1
|
Martínez JRW, Alcalde-Rico M, Jara-Videla E, Reyes J, Carvajal LP, Rincon S, Ríos R, Diaz L, Quesille-Villalobos A, Riquelme-Neira R, Rivas L, Moustafa AM, Hanson B, Undurraga EA, Olivares-Pacheco J, García P, Araos R, Planet PJ, Arias CA, Munita JM. Geographic divergence of methicillin-resistant Staphylococcus aureus ST5-SCC mecI in the aftermath of a major earthquake and tsunami: impact of a plasmid harboring heavy metal resistance genes. mBio 2025; 16:e0366924. [PMID: 40105358 PMCID: PMC11980568 DOI: 10.1128/mbio.03669-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health menace. The global spread of MRSA is characterized by successive waves of epidemic clones dominating specific geographical regions. The acquisition of genes encoding resistance to heavy metals (HMRGs) is thought to be a key feature in the geographic divergence of MRSA. However, the cause-effect relationship between the presence of HMRGs and the divergence of MRSA clones remains to be clarified. In this study, we assessed the role that HMRGs may have played in the evolutionary divergence of the MRSA ST5-SCCmecI lineage in Latin America. We conducted a genomic characterization of 113 MRSA clinical isolates from six Latin American healthcare centers, including 53 isolates collected from two cities in Chile (Santiago and Concepción). We found a plasmid (pSCL4752) harboring arsenic, cadmium, and mercury resistance genes in 65% (n = 71) of the ST5-SCCmecI isolates. We also observed a geographic divergence associated with the presence of pSCL4752 in Chilean isolates, with a higher frequency in isolates from Concepción (88%) compared to Santiago (29%). Interestingly, a molecular clock analysis revealed that this divergence occurred in the aftermath of an 8.8 Mw earthquake and tsunami that struck the Concepción area in 2010. Moreover, our results demonstrate that the carriage of pSCL4752 can be beneficial or detrimental for ST5-SCCmecI isolates, depending on the environmental availability of these heavy metals. Our results suggest that the divergence of the ST5-SCCmecI MRSA lineage in Latin America could have been fostered by environmental disasters and influenced by the presence/absence of HMRGs harbored in a plasmid.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) is a major cause of life-threatening infections worldwide and a growing public health concern. The rise of antibiotic-resistant bacteria, such as MRSA, is often linked to genetic adaptations that enhance their survival. Our research sheds light on how environmental changes, such as those triggered by a natural disaster, can influence the evolution and geographic spread of a highly resistant MRSA lineage in Latin America. We identified a plasmid carrying genes for resistance to arsenic, cadmium, and mercury, which was associated with the geographic divergence of the ST5-SCCmecI MRSA lineage, with striking differences in its prevalence between regions affected by a major earthquake and tsunami. By linking environmental events to pathogen evolution, our study highlights the role of ecological pressures in the spread of MRSA. These findings emphasize the need to integrate environmental monitoring into public health strategies to better understand the global challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- Jose R. W. Martínez
- Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Manuel Alcalde-Rico
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Grupo de Resistencia a los Antibióticos en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Estefanía Jara-Videla
- Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lina P. Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Rafael Ríos
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lorena Diaz
- Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Ana Quesille-Villalobos
- Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Roberto Riquelme-Neira
- Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Lina Rivas
- Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Ahmed M. Moustafa
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Blake Hanson
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - Eduardo A. Undurraga
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Escuela de Gobierno, Pontificia Universidad Católica de Chile, Santiago, Chile
- Research Center for Integrated Disaster Risk Management (CIGIDEN), Santiago, Chile
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
| | - Jorge Olivares-Pacheco
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Grupo de Resistencia a los Antibióticos en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Patricia García
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Departamento de Enfermedades Infecciosas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rafael Araos
- Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Paul J. Planet
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- American Museum of Natural History, New York, New York, USA
| | - César A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jose M. Munita
- Genomics & Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| |
Collapse
|
2
|
Liu CSC, Pandey R. Integrative genomics would strengthen AMR understanding through ONE health approach. Heliyon 2024; 10:e34719. [PMID: 39816336 PMCID: PMC11734142 DOI: 10.1016/j.heliyon.2024.e34719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 01/18/2025] Open
Abstract
Emergence of drug-induced antimicrobial resistance (AMR) forms a crippling health and economic crisis worldwide, causing high mortality from otherwise treatable diseases and infections. Next Generation Sequencing (NGS) has significantly augmented detection of culture independent microbes, potential AMR in pathogens and elucidation of mechanisms underlying it. Here, we review recent findings of AMR evolution in pathogens aided by integrated genomic investigation strategies inclusive of bacteria, virus, fungi and AMR alleles. While AMR monitoring is dominated by data from hospital-related infections, we review genomic surveillance of both biotic and abiotic components involved in global AMR emergence and persistence. Identification of pathogen-intrinsic as well as environmental and/or host factors through robust genomics/bioinformatics, along with monitoring of type and frequency of antibiotic usage will greatly facilitate prediction of regional and global patterns of AMR evolution. Genomics-enabled AMR prediction and surveillance will be crucial - in shaping health and economic policies within the One Health framework to combat this global concern.
Collapse
Affiliation(s)
- Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Raghuram V, Petit RA, Karol Z, Mehta R, Weissman DB, Read TD. Average nucleotide identity-based Staphylococcus aureus strain grouping allows identification of strain-specific genes in the pangenome. mSystems 2024; 9:e0014324. [PMID: 38934646 PMCID: PMC11265343 DOI: 10.1128/msystems.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
Staphylococcus aureus causes both hospital- and community-acquired infections in humans worldwide. Due to the high incidence of infection, S. aureus is also one of the most sampled and sequenced pathogens today, providing an outstanding resource to understand variation at the bacterial subspecies level. We processed and downsampled 83,383 public S. aureus Illumina whole-genome shotgun sequences and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise comparison of average nucleotide identity revealed a natural boundary of 99.5% that could be used to define 145 distinct strains within the species. We found that intermediate frequency genes in the pangenome (present in 10%-95% of genomes) could be divided into those closely linked to strain background ("strain-concentrated") and those highly variable within strains ("strain-diffuse"). Non-core genes had different patterns of chromosome location. Notably, strain-diffuse genes were associated with prophages; strain-concentrated genes were associated with the vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of replication. Antibiotic resistance genes were enriched in the strain-diffuse class, while virulence genes were distributed between strain-diffuse, strain-concentrated, core, and rare classes. This study shows how different patterns of gene movement help create strains as distinct subspecies entities and provide insight into the diverse histories of important S. aureus functions. IMPORTANCE We analyzed the genomic diversity of Staphylococcus aureus, a globally prevalent bacterial species that causes serious infections in humans. Our goal was to build a genetic picture of the different strains of S. aureus and which genes may be associated with them. We reprocessed >84,000 genomes and subsampled to remove redundancy. We found that individual samples sharing >99.5% of their genome could be grouped into strains. We also showed that a portion of genes that are present in intermediate frequency in the species are strongly associated with some strains but completely absent from others, suggesting a role in strain specificity. This work lays the foundation for understanding individual gene histories of the S. aureus species and also outlines strategies for processing large bacterial genomic data sets.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Robert A. Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zach Karol
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Rohan Mehta
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | | | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Hofstetter KS, Jacko NF, Shumaker MJ, Talbot BM, Petit RA, Read TD, David MZ. Strain Differences in Bloodstream and Skin Infection: Methicillin-Resistant Staphylococcus aureus Isolated in 2018-2021 in a Single Health System. Open Forum Infect Dis 2024; 11:ofae261. [PMID: 38854395 PMCID: PMC11160326 DOI: 10.1093/ofid/ofae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Staphylococcus aureus is a common cause of skin and soft-tissue infections (SSTIs) and has become the most common cause of bloodstream infections (BSIs) in recent years, but whether the strains causing these two clinical syndromes overlap has not been studied adequately. USA300/500 (clonal complex [CC] 8-sequence type [ST] 8) and USA100 (CC5-ST5) have dominated among methicillin-resistant S aureus (MRSA) strains in the United States since the early 2000s. We compared the genomes of unselected MRSA isolates from 131 SSTIs with those from 145 BSIs at a single US center in overlapping periods in 2018-2021. CC8 MRSA was more common among SSTIs, and CC5 was more common among BSIs, consistent with prior literature. Based on clustering genomes with a threshold of 15 single-nucleotide polymorphisms, we identified clusters limited to patients with SSTI and separate clusters exclusively comprising patients with BSIs. However, we also identified eight clusters that included at least one SSTI and one BSI isolate. This suggests that virulent MRSA strains are transmitted from person to person locally in the healthcare setting or the community and that single lineages are often capable of causing both SSTIs and BSIs.
Collapse
Affiliation(s)
- Katrina S Hofstetter
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Natasia F Jacko
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margot J Shumaker
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brooke M Talbot
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Z David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Cheney L, Payne M, Kaur S, Lan R. SaLTy: a novel Staphylococcus aureus Lineage Typer. Microb Genom 2024; 10:001250. [PMID: 38739116 PMCID: PMC11165655 DOI: 10.1099/mgen.0.001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus aureus asymptomatically colonises 30 % of humans but can also cause a range of diseases, which can be fatal. In 2017 S. aureus was associated with 20 000 deaths in the USA alone. Dividing S. aureus isolates into smaller sub-groups can reveal the emergence of distinct sub-populations with varying potential to cause infections. Despite multiple molecular typing methods categorising such sub-groups, they do not take full advantage of S. aureus genome sequences when describing the fundamental population structure of the species. In this study, we developed Staphylococcus aureus Lineage Typing (SaLTy), which rapidly divides the species into 61 phylogenetically congruent lineages. Alleles of three core genes were identified that uniquely define the 61 lineages and were used for SaLTy typing. SaLTy was validated on 5000 genomes and 99.12 % (4956/5000) of isolates were assigned the correct lineage. We compared SaLTy lineages to previously calculated clonal complexes (CCs) from BIGSdb (n=21 173). SALTy improves on CCs by grouping isolates congruently with phylogenetic structure. SaLTy lineages were further used to describe the carriage of Staphylococcal chromosomal cassette containing mecA (SCCmec) which is carried by methicillin-resistant S. aureus (MRSA). Most lineages had isolates lacking SCCmec and the four largest lineages varied in SCCmec over time. Classifying isolates into SaLTy lineages, which were further SCCmec typed, allowed SaLTy to describe high-level MRSA epidemiology. We provide SaLTy as a simple typing method that defines phylogenetic lineages (https://github.com/LanLab/SaLTy). SaLTy is highly accurate and can quickly analyse large amounts of S. aureus genome data. SaLTy will aid the characterisation of S. aureus populations and ongoing surveillance of sub-groups that threaten human health.
