1
|
Hooper JW, Kwilas SA, Josleyn M, Norris S, Hutter JN, Hamer M, Livezey J, Paolino K, Twomey P, Koren M, Keiser P, Moon JE, Nwaeze U, Koontz J, Ledesma-Feliciano C, Landry N, Wellington T. Phase 1 clinical trial of Hantaan and Puumala virus DNA vaccines delivered by needle-free injection. NPJ Vaccines 2024; 9:221. [PMID: 39551791 PMCID: PMC11570633 DOI: 10.1038/s41541-024-00998-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Hantaan virus (HTNV) and Puumala virus (PUUV) are pathogenic zoonoses found in Asia and Europe, respectively. We conducted a randomized Phase 1 clinical trial of individual HTNV and PUUV DNA vaccines targeting the envelope glycoproteins (GnGc), as well as a combined HTNV/PUUV DNA vaccine delivered at varying doses using the PharmaJet Stratis® needle-free injection system (NCT02776761). Cohort 1 and 2 vaccines consisted of 2 mg/vaccination of HTNV or PUUV plasmid, respectively. Cohort 3 vaccine consisted of 2 mg/vaccination of 1:1 mixture of HTNV and PUUV vaccines. Vaccinations were administered on Days 0, 28, 56, and 168. The vaccines were safe and well tolerated. Neutralizing antibody responses were elicited in 7/7 (100%) subjects who received the HTNV DNA (Cohort 1) and 6/6 (100%) subjects who received the PUUV DNA (Cohort 2) vaccines alone. The combination vaccine resulted in 4/9 (44%) seroconversion against both viruses. After the first two vaccinations, the seroconversion rates for the HTNV and PUUV vaccines were >80%.
Collapse
Affiliation(s)
- Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Matthew Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Sarah Norris
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Jack N Hutter
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Melinda Hamer
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Jeffrey Livezey
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kristopher Paolino
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Patrick Twomey
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Michael Koren
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Paul Keiser
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - James E Moon
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Ugo Nwaeze
- US Army Medical Research and Development Command Office of Regulated Activities, Fort Detrick, MD, 21702, USA
| | - Jason Koontz
- US Army Medical Research and Development Command Office of Regulated Activities, Fort Detrick, MD, 21702, USA
| | | | | | - Trevor Wellington
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
2
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Frank MG, Weaver G, Raabe V. Crimean-Congo Hemorrhagic Fever Virus for Clinicians-Diagnosis, Clinical Management, and Therapeutics. Emerg Infect Dis 2024; 30:864-873. [PMID: 38666553 PMCID: PMC11060459 DOI: 10.3201/eid3005.231648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most geographically widespread tickborne viral infection worldwide and has a fatality rate of up to 62%. Despite its widespread range and high fatality rate, no vaccines or treatments are currently approved by regulatory agencies in the United States or Europe. Supportive treatment remains the standard of care, but the use of antiviral medications developed for other viral infections have been considered. We reviewed published literature to summarize the main aspects of CCHFV infection in humans. We provide an overview of diagnostic testing and management and medical countermeasures, including investigational vaccines and limited therapeutics. CCHFV continues to pose a public health threat because of its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, potential for severe and fatal illness, and limited medical countermeasures for prophylaxis and treatment. Clinicians should become familiar with available diagnostic and management tools for CCHFV infections in humans.
Collapse
|
4
|
Alkan C, Jurado-Cobena E, Ikegami T. Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 2023; 8:171. [PMID: 37925544 PMCID: PMC10625542 DOI: 10.1038/s41541-023-00769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
6
|
Chapman NS, Hulswit RJG, Westover JLB, Stass R, Paesen GC, Binshtein E, Reidy JX, Engdahl TB, Handal LS, Flores A, Gowen BB, Bowden TA, Crowe JE. Multifunctional human monoclonal antibody combination mediates protection against Rift Valley fever virus at low doses. Nat Commun 2023; 14:5650. [PMID: 37704627 PMCID: PMC10499838 DOI: 10.1038/s41467-023-41171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
The zoonotic Rift Valley fever virus (RVFV) can cause severe disease in humans and has pandemic potential, yet no approved vaccine or therapy exists. Here we describe a dual-mechanism human monoclonal antibody (mAb) combination against RVFV that is effective at minimal doses in a lethal mouse model of infection. We structurally analyze and characterize the binding mode of a prototypical potent Gn domain-A-binding antibody that blocks attachment and of an antibody that inhibits infection by abrogating the fusion process as previously determined. Surprisingly, the Gn domain-A antibody does not directly block RVFV Gn interaction with the host receptor low density lipoprotein receptor-related protein 1 (LRP1) as determined by a competitive assay. This study identifies a rationally designed combination of human mAbs deserving of future investigation for use in humans against RVFV infection. Using a two-pronged mechanistic approach, we demonstrate the potent efficacy of a rationally designed combination mAb therapeutic.
