Targeting CD5 chimeric antigen receptor-engineered natural killer cells against T-cell malignancies. Exp Hematol Oncol 2024; 13:104. [PMID: 39462383 PMCID: PMC11515150 DOI: 10.1186/s40164-024-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor engineered T cells (CAR-T) have demonstrated promising clinical efficacy in B-cell malignancies, and the approach has been extended to T-cell malignancies. However, the use of allogeneic T cells in CAR therapy poses a challenge due to the risk of graft-versus-host disease. Recently, natural killer (NK) cells have exhibited "off‑the‑shelf" availability. The nanobody-based CAR structures have attracted much attention for their therapeutic potential owing to the advantages of nanobody, including small size, optimal stability, high affinity and manufacturing feasibility. CD5, a common surface marker of malignant T cells, has three scavenger receptor cysteine-rich domains (D1-D3) in the extracellular region. The present study aims to construct "off‑the‑shelf" CAR-NK cells targeting the membrane-proximal domain of CD5 derived from nanobody against T-cell malignancies. METHODS Anti-CD5-D3 nanobody was screened by phage display technology, followed by constructing fourth-generation CAR plasmids ectopically producing IL-15 to generate CD5 CAR-NK cells derived from peripheral blood. And the second-generation CD5 CAR-T cells based on nanobody were generated, referred to as 5D.b CAR-T and 12 C.b CAR-T. Furthermore, CAR-NK cells without IL-15 (IL-15△ CAR-NK) were generated to assess the impact on cytotoxicity of CAR-NK cells. Cytotoxic activity against CD5+ hematologic malignant cell lines and normal T cells was exerted in vitro and NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt mouse model transplanted with Jurkat-Luc cells was used to evaluate the antitumor efficacy of CD5 CAR-NK cells in vivo. RESULTS Two nanobodies (5D and 12 C) competed for binding to the epitope of CD5-D3. 12 C CAR-NK cells were superior to 5D CAR-NK cells in antitumor potential and 12 C.b CAR-T cells exhibited superior cytotoxic activity than 5D CAR-T cells ex vivo. So, 12 C was regarded as the optimal nanobody. 12 C CAR-NK cells and IL-15△ CAR-NK cells exhibited robust cytotoxicity against CD5+ malignant cell lines and controlled disease progression in xenograft mouse model. 12 C CAR-NK cells demonstrated greater antitumor activity compared to that of IL-15△ CAR-NK cells in vitro and in vivo. CONCLUSIONS Taken together, the fourth-generation nanobody-derived anti-CD5 CAR-NK cells may be a promising therapeutic against T-cell malignancies.
Collapse
Affiliation(s)
- Yingling Zu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Quan Ren
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jishuai Zhang
- Shenzhen Pregene Biopharma Company, Ltd, Shenzhen, Guangdong, 518118, China
| | - Hongchang Su
- Shenzhen Pregene Biopharma Company, Ltd, Shenzhen, Guangdong, 518118, China
| | - Qiumei Lu
- Shenzhen Pregene Biopharma Company, Ltd, Shenzhen, Guangdong, 518118, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Jian Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, 450008, China.
| |
Collapse
|
21
|
Njeru F, Zwaenepoel O, Haesaert G, Misinzo G, De Jonghe K, Gettemans J. Development of nanobodies against the coat protein of maize chlorotic mottle virus. FEBS Open Bio 2024; 14:1746-1757. [PMID: 39168939 PMCID: PMC11452299 DOI: 10.1002/2211-5463.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Maize lethal necrosis (MLN) is a maize disease caused by the maize chlorotic mottle virus (MCMV), a potyvirus which causes yield losses of 30-100%. The present study aimed to isolate nanobodies against the MCMV coat protein (CP) for the diagnosis of MLN. MCMV CP expressed in Escherichia coli was used for llama immunization. VHH (i.e. variable heavy domain of heavy chain) gene fragments were prepared from blood drawn from the immunized llama and used to generate a library in E. coli TG1 cells. MCMV specific nanobodies were selected by three rounds of phage display and panning against MCMV CP. The selected nanobodies were finally expressed in E. coli WK6 cells and purified. Eleven MCMV-specific nanobodies were identified and shown to detect MCMV in infected maize plants. Thus, our results show that nanobodies isolated from llama immunized with MCMV CP can distinguish infected and healthy maize plants, potentially enabling development of affordable MCMV detection protocols.
Collapse
Affiliation(s)
- Faith Njeru
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One HealthSokoine University of AgricultureMorogoroTanzania
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical SciencesSokoine University of AgricultureMorogoroTanzania
| | - Olivier Zwaenepoel
- Department of Biomolecular Medicine, Faculty of Medicine and Health SciencesGhent UniversityBelgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityBelgium
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One HealthSokoine University of AgricultureMorogoroTanzania
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical SciencesSokoine University of AgricultureMorogoroTanzania
| | - Kris De Jonghe
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)GhentBelgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health SciencesGhent UniversityBelgium
| |
Collapse
|
22
|
Tornetta MA, Whitaker BP, Cantwell OM, Pisors ED, Han L, MacWilliams MP, Jiang H, Zhou F, Chiu ML. The process using a synthetic library that generates multiple diverse human single domain antibodies. Antib Ther 2024; 7:283-294. [PMID: 39381136 PMCID: PMC11456836 DOI: 10.1093/abt/tbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background Single domain antibodies (sdAbs) possess unique characteristics that make them highly effective for developing complex therapeutics. Methods Our process uses a fully synthetic phage display library to generate single domain antibodies that can bind to disease relevant antigen conformations. A human IGHV3 family scaffold makes up the phage display libraries, and these VHO libraries are applied to diverse phage biopannings against target antigens. After NGS processing, unique VHOs undergo automated cloning into expression constructs followed by transfections and purifications. Binding assays were used to determine VHO binding behaviors to the target proteins. Additional VHO interactions are measured against endogenous targets on cells by way of flow cytometry, cell internalization, and activation assays. Results We show that a fully synthetic phage display library can generate VHOs that bind to disease relevant antigen conformations. The diverse biopanning methods and processing of next-generation sequencing generated many VHO paratopes. These different VHO sequences can be expressed as Fc fusion proteins. Various screening assays resulted in VHOs representing different epitopes or activities. During the hit evaluation, we demonstrate how screening can identify distinct VHO activities that have been used to generate differentiated drug molecules in various bispecific and multispecific antibody formats. Conclusion We demonstrate how screening can identify distinct VHO activities that have been used to generate differentiated drug molecules in various bispecific and multispecific antibody formats.