Collapse
Affiliation(s)
- Liam Cheney
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
6
|
Raghuram V, Petit RA, Karol Z, Mehta R, Weissman DB, Read TD. Average Nucleotide Identity based Staphylococcus aureus strain grouping allows identification of strain-specific genes in the pangenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577756. [PMID: 38352482 PMCID: PMC10862745 DOI: 10.1101/2024.01.29.577756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Staphylococcus aureus causes both hospital and community acquired infections in humans worldwide. Due to the high incidence of infection S. aureus is also one of the most sampled and sequenced pathogens today, providing an outstanding resource to understand variation at the bacterial subspecies level. We processed and downsampled 83,383 public S. aureus Illumina whole genome shotgun sequences and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise comparison of core gene Average Nucleotide Identity (ANI) revealed a natural boundary of 99.5% that could be used to define 145 distinct strains within the species. We found that intermediate frequency genes in the pangenome (present in 10-95% of genomes) could be divided into those closely linked to strain background ("strain-concentrated") and those highly variable within strains ("strain-diffuse"). Non-core genes had different patterns of chromosome location; notably, strain-diffuse associated with prophages, strain-concentrated with the vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of replication. Antibiotic genes were enriched in the strain-diffuse class, while virulence genes were distributed between strain-diffuse, strain-concentrated, core and rare classes. This study shows how different patterns of gene movement help create strains as distinct subspecies entities and provide insight into the diverse histories of important S. aureus functions.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zach Karol
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Rohan Mehta
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | | | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Al-Tameemi HM, Al-Hraishawi H, Al-Hejjaj MY, Abdulah NS, Alrafas HR, Dawood YA. Whole genome sequence and comparative genomics analysis of multidrug-resistant Staphylococcus xylosus NM36 isolated from a cow with mastitis in Basrah city. J Genet Eng Biotechnol 2023; 21:163. [PMID: 38060084 DOI: 10.1186/s43141-023-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Staphylococcus xylosus is a coagulase-negative, gram-positive coccus that is found in the environment and as a commensal organism on the skin and mucosal surfaces of animals. Despite the fact that S. xylosus is considered a nonpathogenic bacterium, several studies have linked S. xylosus to opportunistic infections in both animals and humans. During an investigation of mastitis-causing agents in the governorate of Basrah, Iraq, we identified an antibiotic-resistant strain of S. xylosus NM36 from a milk sample from a cow with chronic mastitis. In addition to robust biofilm formation, multiple antibiotic resistance phenotypes were found. To further understand the genetic background for these phenotypes, the full genome of S. xylosus NM36 was analyzed. RESULTS The genome consisted of a single circular 2,668,086 base pairs chromosome containing 32.8% G + C. There were 2454 protein-coding sequences, 4 ribosomal RNA (rRNA) genes, and 50 transfer RNA (tRNA) genes in the genome. In addition, genetic variation was studied by searching sequence data against a representative reference genome. Consequently, single-nucleotide polymorphism analysis was conducted and showed that there were 46,610 single-nucleotide polymorphisms (SNPs), 523 insertions, and 551 deletions. In order to overcome antibiotics, S. xylosus NM36 had been armed with several antibiotic resistance genes from several groups and families. The genome annotation service in PathoSystems Resource Integration Center (PATRIC) and Rapid Annotation using Subsystem Technology (RAST) annotation servers showed that there are multiple antimicrobial resistance elements, including antibiotic inactivation enzymes (BlaZ family, FosB), antibiotic resistance gene clusters (TcaB, TcaB2, TcaR), proteins involved in methicillin resistance (LytH, FmtA, FemC, HmrB, HmrA), TetR family transcriptional regulators, and efflux pumps conferring antibiotic resistance (NorA). In addition, we investigated and categorized the biofilm and quorum-sensing elements of the NM36 strain and found that it has multiple subsets of biofilm regulators, confirming its pathogenic nature. CONCLUSIONS These findings necessitate a reevaluation of microbial and clinical interventions when dealing with coagulase-negative staphylococci, particularly in the context of studies pertaining to public health. This is the first time, to our knowledge, that the entire genome of S. xylosus has been sequenced in Iraq.
Collapse
Affiliation(s)
- Hassan M Al-Tameemi
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq.
| | - Husam Al-Hraishawi
- Physiology Department, College of Medicine, Misan University, Amarah, Misan, Iraq
| | - Murtakab Y Al-Hejjaj
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq
| | | | - Haider R Alrafas
- Microbiology Department, College of Veterinary Medicine, Basrah University, Basrah, 61004, Iraq
| | - Yessar A Dawood
- Pharmacognosy and Medicinal Plants Department, College of Pharmacy, Basrah University, Basrah, Iraq
| |
Collapse
|
9
|
Rocha J, Silva V, Poeta P, Botelho J, Manaia CM. Searching for links between environmental and clinical mecA +Staphylococcus aureus: A comparative genomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165078. [PMID: 37356759 DOI: 10.1016/j.scitotenv.2023.165078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Staphylococcus aureus integrate the list of highly virulent and antibiotic resistant pathogens, mainly due to the mecA gene, associated with methicillin resistance. Given the ubiquity of this species, the aim of this study was to investigate whether closely related mecA+S. aureus found in the environment can be also thrive as clinical isolates and if the respective accessory genome may suggest bacterial adaptation. The genomes of environmental (water, animal facilities, food products, n = 111) isolates were compared with closely related genomes of clinical origin (human patients, n = 103). These genomes, available in the public database NCBI, were analysed for phylogeny, accessory genome, and presence of selected clinically relevant genes (n = 104). The genomes of environmental isolates belonged to 18 multi-locus sequence types (MLSTs), 11 of which also included clinical genomes, a result confirmed based on core-genome analysis. Genes significantly (p ≤ 0.05) more frequent among environmental genomes were related with resistance to β-lactams (blaI, blaPCI), aminoglycosides (ant(6)-Ia), macrolides (mph(C), erm(B)), enterotoxins (seg, sei, sem, sen, seo, seu) and serine protease functions (splB), among others. Genes significantly more frequent among clinical genomes were associated with resistance to macrolides (erm(C)), phenicols (fexA), fosfomycin (murA), the leucocidin virulence gene (lukS-PV), and serine protease functions (splA, splE). It is suggested that mecA+S. aureus can be exchanged between clinical and environmental settings, with accessory traits (particularly antibiotic resistance, virulence and stress response) possibly being associated with the habitat. The interplay between phylogeny and accessory genome is an interesting contribution to better understanding the ecology and evolution of mecA+S. aureus.
Collapse
Affiliation(s)
- Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; CECAV - Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Portugal
| | - João Botelho
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
10
|
Martínez JRW, Planet PJ, Spencer-Sandino M, Rivas L, Díaz L, Moustafa AM, Quesille-Villalobos A, Riquelme-Neira R, Alcalde-Rico M, Hanson B, Carvajal LP, Rincón S, Reyes J, Lam M, Calderon JF, Araos R, García P, Arias CA, Munita JM. Dynamics of the MRSA Population in a Chilean Hospital: a Phylogenomic Analysis (2000-2016). Microbiol Spectr 2023; 11:e0535122. [PMID: 37338398 PMCID: PMC10433796 DOI: 10.1128/spectrum.05351-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The global dissemination of methicillin-resistant Staphylococcus aureus (MRSA) is associated with the emergence and establishment of clones in specific geographic areas. The Chilean-Cordobes clone (ChC) (ST5-SCCmecI) has been the predominant MRSA clone in Chile since its first description in 1998, despite the report of other emerging MRSA clones in recent years. Here, we characterize the evolutionary history of MRSA from 2000 to 2016 in a Chilean tertiary health care center using phylogenomic analyses. We sequenced 469 MRSA isolates collected between 2000 and 2016. We evaluated the temporal trends of the circulating clones and performed a phylogenomic reconstruction to characterize the clonal dynamics. We found a significant increase in the diversity and richness of sequence types (STs; Spearman r = 0.8748, P < 0.0001) with a Shannon diversity index increasing from 0.221 in the year 2000 to 1.33 in 2016, and an effective diversity (Hill number; q = 2) increasing from 1.12 to 2.71. The temporal trend analysis revealed that in the period 2000 to 2003 most of the isolates (94.2%; n = 98) belonged to the ChC clone. However, since then, the frequency of the ChC clone has decreased over time, accounting for 52% of the collection in the 2013 to 2016 period. This decline was accompanied by the rise of two emerging MRSA lineages, ST105-SCCmecII and ST72-SCCmecVI. In conclusion, the ChC clone remains the most frequent MRSA lineage, but this lineage is gradually being replaced by several emerging clones, the most important of which is clone ST105-SCCmecII. To the best of our knowledge, this is the largest study of MRSA clonal dynamics performed in South America. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health pathogen that disseminates through the emergence of successful dominant clones in specific geographic regions. Knowledge of the dissemination and molecular epidemiology of MRSA in Latin America is scarce and is largely based on small studies or more limited typing techniques that lack the resolution to represent an accurate description of the genomic landscape. We used whole-genome sequencing to study 469 MRSA isolates collected between 2000 and 2016 in Chile providing the largest and most detailed study of clonal dynamics of MRSA in South America to date. We found a significant increase in the diversity of MRSA clones circulating over the 17-year study period. Additionally, we describe the emergence of two novel clones (ST105-SCCmecII and ST72-SCCmecVI), which have been gradually increasing in frequency over time. Our results drastically improve our understanding of the dissemination and update our knowledge about MRSA in Latin America.
Collapse
Affiliation(s)
- José R. W. Martínez
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Paul J. Planet
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- American Museum of Natural History, New York, New York, USA
| | - Maria Spencer-Sandino
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lina Rivas
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lorena Díaz
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Ahmed M. Moustafa
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ana Quesille-Villalobos
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Roberto Riquelme-Neira
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Manuel Alcalde-Rico
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Grupo de Resistencia a los Antibióticos en Bacterias Patógenas y Ambientales (GRABPA), Pontificia Univ. Católica de Valparaíso, Valparaiso, Chile
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, Univ. of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | - Lina P. Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Sandra Rincón
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - Marusella Lam
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan F. Calderon
- Centro de Genética y Genómica Instituto de Ciencias e Innovación en Medicina Facultad de Medicina Clínica Alemana Universidad Del Desarrollo, Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| | - Rafael Araos
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Patricia García
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - César A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institution, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - José M. Munita
- Genomics & Resistant Microbes (GeRM), ICIM, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Hospital Padre Hurtado, Santiago, Chile
| |
Collapse
|
11
|
Moos S, Regen T, Wanke F, Tian Y, Arendholz LT, Hauptmann J, Heinen AP, Bleul L, Bier K, El Malki K, Reinhardt C, Prinz I, Diefenbach A, Wolz C, Schittek B, Waisman A, Kurschus FC. IL-17 Signaling in Keratinocytes Orchestrates the Defense against Staphylococcus aureus Skin Infection. J Invest Dermatol 2023; 143:1257-1267.e10. [PMID: 36736996 DOI: 10.1016/j.jid.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Keratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T17 cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice. Contradictory to previous suggestions, this expansion was not a result of a direct negative feedback loop because we found no expansion of T17 cells in mice lacking IL-17 signaling specifically in T cells. Instead, we found that the T17 expansion depended on the microbiota and was observed only when KCs were deficient for IL-17RA signaling. Indeed, mice that lack IL-17RA only in KCs showed an increased susceptibility to experimental epicutaneous infection with S. aureus together with an accumulation of IL-17A-producing γδ T cells. We conclude that deficiency of IL-17RA on KCs leads to microbiota dysbiosis in the skin, which triggers the expansion of IL-17A-producing T cells. Our data show that KCs are the primary target cells of IL-17A and IL-17F, coordinating the defense against microbial invaders in the skin.
Collapse
Affiliation(s)
- Sonja Moos
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Neuroscience and Rare Diseases (NRD), Discovery and Translational Area, Roche Pharma Research & Early Development (pRED), Roche Innovation Center, Basel, Switzerland
| | - Yizhu Tian
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucas T Arendholz
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Judith Hauptmann
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - André P Heinen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Bleul
- Interfakultäres Institute for Microbiology, Infectious Diseases, Eberhard Karls University, Tübingen, Germany; Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany
| | - Katharina Bier
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Khalifa El Malki
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 55131 Mainz, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Diefenbach
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Microbiology, Infectious Diseases and Immunology, Charite University Medical Center Berlin, Berlin, Germany
| | - Christiane Wolz
- Interfakultäres Institute for Microbiology, Infectious Diseases, Eberhard Karls University, Tübingen, Germany; Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
12
|
Silva KPT, Sundar G, Khare A. Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic. Nat Commun 2023; 14:3402. [PMID: 37296157 PMCID: PMC10256781 DOI: 10.1038/s41467-023-38507-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/05/2023] [Indexed: 06/12/2023] Open
Abstract
Antibiotics that have multiple cellular targets theoretically reduce the frequency of resistance evolution, but adaptive trajectories and resistance mechanisms against such antibiotics are understudied. Here we investigate these in methicillin resistant Staphylococcus aureus (MRSA) using experimental evolution upon exposure to delafloxacin (DLX), a novel fluoroquinolone that targets both DNA gyrase and topoisomerase IV. We show that selection for coding sequence mutations and genomic amplifications of the gene encoding a poorly characterized efflux pump, SdrM, leads to high DLX resistance, circumventing the requirement for mutations in both target enzymes. In the evolved populations, sdrM overexpression due to genomic amplifications containing sdrM and two adjacent genes encoding efflux pumps results in high DLX resistance, while the adjacent hitchhiking efflux pumps contribute to streptomycin cross-resistance. Further, lack of sdrM necessitates mutations in both target enzymes to evolve DLX resistance, and sdrM thus increases the frequency of resistance evolution. Finally, sdrM mutations and amplifications are similarly selected in two diverse clinical isolates, indicating the generality of this DLX resistance mechanism. Our study highlights that instead of reduced rates of resistance, evolution of resistance to multi-targeting antibiotics can involve alternate high-frequency evolutionary paths, that may cause unexpected alterations of the fitness landscape, including antibiotic cross-resistance.