Collapse
Affiliation(s)
- Nathaniel S Chapman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ruben J G Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jonna L B Westover
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Guido C Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Joseph X Reidy
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Taylor B Engdahl
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Laura S Handal
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alejandra Flores
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Brian B Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Ahata B, Akçapınar GB. CCHFV vaccine development, current challenges, limitations, and future directions. Front Immunol 2023; 14:1238882. [PMID: 37753088 PMCID: PMC10518622 DOI: 10.3389/fimmu.2023.1238882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is the most prevalent tick-borne viral disease affecting humans. The disease is life-threatening in many regions of the developing world, including Africa, Asia, the Middle East, and Southern Europe. In line with the rapidly increasing disease prevalence, various vaccine strategies are under development. Despite a large number of potential vaccine candidates, there are no approved vaccines as of yet. This paper presents a detailed comparative analysis of current efforts to develop vaccines against CCHFV, limitations associated with current efforts, and future research directions.
Collapse
Affiliation(s)
- Büşra Ahata
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
- Health Institutes of Turkey, Istanbul, Türkiye
| | - Günseli Bayram Akçapınar
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| |
Collapse
|
8
|
Ozdarendeli A. Crimean-Congo Hemorrhagic Fever Virus: Progress in Vaccine Development. Diagnostics (Basel) 2023; 13:2708. [PMID: 37627967 PMCID: PMC10453274 DOI: 10.3390/diagnostics13162708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the Nairoviridae family and Bunyavirales order, is transmitted to humans via tick bites or contact with the blood of infected animals. It can cause severe symptoms, including hemorrhagic fever, with a mortality rate between 5 to 30%. CCHFV is classified as a high-priority pathogen by the World Health Organization (WHO) due to its high fatality rate and the absence of effective medical countermeasures. CCHFV is endemic in several regions across the world, including Africa, Europe, the Middle East, and Asia, and has the potential for global spread. The emergence of the disease in new areas, as well as the presence of the tick vector in countries without reported cases, emphasizes the need for preventive measures to be taken. In the past, the lack of a suitable animal model susceptible to CCHFV infection has been a major obstacle in the development of vaccines and treatments. However, recent advances in biotechnology and the availability of suitable animal models have significantly expedited the development of vaccines against CCHF. These advancements have not only contributed to an enhanced understanding of the pathogenesis of CCHF but have also facilitated the evaluation of potential vaccine candidates. This review outlines the immune response to CCHFV and animal models utilized for the study of CCHFV and highlights the progress made in CCHFV vaccine studies. Despite remarkable advancements in vaccine development for CCHFV, it remains crucial to prioritize continued research, collaboration, and investment in this field.
Collapse
Affiliation(s)
- Aykut Ozdarendeli
- Department of Microbiology, Faculty of Medicine, Erciyes University, 38039 Kayseri, Türkiye;
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, 38039 Kayseri, Türkiye
| |
Collapse
|
9
|
Mohapatra RK, Kutikuppala LVS, Kandi V, Mishra S, Rabaan AA, Costa S, Al‐qaim ZH, Padhi BK, Sah R. Rift valley fever (RVF) viral zoonotic disease steadily circulates in the Mauritanian animals and humans: A narrative review. Health Sci Rep 2023; 6:e1384. [PMID: 37404448 PMCID: PMC10315559 DOI: 10.1002/hsr2.1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 07/06/2023] Open
Abstract
Background and Aim Rift valley fever (RVF) virus (RVFV) is reportedly steadily circulating in Mauritania being repeated in 1987, 2010, 2012, 2015, and 2020. Mauritania seems a preferred niche for RVF virus due to its persistent outbreak there. Lately, nine Mauritanian wilayas confirmed 47 (23 fatalities with 49% CFR) human cases between August 30 and October 17, 2022. Most of the cases were largely among livestock breeders associated with animal husbandry activities. The review aimed at understanding the origin, cause, and measures to counter the virus. Methods The facts and figures from the various published articles sourced from databases including Pubmed, Web of Science, and the Scopus as also some primary data from health agencies like WHO, CDC, and so forth were evaluated and the efficacy of countermeasures reviewed. Results Among the reported confirmed cases, it was found that 3-70 year age-group males outnumbered the females. Deaths after fever occurred primarily due to acute hemorrhagic thrombocytopenia. Human infections often occurred through zoonotic transmission mainly through mosquitoes in the population contiguous to cattle outbreak, a conducive site for local RVFV transmission. Many transmission cases were through direct or indirect contact with blood or organs of the infected animal. Conclusion RVFV infection was predominant in the Mauritanian regions bordering Mali, Senegal, and Algeria. High human and domesticated animal density as also the existing zoonotic vectors further contributed to RVF virus circulation. Mauritanian RVF infection data confirmed that RVFV was zoonotic that included small ruminants, cattle, and camel. This observation hints at the role of transborder animal mobility in RVFV transmission. In light of this, preventive approaches with effective surveillance and monitoring system following the One Health model is extremely beneficial for a free and fair healthy world for all.