Collapse
Affiliation(s)
- Mark A Tornetta
- Biologics Discovery Department, Tavotek Biotherapeutics, 727 Norristown Road, Spring house Innovation Park, Building 3, Suite 101, Lower Gywnedd, PA 19002, United States
| | - Brian P Whitaker
- Biologics Discovery Department, Tavotek Biotherapeutics, 727 Norristown Road, Spring house Innovation Park, Building 3, Suite 101, Lower Gywnedd, PA 19002, United States
| | - Olivia M Cantwell
- Biologics Discovery Department, Tavotek Biotherapeutics, 727 Norristown Road, Spring house Innovation Park, Building 3, Suite 101, Lower Gywnedd, PA 19002, United States
| | - Eileen D Pisors
- Biologics Discovery Department, Tavotek Biotherapeutics, 727 Norristown Road, Spring house Innovation Park, Building 3, Suite 101, Lower Gywnedd, PA 19002, United States
| | - Lu Han
- Biologics Discovery Department, Tavotek Biotherapeutics, Building C2, Suzhou Biomedical Industrial Park, Suzhou, Jiang Su 215000, China
| | - Maria P MacWilliams
- Biologics Discovery Department, Tavotek Biotherapeutics, 727 Norristown Road, Spring house Innovation Park, Building 3, Suite 101, Lower Gywnedd, PA 19002, United States
| | - Hao Jiang
- Biologics Discovery Department, Tavotek Biotherapeutics, Building C2, Suzhou Biomedical Industrial Park, Suzhou, Jiang Su 215000, China
| | - Fulai Zhou
- Biologics Discovery Department, Tavotek Biotherapeutics, Building C2, Suzhou Biomedical Industrial Park, Suzhou, Jiang Su 215000, China
| | - Mark L Chiu
- Biologics Discovery Department, Tavotek Biotherapeutics, 727 Norristown Road, Spring house Innovation Park, Building 3, Suite 101, Lower Gywnedd, PA 19002, United States
- Biologics Discovery Department, Tavotek Biotherapeutics, Building C2, Suzhou Biomedical Industrial Park, Suzhou, Jiang Su 215000, China
| |
Collapse
|
23
|
Mao F, He Z, Sun Z, Zhang S, Cao H, Liu X. Plasmonic enzyme immunoassay via nanobody-driven controllable aggregation of gold nanoparticles for detection of ochratoxin A in pepper. Food Chem 2024; 453:139623. [PMID: 38761730 DOI: 10.1016/j.foodchem.2024.139623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Ochratoxin A (OTA) in food poses a serious challenge to public health. Herein, using the nanobody-driven controllable aggregation of gold nanoparticles (AuNPs) in a glucose oxidase-tyramine-horseradish peroxidase (GOx-TYR-HRP) system, we propose a direct competitive plasmonic enzyme immunoassay (dc-PEIA) for OTA detection. The OTA-GOx conjugate catalyzes glucose to produce hydrogen peroxide (H2O2), and then HRP catalyzes H2O2 to generate hydroxyl radical which induces the crosslink of TYR. Crosslinked TYR leads to aggregation of AuNPs through strong electrostatic interactions, which is tunable based on the competition of OTA-GOx and free OTA for binding the immobilized nanobody. The optimized dc-PEIA achieves an instrumental limit of detection (LOD) of 0.275 ng/mL and a visual LOD of 1.56 ng/mL. It exhibits good selectivity for OTA and accuracy in the analysis of pepper samples, with the confirmation of high-performance liquid chromatography. Overall, the dc-PEIA is demonstrated as a useful tool for detecting OTA in food.
Collapse
Affiliation(s)
- Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
24
|
Saleem MZ, Jahangir GZ, Saleem A, Zulfiqar A, Khan KA, Ercisli S, Ali B, Saleem MH, Saleem A. Production Technologies for Recombinant Antibodies: Insights into Eukaryotic, Prokaryotic, and Transgenic Expression Systems. Biochem Genet 2024:10.1007/s10528-024-10911-5. [PMID: 39287779 DOI: 10.1007/s10528-024-10911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Recombinant antibodies, a prominent class of recombinant proteins, are witnessing substantial growth in research and diagnostics. Recombinant antibodies are being produced employing diverse hosts ranging from highly complex eukaryotes, for instance, mammalian cell lines (and insects, fungi, yeast, etc.) to unicellular prokaryotic models like gram-positive and gram-negative bacteria. This review delves into these production methods, highlighting approaches like antibody phage display that employs bacteriophages for gene library creation. Recent studies emphasize monoclonal antibody generation through hybridoma technology, utilizing hybridoma cells from myeloma and B-lymphocytes. Transgenic plants and animals have emerged as sources for polyclonal and monoclonal antibodies, with transgenic animals preferred due to their human-like post-translational modifications and reduced immunogenicity risk. Chloroplast expression offers environmental safety by preventing transgene contamination in pollen. Diverse production technologies, such as stable cell pools and clonal cell lines, are available, followed by purification via techniques like affinity chromatography. The burgeoning applications of recombinant antibodies in medicine have led to their large-scale industrial production.