Collapse
Affiliation(s)
- Kalinga Pavan T Silva
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ganesh Sundar
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Martínez JR, Alcalde-Rico M, Jara-Videla E, Rios R, Moustafa AM, Hanson B, Rivas L, Carvajal LP, Rincon S, Diaz L, Reyes J, Quesille-Villalobos A, Riquelme-Neira R, Undurraga EA, Olivares-Pacheco J, García P, Araos R, Planet PJ, Arias CA, Munita JM. Heavy Metal Pollution From a Major Earthquake and Tsunami in Chile Is Associated With Geographic Divergence of Clinical Isolates of Methicillin-Resistant Staphylococcus aureus in Latin America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541300. [PMID: 37293062 PMCID: PMC10245734 DOI: 10.1101/2023.05.18.541300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority pathogen listed by the World Health Organization. The global spread of MRSA is characterized by successive waves of epidemic clones that predominate in specific geographical regions. The acquisition of genes encoding resistance to heavy-metals is thought to be a key feature in the divergence and geographical spread of MRSA. Increasing evidence suggests that extreme natural events, such as earthquakes and tsunamis, could release heavy-metals into the environment. However, the impact of environmental exposition to heavy-metals on the divergence and spread of MRSA clones has been insufficiently explored. We assess the association between a major earthquake and tsunami in an industrialized port in southern Chile and MRSA clone divergence in Latin America. We performed a phylogenomic reconstruction of 113 MRSA clinical isolates from seven Latin American healthcare centers, including 25 isolates collected in a geographic area affected by an earthquake and tsunami that led to high levels of heavy-metal environmental contamination. We found a divergence event strongly associated with the presence of a plasmid harboring heavy-metal resistance genes in the isolates obtained in the area where the earthquake and tsunami occurred. Moreover, clinical isolates carrying this plasmid showed increased tolerance to mercury, arsenic, and cadmium. We also observed a physiological burden in the plasmid-carrying isolates in absence of heavy-metals. Our results are the first evidence that suggests that heavy-metal contamination, in the aftermath of an environmental disaster, appears to be a key evolutionary event for the spread and dissemination of MRSA in Latin America.
Collapse
Affiliation(s)
- Jose Rw Martínez
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
| | - Manuel Alcalde-Rico
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
- Grupo de Resistencia a los Antibióticos en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Chile
| | - Estefanía Jara-Videla
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Ahmed M Moustafa
- Division of Pediatric Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics and Division of Infectious Diseases, University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | - Lina Rivas
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
| | - Lina P Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Lorena Diaz
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| | - Ana Quesille-Villalobos
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
| | - Roberto Riquelme-Neira
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Eduardo A Undurraga
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
- Escuela de Gobierno, Pontificia Universidad Católica de Chile, Santiago, RM, Chile
- Research Center for Integrated Disaster Risk Management (CIGIDEN), Santiago, Chile
- CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Canada
| | - Jorge Olivares-Pacheco
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
- Grupo de Resistencia a los Antibióticos en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
- Departamento de Enfermedades Infecciosas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rafael Araos
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
| | - Paul J Planet
- Division of Pediatric Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- American Museum of Natural History, New York, NY 10024, USA
| | - César A Arias
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, TX, USA
- Center for Infectious Diseases Research, Houston Methodist Research Institution, Houston, TX, USA
| | - Jose M Munita
- Genomics & Resistant Microbes group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Chile
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Chile
| |
Collapse
|
14
|
Martínez JRW, Planet PJ, Maria SS, Lina R, Lorena D, Ana QV, Roberto RN, Manuel AR, Blake H, Carvajal LP, Sandra R, Jinnethe R, Marusella L, Rafael A, Patricia G, Arias CA, Munita JM. Dynamics of the MRSA Population in A Chilean Hospital: A Phylogenomic Analysis (2000-2016). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.526811. [PMID: 36798318 PMCID: PMC9934535 DOI: 10.1101/2023.02.06.526811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The global dissemination of methicillin-resistant Staphylococcus aureus (MRSA) is associated with the emergence and establishment of clones in specific geographic areas. The Chilean-Cordobes clone (ChC) (ST5-SCC mec I) has been the predominant MRSA clone in Chile since its first description in 1998, despite the report of other emerging MRSA clones in the last years. Here, we characterize the evolutionary history of MRSA from 2000 to 2016 in a Chilean tertiary healthcare center using phylogenomic analyses. We sequenced 469 MRSA isolates collected between 2000-2016 in a tertiary healthcare center in Chile. We evaluated the temporal trends of the circulating clones and performed a phylogenomic reconstruction to characterize the clonal dynamics. We found a significant increase in the diversity and richness of sequence types (STs; Spearman r=0.8748, p<0.0001) with a Shannon diversity index increasing from 0.221 in the year 2000 to 1.33 in 2016. The temporal trend analysis revealed that in the period 2000-2003 most of the isolates (94.2%; n=98) belonged to the ChC clone. However, since then, the frequency of the ChC clone has decreased over time, accounting for 52% of the collection in the 2013-2016 period. This decline was accompanied by the rise of two emerging MRSA lineages, ST105-SCC mec II and ST72-SCC mec VI. In conclusion, the ChC clone remains the most frequent MRSA lineage in Chile. However, this lineage is gradually being replaced by several emerging clones, the most important of which is clone ST105-SCC mec II. To the best of our knowledge, this is the largest study of MRSA clonal dynamics performed in South America. Importance Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health pathogen that disseminates through the emergence of successful dominant clones in specific geographic regions. Knowledge of the dissemination and molecular epidemiology of MRSA in Latin America is scarce and is largely based on small studies or classical typing techniques with several limitations to depict an accurate description of their genomic landscape. We used whole-genome sequencing to study 469 MRSA isolates collected between 2000-2016 in Chile to provide the largest and most detailed study of clonal dynamics of MRSA carried out in South America to date. We found a significant increase in the diversity of MRSA clones circulating over the 17-year study period. Additionally, we describe the emergence of two novel clones (ST105-SCCmecII and ST72-SCCmecVI), which have been gradually increasing their frequency over time. Our results drastically improve our understanding of the dissemination and update our knowledge about MRSA in Latin America.
Collapse
|
15
|
Phenotypic and Genomic Comparison of Staphylococcus aureus Highlight Virulence and Host Adaptation Favoring the Success of Epidemic Clones. mSystems 2022; 7:e0083122. [PMID: 36409083 PMCID: PMC9765012 DOI: 10.1128/msystems.00831-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) of the sequence type 59 (ST59) and ST398 lineages has emerged in hospitals and displayed a higher virulent potential than its counterparts ST5 and ST239. However, the mechanism of the host cell-pathogen interaction and specific determinates that contribute to the success of epidemic clones remain incompletely understood. In the present study, 142 S. aureus strains (ST59, ST398, ST239, and ST5) were selected from our 7-year national surveillance of S. aureus bloodstream infections (n = 983). We revealed that ST59 and ST398 had a higher prevalence of the protease-associated genes hysAVSaβ, paiB, and cfim and enhanced proteolytic activity than the other lineages. ST59 and ST398 showed a higher expression of RNAIII and psmα and greater proficiency at causing cell lysis than other lineages. Furthermore, ST59 and ST398 were strongly recognized by human neutrophils and caused more cell apoptosis and neutrophil extracellular trap degradation than the other lineages. In addition, these strains differed substantially in their repertoire and composition of intact adhesion genes. Moreover, ST398 displayed higher adaptability to human epidermal keratinocytes and a unique genetic arrangement inside the oligopeptide ABC transport system, indicating functional variations. Overall, our study revealed some potential genomic traits associated with virulence and fitness that might account for the success of epidemic clones. IMPORTANCE Considerable efforts have been exerted to identify factors contributing to the success of epidemic Staphylococcus aureus clones, however, comparative phenotypic studies lack representation owing to the small number of strains. Large-scale strain collections focused on the description of genomic characteristics. Moreover, methicillin-resistant S. aureus infections constitute 30% to 40% of S. aureus bloodstream infections, and recent research has elucidated highly virulent methicillin-susceptible S. aureus strains. However, comprehensive research on the factors contributing to the success of epidemic S. aureus clones is lacking. In this study, 142 S. aureus strains were selected from our 7-year national surveillance of S. aureus bloodstream infections (n = 983) accompanied by a rigorous strain selection process. A combination of host cell-pathogen interactions and genomic analyses was applied to the represented strains. We revealed some potential genomic traits associated with virulence and fitness that might account for the success of epidemic clones.
Collapse
|
16
|
Silvola J, Gröndahl-Yli-Hannuksela K, Hirvioja T, Rantakokko-Jalava K, Rintala E, Auranen K, Junnila J, Marttila H, Lindholm L, Vuopio J. Whole genome sequencing reveals new links between spa t172/CC59 methicillin-resistant Staphylococcus aureus cases in low-endemicity region of Southwest Finland, 2007‒2016. Sci Rep 2022; 12:21326. [PMID: 36494398 PMCID: PMC9734107 DOI: 10.1038/s41598-022-25556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) rates have remained relatively low in Finland. In Southwest Finland, however, annual MRSA incidence increased from 12 to 25/100,000 between 2007 and 2016 with spa t172 strain causing one fourth (237/983) of all cases. This provoked us to study the molecular epidemiology of t172-MRSA, aiming to better understand the transmission of this strain type. We combined epidemiological data and whole genome sequencing (WGS) of a set of 64 (27%, 64/237) t172-MRSA isolates covering 10 years. Isolates represented sporadic and index cases of all identified healthcare-associated outbreaks (HAOs) and family clusters (FCs). Among the included 62 isolates, core-genome MLST analysis revealed eight genomic clusters comprising 24 (38.7%) isolates and 38 (61.3%) non-clustered isolates. Cluster 1 comprised ten and the remaining seven clusters two isolates each, respectively. Two epidemiologically distinct HAOs were linked in cluster 1. FCs were involved in all clusters. All strains were associated with epidemic clonal complex CC59. We were able to confirm the spread of several successful t172-MRSA subclones in regional healthcare and the community. WGS complemented routine surveillance by revealing undetected links between t172-MRSA cases. Targeted, WGS-based typing could enhance MRSA surveillance without the need for routine WGS diagnostics.
Collapse
Affiliation(s)
- Jaakko Silvola
- grid.1374.10000 0001 2097 1371Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Tiina Hirvioja
- grid.410552.70000 0004 0628 215XDepartment of Hospital Hygiene & Infection Control, Turku University Hospital, Turku, Finland
| | - Kaisu Rantakokko-Jalava
- grid.410552.70000 0004 0628 215XClinical Microbiology Laboratory, Turku University Hospital, Turku, Finland
| | - Esa Rintala
- grid.410552.70000 0004 0628 215XDepartment of Hospital Hygiene & Infection Control, Turku University Hospital, Turku, Finland
| | - Kari Auranen
- grid.1374.10000 0001 2097 1371Department of Mathematics and Statistics and Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jenna Junnila
- grid.1374.10000 0001 2097 1371Institute of Biomedicine, University of Turku, Turku, Finland
| | - Harri Marttila
- grid.410552.70000 0004 0628 215XDepartment of Hospital Hygiene & Infection Control, Turku University Hospital, Turku, Finland
| | - Laura Lindholm
- grid.14758.3f0000 0001 1013 0499Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jaana Vuopio
- grid.1374.10000 0001 2097 1371Institute of Biomedicine, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XClinical Microbiology Laboratory, Turku University Hospital, Turku, Finland ,grid.14758.3f0000 0001 1013 0499Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
17
|
Guimarães LC, Assunção MIDMM, de Oliveira TLR, Cavalcante FS, Saintive S, Abad EDD, Goudouris ES, do Prado EA, Ferreira DDC, dos Santos KRN. Methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from skin and nares of Brazilian children with atopic dermatitis demonstrate high level of clonal diversity. PLoS One 2022; 17:e0276960. [PMID: 36327238 PMCID: PMC9632840 DOI: 10.1371/journal.pone.0276960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) primarily affects the pediatric population, which is highly colonized by S. aureus. However, little is known about the genetic features of this microorganism and other staphylococcal species that colonize AD patients. OBJECTIVE This study aimed to characterize Staphylococcus spp. isolated from the nares and skin (with and without lesion) of 30 AD and 12 non-AD Brazilian children. METHODS Skin and nasal swabs were cultured onto mannitol salt agar, and bacterial colonies were counted and identified by matrix assisted laser desorption ionization time of flight mass spectrometry and polymerase chain reaction (PCR). Antimicrobial susceptibility was evaluated by phenotypic and genotypic tests. In S. aureus isolates, Panton-Valentine leukocidin genes were detected by PCR, and their clonality was assessed by pulsed-field gel electrophoresis and multilocus sequence typing. RESULTS S. aureus was more prevalent in the nares (P = 0.005) and lesional skin (P = 0.0002) of children with AD, while S. hominis was more frequent in the skin of non-AD children (P < 0.0001). All children in the study, except one from each group, were colonized by methicillin-resistant coagulase-negative Staphylococcus and 24% by methicillin-resistant S. aureus. Despite the great clonal diversity of S. aureus (18 sequence types identified), most AD children (74.1%) were colonized by the same genotype in both niches. CONCLUSION High colonization by polyclonal S. aureus isolates was found among children with AD, while S. hominis was more frequent among non-AD children. The high prevalence of methicillin-resistant staphylococcal isolates highlights the importance of continued surveillance, especially when considering empiric antibiotic therapy for the treatment of skin infections in these patients.