Collapse
Affiliation(s)
| | | | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Snehasish Mishra
- School of Biotechnology, Campus‐11, KIIT Deemed‐to‐be‐UniversityBhubaneswarOdishaIndia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco HealthcareDhahranSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
- Department of Public Health and NutritionThe University of HaripurHaripurPakistan
| | - Sharo Costa
- College of Osteopathic MedicineMichigan State UniversityEast LansingMichiganUSA
| | | | - Bijaya K. Padhi
- Department of Community MedicineSchool of Public Health, Postgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching HospitalKathmanduNepal
- Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
- Department of Public Health DentistryDr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
10
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
11
|
Crimean-Congo hemorrhagic fever: Immunopathogenesis and recent advances in the development of vaccines. Microb Pathog 2023; 177:106054. [PMID: 36882130 DOI: 10.1016/j.micpath.2023.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Crimean-Congo hemorrhagic fever is a serious vector-borne zoonotic viral infection which leads to severe illness and fatalities in people living in endemic regions and becoming infected sporadically. Hyalomma ticks are responsible for the transmission of the virus which belongs to the family Nairoviridae. This disease spreads through ticks bite, infected tissues, or blood of viremic animals, and from infected humans to others. Serological studies also indicate the presence of the virus in various domestic and wild animals to be a risk factor for the transmission of the disease. Crimean-Congo hemorrhagic fever virus elicits many immune responses during the infection including inflammatory, innate, and adaptive immune responses. The development of an effective vaccine could be a promising method for the control and prevention of disease in endemic areas. The purpose of this review is to highlight the importance of CCHF, its mode of transmission, the interaction of the virus with the hosts and ticks, immunopathogenesis, and advances in immunization.
Collapse
|
12
|
Pseudotyped Viruses for Phlebovirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:253-264. [PMID: 36920701 DOI: 10.1007/978-981-99-0113-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Rift Valley fever virus (RVFV) is a member of the Phlebovirus genus, one of the 20 genera in the Phenuiviridae family. RVFV causes disease in animals and humans and is transmitted by sandflies or ticks. However, research into RVFV is limited by the requirement for biosafety level 3 (BSL-3) containment. Pseudotyped virus overcomes this limitation as it can be handled in a BSL-2 environment. Pseudotyped RVFV possesses an identical envelope protein structure to that of the authentic virus, simulating the same process of receptor binding and membrane fusion to host cells. Pseudotyped phleboviruses are therefore useful tools to study the infection mechanism of these viruses and for the screening of inhibitory drugs and the development of therapeutic monoclonal antibodies.
Collapse
|
13
|
Vesga JF, Métras R, Clark MHA, Ayazi E, Apolloni A, Leslie T, Msimang V, Thompson PN, John Edmunds W. Vaccine efficacy trials for Crimean-Congo haemorrhagic fever: Insights from modelling different epidemiological settings. Vaccine 2022; 40:5806-5813. [PMID: 36058795 DOI: 10.1016/j.vaccine.2022.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Crimean-Congo haemorrhagic fever (CCHF) is a priority emerging pathogen for which a licensed vaccine is not yet available. We aim to assess the feasibility of conducting phase III vaccine efficacy trials and the role of varying transmission dynamics. METHODS We calibrate models of CCHF virus (CCHFV) transmission among livestock and spillover to humans in endemic areas in Afghanistan, Turkey and South Africa. We propose an individual randomised controlled trial targeted to high-risk population, and use the calibrated models to simulate trial cohorts to estimate the minimum necessary number of cases (trial endpoints) to analyse a vaccine with a minimum efficacy of 60%, under different conditions of sample size and follow-up time in the three selected settings. RESULTS A mean follow-up of 160,000 person-month (75,000-550,000) would be necessary to accrue the required 150 trial endpoints for a target vaccine efficacy of 60 % and clinically defined endpoint, in a setting like Herat, Afghanistan. For Turkey, the same would be achieved with a mean follow-up of 175,000 person-month (50,000-350,000). The results suggest that for South Africa the low endemic transmission levels will not permit achieving the necessary conditions for conducting this trial within a realistic follow-up time. In the scenario of CCHFV vaccine trial designed to capture infection as opposed to clinical case as a trial endpoint, the required person-months is reduced by 70 % to 80 % in Afghanistan and Turkey, and in South Africa, a trial becomes feasible for a large number of person-months of follow-up (>600,000). Increased expected vaccine efficacy > 60 % will reduce the required number of trial endpoints and thus the sample size and follow-time in phase III trials. CONCLUSIONS Underlying endemic transmission levels will play a central role in defining the feasibility of phase III vaccine efficacy trials. Endemic settings in Afghanistan and Turkey offer conditions under which such studies could feasibly be conducted.