Collapse
Affiliation(s)
| | | | - Ammara Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Asma Zulfiqar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, 25240, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, 25240, Erzurum, Türkiye
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Aroona Saleem
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Department of Microbiology, Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000, Pakistan.
| |
Collapse
|
25
|
Ma J, Bodai B, Ma Z, Khalembek K, Xie J, Kadyken R, Baibatshanov M, Kazkhan O. Screening and identification of nanobody against inhibin α-subunit from a Camelus bactrianus phage display library. Heliyon 2024; 10:e36180. [PMID: 39281437 PMCID: PMC11402152 DOI: 10.1016/j.heliyon.2024.e36180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Inhibin is a member of the transforming growth factor family that influences reproduction in animals. Objective The purpose of this study was to obtain nanobodies from the phage antibody library constructed by us that can specifically bind to inhibin α-subunit. Methods In this study, camels were immunized with Kazakh sheep inhibin-α protein that expressed in BL21 E. coli, and the camel VHH nanobody phage display library was prepared using nested PCR. The nanobodies specifically binding to inhibin α-subunit in the library were screened by three rounds of immunoaffinity screening and phage enzyme-linked immunosorbent assay (phage ELISA). The functions of the selected nanobodies were identified using molecular simulation docking, ELISA affinity test, and sheep immunity test. Results A nanobody display library was successfully constructed with a capacity of 1.05 × 1012 CFU, and four inhibin-α-subunit-specific nanobodies with an overall similarity of 69.34 % were screened from the library, namely, Nb-4, Nb-15, Nb-26, and Nb-57. The results of molecular simulation docking revealed that four types of nanobodies were complexed with inhibin-α protein mainly through hydrophobic bonds. Immunity tests revealed that the nanobody Nb-4 could effectively inhibit sheep inhibin A/B and could significantly improve the FSH level in sheep. Conclusion Four inhibin α-subunit-specific nanobodies with biological functions were successfully screened. To the best of our knowledge, this is a new reproductive immunomodulatory pathway of inhibin α-subunit, which may change the secretion of FSH in the ovary, thus changing the estrous cycle of organisms.
Collapse
Affiliation(s)
- Jifu Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Bakhet Bodai
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Zhongmei Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Kezerbek Khalembek
- Agricultural Development Service Center of Kalabulegen Township, Fuyun County, Altay Region, Xinjiang, 836103, China
| | - Jingang Xie
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Rizabek Kadyken
- Department of Production Technology of Livestock Products, Kazakh National Agrarian Research University, Almaty Province, 050010, Kazakhstan
| | - Mukhtar Baibatshanov
- Department of Forest Resources and Hunting, Kazakh National Agrarian Research University, Almaty Province, 050010, Kazakhstan
| | - Oralhazi Kazkhan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| |
Collapse
|
26
|
Ye G, Bu F, Pan R, Mendoza A, Saxena D, Zheng J, Perlman S, Liu B, Li F. Dual-role epitope on SARS-CoV-2 spike enhances and neutralizes viral entry across different variants. PLoS Pathog 2024; 20:e1012493. [PMID: 39236072 PMCID: PMC11407660 DOI: 10.1371/journal.ppat.1012493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/17/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Grasping the roles of epitopes in viral glycoproteins is essential for unraveling the structure and function of these proteins. Up to now, all identified epitopes have been found to either neutralize, have no effect on, or enhance viral entry into cells. Here, we used nanobodies (single-domain antibodies) as probes to investigate a unique epitope on the SARS-CoV-2 spike protein, located outside the protein's receptor-binding domain. Nanobody binding to this epitope enhances the cell entry of prototypic SARS-CoV-2, while neutralizing the cell entry of SARS-CoV-2 Omicron variant. Moreover, nanobody binding to this epitope promotes both receptor binding activity and post-attachment activity of prototypic spike, explaining the enhanced viral entry. The opposite occurs with Omicron spike, explaining the neutralized viral entry. This study reveals a unique epitope that can both enhance and neutralize viral entry across distinct viral variants, suggesting that epitopes may vary their roles depending on the viral context. Consequently, antibody therapies should be assessed across different viral variants to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ruangang Pan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jian Zheng
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
27
|
Ye G, Bu F, Pan R, Mendoza A, Yang G, Spiller B, Wadzinski BE, Du L, Perlman S, Liu B, Li F. Structure-guided in vitro evolution of nanobodies targeting new viral variants. PLoS Pathog 2024; 20:e1012600. [PMID: 39325826 PMCID: PMC11460708 DOI: 10.1371/journal.ppat.1012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
A major challenge in antiviral antibody therapy is keeping up with the rapid evolution of viruses. Our research shows that nanobodies - single-domain antibodies derived from camelids - can be rapidly re-engineered to combat new viral strains through structure-guided in vitro evolution. Specifically, for viral mutations occurring at nanobody-binding sites, we introduce randomized amino acid sequences into nanobody residues near these mutations. We then select nanobody variants that effectively bind to the mutated viral target from a phage display library. As a proof of concept, we used this approach to adapt Nanosota-3, a nanobody originally identified to target the receptor-binding domain (RBD) of early Omicron subvariants, making it highly effective against recent Omicron subvariants. Remarkably, this adaptation process can be completed in less than two weeks, allowing drug development to keep pace with viral evolution and provide timely protection to humans.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ruangang Pan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
28
|
Weng D, Yang L, Xie Y. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis. Protein Expr Purif 2024; 221:106501. [PMID: 38782081 DOI: 10.1016/j.pep.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nanobodies are single-variable domain antibodies with excellent properties, which are evolving as versatile tools to guide cognate antigens in vitro and in vivo for biological research, diagnosis, and treatment. Given their simple structure, nanobodies are readily produced in multiple systems. However, selecting an appropriate expression system is crucial because different conditions might cause proteins to produce different folds or post-translational modifications (PTMs), and these differences often result in different functions. At present, the strategies of PTMs are rarely reported. The GFP nanobody can specifically target the GFP protein. Here, we engineered a GFP nanobody fused with 6 × His tag and Fc tag, respectively, and expressed in bacteria and mammalian cells. The 6 × His-GFP-nanobody was produced from Escherichia coli at high yields and the pull-down assay indicated that it can precipitate the GFP protein. Meanwhile, the Fc-GFP-nanobody can be expressed in HEK293T cells, and the co-immunoprecipitation experiment can trace and target the GFP-tagged protein in vivo. Furthermore, some different PTMs in antigen-binding regions have been identified after using mass spectrometry (MS) to analyze the GFP nanobodies, which are expressed in prokaryotes and eukaryotes. In this study, a GFP nanobody was designed, and its binding ability was verified by using the eukaryotic and prokaryotic protein expression systems. In addition, this GFP nanobody was transformed into a useful instrument for more in-depth functional investigations of GFP fusion proteins. MS was further used to explore the reason for the difference in binding ability, providing a novel perspective for the study of GFP nanobodies and protein expression purification.