Collapse
Affiliation(s)
- Lorrayne Cardoso Guimarães
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tamara Lopes Rocha de Oliveira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Sampaio Cavalcante
- Departamento de Clínica Médica, Instituto de Ciências Médicas, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, Rio de Janeiro, Brazil
| | - Simone Saintive
- Ambulatório de Dermatologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane de Dios Abad
- Ambulatório de Dermatologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ekaterini Simoes Goudouris
- Ambulatório de Alergia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evandro Alves do Prado
- Ambulatório de Alergia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis de Carvalho Ferreira
- Faculdade de Odontologia, Universidade Estácio de Sá, Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Odontologia, Universidade Veiga de Almeida, Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Enfermagem, Departamento de Fundamentos de Enfermagem, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kátia Regina Netto dos Santos
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
18
|
Microbiological and Molecular Features Associated with Persistent and Relapsing Staphylococcus aureus Prosthetic Joint Infection. Antibiotics (Basel) 2022; 11:antibiotics11081119. [PMID: 36009988 PMCID: PMC9405193 DOI: 10.3390/antibiotics11081119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Persistent and relapsing prosthetic joint infection (PJI) due to Staphylococcus aureus presents a clinical challenge. This study aimed to provide an extensive description of phenotypic and genomic changes that could be related to persistence or relapse. Methods: Initial and second S. aureus isolates from 6 cases of persistent and relapsing PJI, along with clinical isolates from 8 cases, with favorable outcome were included. All isolates were studied by phenotypic and genotypic approaches. Results: Recurrent S. aureus isolates exhibited a significant increase in adhesive capacity, invasion and persistence compared to resolved isolates. No association was found for the presence or absence of certain genes with the persistence or relapse of PJI. All sequential isolates showed identical sequence type (ST). Resistance gene loss during the infection and a great diversity of variants in different virulence genes between the pair of strains, mainly in genes encoding adhesins such as fnbA, were observed. Conclusions: S. aureus-caused relapse and persistence PJI is associated with bacterial phenotypical and genotypical adaptation. The main paths of adaptation were persistence in the intracellular compartment, and the loss of antibiotic resistance genes and variant acquisition, especially in genes encoding adhesins.
Collapse
|
19
|
Raghuram V, Alexander AM, Loo HQ, Petit RA, Goldberg JB, Read TD. Species-Wide Phylogenomics of the Staphylococcus aureus Agr Operon Revealed Convergent Evolution of Frameshift Mutations. Microbiol Spectr 2022; 10:e0133421. [PMID: 35044202 PMCID: PMC8768832 DOI: 10.1128/spectrum.01334-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/03/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a prominent nosocomial pathogen that causes several life-threatening diseases, such as pneumonia and bacteremia. S. aureus modulates the expression of its arsenal of virulence factors through sensing and integrating responses to environmental signals. The agr (accessory gene regulator) quorum sensing (QS) system is a major regulator of virulence phenotypes in S. aureus. There are four agr specificity groups each with a different autoinducer peptide sequence encoded by the agrD gene. Although agr is critical for the expression of many toxins, paradoxically, S. aureus strains often have nonfunctional agr activity due to loss-of-function mutations in the four-gene agr operon. To understand patterns in agr variability across S. aureus, we undertook a species-wide genomic investigation. We developed a software tool (AgrVATE; https://github.com/VishnuRaghuram94/AgrVATE) for typing and detecting frameshift mutations in the agr operon. In an analysis of over 40,000 S. aureus genomes, we showed a close association between agr type and S. aureus clonal complex. We also found a strong linkage between agrBDC alleles (encoding the peptidase, autoinducing peptide itself, and peptide sensor, respectively) but not agrA (encoding the response regulator). More than 5% of the genomes were found to have frameshift mutations in the agr operon. While 52% of these frameshifts occurred only once in the entire species, we observed cases where the recurring mutations evolved convergently across different clonal lineages with no evidence of long-term phylogenetic transmission, suggesting that strains with agr frameshifts were evolutionarily short-lived. Overall, genomic analysis of agr operon suggests evolution through multiple processes with functional consequences that are not fully understood. IMPORTANCE Staphylococcus aureus is a globally pervasive pathogen that produces a plethora of toxic molecules that can harm host immune cells. Production of these toxins is mainly controlled by an active agr quorum-sensing system, which senses and responds to bacterial cell density. However, there are many reports of S. aureus strains with genetic changes leading to impaired agr activity that are often found during chronic bloodstream infections and may be associated with increased disease severity. We developed an open-source software called AgrVATE to type agr systems and identify mutations. We used AgrVATE for a species-wide genomic survey of S. aureus, finding that more than 5% of strains in the public database had nonfunctional agr systems. We also provided new insights into the evolution of these genetic mutations in the agr system. Overall, this study contributes to our understanding of a common but relatively understudied means of virulence regulation in S. aureus.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M. Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Hui Qi Loo
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Robert A. Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Sultan AR, Tavakol M, Lemmens-den Toom NA, Croughs PD, Verkaik NJ, Verbon A, van Wamel WJB. Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry. PLoS One 2022; 17:e0260272. [PMID: 35171906 PMCID: PMC8849495 DOI: 10.1371/journal.pone.0260272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Biofilm-associated infections with Staphylococcus aureus are difficult to treat even after administration of antibiotics that according to the standard susceptibility assays are effective. Currently, the assays used in the clinical laboratories to determine the sensitivity of S. aureus towards antibiotics are not representing the behaviour of biofilm-associated S. aureus, since these assays are performed on planktonic bacteria. In research settings, microcalorimetry has been used for antibiotic susceptibility studies. Therefore, in this study we investigated if we can use isothermal microcalorimetry to monitor the response of biofilm towards antibiotic treatment in real-time. We developed a reproducible method to generate biofilm in an isothermal microcalorimeter setup. Using this system, the sensitivity of 5 methicillin-sensitive S. aureus (MSSA) and 5 methicillin-resistant S. aureus (MRSA) strains from different genetic lineages were determined towards: flucloxacillin, cefuroxime, cefotaxime, gentamicin, rifampicin, vancomycin, levofloxacin, clindamycin, erythromycin, linezolid, fusidic acid, co-trimoxazole, and doxycycline. In contrast to conventional assays, our calorimetry-based biofilm susceptibility assay showed that S. aureus biofilms, regardless MSSA or MRSA, can survive the exposure to the maximum serum concentration of all tested antibiotics. The only treatment with a single antibiotic showing a significant reduction in biofilm survival was rifampicin, yet in 20% of the strains, emerging antibiotic resistance was observed. Furthermore, the combination of rifampicin with flucloxacillin, vancomycin or levofloxacin was able to prevent S. aureus biofilm from becoming resistant to rifampicin. Isothermal microcalorimetry allows real-time monitoring of the sensitivity of S. aureus biofilms towards antibiotics in a fast and reliable way.
Collapse
Affiliation(s)
- Andi Rofian Sultan
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mehri Tavakol
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole A. Lemmens-den Toom
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter D. Croughs
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nelianne J. Verkaik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Perelman SS, James DBA, Boguslawski KM, Nelson CW, Ilmain JK, Zwack EE, Prescott RA, Mohamed A, Tam K, Chan R, Narechania A, Pawline MB, Vozhilla N, Moustafa AM, Kim SY, Dittmann M, Ekiert DC, Bhabha G, Shopsin B, Planet PJ, Koralov SB, Torres VJ. Genetic variation of staphylococcal LukAB toxin determines receptor tropism. Nat Microbiol 2021; 6:731-745. [PMID: 33875847 PMCID: PMC8597016 DOI: 10.1038/s41564-021-00890-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus has evolved into diverse lineages, known as clonal complexes (CCs), which exhibit differences in the coding sequences of core virulence factors. Whether these alterations affect functionality is poorly understood. Here, we studied the highly polymorphic pore-forming toxin LukAB. We discovered that the LukAB toxin variants produced by S. aureus CC30 and CC45 kill human phagocytes regardless of whether CD11b, the previously established LukAB receptor, is present, and instead target the human hydrogen voltage-gated channel 1 (HVCN1). Biochemical studies identified the domain within human HVCN1 that drives LukAB species specificity, enabling the generation of humanized HVCN1 mice with enhanced susceptibility to CC30 LukAB and to bloodstream infection caused by CC30 S. aureus strains. Together, this work advances our understanding of an important S. aureus toxin and underscores the importance of considering genetic variation in characterizing virulence factors and understanding the tug of war between pathogens and the host.
Collapse
Affiliation(s)
- Sofya S Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - David B A James
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chase W Nelson
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Juliana K Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Erin E Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel A Prescott
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adil Mohamed
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Miranda B Pawline
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Nikollaq Vozhilla
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ahmed M Moustafa
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sang Y Kim
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Office of Collaborative Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Damian C Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY, USA
| | - Paul J Planet
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
23
|
Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021; 10:pathogens10020148. [PMID: 33540588 PMCID: PMC7912840 DOI: 10.3390/pathogens10020148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.
Collapse
|
24
|
Viana AS, Nunes Botelho AM, Moustafa AM, Boge CL, Pires Ferreira AL, da Silva Carvalho MC, Guimarães MA, Costa BDSS, de Mattos MC, Maciel SP, Echevarria-Lima J, Narechania A, O’Brien K, Ryan C, Gerber JS, Carvalho BTF, Figueiredo AMS, Planet PJ. Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus Associated with Bacteremia and Monocyte Evasion, Rio de Janeiro, Brazil. Emerg Infect Dis 2021; 27:2825-2835. [PMID: 34670645 PMCID: PMC8544994 DOI: 10.3201/eid2711.210097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We typed 600 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 51 hospitals in the Rio de Janeiro, Brazil, metropolitan area during 2014-2017. We found that multiple new clonal complex (CC) 5 sequence types had replaced previously dominant MRSA lineages in hospitals. Whole-genome analysis of 208 isolates revealed an emerging sublineage of multidrug-resistant MRSA, sequence type 105, staphylococcal cassette chromosome mec II, spa t002, which we designated the Rio de Janeiro (RdJ) clone. Using molecular clock analysis, we hypothesized that this lineage began to expand in the Rio de Janeiro metropolitan area in 2009. Multivariate analysis supported an association between bloodstream infections and the CC5 lineage that includes the RdJ clone. Compared with other closely related isolates, representative isolates of the RdJ clone more effectively evaded immune function related to monocytic cells, as evidenced by decreased phagocytosis rate and increased numbers of viable unphagocytosed (free) bacteria after in vitro exposure to monocytes.