Collapse
Affiliation(s)
- Juan F Vesga
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Raphaelle Métras
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique (Unité Mixte de Recherche en Santé 1136), Paris, France
| | - Madeleine H A Clark
- Integrated Understanding of Health, Research Strategy and Programmes, Biotechnology and Biosciences Research Council, Swindon, UK
| | - Edris Ayazi
- Ministry of Public Health, Massoud Square, Kabul, Afghanistan
| | - Andrea Apolloni
- CIRAD, UMR ASTRE, Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | | | - Veerle Msimang
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa; Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
| | - Peter N Thompson
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - W John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
14
|
Wang Q, Wang S, Shi Z, Li Z, Zhao Y, Feng N, Bi J, Jiao C, Li E, Wang T, Wang J, Jin H, Huang P, Yan F, Yang S, Xia X. GEM-PA-Based Subunit Vaccines of Crimean Congo Hemor-Rhagic Fever Induces Systemic Immune Responses in Mice. Viruses 2022; 14:v14081664. [PMID: 36016285 PMCID: PMC9416392 DOI: 10.3390/v14081664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
The Crimean Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne bunyavirus of the Narovirus genus, which is the causative agent of Crimean Congo Hemorrhagic Fever (CCHF). CCHF is endemic in Africa, the Middle East, Eastern Europe and Asia, with a high case-fatality rate of up to 50% in humans. Currently, there are no approved vaccines or effective therapies available for CCHF. The GEM-PA is a safe, versatile and effective carrier system, which offers a cost-efficient, high-throughput platform for recovery and purification of subunit proteins for vaccines. In the present study, based on a GEM-PA surface display system, a GEM-PA based vaccine expressing three subunit vaccine candidates (G-GP, including G-eGN, G-eGC and G-NAb) of CCHFV was developed, displaying the ectodomains of the structural glycoproteins eGN, eGC and NAb, respectively. According to the immunological assays including indirect-ELISA, a micro-neutralization test of pseudo-virus and ELISpot, 5 μg GPBLP3 combined with Montanide ISA 201VG plus Poly (I:C) adjuvant (A-G-GP-5 μg) elicited GP-specific humoral and cellular immunity in BALB/c mice after three vaccinations via subcutaneous injection (s.c.). The consistent data between IgG subtype and cytokine detection, ELISpot and cytokine detection indicated balanced Th1 and Th2 responses, of which G-eGN vaccines could elicit a stronger T-cell response post-vaccination, respectively. Moreover, all three vaccine candidates elicited high TNF-α, IL-6, and IL-10 cytokine levels in the supernatant of stimulated splenocytes in vitro. However, the neutralizing antibody (nAb) was only detected in A-G-eGC and A-G-eGC vaccination groups with the highest neutralizing titer of 128, suggesting that G-eGC could elicit a stronger humoral immune response. In conclusion, the GEM-PA surface display system could provide an efficient and convenient purification method for CCHFV subunit antigens, and the G-GP subunit vaccine candidates will be promising against CCHFV infections with excellent immunogenicity.
Collapse
Affiliation(s)
- Qi Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Zhikang Shi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China;
| | - Zhengrong Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (C.J.); (H.J.); (P.H.)
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Jinhao Bi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China;
| | - Cuicui Jiao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (C.J.); (H.J.); (P.H.)
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
| | - Jianzhong Wang
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China;
| | - Hongli Jin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (C.J.); (H.J.); (P.H.)
| | - Pei Huang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (C.J.); (H.J.); (P.H.)
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Correspondence: (F.Y.); (S.Y.); (X.X.)
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Correspondence: (F.Y.); (S.Y.); (X.X.)
| | - Xianzhu Xia
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (Z.S.); (Z.L.); (Y.Z.); (N.F.); (J.B.); (E.L.); (T.W.)
- Correspondence: (F.Y.); (S.Y.); (X.X.)