Collapse
Affiliation(s)
- Dunchu Weng
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
29
|
Hennigan JN, Menacho-Melgar R, Sarkar P, Golovsky M, Lynch MD. Scalable, robust, high-throughput expression & purification of nanobodies enabled by 2-stage dynamic control. Metab Eng 2024; 85:116-130. [PMID: 39059674 PMCID: PMC11408108 DOI: 10.1016/j.ymben.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Nanobodies are single-domain antibody fragments that have garnered considerable use as diagnostic and therapeutic agents as well as research tools. However, obtaining pure VHHs, like many proteins, can be laborious and inconsistent. High level cytoplasmic expression in E. coli can be challenging due to improper folding and insoluble aggregation caused by reduction of the conserved disulfide bond. We report a systems engineering approach leveraging engineered strains of E. coli, in combination with a two-stage process and simplified downstream purification, enabling improved, robust, soluble cytoplasmic nanobody expression, as well as rapid cell autolysis and purification. This approach relies on the dynamic control over the reduction potential of the cytoplasm, incorporates lysis enzymes for purification, and can also integrate dynamic expression of protein folding catalysts. Collectively, the engineered system results in more robust growth and protein expression, enabling efficient scalable nanobody production, and purification from high throughput microtiter plates, to routine shake flask cultures and larger instrumented bioreactors. We expect this system will expedite VHH development.
Collapse
Affiliation(s)
| | | | - Payel Sarkar
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Goldman ER, Sugiharto VA, Shriver-Lake LC, Garcia AM, Wu SJ, Jenkins SA, Chen HW. A single domain antibody-based Luminex assay for the detection of SARS-CoV-2 in clinical samples. Front Immunol 2024; 15:1446095. [PMID: 39192985 PMCID: PMC11347438 DOI: 10.3389/fimmu.2024.1446095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Within the past decade, single domain antibodies (sdAbs) have been recognized as unique affinity binding reagents that can be tailored for performance in a variety of immunoassay formats. Luminex MagPlex color-coded magnetic microspheres provide a high-throughput platform that enables multiplexed immunoassays. We developed a MagPlex bead-based assay for the detection of SARS-CoV-2, using sdAbs against SARS-CoV-2 nucleocapsid (N) protein in which we engineered the sdAb capture reagents to orient them on the beads. The oriented sdAbs provided an increase in sensitivity over randomly oriented sdAbs for samples of N diluted in buffer, which also translated into better detection of SARS-CoV-2 in clinical samples. We assessed the specificity of the assay by examining seasonal coronavirus clinical samples. In summary, we provide a proof-of-concept that a bead-based assay using sdAbs to detect SARS-CoV-2 is feasible and future research combining it with other sdAb-coated beads that can detect other viruses may provide a useful diagnostic tool.
Collapse
Affiliation(s)
- Ellen R. Goldman
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Victor A. Sugiharto
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Lisa C. Shriver-Lake
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Andrew M. Garcia
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Leidos Inc., Reston, VA, United States
| | - Shuenn-Jue Wu
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Sarah A. Jenkins
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Hua-Wei Chen
- Diagnostic and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| |
Collapse
|
31
|
Miyake T, McDermott JC. Functional analysis of protein interactions using coupled bi-fluorescence complementation/GFP nanobody techniques. Nucleic Acids Res 2024; 52:e66. [PMID: 38932691 DOI: 10.1093/nar/gkae548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024] Open
Abstract
Transcription factors (TFs) form homo- or hetero-dimeric DNA binding complexes along with associated co-regulators that can have transcriptional repressor or activator functions. Defining the specific composition of the complexes is therefore key to understanding their biological role. Here, we utilized bimolecular fluorescence complementation (BiFC) to visualize the formation of defined TF dimers and associated co-regulators derived from the activator protein-1 (AP-1) and myocyte enhancer factor 2 (MEF2) families. Firstly, BiFC signals were observed in cells co-expressing TFs tagged with complimentary combinations of the split fluorescent protein, demonstrating the engineered formation of defined dimer complexes. Next, we applied this approach and determined that defined AP-1 dimers localized at discrete sub-nuclear locations. Subsequently, a combination of BiFC coupled with GFP binding peptide (GBP)-nanotrap allowed observation of protein-protein interactions between a co-regulator, HDAC4, and defined BiFC-MEF2 engineered dimers. To determine transactivation properties of defined TF dimers in a cellular system, the Gal4-DNA binding domain fused to GBP was utilized to assess the transcriptional properties of the BiFC-TF dimers using a generically applicable Gal4/UAS luciferase reporter gene assay system. Here, we report efficacy of a BiFC/GBP-nanobody approach that allows engineering, visualization, and functional analysis of defined TF dimers.
Collapse
Affiliation(s)
- Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
32
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
33
|
Guo K, Grünberg R, Ren Y, Chang T, Wustoni S, Strnad O, Koklu A, Díaz‐Galicia E, Agudelo JP, Druet V, Castillo TCH, Moser M, Ohayon D, Hama A, Dada A, McCulloch I, Viola I, Arold ST, Inal S. SpyDirect: A Novel Biofunctionalization Method for High Stability and Longevity of Electronic Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306716. [PMID: 38161228 PMCID: PMC11251562 DOI: 10.1002/advs.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.