Collapse
Affiliation(s)
| | | | | | - Craig L.K. Boge
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Adriana Lucia Pires Ferreira
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Maria Cícera da Silva Carvalho
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Márcia Aparecida Guimarães
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | | | - Marcos Corrêa de Mattos
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Sabrina Pires Maciel
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Juliana Echevarria-Lima
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Apurva Narechania
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Kelsey O’Brien
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Chanelle Ryan
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Jeffrey S. Gerber
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | - Bernadete Teixeira Ferreira Carvalho
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (A.S. Viana, A.M.N. Botelho, A.L.P. Ferreira, M.C.S. Carvalho, M.A. Guimarães, B.S.S. Costa, M.C. Mattos, S.P. Maciel, J. Echevarria-Lima, B.T.F. Carvalho, A.M.S. Figueiredo)
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (A.M. Moustafa, C.L.K. Boge, K. O’Brien, C. Ryan, J.S. Gerber, P.J. Planet)
- Diagnósticos da América S.A., Duque de Caxias, Brazil (A.L.P. Ferreira)
- American Museum of Natural History, New York, New York, USA (A. Narechania, P.J. Planet)
- University of Pennsylvania, Philadelphia (J.S. Gerber, P.J. Planet)
| | | | | |
Collapse
|
25
|
Torres G, Vargas K, Cuesta-Astroz Y, Reyes-Vélez J, Olivera-Angel M. Phenotypic Characterization and Whole Genome Analysis of a Strong Biofilm-Forming Staphylococcus aureus Strain Associated With Subclinical Bovine Mastitis in Colombia. Front Vet Sci 2020; 7:530. [PMID: 33102540 PMCID: PMC7500091 DOI: 10.3389/fvets.2020.00530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus represent a serious threat to public health due to food safety, antibiotic resistance, and the potential zoonotic transmission of strains between dairy cattle and humans. Biofilm formation by S. aureus results in chronicity of the infections which confers protection against the immune response and antibiotics. Likewise, biofilm allows the exchange of mobile genetic material among different strains through microbial interactions inside the matrix. In Colombia, where S. aureus continues to be one of the main pathogens isolated from bovine intramammary infections and where milking by hand is highly frequent, there are knowledge gaps on the zoonotic potential of the strains. Therefore, the aim of this work was to characterize genotypically and phenotypically the S. aureus Sa1FB strain with strong biofilm production and to perform genomic and phenotypic comparisons with other relevant S. aureus strains (native and references strains). These results show a highly productive strain of biofilm and a low ability of cell invasion compared to the other two native strains. In addition, high genomic similarity between S. aureus Sa1FB and the reference strains was observed, despite of the differences reported at the clinical level. However, Sa1FB exhibited special features in terms of mobile genetic elements, highlighting its ability to accept foreign genetic material. Indeed, this could increase mutation, pathogenesis, and adaptability to new hosts, representing a risk for people in contact with the milk obtained from animals infected with these strains. These results present the relevance of surveillance for early detection of emergent clones with zoonotic potential, which reduces the risk of occupational exposure and their spread in the community.
Collapse
Affiliation(s)
- Giovanny Torres
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia.,Colombian Institute of Tropical Medicine-CES University, Medellín, Colombia
| | - Karen Vargas
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| | | | - Julián Reyes-Vélez
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| | - Martha Olivera-Angel
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
26
|
Karki AB, Neyaz L, Fakhr MK. Comparative Genomics of Plasmid-Bearing Staphylococcus aureus Strains Isolated From Various Retail Meats. Front Microbiol 2020; 11:574923. [PMID: 33193185 PMCID: PMC7644949 DOI: 10.3389/fmicb.2020.574923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023] Open
Abstract
Food poisoning due to the consumption of Staphylococcus aureus contaminated food is a major health problem worldwide. In this study, we sequenced the genomes of ten plasmid-bearing S. aureus strains isolated from retail beef, chicken, turkey, and pork. The chromosomes of the strains varied in size from 2,654,842 to 2,807,514 bp, and a total of 25 plasmids were identified ranging from 1.4 to 118 kb. Comparative genomic analysis revealed similarities between strains isolated from the same retail meat source, indicating an origin-specific genomic composition. Genes known to modulate attachment, invasion, and toxin production were identified in the 10 genomes. Strains from retail chicken resembled human clinical isolates with respect to virulence factors and genomic islands, and retail turkey and pork isolates shared similarity with S. aureus from livestock. Most chromosomes contained antimicrobial resistance, heavy metal resistance, and stress response genes, and several plasmids contained genes involved in antimicrobial resistance and virulence. In conclusion, the genomes of S. aureus strains isolated from retail meats showed an origin-specific composition and contained virulence and antimicrobial resistance genes similar to those present in human clinical isolates.
Collapse
Affiliation(s)
| | | | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
27
|
Characteristics of Staphylococcus aureus Isolated from a Case of Foodborne Outbreak in Bulgaria. MACEDONIAN VETERINARY REVIEW 2020. [DOI: 10.2478/macvetrev-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
This paper presents an outbreak provoked by methicillin-resistant strains of coagulase-positive S. aureus (CPS), produced staphylococcal enterotoxins (se) in pig meatballs and potato salad consumed from 70 people in the village Mamarchevo, Bulgaria. Eighteen women aged 50 to 70 years, and two children aged 4 and 5 years have demonstrated a severe malaise with vomiting and indigestion. Two food samples and isolates of CPS were received in the laboratory of Bulgarian Food Safety Agency. Both samples were found to have a high level of CPS. The level of S. aureus contamination in the potato salad was 8.3 logs CFU/g and 7.7 logs CFU/g in roasted meatballs, which was a significant reason to doubt the production of the toxin. The samples were analyzed according to the European Screening Method v5 using mini VIDAS SET2. The results showed a presence of staphylococcal enterotoxin (TV 2.67 for meatballs and TV 3.27 for potato salad), which was the reason for the ensuing food intoxication. EURL CPS applying quantitative indirect sandwich-type ELISA confirmed the presence of sea, sec and sed in the potato salad and sea and sed in the roasted meatballs. Two CPS isolates were confirmed as S. aureus by a species-specific 23S rRNA targeted PCR test. Real-time PCR method detected sea, sed, seg, sei, sej, and ser genes in S. aureus strains, found in both matrixes. Multiplex PCR method proved the existence of the mecA gene in both S. aureus strains. Resistance to cefoxitin (>16 mg/L), penicillin (>2 mg/L), kanamycin (64 mg/L) and sulfamethoxazole (>512 mg/L) was found.
Collapse
|
28
|
Ransom EM, Potter RF, Dantas G, Burnham CAD. Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes! Clin Chem 2020; 66:1278-1289. [PMID: 32918462 DOI: 10.1093/clinchem/hvaa172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Next-generation sequencing (NGS) technologies are being used to predict antimicrobial resistance. The field is evolving rapidly and transitioning out of the research setting into clinical use. Clinical laboratories are evaluating the accuracy and utility of genomic resistance prediction, including methods for NGS, downstream bioinformatic pipeline components, and the clinical settings in which this type of testing should be offered. CONTENT We describe genomic sequencing as it pertains to predicting antimicrobial resistance in clinical isolates and samples. We elaborate on current methodologies and workflows to perform this testing and summarize the current state of genomic resistance prediction in clinical settings. To highlight this aspect, we include 3 medically relevant microorganism exemplars: Mycobacterium tuberculosis, Staphylococcus aureus, and Neisseria gonorrhoeae. Last, we discuss the future of genomic-based resistance detection in clinical microbiology laboratories. SUMMARY Antimicrobial resistance prediction by genomic approaches is in its infancy for routine patient care. Genomic approaches have already added value to the current diagnostic testing landscape in specific circumstances and will play an increasingly important role in diagnostic microbiology. Future advancements will shorten turnaround time, reduce costs, and improve our analysis and interpretation of clinically actionable results.
Collapse
Affiliation(s)
- Eric M Ransom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Robert F Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Departments of Pediatrics and Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
29
|
Structure-activity relationship of diameter controlled Ag@Cu nanoparticles in broad-spectrum antibacterial mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111501. [PMID: 33321601 DOI: 10.1016/j.msec.2020.111501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/27/2023]
Abstract
Current outbreaks associated with drug-resistant clinical strains are demanding for the development of broad-spectrum antibacterial agents. The bactericidal materials should be eco-friendly, economical and effective to suppress bacterial growth. Thus, in this work, diameter controlled spherical Cucore-Agshell nanoparticles (Ag@CuNPs) with diameter ranging from 70 to 100 nm by one-step co-reduction approach were designed and synthesized. The Ag@CuNPs were homogenous, stable, and positively charged. The 70 nm Ag@CuNPs showed a consistent and regular Ag shielding. We observed the 100 nm Ag@CuNPs achieved symmetrical doped Ag clusters on the Cu core surface. We used Gram-positive and Gram-negative models strains to test the wide-spectrum antibacterial activity. The Ag@CuNPs showed detrimental microbial viability in a dose-dependent manner; however, 70 nm Ag@CuNPs were superior to those of 100 nm Ag@CuNPs. Initially, Ag@CuNPs attached and translocated the membrane surface resulting in bacterial eradication. Our analyses exhibited that antibacterial mechanism was not governed by the bacterial genre, nonetheless, by cell type, morphology, growing ability and the NPs uptake capability. The Ag@CuNPs were highly tolerated by human fibroblasts, mainly by the use of starch as glucosidic capper and stabilizer, suggesting optimal biocompatibility and activity. The Ag@CuNPs open up a novel platform to study the potential action of bimetallic nanoparticles and their molecular role for biomedical, clinical, hospital and industrial-chemical applications.
Collapse
|
30
|
Characterization of Clinical MRSA Isolates from Northern Spain and Assessment of Their Susceptibility to Phage-Derived Antimicrobials. Antibiotics (Basel) 2020; 9:antibiotics9080447. [PMID: 32722499 PMCID: PMC7460284 DOI: 10.3390/antibiotics9080447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a prevalent nosocomial pathogen, causing a wide range of diseases. The increased frequency of MRSA isolates in hospitals and the emergence of vancomycin resistance have sparked the search for new control strategies. This study aimed to characterize sixty-seven MRSA isolates collected from both infected patients and asymptomatic carriers in a Spanish hospital. RAPD-PCR allowed the identification of six genetic patterns. We also investigated the presence of genes involved in producing adhesins, toxins and the capsule; the biofilm; and antimicrobial resistance. A notable percentage of the isolates carried virulence genes and showed medium-high ability to form biofilms. Next, we assessed the strains' susceptibility to two phages (phiIPLA-C1C and phiIPLA-RODI) and one endolysin (LysRODI). All strains were resistant to phiIPLA-C1C, and most (70.2%) were susceptible to phiIPLA-RODI. Regarding LysRODI, all strains displayed susceptibility, although to varying degrees. There was a correlation between endolysin susceptibility and the random amplification of polymorphic DNA (RAPD) profile or the presence of some virulence genes (fnbA, eta, etb, PVL and czr), but that was not observed with biofilm-forming ability, strain origin or phage sensitivity. Taken together, these findings can help to explain the factors influencing endolysin effectiveness, which will contribute to the development of efficient therapies targeting MRSA infections.
Collapse
|
31
|
An evolutionary path to altered cofactor specificity in a metalloenzyme. Nat Commun 2020; 11:2738. [PMID: 32483131 PMCID: PMC7264356 DOI: 10.1038/s41467-020-16478-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/29/2020] [Indexed: 11/28/2022] Open
Abstract
Almost half of all enzymes utilize a metal cofactor. However, the features that dictate the metal utilized by metalloenzymes are poorly understood, limiting our ability to manipulate these enzymes for industrial and health-associated applications. The ubiquitous iron/manganese superoxide dismutase (SOD) family exemplifies this deficit, as the specific metal used by any family member cannot be predicted. Biochemical, structural and paramagnetic analysis of two evolutionarily related SODs with different metal specificity produced by the pathogenic bacterium Staphylococcus aureus identifies two positions that control metal specificity. These residues make no direct contacts with the metal-coordinating ligands but control the metal’s redox properties, demonstrating that subtle architectural changes can dramatically alter metal utilization. Introducing these mutations into S. aureus alters the ability of the bacterium to resist superoxide stress when metal starved by the host, revealing that small changes in metal-dependent activity can drive the evolution of metalloenzymes with new cofactor specificity. Many metalloenzymes are highly specific for their cognate metal ion but the molecular principles underlying this specificity often remain unclear. Here, the authors characterize the structural and biochemical basis for the different metal specificity of two evolutionarily related superoxide dismutases.
Collapse
|
32
|
Horváth A, Dobay O, Sahin-Tóth J, Juhász E, Pongrácz J, Iván M, Fazakas E, Kristóf K. Characterisation of antibiotic resistance, virulence, clonality and mortality in MRSA and MSSA bloodstream infections at a tertiary-level hospital in Hungary: a 6-year retrospective study. Ann Clin Microbiol Antimicrob 2020; 19:17. [PMID: 32381015 PMCID: PMC7206755 DOI: 10.1186/s12941-020-00357-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Staphylococcus aureus bloodstream infections (BSI) cause significant morbidity and mortality due to the frequent antibiotic resistance, toxin and adhesin production of the bacterium. These characteristics differ significantly in methicillin resistant (MRSA) and methicillin sensitive S. aureus (MSSA) and also among isolates of different MRSA clones, contributing to the outcome of S. aureus bacteraemia. METHODS In this study, all MRSA BSI isolates from Semmelweis University, Budapest, Hungary, isolated between 2011-2016 and the same number of matched MSSA (overall 306 isolates) were characterised in terms of antibiotic susceptibility, virulence genes, clonality and their association with all-cause 30-day mortality. Effect of patient related variables, such as age, gender and comorbidities were also investigated. RESULTS ST22-MRSA-IV and ST5-MRSA-II were the most prevalent clones in our study. SCCmec I isolates showed the highest resistance rates and SCCmec II carried most virulence genes. Infections caused by SCCmec IV isolates were associated with the highest mortality rate (42.2%), despite the similar comorbidity rates of the different patient groups. All-cause 30-day mortality was 39.9% in the MRSA and 30.7% in the MSSA group. Increased teicoplanin MIC was associated with high mortality rate. Resistance to ciprofloxacin, erythromycin and clindamycin was common in MRSA, whereas MSSA isolates were more sensitive to all antibiotics with the exception of doxycycline. All MRSA isolates were sensitive to glycopeptides and linezolid; resistance to rifampicin and sulfamethoxazole-trimethoprim was low. MRSA isolates carried more adhesion genes, superantigens were more frequent in MSSA. Panton-Valentine leukocidin was found in 2.3% of the isolates. CONCLUSION This study provides insight into the clonal composition and associated mortality of BSI S. aureus isolates in Hungary. The results suggest that the outcome of the infection is determined by the antibiotic resistance, genotype of the bacterium, and patient-related factors; rather than the virulence factors carried by the bacteria.