| |
Collapse
|
15
|
Transmission dynamics and vaccination strategies for Crimean-Congo haemorrhagic fever virus in Afghanistan: A modelling study. PLoS Negl Trop Dis 2022; 16:e0010454. [PMID: 35604940 PMCID: PMC9166359 DOI: 10.1371/journal.pntd.0010454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/03/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Background Crimean-Congo haemorrhagic fever virus (CCHFV) is a highly pathogenic virus for which a safe and effective vaccine is not yet available, despite being considered a priority emerging pathogen. Understanding transmission patterns and the use of potential effective vaccines are central elements of the future plan against this infection. Methods We developed a series of models of transmission amongst livestock, and spillover infection into humans. We use real-world human and animal data from a CCHFV endemic area in Afghanistan (Herat) to calibrate our models. We assess the value of environmental drivers as proxy indicators of vector activity, and select the best model using deviance information criteria. Finally we assess the impact of vaccination by simulating campaigns targeted to humans or livestock, and to high-risk subpopulations (i.e, farmers). Findings Saturation deficit is the indicator that better explains tick activity trends in Herat. Recent increments in reported CCHFV cases in this area are more likely explained by increased surveillance capacity instead of changes in the background transmission dynamics. Modelling suggests that clinical cases only represent 31% (95% CrI 28%-33%) of total infections in this area. Vaccination campaigns targeting humans would result in a much larger impact than livestock vaccination (266 vs 31 clinical cases averted respectively) and a more efficient option when assessed in courses per case averted (35 vs 431 respectively). Targeted vaccination of farmers is impactful and more efficient, resulting in 19 courses per case averted (95% CrI 7–62) compared to targeting the general population (35 courses 95% CrI 16–107) Conclusions CCHFV is endemic in Herat, and transmission cycles are well predicted by environmental drivers like saturation deficit. Vaccinating humans is likely to be more efficient and impactful than animals, and importantly targeted interventions to high risk groups like farmers can offer a more efficient approach to vaccine roll-out. Crimean-Congo haemorrhagic fever virus (CCHF) is an understudied emerging pathogen and the cause of increasingly frequent outbreaks of haemorrhagic fever in humans in several parts of the world. Here we bring together an important body of work in different aspects of the ecology and epidemiology of CCHF to shed light on its transmission dynamics into humans and the role of environmental drivers. These results show that over the years an endemic pattern of CCHFV transmission has been established within livestock, and the frequency of human cases mirrors the seasonal pattern of livestock transmission. Our analysis further suggests that an important fraction of cases in humans might be subclinical, and the volume of transmission into humans might be much larger than previously thought. We examine the potential impact of vaccination, which suggest that not only human vaccination could be more impactful than animal vaccination, but also that targeted strategies in human high risk groups could be very effective. Our results raise important insights for future vaccine development and important questions on the optimal conditions for conducting Phase III vaccine trials in humans.
Collapse
|
16
|
Fatima I, Ahmad S, Abbasi SW, Ashfaq UA, Shahid F, Tahir Ul Qamar M, Rehman A, Allemailem KS. Designing of a multi-epitopes-based peptide vaccine against rift valley fever virus and its validation through integrated computational approaches. Comput Biol Med 2022; 141:105151. [PMID: 34942394 DOI: 10.1016/j.compbiomed.2021.105151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023]
Abstract
Since its discovery, the Rift Valley Fever virus (RVFV) has been the source of numerous outbreaks in the Arab Peninsulas and Africa, wreaking havoc on humans and animals. The lack of therapeutics or licensed human vaccines limits the options for controlling RVFV outbreaks. Therefore, RVFV has been prioritized for rapid research and innovation of prevention strategies to control and prevent its outbreaks. The purpose of this study was to design a multi-epitope-based peptide vaccine (MEBPV) against RVFV. Bioinformatics approaches were used to design a potent MEBPV that can potentially activate both CD8+ and CD4+ T-cell immune responses, and several computational tools were employed to investigate its biological activities. Three antigenic proteins (Nucleocapsid (N), Glycoprotein C (GC), and Glycoprotein N (GN)) from the RVFV were chosen and potential immunogenic T- and B -cell epitopes were predicted from them. Based on in silico analysis, a MEBPV based on highly scored T and B-cell epitopes (6 CTL, 5 HTL, and 4 LBL) combined with linkers and adjuvants was developed. The finest predicted model was used for docking studies with Toll-like receptors (TLR3 and TLR8) and MHC molecules (MHC I and MHC II) after predicting and analyzing the tertiary structure of MEBPV. The designed MEBPV was then tested for stability with TLR3 and TLR8 receptors using molecular dynamics (MD) simulation and MMGBSA analysis. The MEBPV -TLR3, MEBPV -TLR8, MEBPV-MHC I and MEBPV -MHC II docked models were found stable during simulation time in MD and MMGBSA studies. In silico analysis revealed that the constructed vaccine could elicit both cell-mediated and humoral immune responses simultaneously. The proposed MEBPV could be a strong candidate against RVFV, but it will need to be tested in the laboratory to guarantee its safety and immunogenicity.
Collapse
Affiliation(s)
- Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan.