Collapse
Affiliation(s)
- Keying Guo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Yuxiang Ren
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tianrui Chang
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Shofarul Wustoni
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ondrej Strnad
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Anil Koklu
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Escarlet Díaz‐Galicia
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Jessica Parrado Agudelo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Victor Druet
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | | | - David Ohayon
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Adel Hama
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ashraf Dada
- King Faisal Specialist Hospital & Research Centre (KFSH‐RC)Jeddah21499Saudi Arabia
| | - Iain McCulloch
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Ivan Viola
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de MontpellierMontpellierF‐34090France
| | - Sahika Inal
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
34
|
Bastos-Soares EA, da Silva Morais MS, Funes-Huacca M, Sousa RMO, Brilhante-Da-Silva N, Roberto SA, Prado NDR, Dos Santos CND, Marinho ACM, Soares AM, Stabeli RG, Pereira SDS, Fernandes CFC. Single-Domain Antibody-Gold Nanoparticle Bioconjugates as Immunosensors for the Detection of Hantaviruses. Mol Diagn Ther 2024; 28:479-494. [PMID: 38796660 DOI: 10.1007/s40291-024-00713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Hantavirus, a zoonotic pathogen, causes severe syndromes like hemorrhagic fever with renal syndrome (HFRS), sometimes fatal in humans. Considering the importance of detecting the hantavirus antigen, the construction of an immunosensor is essential. The structural and functional characteristics of camelid nanobodies (VHHs) encourage their application in the areas of nanobiotechnology, therapeutics, diagnostics, and basic research. Therefore, this study aimed to standardize stable bioconjugates using gold nanoparticles (AuNPs) and VHHs, in order to develop immunobiosensors for the diagnosis of hantavirus infection. METHODS Immobilized metal affinity chromatography (IMAC) was performed to obtain purified recombinant anti-hantavirus nucleocapsid nanobodies (anti-prNΔ85 VHH), while AuNPs were synthesized for bioconjugation. UV-visible spectrophotometry and transmission electron microscopy (TEM) analysis were employed to characterize AuNPs. RESULTS The bioconjugation stability parameters (VHH-AuNPs), analyzed by spectrophotometry, showed that the ideal pH value and VHH concentration were obtained at 7.4 and 50 μg/mL, respectively, after addition of 1 M NaCl, which induces AuNP aggregation. TEM performed before and after bioconjugation showed uniform, homogeneous, well-dispersed, and spherical AuNPs with an average diameter of ~ 14 ± 0.57 nm. Furthermore, high-resolution images revealed a thin white halo on the surface of the AuNPs, indicating the coating of the AuNPs with protein. A biosensor simulation test (dot blot-like [DB-like]) was performed in stationary phase to verify the binding and detection limits of the recombinant nucleocapsid protein from the Araucária hantavirus strain (prN∆85). DISCUSSION Using AuNPs/VHH bioconjugates, a specific interaction was detected between 5 and 10 min of reaction in a dose-dependent manner. It was observed that this test was sensitive enough to detect prNΔ85 at concentrations up to 25 ng/μL. Considering that nanostructured biological systems such as antibodies conjugated with AuNPs are useful tools for the development of chemical and biological sensors, the stability of the bioconjugate indicates proficiency in detecting antigens. The experimental results obtained will be used in a future immunospot assay or lateral flow immunochromatography analysis for hantavirus detection.
Collapse
Affiliation(s)
- Erika A Bastos-Soares
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Michelle Suelen da Silva Morais
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Maribel Funes-Huacca
- Departamento de Química, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Rosa Maria O Sousa
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | | | - Sibele Andrade Roberto
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | | | | - Anna C M Marinho
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Ceará, Eusébio, CE, Brazil
| | - Andreimar M Soares
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro Universitário São Lucas, UniSL, Porto Velho, RO, Brazil
- Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Rodrigo G Stabeli
- Fundação Oswaldo Cruz, FIOCRUZ, Plataforma Bi-institucional de Medicina Translacional, Ribeirão Preto, SP, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-graduação em Biologia Experimental, PGBIOEXP, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | |
Collapse
|
35
|
Zhang Y, Wang T, Zhang P, Wan Y, Chang G, Xu X, Ruan F, Zhou T, Zhao Q, Zhang M, Wang X. Facile construction of sandwich ELISA based on double-nanobody for specific detection of α-hemolysin in food samples. Talanta 2024; 274:126021. [PMID: 38569370 DOI: 10.1016/j.talanta.2024.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
α-hemolysin (Hla), a toxin secreted by Staphylococcus aureus (S. aureus), has been proved to be involved in the occurrence and aggravation of food poisoning. Hence, it is quite essential to establish its rapid detection methods to guarantee food safety. Sandwich ELISA based on nanobody is well known to be viable for toxins, but there is absence of nanobody against Hla, let alone a pair for it. Therefore, in this paper, we screened specific nanobodies by bio-panning and obtained the optimal nanobody pair for sandwich ELISA firstly. Then, RANbody, a novel nanobody owning both recognition and catalytic capability, is generated in a single step and at low cost through molecular recombination technology. Subsequently, sandwich ELISA was developed to detect Hla based on the nanobody and RANbody, that not only eliminated the use of secondary antibodies and animal-derived antibody, but also reduced detection time and cost, compared with traditional sandwich ELISA. Lastly, the performance has been evaluated, especially for specificity which showed no response to other hemolysins and a low limit of detection of 10 ng/mL. Besides, the proposed sandwich ELISA exhibits favorable feasibility and was successfully employed for the detection of Hla in milk and pork samples.