Collapse
Affiliation(s)
- Andrea Horváth
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Judit Sahin-Tóth
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Emese Juhász
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Júlia Pongrácz
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Iván
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Enikő Fazakas
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2020; 17:203-218. [PMID: 30737488 DOI: 10.1038/s41579-018-0147-4] [Citation(s) in RCA: 1165] [Impact Index Per Article: 233.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most successful modern pathogens. The same organism that lives as a commensal and is transmitted in both health-care and community settings is also a leading cause of bacteraemia, endocarditis, skin and soft tissue infections, bone and joint infections and hospital-acquired infections. Genetically diverse, the epidemiology of MRSA is primarily characterized by the serial emergence of epidemic strains. Although its incidence has recently declined in some regions, MRSA still poses a formidable clinical threat, with persistently high morbidity and mortality. Successful treatment remains challenging and requires the evaluation of both novel antimicrobials and adjunctive aspects of care, such as infectious disease consultation, echocardiography and source control. In this Review, we provide an overview of basic and clinical MRSA research and summarize the expansive body of literature on the epidemiology, transmission, genetic diversity, evolution, surveillance and treatment of MRSA.
Collapse
|
34
|
Torres G, Vargas K, Cuesta-Astroz Y, Reyes-Vélez J, Olivera-Angel M. Phenotypic Characterization and Whole Genome Analysis of a Strong Biofilm-Forming Staphylococcus aureus Strain Associated With Subclinical Bovine Mastitis in Colombia. Front Vet Sci 2020. [PMID: 33102540 DOI: 10.3389/fvets.2020.00530/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Staphylococcus aureus represent a serious threat to public health due to food safety, antibiotic resistance, and the potential zoonotic transmission of strains between dairy cattle and humans. Biofilm formation by S. aureus results in chronicity of the infections which confers protection against the immune response and antibiotics. Likewise, biofilm allows the exchange of mobile genetic material among different strains through microbial interactions inside the matrix. In Colombia, where S. aureus continues to be one of the main pathogens isolated from bovine intramammary infections and where milking by hand is highly frequent, there are knowledge gaps on the zoonotic potential of the strains. Therefore, the aim of this work was to characterize genotypically and phenotypically the S. aureus Sa1FB strain with strong biofilm production and to perform genomic and phenotypic comparisons with other relevant S. aureus strains (native and references strains). These results show a highly productive strain of biofilm and a low ability of cell invasion compared to the other two native strains. In addition, high genomic similarity between S. aureus Sa1FB and the reference strains was observed, despite of the differences reported at the clinical level. However, Sa1FB exhibited special features in terms of mobile genetic elements, highlighting its ability to accept foreign genetic material. Indeed, this could increase mutation, pathogenesis, and adaptability to new hosts, representing a risk for people in contact with the milk obtained from animals infected with these strains. These results present the relevance of surveillance for early detection of emergent clones with zoonotic potential, which reduces the risk of occupational exposure and their spread in the community.
Collapse
Affiliation(s)
- Giovanny Torres
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
- Colombian Institute of Tropical Medicine-CES University, Medellín, Colombia
| | - Karen Vargas
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| | | | - Julián Reyes-Vélez
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| | - Martha Olivera-Angel
- Biogenesis Research Group, Department of Agricultural Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
35
|
Coe KA, Lee W, Stone MC, Komazin-Meredith G, Meredith TC, Grad YH, Walker S. Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus. PLoS Pathog 2019; 15:e1007862. [PMID: 31738809 PMCID: PMC6934316 DOI: 10.1371/journal.ppat.1007862] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/27/2019] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus remains a leading cause of antibiotic resistance-associated mortality in the United States. Given the reality of multi-drug resistant infections, it is imperative that we establish and maintain a pipeline of new compounds to replace or supplement our current antibiotics. A first step towards this goal is to prioritize targets by identifying the genes most consistently required for survival across the S. aureus phylogeny. Here we report the first direct comparison of multiple strains of S. aureus via transposon sequencing. We show that mutant fitness varies by strain in key pathways, underscoring the importance of using more than one strain to differentiate between core and strain-dependent essential genes. We treated the libraries with daptomycin to assess whether the strain-dependent differences impact pathways important for survival. Despite baseline differences in gene importance, several pathways, including the lipoteichoic acid pathway, consistently promote survival under daptomycin exposure, suggesting core vulnerabilities that can be exploited to resensitize daptomycin-nonsusceptible isolates. We also demonstrate the merit of using transposons with outward-facing promoters capable of overexpressing nearby genes for identifying clinically-relevant gain-of-function resistance mechanisms. Together, the daptomycin vulnerabilities and resistance mechanisms support a mode of action with wide-ranging effects on the cell envelope and cell division. This work adds to a growing body of literature demonstrating the nuanced insights gained by comparing Tn-Seq results across multiple bacterial strains. Antibiotic-resistant Staphylococcus aureus kills thousands of people every year in the United States alone. To stay ahead of the looming threat of multidrug-resistant infections, we must continue to develop new antibiotics and find ways to make our current repertoire of antibiotics more effective, including by finding pairs of compounds that perform best when administered together. In the age of next-generation sequencing, we can now use transposon sequencing to find potential targets for new antibiotics on a genome-wide scale, identified as either essential genes or genes that positively influence survival in the presence of an antibiotic. In this work, we created a compendium of genes that are essential across a range of S. aureus strains, as well as those that are important for growth in the presence of the antibiotic daptomycin. The results will be a resource for researchers working to develop the next generation of antibiotic therapies.
Collapse
Affiliation(s)
- Kathryn A. Coe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonsik Lee
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Madeleine C. Stone
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gloria Komazin-Meredith
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
| | - Timothy C. Meredith
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- * E-mail: (TCM); (YHG); (SW)
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (TCM); (YHG); (SW)
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (TCM); (YHG); (SW)
| |
Collapse
|
36
|
Revisiting Bacterial Interference in the Age of Methicillin-resistant Staphylococcus aureus: Insights Into Staphylococcus aureus Carriage, Pathogenicity and Potential Control. Pediatr Infect Dis J 2019; 38:958-966. [PMID: 31274832 PMCID: PMC6692185 DOI: 10.1097/inf.0000000000002411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteria compete with each other for local supremacy in biologic and environmental niches. In humans, who host an array of commensal bacteria, the presence of one species or strain can sometimes prevent colonization by another, a phenomenon known as "bacterial interference." We describe how, in the 1960s, infants (and later adults) were actively inoculated with a relatively benign strain of Staphylococcus aureus, 502A, to prevent colonization with an epidemic S. aureus strain, 80/81. This introduced bacterial interference as a clinical approach to disease prevention, but little was known about the mechanisms of interference at that time. Since then, much has been learned about how bacteria interact with each other and the host to establish carriage, compete for niches and shift from harmless commensal to invasive pathogen. We provide an overview of these findings and summarize recent studies in which the genome and function of 502A were compared with those of the current epidemic strain, USA300, providing insight into differences in their invasiveness and immunogenicity. Although staphylococcal vaccines have been developed, none has yet been approved for clinical use. Further studies of staphylococcal strains and the molecular characteristics that lead to exclusion of specific bacteria from some niches may provide an alternative path to disease prevention.
Collapse
|
37
|
Mairi A, Touati A, Pantel A, Zenati K, Martinez AY, Dunyach-Remy C, Sotto A, Lavigne JP. Distribution of Toxinogenic Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus from Different Ecological Niches in Algeria. Toxins (Basel) 2019; 11:toxins11090500. [PMID: 31466284 PMCID: PMC6784135 DOI: 10.3390/toxins11090500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
The diffusion of Panton-Valentine leukocidin (PVL)-positive methicillin-resistant S. aureus (MRSA) is a health problem in Algeria. The objectives of the study were to investigate the global distribution of methicillin-susceptible S. aureus (MSSA) and MRSA isolates in different ecological niches in this country. In total, 2246 samples were collected from humans, livestock, wild animals, pets, food products and the aquatic environment, from 12 Algerian provinces. A total of 312 S. aureus were detected from 2446 samples (12.7%) in the screened niches. We observed the emergence of toxinogenic S. aureus representing 41% of the isolates. Among them, we noted the diffusion of ST80-IV CA-MRSA PVL + strains isolated in human, animals, and food and genetic diversity of MSSA PVL + isolates. This study suggests an alarming dissemination of MRSA-ST80 PVL + in both human and extra-human sources in Algeria. Moreover, MSSA may become a permanent reservoir of the PVL genes necessary for human infections.
Collapse
Affiliation(s)
- Assia Mairi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia 06000, Algeria
- National Institute of Health and Medical Research INSERM U1047, University of Montpellier, 30900 Montpellier, France
| | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia 06000, Algeria
| | - Alix Pantel
- Department of Microbiology, CHU Nîmes, University of Montpellier, 30900 Montpellier, France
| | - Karima Zenati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia 06000, Algeria
| | - Alex Yahiaoui Martinez
- Department of Microbiology, CHU Nîmes, University of Montpellier, 30900 Montpellier, France
| | - Catherine Dunyach-Remy
- Department of Microbiology, CHU Nîmes, University of Montpellier, 30900 Montpellier, France
| | - Albert Sotto
- Department of Infectious Diseases, CHU Nîmes, University of Montpellier, 30900 Montpellier, France
| | - Jean-Philippe Lavigne
- Department of Microbiology, CHU Nîmes, University of Montpellier, 30900 Montpellier, France.
| |
Collapse
|
38
|
Barie PS, Narayan M, Sawyer RG. Immunization Against Staphylococcus aureus Infections. Surg Infect (Larchmt) 2019; 19:750-756. [PMID: 31033407 DOI: 10.1089/sur.2018.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Infections caused by Staphylococcus aureus continue to plague surgical patients, whether as surgical site infections or other nosocomial infections that complicate surgical care. The only meaningful methods available to decrease the risk of developing such infections are topical skin antisepsis (pre-operative skin preparation) and peri-operative antibiotic prophylaxis, neither of which offer a panacea. Alternatives to the latter are sought so as to minimize antibiotic selection pressure as a factor in the increasing problem of antimicrobial drug resistance. This review considers the possibility that immunization against S. aureus may offer a viable alternative for prophylaxis. Methods: Review and synthesis of pertinent English-language medical literature. Results: Vaccination against viral pathogens has been in successful clinical use for more than two centuries and was instrumental in the eradication of smallpox and the near-elimination of diseases such as poliomyelitis. Vaccinations against a limited number of bacterial pathogens (e.g., Bordetella pertussis, Clostridium tetanii, Corynebacterium diphtheriae, Haemophilus influenzae type b, Neisseria meningiditis, Streptococcus pneumoniae) have also been introduced with success, whereas others against bacteria are in development (C. difficile, Pseudomonas aeruginosa, S. aureus). Vaccination against S. aureus infection is in current veterinary use (e.g., to prevent mastitis among dairy cattle) but has not been successful to date in human beings despite multiple attempts, although development continues. Conclusions: Because of its complex microbiology, including multiple virulence factors and the ability to evade host immune surveillance, S. aureus presents numerous antigenic targets for vaccine development. Failure of two prior single-antigen vaccines in clinical trials has led to the consensus that future vaccine candidates must be directed against multiple antigens. Two distinct four-antigen vaccines are in clinical trials, but efficacy is yet to be determined.