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | | | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
| |
Collapse
|
17
|
Mears MC, Bente DA. In silico Design of a Crimean-Congo Hemorrhagic Fever Virus Glycoprotein Multi-Epitope Antigen for Vaccine Development. ZOONOSES (BURLINGTON, MASS.) 2022; 2:34. [PMID: 37206318 PMCID: PMC10195060 DOI: 10.15212/zoonoses-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Objective There is no licensed vaccine available to prevent the severe tick-borne disease Crimean-Congo hemorrhagic fever (CCHF), caused by the CCHF virus (CCHFV). This study sought to show that a combination of computational methods and data from published literature can inform the design of a multi-epitope antigen for CCHFV that has the potential to be immunogenic. Methods Cytotoxic and helper T-cell epitopes were evaluated on the CCHFV GPC using bioinformatic servers, and this data was combined with work from previous studies to identify potentially immunodominant regions of the GPC. Regions of the GPC were selected for generation of a model multi-epitope antigen in silico, and the percent residue identity and similarity of each region was compared across sequences representing the widespread geographical and ecological distribution of CCHFV. Results Eleven multi-epitope regions were joined together with flexible linkers in silico to generate a model multi-epitope antigen, termed EPIC, which included 812 (75.7%) of all predicted epitopes. EPIC was predicted to be antigenic by two independent bioinformatic servers, suggesting that multi-epitope antigens should be explored further for CCHFV vaccine development. Conclusion The results presented within this manuscript provide information for potential targets within the CCHFV GPC for guiding future vaccine development.
Collapse
Affiliation(s)
- Megan C. Mears
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Correspondent: , 301 University Blvd., Route 0610, Galveston, Texas 77550
| | - Dennis A. Bente
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
18
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
19
|
Kuskov A, Selina O, Kulikov P, Imatdinov I, Balysheva V, Kryukov A, Shtilman M, Markvicheva E. Amphiphilic Poly( N-Vinylpyrrolidone) Nanoparticles Loaded with DNA Plasmids Encoding Gn and Gc Glycoproteins of the Rift Valley Fever Virus: Preparation and In Vivo Evaluation. ACS APPLIED BIO MATERIALS 2021; 4:6084-6092. [PMID: 35006888 DOI: 10.1021/acsabm.1c00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of the study was to develop amphiphilic poly(N-vinylpyrrolidone) (PVP) nanoparticles (NPs) loaded with DNA plasmids encoding Gn and Gc glycoproteins of the Rift Valley fever virus (RVFV) and to study the humoral response in vivo. DNA plasmids were protected from extracellular nucleases by loading in NPs from PVP derivatives modified with amino acids β-alanine (Ala7-PVPOD4000) or glycine (Gly7.5-PVP-OD4000) fabricated by the original self-assembly technique. The obtained NPs were administered in mice and the enhancement of humoral response compared to this one in case of immunization with native DNA plasmids was demonstrated. The NPs loaded with DNA plasmids are promising for the fabrication of various DNA particulate vaccines.
Collapse
Affiliation(s)
- Andrey Kuskov
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Oxana Selina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Pavel Kulikov
- Center of Strategic Planning and Management of Medical and Biological Health Risks, Pogodinskaya St. 10/1, 119121 Moscow, Russia
| | - Ilnaz Imatdinov
- State Research Center of Virology and Biotechnology VECTOR, Novosibirsk Oblast, 630559 Koltsovo, Russia
| | - Vera Balysheva
- Federal Research Center for Virology and Microbiology (FRCVM), Academician Bakoulov Str., Bldg.1, Petushki district, Vladimir region, 601125 Volginsky, Russia
| | - Alexander Kryukov
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Mikhail Shtilman
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Elena Markvicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
20
|
Vesicular Stomatitis Virus Chimeras Expressing the Oropouche Virus Glycoproteins Elicit Protective Immune Responses in Mice. mBio 2021; 12:e0046321. [PMID: 34340542 PMCID: PMC8406270 DOI: 10.1128/mbio.00463-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oropouche virus (OROV) infection of humans is associated with a debilitating febrile illness that can progress to meningitis or encephalitis. First isolated from a forest worker in Trinidad and Tobago in 1955, the arbovirus OROV has since been detected throughout the Amazon basin with an estimated 500,000 human infections over 60 years. Like other members of the family Peribunyaviridae, the viral genome exists as 3 single-stranded negative-sense RNA segments. The medium-sized segment encodes a viral glycoprotein complex (GPC) that is proteolytically processed into two viral envelope proteins, Gn and Gc, responsible for attachment and membrane fusion. There are no therapeutics or vaccines to combat OROV infection, and we have little understanding of protective immunity to infection. Here, we generated a replication competent chimeric vesicular stomatitis virus (VSV), in which the endogenous glycoprotein was replaced by the GPC of OROV. Serum from mice immunized by intramuscular injection with VSV-OROV specifically neutralized wild-type OROV, and using peptide arrays we mapped multiple epitopes within an N-terminal variable region of Gc recognized by the immune sera. VSV-OROV lacking this variable region of Gc was also immunogenic in mice producing neutralizing sera that recognize additional regions of Gc. Challenge of both sets of immunized mice with wild-type OROV shows that the VSV-OROV chimeras reduce wild-type viral infection and suggest that antibodies that recognize the variable N terminus of Gc afford less protection than those that target more conserved regions of Gc. IMPORTANCE Oropouche virus (OROV), an orthobunyavirus found in Central and South America, is an emerging public health challenge that causes debilitating febrile illness. OROV is transmitted by arthropods, and increasing mobilization has the potential to significantly increase the spread of OROV globally. Despite this, no therapeutics or vaccines have been developed to combat infection. Using vesicular stomatitis (VSV) as a backbone, we developed a chimeric virus bearing the OROV glycoproteins (VSV-OROV) and tested its ability to elicit a neutralizing antibody response. Our results demonstrate that VSV-OROV produces a strong neutralizing antibody response that is at least partially targeted to the N-terminal region of Gc. Importantly, vaccination with VSV-OROV reduces viral loads in mice challenged with wild-type virus. These data provide novel evidence that targeting the OROV glycoproteins may be an effective vaccination strategy to combat OROV infection.