Collapse
Affiliation(s)
- Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Pengfei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yangli Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xu Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Fuqian Ruan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
36
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
37
|
Wang Y, Chen J, Zhang S, Jiang H, Zhu J, Jiang G, Liu Y, Zhu Y, Li J. Bispecific Nanobody-Aptamer Conjugates for Enhanced Cancer Therapy in Solid Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308265. [PMID: 38225704 DOI: 10.1002/smll.202308265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Bispecific antibodies possess exceptional potential as therapeutic agents due to their capacity to bind to two different antigens simultaneously. However, challenges pertain to unsatisfactory stability, manufacturing complexity, and limited tumor penetration hinder their broad applicability. In this study, a versatile technology is presented for the rapid generation of bispecific nanobody-aptamer conjugates with efficient tumor penetration. The approach utilizes microbial transglutaminase (MTGase) and click chemistry to achieve site-specific conjugation of nanobodies and aptamers, which are termed nanotamers. The nanotamers recognize and bind to two types of molecular targets expressed on cancer cells. As a prototype, a bispecific nanotamer is developed that binds both clusters of differentiation 47 (CD47) and mesenchymal epithelial transition receptor (Met) expressed on the tumor cell membrane. This CD47-Met nanotamer demonstrates high affinity and specificity toward tumor cells expressing both targets, exhibits improved receptor functional inhibition through a strong steric hindrance effect. Moreover, its capacity for deep tumor penetration greatly enhances the impact of conventional chemotherapy on antitumor efficacy. The as-developed nanotamer synthesis approach shows promise to customize bispecific molecular probes targeting different cancer types and different therapeutic goals.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jie Chen
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Sen Zhang
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Hang Jiang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jianqing Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Guangyi Jiang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yichang Liu
- School of Pharmacy, Nantong University, Nantong, 226019, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
38
|
Joubbi S, Micheli A, Milazzo P, Maccari G, Ciano G, Cardamone D, Medini D. Antibody design using deep learning: from sequence and structure design to affinity maturation. Brief Bioinform 2024; 25:bbae307. [PMID: 38960409 PMCID: PMC11221890 DOI: 10.1093/bib/bbae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Deep learning has achieved impressive results in various fields such as computer vision and natural language processing, making it a powerful tool in biology. Its applications now encompass cellular image classification, genomic studies and drug discovery. While drug development traditionally focused deep learning applications on small molecules, recent innovations have incorporated it in the discovery and development of biological molecules, particularly antibodies. Researchers have devised novel techniques to streamline antibody development, combining in vitro and in silico methods. In particular, computational power expedites lead candidate generation, scaling and potential antibody development against complex antigens. This survey highlights significant advancements in protein design and optimization, specifically focusing on antibodies. This includes various aspects such as design, folding, antibody-antigen interactions docking and affinity maturation.
Collapse
Affiliation(s)
- Sara Joubbi
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Alessio Micheli
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
| | - Paolo Milazzo
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Giorgio Ciano
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Dario Cardamone
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Duccio Medini
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| |
Collapse
|
39
|
Yamamoto K, Nagatoishi S, Nakakido M, Kuroda D, Tsumoto K. Functional insights of Tyr37 in framework region 2 directly contributing to the binding affinities and dissociation kinetics in single-domain V HH antibodies. Biochem Biophys Res Commun 2024; 709:149839. [PMID: 38564943 DOI: 10.1016/j.bbrc.2024.149839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Single-domain VHH antibody is regarded as one of the promising antibody classes for therapeutic and diagnostic applications. VHH antibodies have amino acids in framework region 2 that are distinct from those in conventional antibodies, such as the Val37Phe/Tyr (V37F/Y) substitution. Correlations between the residue type at position 37 and the conformation of the CDR3 in VHH antigen recognition have been previously reported. However, few studies focused on the meaning of harboring two residue types in position 37 of VHH antibodies, and the concrete roles of Y37 have been little to be elucidated. Here, we investigated the functional states of position 37 in co-crystal structures and performed analyses of three model antibodies with either F or Y at position 37. Our analysis indicates that Y at position 37 enhances the dissociation rate, which is highly correlated with drug efficacy. Our findings help to explain the molecular mechanisms that distinguish VHH antibodies from conventional antibodies.
Collapse
Affiliation(s)
- Koichi Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
40
|
Xiao Y, Dong H, Wu C, Zhang K, Jiang X, Chen J, Wang H, Xu S, Zhang F, Gu L. Nanobody in a Double "Y"-Shaped Assembly: A Promising Candidate for Lateral Flow Immunoassays. Anal Chem 2024; 96:7130-7137. [PMID: 38679866 DOI: 10.1021/acs.analchem.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Derived from camelid heavy-chain antibodies, nanobodies (Nbs) are the smallest natural antibodies and are an ideal tool in biological studies because of their simple structure, high yield, and low cost. Nbs possess significant potential for developing highly specific and user-friendly diagnostic assays. Despite offering considerable advantages in detection applications, knowledge is limited regarding the exclusive use of Nbs in lateral flow immunoassay (LFIA) detection. Herein, we present a novel double "Y" architecture, achieved by using the SpyTag/SpyCatcher and Im7/CL7 systems. The double "Y" assemblies exhibited a significantly higher affinity for their epitopes, as particularly evident in the reduced dissociation rate. An LFIA employing double "Y" assemblies was effectively used to detect the severe acute respiratory syndrome coronavirus-2 N protein, with a detection limit of at least 500 pg/mL. This study helps broaden the array of tools available for the development of Nb-based diagnostic techniques.
Collapse
Affiliation(s)
- Yumeng Xiao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibaizhong Road, Jining 272033, P. R. China
| | - Cancan Wu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Xiaoqiong Jiang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Junyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China
| |
Collapse
|
41
|
Mii Y. Understanding and manipulating extracellular behaviors of Wnt ligands. In Vitro Cell Dev Biol Anim 2024; 60:441-448. [PMID: 38379096 DOI: 10.1007/s11626-024-00856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Wnt, a family of secreted signaling proteins, serves diverse functions in embryogenesis, organogenesis, cancer, and stem cell functions. In the context of development, Wnt has been considered a representative morphogen, forming concentration gradients to give positional information to cells or tissues. However, although gradients are often illustrated in schemata, the reality of concentration gradients, or in other words, actual spatial distribution of Wnt ligands, and their behaviors in the extracellular space still remain poorly known. To understand extracellular behavior of Wnt ligands, quantitative analyses such as fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) are highly informative because Wnt dispersal involves physical and biochemical processes, such as diffusion and binding to or dissociation from cell surface molecules, including heparan sulfate proteoglycans (HSPGs). Here, I briefly discuss representative methods to quantify morphogen dynamics. In addition, I discuss molecular manipulations of morphogens, mainly focusing on use of protein binders, and synthetic biology of morphogens as indicators of current and future directions in this field.