Collapse
Affiliation(s)
- Philip S Barie
- 1 Department of Surgery, Weill Cornell Medicine , New York, New York
- 2 Department of Medicine, Weill Cornell Medicine , New York, New York
| | - Mayur Narayan
- 1 Department of Surgery, Weill Cornell Medicine , New York, New York
| | - Robert G Sawyer
- 3 Department of Surgery, Western Michigan University , Kalamazoo, Michigan
| |
Collapse
|
39
|
Botelho AMN, Cerqueira e Costa MO, Moustafa AM, Beltrame CO, Ferreira FA, Côrtes MF, Costa BSS, Silva DNS, Bandeira PT, Lima NCB, Souza RC, de Almeida LGP, Vasconcelos ATR, Narechania A, Ryan C, O’Brien K, Kolokotronis SO, Planet PJ, Nicolás MF, Figueiredo AMS. Local Diversification of Methicillin- Resistant Staphylococcus aureus ST239 in South America After Its Rapid Worldwide Dissemination. Front Microbiol 2019; 10:82. [PMID: 30873127 PMCID: PMC6400870 DOI: 10.3389/fmicb.2019.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The global spread of specific clones of methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem, and understanding the dynamics of geographical spread requires worldwide surveillance. Over the past 20 years, the ST239 lineage of MRSA has been recognized as an emerging clone across the globe, with detailed studies focusing on isolates from Europe and Asia. Less is known about this lineage in South America, and, particularly, Brazil where it was the predominant lineage of MRSA in the early 1990s to 2000s. To gain a better understanding about the introduction and spread of ST239 MRSA in Brazil we undertook a comparative phylogenomic analysis of ST239 genomes, adding seven completed, closed Brazilian genomes. Brazilian ST239 isolates grouped in a subtree with those from South American, and Western, romance-language-speaking, European countries, here designated the South American clade. After an initial worldwide radiation in the 1960s and 1970s, we estimate that ST239 began to spread in South America and Brazil in approximately 1988. This clone demonstrates specific genomic changes that are suggestive of local divergence and adaptational change including agrC single-nucleotide polymorphisms variants, and a distinct pattern of virulence-associated genes (mainly the presence of the chp and the absence of sea and sasX). A survey of a geographically and chronologically diverse set of 100 Brazilian ST239 isolates identified this virulence genotype as the predominant pattern in Brazil, and uncovered an unexpectedly high prevalence of agr-dysfunction (30%). ST239 isolates from Brazil also appear to have undergone transposon (IS256) insertions in or near global regulatory genes (agr and mgr) that likely led to rapid reprogramming of bacterial traits. In general, the overall pattern observed in phylogenomic analyses of ST239 is of a rapid initial global radiation, with subsequent local spread and adaptation in multiple different geographic locations. Most ST239 isolates harbor the ardA gene, which we show here to have in vivo anti-restriction activity. We hypothesize that this gene may have improved the ability of this lineage to acquire multiple resistance genes and distinct virulence-associated genes in each local context. The allopatric divergence pattern of ST239 also may suggest strong selective pressures for specific traits in different geographical locations.
Collapse
Affiliation(s)
- Ana Maria Nunes Botelho
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ahmed M. Moustafa
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
| | - Cristiana Ossaille Beltrame
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Farrel Côrtes
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Souza Scramignon Costa
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deborah Nascimento Santos Silva
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Terra Bandeira
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rangel Celso Souza
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | | | | | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Chanelle Ryan
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
| | - Kelsey O’Brien
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
| | - Sergios-Orestis Kolokotronis
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Paul J. Planet
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | | | - Agnes Marie Sá Figueiredo
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S, Ahmed JM, Kumar K, Lees J, Stachel A, Fisher JC, Drlica K, Phillips M, Weiser JN, Planet PJ, Uhlemann AC, Altman DR, Sebra R, van Bakel H, Lighter J, Torres VJ, Shopsin B. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2019; 116:1745-1754. [PMID: 30635416 PMCID: PMC6358666 DOI: 10.1073/pnas.1814265116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.
Collapse
Affiliation(s)
- Richard Copin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Yi Fulmer
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Jamil M Ahmed
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Krishan Kumar
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - John Lees
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Anna Stachel
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jason C Fisher
- Division of Pediatric Surgery, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
| | - Michael Phillips
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Paul J Planet
- Department of Pediatric Infectious Disease, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Deena R Altman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jennifer Lighter
- Division of Pediatric Infectious Diseases, Department of Pediatrics, New York University School of Medicine, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | - Bo Shopsin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
41
|
Crispell J, Balaz D, Gordon SV. HomoplasyFinder: a simple tool to identify homoplasies on a phylogeny. Microb Genom 2019; 5:e000245. [PMID: 30663960 PMCID: PMC6412054 DOI: 10.1099/mgen.0.000245] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
A homoplasy is a nucleotide identity resulting from a process other than inheritance from a common ancestor. Importantly, by distorting the ancestral relationships between nucleotide sequences, homoplasies can change the structure of the phylogeny. Homoplasies can emerge naturally, especially under high selection pressures and/or high mutation rates, or be created during the generation and processing of sequencing data. Identification of homoplasies is critical, both to understand their influence on the analyses of phylogenetic data and to allow an investigation into how they arose. Here we present HomoplasyFinder, a java application that can be used as a stand-a-lone tool or within the statistical programming environment R. Within R and Java, HomoplasyFinder is shown to be able to automatically, and quickly, identify any homoplasies present in simulated and real phylogenetic data. HomoplasyFinder can easily be incorporated into existing analysis pipelines, either within or outside of R, allowing the user to quickly identify homoplasies to inform downstream analyses and interpretation.
Collapse
Affiliation(s)
- Joseph Crispell
- School of Veterinary Medicine, College of Health and Agricultural Sciences, University College Dublin, Republic of Ireland
| | - Daniel Balaz
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland
| | - Stephen Vincent Gordon
- School of Veterinary Medicine, College of Health and Agricultural Sciences, University College Dublin, Republic of Ireland
| |
Collapse
|
42
|
Busche T, Hillion M, Van Loi V, Berg D, Walther B, Semmler T, Strommenger B, Witte W, Cuny C, Mellmann A, Holmes MA, Kalinowski J, Adrian L, Bernhardt J, Antelmann H. Comparative Secretome Analyses of Human and Zoonotic Staphylococcus aureus Isolates CC8, CC22, and CC398. Mol Cell Proteomics 2018; 17:2412-2433. [PMID: 30201737 PMCID: PMC6283302 DOI: 10.1074/mcp.ra118.001036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 12/24/2022] Open
Abstract
The spread of methicillin-resistant Staphylococcus aureus (MRSA) in the community, hospitals and in livestock is mediated by highly diverse virulence factors that include secreted toxins, superantigens, enzymes and surface-associated adhesins allowing host adaptation and colonization. Here, we combined proteogenomics, secretome and phenotype analyses to compare the secreted virulence factors in selected S. aureus isolates of the dominant human- and livestock-associated genetic lineages CC8, CC22, and CC398. The proteogenomic comparison revealed 2181 core genes and 1306 accessory genes in 18 S. aureus isolates reflecting the high genome diversity. Using secretome analysis, we identified 869 secreted proteins with 538 commons in eight isolates of CC8, CC22, and CC398. These include 64 predicted extracellular and 37 cell surface proteins that account for 82.4% of total secretome abundance. Among the top 10 most abundantly secreted virulence factors are the major autolysins (Atl, IsaA, Sle1, SAUPAN006375000), lipases and lipoteichoic acid hydrolases (Lip, Geh, LtaS), cytolytic toxins (Hla, Hlb, PSMβ1) and proteases (SspB). The CC398 isolates showed lower secretion of cell wall proteins, but higher secretion of α- and β-hemolysins (Hla, Hlb) which correlated with an increased Agr activity and strong hemolysis. CC398 strains were further characterized by lower biofilm formation and staphyloxanthin levels because of decreased SigB activity. Overall, comparative secretome analyses revealed CC8- or CC22-specific enterotoxin and Spl protease secretion as well as Agr- and SigB-controlled differences in exotoxin and surface protein secretion between human-specific and zoonotic lineages of S. aureus.
Collapse
Affiliation(s)
- Tobias Busche
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany; Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | - Mélanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - David Berg
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Birgit Walther
- Robert Koch Institute, Advanced Light and Electron Microscopy, D-13353 Berlin, Germany; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, D-14153 Berlin, Germany
| | - Torsten Semmler
- Robert Koch Institute, Advanced Light and Electron Microscopy, D-13353 Berlin, Germany
| | | | - Wolfgang Witte
- Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Christiane Cuny
- Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, D-48149 Münster, Germany
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, D-13355 Berlin, Germany
| | - Jörg Bernhardt
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany; Institute for Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
43
|
Manara S, Pasolli E, Dolce D, Ravenni N, Campana S, Armanini F, Asnicar F, Mengoni A, Galli L, Montagnani C, Venturini E, Rota-Stabelli O, Grandi G, Taccetti G, Segata N. Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital. Genome Med 2018; 10:82. [PMID: 30424799 PMCID: PMC6234625 DOI: 10.1186/s13073-018-0593-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic pathogen and a leading cause of nosocomial infections. It can acquire resistance to all the antibiotics that entered the clinics to date, and the World Health Organization defined it as a high-priority pathogen for research and development of new antibiotics. A deeper understanding of the genetic variability of S. aureus in clinical settings would lead to a better comprehension of its pathogenic potential and improved strategies to contrast its virulence and resistance. However, the number of comprehensive studies addressing clinical cohorts of S. aureus infections by simultaneously looking at the epidemiology, phylogenetic reconstruction, genomic characterisation, and transmission pathways of infective clones is currently low, thus limiting global surveillance and epidemiological monitoring. METHODS We applied whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients treated in different operative units of an Italian paediatric hospital over a timespan of 3 years, including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) from different infection types. We typed known and unknown clones from their genomes by multilocus sequence typing (MLST), Staphylococcal Cassette Chromosome mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin (PVL), and we inferred their whole-genome phylogeny. We explored the prevalence of virulence and antibiotic resistance genes in our cohort, and the conservation of genes encoding vaccine candidates. We also performed a timed phylogenetic investigation for a potential outbreak of a newly emerging nosocomial clone. RESULTS The phylogeny of the 135 single-patient S. aureus isolates showed a high level of diversity, including 80 different lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. Five of these clones do not have representative genomes in public databases. Variability in the epidemiology is mirrored by variability in the SCCmec cassettes, with some novel variants of the type IV cassette carrying extra antibiotic resistances. Virulence and resistance genes were unevenly distributed across different clones and infection types, with highly resistant and lowly virulent clones showing strong association with chronic diseases, and highly virulent strains only reported in acute infections. Antigens included in vaccine formulations undergoing clinical trials were conserved at different levels in our cohort, with only a few highly prevalent genes fully conserved, potentially explaining the difficulty of developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmecIV-t127 PVL- clone suspected to be hospital-specific, but time-resolved integrative phylogenetic analysis refuted this hypothesis and suggested that this quickly emerging lineage was acquired independently by patients. CONCLUSIONS Whole genome sequencing allowed us to study the epidemiology and genomic repertoire of S. aureus in a clinical setting and provided evidence of its often underestimated complexity. Some virulence factors and clones are specific of disease types, but the variability and dispensability of many antigens considered for vaccine development together with the quickly changing epidemiology of S. aureus makes it very challenging to develop full-coverage therapies and vaccines. Expanding WGS-based surveillance of S. aureus to many more hospitals would allow the identification of specific strains representing the main burden of infection and therefore reassessing the efforts for the discovery of new treatments and clinical practices.
Collapse
Affiliation(s)
- Serena Manara
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Edoardo Pasolli
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Daniela Dolce
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Novella Ravenni
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Silvia Campana
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | | | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Carlotta Montagnani
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Elisabetta Venturini
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Guido Grandi
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Giovanni Taccetti
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy.
| |
Collapse
|
44
|
Petit RA, Read TD. Staphylococcus aureus viewed from the perspective of 40,000+ genomes. PeerJ 2018; 6:e5261. [PMID: 30013858 PMCID: PMC6046195 DOI: 10.7717/peerj.5261] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Low-cost Illumina sequencing of clinically-important bacterial pathogens has generated thousands of publicly available genomic datasets. Analyzing these genomes and extracting relevant information for each pathogen and the associated clinical phenotypes requires not only resources and bioinformatic skills but organism-specific knowledge. In light of these issues, we created Staphopia, an analysis pipeline, database and application programming interface, focused on Staphylococcus aureus, a common colonizer of humans and a major antibiotic-resistant pathogen responsible for a wide spectrum of hospital and community-associated infections. Written in Python, Staphopia's analysis pipeline consists of submodules running open-source tools. It accepts raw FASTQ reads as an input, which undergo quality control filtration, error correction and reduction to a maximum of approximately 100× chromosome coverage. This reduction significantly reduces total runtime without detrimentally affecting the results. The pipeline performs de novo assembly-based and mapping-based analysis. Automated gene calling and annotation is performed on the assembled contigs. Read-mapping is used to call variants (single nucleotide polymorphisms and insertion/deletions) against a reference S. aureus chromosome (N315, ST5). We ran the analysis pipeline on more than 43,000 S. aureus shotgun Illumina genome projects in the public European Nucleotide Archive database in November 2017. We found that only a quarter of known multi-locus sequence types (STs) were represented but the top 10 STs made up 70% of all genomes. methicillin-resistant S. aureus (MRSA) were 64% of all genomes. Using the Staphopia database we selected 380 high quality genomes deposited with good metadata, each from a different multi-locus ST, as a non-redundant diversity set for studying S. aureus evolution. In addition to answering basic science questions, Staphopia could serve as a potential platform for rapid clinical diagnostics of S. aureus isolates in the future. The system could also be adapted as a template for other organism-specific databases.