Collapse
|
21
|
Preliminary Evaluation of a Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Providing Full Protection against Heterologous Virulent Challenge in Cattle. Vaccines (Basel) 2021; 9:vaccines9070748. [PMID: 34358166 PMCID: PMC8310273 DOI: 10.3390/vaccines9070748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen that causes periodic outbreaks of abortion in ruminant species and hemorrhagic disease in humans in sub-Saharan Africa. These outbreaks have a significant impact on veterinary and public health. Its introduction to the Arabian Peninsula in 2003 raised concerns of further spread of this transboundary pathogen to non-endemic areas. These concerns are supported by the presence of competent vectors in many non-endemic countries. There is no licensed RVF vaccine available for humans and only a conditionally licensed veterinary vaccine available in the United States. Currently employed modified live attenuated virus vaccines in endemic countries lack the ability for differentiating infected from vaccinated animals (DIVA). Previously, the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins, derived from the 1977 human RVFV isolate ZH548, was demonstrated in sheep. In the current study, cattle were vaccinated subcutaneously with the Gn only, or Gn and Gc combined, with either one or two doses of the vaccine and then subjected to heterologous virus challenge with the virulent Kenya-128B-15 RVFV strain, isolated from Aedes mosquitoes in 2006. The elicited immune responses by some vaccine formulations (one or two vaccinations) conferred complete protection from RVF within 35 days after the first vaccination. Vaccines given 35 days prior to RVFV challenge prevented viremia, fever and RVFV-associated histopathological lesions. This study indicates that a recombinant RVFV glycoprotein-based subunit vaccine platform is able to prevent and control RVFV infections in target animals.
Collapse
|
22
|
Petrova V, Kristiansen P, Norheim G, Yimer SA. Rift valley fever: diagnostic challenges and investment needs for vaccine development. BMJ Glob Health 2021; 5:bmjgh-2020-002694. [PMID: 32816810 PMCID: PMC7437696 DOI: 10.1136/bmjgh-2020-002694] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 11/04/2022] Open
Abstract
Rift valley fever virus (RVFV) is a causative agent of a viral zoonosis that constitutes a major clinical burden in wild and domestic ruminants. The virus causes major outbreaks in livestock (sheep, goats, cattle and camels) and can be transmitted to humans by contaminated animal products or via arthropod vectors. Human-to-human transmission has not been reported to date, but spill-over events from animals have led to outbreaks in humans in Africa and the Arabian Peninsula. Currently, there is no licensed human vaccine against RVFV and the virus is listed as a priority pathogen by the World Health Organisation (WHO) due to the high epidemic potential and the lack of effective countermeasures. Multiple large RVFV outbreaks have been reported since the virus was discovered. During the last two decades, over 4000 cases and ~1000 deaths have been reported. The lack of systematic surveillance to estimate the true burden and incidence of human RVF disease is a challenge for planning future vaccine efficacy evaluation. This creates a need for robust diagnostic methodologies that can be deployed in remote regions to aid case confirmation, assessment of seroprevalence as well as pathogen surveillance required for the different stages of vaccine evaluation. Here, we perform comprehensive landscaping of the available diagnostic solutions for detection of RVFV in humans. Based on the identified gaps in the currently available in-house and commercially available methods, we highlight the specific investment needs for diagnostics that are critical for accelerating the development of effective vaccines against RVFV.