Collapse
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology (NIBB) and Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
42
|
Pomeranz L, Li R, Yu X, Kelly L, Hassanzadeh G, Molina H, Gross D, Brier M, Vaisey G, Wang P, Jimenez-Gonzalez M, Garcia-Ocana A, Dordick J, Friedman J, Stanley S. Magnetogenetic cell activation using endogenous ferritin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545120. [PMID: 37786709 PMCID: PMC10541561 DOI: 10.1101/2023.06.20.545120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking. Toward these ends, we first generated a novel anti-ferritin nanobody that when fused to transient receptor potential cation channel subfamily V member 1, TRPV1, enables direct binding of the channel to endogenous ferritin in mouse and human cells. This smaller construct can be delivered in a single AAV and we validated that it robustly enables magnetically induced cell activation in vitro. In parallel, we developed a simple benchtop electromagnet capable of gating the nanobody-tagged channel in vivo. Finally, we showed that delivering these new constructs by AAV to pancreatic beta cells in combination with the benchtop magnetic field delivery stimulates glucose-stimulated insulin release to improve glucose tolerance in mice in vivo. Together, the novel anti-ferritin nanobody, nanobody-TRPV1 construct and new hardware advance the utility of magnetogenetics in animals and potentially humans.
Collapse
Affiliation(s)
- Lisa Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Rosemary Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai, 200433
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Gross
- Current address, Dept. of Radiology, Weill Cornell Medicine, 1300 York Avenue New York, NY 10065
| | - Matthew Brier
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010
| | - Jonathan Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
43
|
Wang J, Shi B, Chen H, Yu M, Wang P, Qian Z, Hu K, Wang J. Engineered Multivalent Nanobodies Efficiently Neutralize SARS-CoV-2 Omicron Subvariants BA.1, BA.4/5, XBB.1 and BQ.1.1. Vaccines (Basel) 2024; 12:417. [PMID: 38675799 PMCID: PMC11054741 DOI: 10.3390/vaccines12040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Most available neutralizing antibodies are ineffective against highly mutated SARS-CoV-2 Omicron subvariants. Therefore, it is crucial to develop potent and broad-spectrum alternatives to effectively manage Omicron subvariants. Here, we constructed a high-diversity nanobody phage display library and identified nine nanobodies specific to the SARS-CoV-2 receptor-binding domain (RBD). Five of them exhibited cross-neutralization activity against the SARS-CoV-2 wild-type (WT) strain and the Omicron subvariants BA.1 and BA.4/5, and one nanobody demonstrated marked efficacy even against the Omicron subvariants BQ.1.1 and XBB.1. To enhance the therapeutic potential, we engineered a panel of multivalent nanobodies with increased neutralizing potency and breadth. The most potent multivalent nanobody, B13-B13-B13, cross-neutralized all tested pseudoviruses, with a geometric mean of the 50% inhibitory concentration (GM IC50) value of 20.83 ng/mL. An analysis of the mechanism underlying the enhancement of neutralization breadth by representative multivalent nanobodies demonstrated that the strategic engineering approach of combining two or three nanobodies into a multivalent molecule could improve the affinity between a single nanobody and spike, and could enhance tolerance toward escape mutations such as R346T and N460K. Our engineered multivalent nanobodies may be promising drug candidates for treating and preventing infection with Omicron subvariants and even future variants.
Collapse
Affiliation(s)
- Jiali Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bingjie Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hanyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mengyuan Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peipei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Keping Hu
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Andes Antibody Technology Hengshui LL Company, Hengshui 053000, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen 518118, China
| |
Collapse
|
44
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
45
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
46
|
Fenelon KD, Krause J, Koromila T. Opticool: Cutting-edge transgenic optical tools. PLoS Genet 2024; 20:e1011208. [PMID: 38517915 PMCID: PMC10959397 DOI: 10.1371/journal.pgen.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Julia Krause
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Theodora Koromila
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
47
|
Tao Z, Zhao X, Wang H, Zhang J, Jiang G, Yu B, Chen Y, Zhu M, Long J, Yin L, Zhang X, Liu M, He L. A method for rapid nanobody screening with no bias of the library diversity. iScience 2024; 27:108966. [PMID: 38327779 PMCID: PMC10847680 DOI: 10.1016/j.isci.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Nanobody, referred to the variable domain of heavy-chain-only antibodies, has several advantages such as small size and feasible Escherichia coli expression, making them promising for scientific research and therapies. Conventional nanobody screening and expression methods often suffer from the need for subcloning into expression vectors and amplification-induced diversity loss. Here, we developed an integrated method for simultaneous screening and expression. Nanobody libraries were cloned and secretly expressed in the culture medium. Target-specific nanobodies were isolated through 1-3 rounds of dilution and regrowth following the Poisson distribution. This ensured no dismissal of positive clones, with populations of positive clones increasing over 10-fold in each dilution round. Ultimately, we isolated 5 nanobodies against death domain receptor 5 and 5 against Pyrococcus furiosus DNA polymerase directly from their immunized libraries. Notably, our approach enables nanobody screening without specialized instruments, demonstrating broad applicability in routine monoclonal nanobody production for diverse biomedical applications.