Collapse
Affiliation(s)
- Robert A. Petit
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
45
|
van Belkum A, Rochas O. Laboratory-Based and Point-of-Care Testing for MSSA/MRSA Detection in the Age of Whole Genome Sequencing. Front Microbiol 2018; 9:1437. [PMID: 30008711 PMCID: PMC6034072 DOI: 10.3389/fmicb.2018.01437] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/11/2018] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen of animals and humans that is capable of both colonizing and infecting its eukaryotic host. It is frequently detected in the clinical microbiology routine laboratory. S. aureus is capable of acquiring antibiotic resistance traits with ease and, given its rapid global dissemination, resistance to meticillin in S. aureus has received extensive coverage in the popular and medical press. The detection of meticillin-resistant versus meticillin-susceptible S. aureus (MRSA and MSSA) is of significant clinical importance. Detection of meticillin resistance is relatively straightforward since it is defined by a single determinant, penicillin-binding protein 2a', which exists in a limited number of genetic variants carried on various Staphylococcal Cassette Chromosomes mec. Diagnosis of MRSA and MSSA has evolved significantly over the past decades and there has been a strong shift from culture-based, phenotypic methods toward molecular detection, especially given the close correlation between the presence of the mec genes and phenotypic resistance. This brief review summarizes the current state of affairs concerning the mostly polymerase chain reaction-mediated detection of MRSA and MSSA in either the classical laboratory setting or at the point of care. The potential diagnostic impact of the currently emerging whole genome sequencing (WGS) technology will be discussed against a background of diagnostic, surveillance, and infection control parameters. Adequate detection of MSSA and MRSA is at the basis of any subsequent, more generic antibiotic susceptibility testing, epidemiological characterization, and detection of virulence factors, whether performed with classical technology or WGS analyses.
Collapse
Affiliation(s)
- Alex van Belkum
- Data Analytics Unit, bioMérieux, La Balme-les-Grottes, France
| | - Olivier Rochas
- Strategic Intelligence, Business Development Direction, bioMérieux, Marcy-l'Étoile, France
| |
Collapse
|
46
|
Durand G, Javerliat F, Bes M, Veyrieras JB, Guigon G, Mugnier N, Schicklin S, Kaneko G, Santiago-Allexant E, Bouchiat C, Martins-Simões P, Laurent F, Van Belkum A, Vandenesch F, Tristan A. Routine Whole-Genome Sequencing for Outbreak Investigations of Staphylococcus aureus in a National Reference Center. Front Microbiol 2018; 9:511. [PMID: 29616014 PMCID: PMC5869177 DOI: 10.3389/fmicb.2018.00511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
The French National Reference Center for Staphylococci currently uses DNA arrays and spa typing for the initial epidemiological characterization of Staphylococcus aureus strains. We here describe the use of whole-genome sequencing (WGS) to investigate retrospectively four distinct and virulent S. aureus lineages [clonal complexes (CCs): CC1, CC5, CC8, CC30] involved in hospital and community outbreaks or sporadic infections in France. We used a WGS bioinformatics pipeline based on de novo assembly (reference-free approach), single nucleotide polymorphism analysis, and on the inclusion of epidemiological markers. We examined the phylogeographic diversity of the French dominant hospital-acquired CC8-MRSA (methicillin-resistant S. aureus) Lyon clone through WGS analysis which did not demonstrate evidence of large-scale geographic clustering. We analyzed sporadic cases along with two outbreaks of a CC1-MSSA (methicillin-susceptible S. aureus) clone containing the Panton–Valentine leukocidin (PVL) and results showed that two sporadic cases were closely related. We investigated an outbreak of PVL-positive CC30-MSSA in a school environment and were able to reconstruct the transmission history between eight families. We explored different outbreaks among newborns due to the CC5-MRSA Geraldine clone and we found evidence of an unsuspected link between two otherwise distinct outbreaks. Here, WGS provides the resolving power to disprove transmission events indicated by conventional methods (same sequence type, spa type, toxin profile, and antibiotic resistance profile) and, most importantly, WGS can reveal unsuspected transmission events. Therefore, WGS allows to better describe and understand outbreaks and (inter-)national dissemination of S. aureus lineages. Our findings underscore the importance of adding WGS for (inter-)national surveillance of infections caused by virulent clones of S. aureus but also substantiate the fact that technological optimization at the bioinformatics level is still urgently needed for routine use. However, the greatest limitation of WGS analysis is the completeness and the correctness of the reference database being used and the conversion of floods of data into actionable results. The WGS bioinformatics pipeline (EpiSeqTM) we used here can easily generate a uniform database and associated metadata for epidemiological applications.
Collapse
Affiliation(s)
| | | | - Michèle Bes
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | - Gaël Kaneko
- Data Analytics Unit, bioMérieux, Marcy-I'Étoile, France
| | | | - Coralie Bouchiat
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | | | - Frederic Laurent
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | | | - François Vandenesch
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Anne Tristan
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
47
|
Gladieux P, Condon B, Ravel S, Soanes D, Maciel JLN, Nhani A, Chen L, Terauchi R, Lebrun MH, Tharreau D, Mitchell T, Pedley KF, Valent B, Talbot NJ, Farman M, Fournier E. Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae. mBio 2018. [PMID: 29487238 DOI: 10.01210.01128/mbio] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multihost pathogen that infects multiple grasses and cereals, is responsible for the most damaging rice disease (rice blast), and is of growing concern due to the recent introduction of wheat blast to Bangladesh from South America. However, the genetic structure and evolutionary history of M. oryzae, including the possible existence of cryptic phylogenetic species, remain poorly defined. Here, we use whole-genome sequence information for 76 M. oryzae isolates sampled from 12 grass and cereal genera to infer the population structure of M. oryzae and to reassess the species status of wheat-infecting populations of the fungus. Species recognition based on genealogical concordance, using published data or extracting previously used loci from genome assemblies, failed to confirm a prior assignment of wheat blast isolates to a new species (Pyricularia graminis-tritici). Inference of population subdivisions revealed multiple divergent lineages within M. oryzae, each preferentially associated with one host genus, suggesting incipient speciation following host shift or host range expansion. Analyses of gene flow, taking into account the possibility of incomplete lineage sorting, revealed that genetic exchanges have contributed to the makeup of multiple lineages within M. oryzae These findings provide greater understanding of the ecoevolutionary factors that underlie the diversification of M. oryzae and highlight the practicality of genomic data for epidemiological surveillance in this important multihost pathogen.IMPORTANCE Infection of novel hosts is a major route for disease emergence by pathogenic microorganisms. Understanding the evolutionary history of multihost pathogens is therefore important to better predict the likely spread and emergence of new diseases. Magnaporthe oryzae is a multihost fungus that causes serious cereal diseases, including the devastating rice blast disease and wheat blast, a cause of growing concern due to its recent spread from South America to Asia. Using whole-genome analysis of 76 fungal strains from different hosts, we have documented the divergence of M. oryzae into numerous lineages, each infecting a limited number of host species. Our analyses provide evidence that interlineage gene flow has contributed to the genetic makeup of multiple M. oryzae lineages within the same species. Plant health surveillance is therefore warranted to safeguard against disease emergence in regions where multiple lineages of the fungus are in contact with one another.
Collapse
Affiliation(s)
- Pierre Gladieux
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Bradford Condon
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Sebastien Ravel
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Darren Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | | | | | - Li Chen
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | - Didier Tharreau
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Thomas Mitchell
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, USA
| | - Kerry F Pedley
- USDA, Agricultural Research Service, FDWSRU, Ft. Detrick, Maryland, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Nicholas J Talbot
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Elisabeth Fournier
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
48
|
Gladieux P, Condon B, Ravel S, Soanes D, Maciel JLN, Nhani A, Chen L, Terauchi R, Lebrun MH, Tharreau D, Mitchell T, Pedley KF, Valent B, Talbot NJ, Farman M, Fournier E. Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae. mBio 2018; 9:e01219-17. [PMID: 29487238 PMCID: PMC5829825 DOI: 10.1128/mbio.01219-17] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022] Open
Abstract
Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multihost pathogen that infects multiple grasses and cereals, is responsible for the most damaging rice disease (rice blast), and is of growing concern due to the recent introduction of wheat blast to Bangladesh from South America. However, the genetic structure and evolutionary history of M. oryzae, including the possible existence of cryptic phylogenetic species, remain poorly defined. Here, we use whole-genome sequence information for 76 M. oryzae isolates sampled from 12 grass and cereal genera to infer the population structure of M. oryzae and to reassess the species status of wheat-infecting populations of the fungus. Species recognition based on genealogical concordance, using published data or extracting previously used loci from genome assemblies, failed to confirm a prior assignment of wheat blast isolates to a new species (Pyricularia graminis-tritici). Inference of population subdivisions revealed multiple divergent lineages within M. oryzae, each preferentially associated with one host genus, suggesting incipient speciation following host shift or host range expansion. Analyses of gene flow, taking into account the possibility of incomplete lineage sorting, revealed that genetic exchanges have contributed to the makeup of multiple lineages within M. oryzae These findings provide greater understanding of the ecoevolutionary factors that underlie the diversification of M. oryzae and highlight the practicality of genomic data for epidemiological surveillance in this important multihost pathogen.IMPORTANCE Infection of novel hosts is a major route for disease emergence by pathogenic microorganisms. Understanding the evolutionary history of multihost pathogens is therefore important to better predict the likely spread and emergence of new diseases. Magnaporthe oryzae is a multihost fungus that causes serious cereal diseases, including the devastating rice blast disease and wheat blast, a cause of growing concern due to its recent spread from South America to Asia. Using whole-genome analysis of 76 fungal strains from different hosts, we have documented the divergence of M. oryzae into numerous lineages, each infecting a limited number of host species. Our analyses provide evidence that interlineage gene flow has contributed to the genetic makeup of multiple M. oryzae lineages within the same species. Plant health surveillance is therefore warranted to safeguard against disease emergence in regions where multiple lineages of the fungus are in contact with one another.
Collapse
Affiliation(s)
- Pierre Gladieux
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Bradford Condon
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Sebastien Ravel
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Darren Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | | | | | - Li Chen
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | - Didier Tharreau
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Thomas Mitchell
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, USA
| | - Kerry F Pedley
- USDA, Agricultural Research Service, FDWSRU, Ft. Detrick, Maryland, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Nicholas J Talbot
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Elisabeth Fournier
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
49
|
Hauck S, Maiden MCJ. Clonally Evolving Pathogenic Bacteria. MOLECULAR MECHANISMS OF MICROBIAL EVOLUTION 2018. [DOI: 10.1007/978-3-319-69078-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
After the deluge: mining Staphylococcus aureus genomic data for clinical associations and host-pathogen interactions. Curr Opin Microbiol 2017; 41:43-50. [PMID: 29197673 DOI: 10.1016/j.mib.2017.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 11/16/2017] [Indexed: 01/31/2023]
Abstract
The genome of Staphylococcus aureus has rapidly become one the most frequently sequenced among bacteria, with more than 40000 genome sequences uploaded to public databases. Computational resources required for analysis and quality assessment have lagged behind accumulation of sequence data. Improved analytic pipelines, in combination with the development of customized S. aureus reference databases, can be used to inform S. aureus biology and potentially predict clinical outcome. Here, we review the currently available data about S. aureus genome in public databases, and discuss their potential utility for understanding S. aureus evolution. Also discussed are ways to overcome challenges to the application of whole-genome sequencing data for prevention and management of S. aureus disease.
Collapse
|