Collapse
Affiliation(s)
- Zhiqing Tao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zhao
- Department of Reproductive Medicine, General Hospital of Central Theater Command of the People’s Liberation Army, Wuhan, Hubei 430061, China
- Qinhe Life Science Ltd, Wuhan 430000, China
| | - Huan Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Juan Zhang
- Department of Reproductive Medicine, General Hospital of Central Theater Command of the People’s Liberation Army, Wuhan, Hubei 430061, China
| | - Guosheng Jiang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Bin Yu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihao Chen
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junli Long
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Liao X, Zhang Y, Liang Y, Zhang L, Wang P, Wei J, Yin X, Wang J, Wang H, Wang Y. Enhanced sandwich immunoassay based on bivalent nanobody as an efficient immobilization approach for foodborne pathogens detection. Anal Chim Acta 2024; 1289:342209. [PMID: 38245207 DOI: 10.1016/j.aca.2024.342209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Nanobodies (Nbs), which consist of only antigen-binding domains of heavy chain antibodies, have been used in a various range of applications due to their excellent properties. Nevertheless, the size of Nbs is so small that their antigen binding sites may be sterically hindered after random fixation as capture antibodies, thus leading to poor detection performance in immunoassays. To address this problem, we have focused on the multivalent modification of Nbs, wanted to retain the advantage of good stability through enlarging the size of Nbs to a certain extent, while improve its affinity and reduce its influence by spatial orientation. RESULTS Here, we designed homo- and heterodimeric Nbs based on Nb413 and Nb422 which recognize different epitopes of Salmonella. The affinity of engineered bivalent nanobodies for S. Enteritidis were 2 orders of magnitude higher compared to monovalent Nbs and low to sub-nM KD, as calculated by Scatchard analysis. To further explore the potential of bivalent Nbs for the detection of Salmonella, we established a sandwich ELISA based on bivalent and phage-displayed Nbs (BNb-ELISA) for multiplex Salmonella determination. Compared with monovalent Nb-based ELISA, the limit of detection (LOD) of the BNb-ELISA was shown to increase 7.5-fold to 2.364 × 103 CFU mL-1 for S. Enteritidis. In addition, the feasibility of this approach for S. Enteritidis detection in real samples was evaluated, with recoveries ranging from 73.0 % to 125.6 % and coefficients of variation (CV) below 7.68 %. SIGNIFICANCE AND NOVELTY In this study, we developed for the first time bivalent Nbs against Salmonella and examined their improved affinity and impact on the performance of ELISA assay. It confirmed the high binding affinity and good ability of dimeric Nbs to reduce the occupation of the binding sites of immobilized antibodies. Thus, the multivalent modification of Nbs was demonstrated to be a promising means to enhance the performance of Nbs-based immunoassays for foodborne pathogens.
Collapse
Affiliation(s)
- Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lijie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
49
|
Sun M, Sun Y, Yang Y, Zhao M, Cao D, Zhang M, Xia D, Wang T, Gao Y, Wang S, Wang H, Cai X, An T. Multivalent nanobody-based sandwich enzyme-linked immunosorbent assay for sensitive detection of porcine reproductive and respiratory syndrome virus. Int J Biol Macromol 2024; 258:128896. [PMID: 38143067 DOI: 10.1016/j.ijbiomac.2023.128896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
The pandemic of the porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses and continues to threaten the swine industry worldwide. Nucleocapsid protein (N protein) is the primary antigen of PRRSV for development of sensitive diagnostic assays. Two high affinity nanobodies against N protein, Nb12 and Nb35, were selected and employed to develop a sandwich ELISA. Further we improved the ELISA method to obtain greater sensitivity, a trivalent nanobody (3 × Nb35) and a bivalent nanobody-HRP fusion protein (2 × Nb12-HRP) were expressed and used. This modified ELISA was found to have high sensitivity for detecting PRRSV, with a detection limit of 10 TCID50/ml (median tissue culture infectious dose), which was approximately 200-fold greater than the single-copy nanobody-based sandwich ELISA. The developed assay shows high specificity and can detect almost all circulating lineages of PRRSV-2 in China. This study provides suggestions for reforming nanobodies and for the further development of multivalent nanobody-based ELISAs for other various viruses.
Collapse
Affiliation(s)
- Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yue Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Man Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dan Cao
- Soybean Research Institute, Heilongjiang Academy of Agricultural Science, Harbin 150086, China
| | - Minmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dasong Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yanfei Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shanghui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Research Center of Veterinary Biopharmaceutical Technology, Harbin 150069, China.
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China.
| |
Collapse
|
50
|
Carmès L, Bort G, Lux F, Seban L, Rocchi P, Muradova Z, Hagège A, Heinrich-Balard L, Delolme F, Gueguen-Chaignon V, Truillet C, Crowley S, Bello E, Doussineau T, Dougan M, Tillement O, Schoenfeld JD, Brown N, Berbeco R. AGuIX nanoparticle-nanobody bioconjugates to target immune checkpoint receptors. NANOSCALE 2024; 16:2347-2360. [PMID: 38113032 DOI: 10.1039/d3nr04777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
This article presents bioconjugates combining nanoparticles (AGuIX) with nanobodies (VHH) targeting Programmed Death-Ligand 1 (PD-L1, A12 VHH) and Cluster of Differentiation 47 (CD47, A4 VHH) for active tumor targeting. AGuIX nanoparticles offer theranostic capabilities and an efficient biodistribution/pharmacokinetic profile (BD/PK), while VHH's reduced size (15 kDa) allows efficient tumor penetration. Site-selective sortagging and click chemistry were compared for bioconjugation. While both methods yielded bioconjugates with similar functionality, click chemistry demonstrated higher yield and could be used for the conjugation of various VHH. The specific targeting of AGuIX@VHH has been demonstrated in both in vitro and ex vivo settings, paving the way for combined targeted immunotherapies, radiotherapy, and cancer imaging.
Collapse
Affiliation(s)
- Léna Carmès
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- NH TherAguix SA, Meylan 38240, France
| | - Guillaume Bort
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- Institut Curie, PSL Research University, CNRS, UMR9187, INSERM, U1196, Chemistry and Modeling for the Biology of Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS, UMR9187, INSERM, U1196, Chemistry and Modeling for the Biology of Cancer, F-91400, Orsay, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- Institut Universitaire de France (IUF), Paris, France
| | - Léa Seban
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Paul Rocchi
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
- NH TherAguix SA, Meylan 38240, France
| | - Zeinaf Muradova
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Agnès Hagège
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 69100, Villeurbanne, France
| | - Laurence Heinrich-Balard
- Université Lyon 1, CNRS, MATEIS, UMR5510, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Frédéric Delolme
- Université Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, F-69007 Lyon, France
| | - Virginie Gueguen-Chaignon
- Université Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UAR3444, Inserm US8, SFR Biosciences, F-69007 Lyon, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Stephanie Crowley
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Elisa Bello
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Michael Dougan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France.
| | - Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| | - Needa Brown
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
- Department of Physics, Northeastern University, Boston 02115, USA.
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston 02115, USA.
| |
Collapse
|