Collapse
Affiliation(s)
| | - Paul Kristiansen
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | | | - Solomon A Yimer
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| |
Collapse
|
23
|
Chapman NS, Zhao H, Kose N, Westover JB, Kalveram B, Bombardi R, Rodriguez J, Sutton R, Genualdi J, LaBeaud AD, Mutuku FM, Pittman PR, Freiberg AN, Gowen BB, Fremont DH, Crowe JE. Potent neutralization of Rift Valley fever virus by human monoclonal antibodies through fusion inhibition. Proc Natl Acad Sci U S A 2021; 118:e2025642118. [PMID: 33782133 PMCID: PMC8040655 DOI: 10.1073/pnas.2025642118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus (RVFV), an emerging arboviral and zoonotic bunyavirus, causes severe disease in livestock and humans. Here, we report the isolation of a panel of monoclonal antibodies (mAbs) from the B cells of immune individuals following natural infection in Kenya or immunization with MP-12 vaccine. The B cell responses of individuals who were vaccinated or naturally infected recognized similar epitopes on both Gc and Gn proteins. The Gn-specific mAbs and two mAbs that do not recognize either monomeric Gc or Gn alone but recognized the hetero-oligomer glycoprotein complex (Gc+Gn) when Gc and Gn were coexpressed exhibited potent neutralizing activities in vitro, while Gc-specific mAbs exhibited relatively lower neutralizing capacity. The two Gc+Gn-specific mAbs and the Gn domain A-specific mAbs inhibited RVFV fusion to cells, suggesting that mAbs can inhibit the exposure of the fusion loop in Gc, a class II fusion protein, and thus prevent fusion by an indirect mechanism without direct fusion loop contact. Competition-binding analysis with coexpressed Gc/Gn and mutagenesis library screening indicated that these mAbs recognize four major antigenic sites, with two sites of vulnerability for neutralization on Gn. In experimental models of infection in mice, representative mAbs recognizing three of the antigenic sites reduced morbidity and mortality when used at a low dose in both prophylactic and therapeutic settings. This study identifies multiple candidate mAbs that may be suitable for use in humans against RVFV infection and highlights fusion inhibition against bunyaviruses as a potential contributor to potent antibody-mediated neutralization.
Collapse
Affiliation(s)
- Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonna B Westover
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jessica Rodriguez
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Joseph Genualdi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305
| | - Francis M Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Phillip R Pittman
- Medical Research and Material Command, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, TX 77555
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Brian B Gowen
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
24
|
Suschak JJ, Golden JW, Fitzpatrick CJ, Shoemaker CJ, Badger CV, Schmaljohn CS, Garrison AR. A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. NPJ Vaccines 2021; 6:31. [PMID: 33654101 PMCID: PMC7925670 DOI: 10.1038/s41541-021-00293-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus that causes severe hemorrhagic fever disease in humans. Currently, no licensed CCHF vaccines exist, and the protective epitopes remain unclear. Previously, we tested a DNA vaccine expressing the M-segment glycoprotein precursor gene of the laboratory CCHFV strain IbAr 10200 (CCHFV-M10200). CCHFV-M10200 provided >60% protection against homologous CCHFV-IbAr 10200 challenge in mice. Here, we report that increasing the dose of CCHFV-M10200 provides complete protection from homologous CCHFV challenge in mice, and significant (80%) protection from challenge with the clinically relevant heterologous strain CCHFV-Afg09-2990. We also report complete protection from CCHFV-Afg09-2990 challenge following vaccination with a CCHFV-Afg09-2990 M-segment DNA vaccine (CCHFV-MAfg09). Finally, we show that the non-structural M-segment protein, GP38, influences CCHF vaccine immunogenicity and provides significant protection from homologous CCHFV challenge. Our results demonstrate that M-segment DNA vaccines elicit protective CCHF immunity and further illustrate the immunorelevance of GP38.
Collapse
Affiliation(s)
- John J Suschak
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| | - Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Collin J Fitzpatrick
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Charles J Shoemaker
- Diagnostics Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Catherine V Badger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Connie S Schmaljohn
- Headquarters Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.,National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Frederick, MD, USA
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| |
Collapse
|
25
|
Abstract
Rift Valley fever (RVF) is a zoonotic, vector-borne infectious disease of ruminants and camels transmitted mainly by the Aedes and Culex mosquito species. Contact with the blood or organs of infected animals may infect humans. Its etiological factor is the Rift Valley fever virus (RVFV) of the Phlebovirus genus and Bunyaviridae family. Sheep and goats are most susceptible to infection and newborns and young individuals endure the most severe disease course. High abortion rates and infant mortality are typical for RVF; its clinical signs are high fever, lymphadenitis, nasal and ocular secretions and vomiting. Conventional diagnosis is done by the detection of specific IgM or IgG antibodies and RVFV nucleic acids and by virus isolation. Inactivated and live-attenuated vaccines obtained from virulent RVFV isolates are available for livestock. RVF is endemic in sub-Saharan Africa and the Arabian Peninsula, but in the last two decades, it was also reported in other African regions. Seropositive animals were detected in Turkey, Tunisia and Libya. The wide distribution of competent vectors in non-endemic areas coupled with global climate change threaten to spread RVF transboundarily. The EFSA considers the movement of infected animals and vectors to be other plausible pathways of RVF introduction into Europe. A very low risk both of introduction of the virus through an infected animal or vector and of establishment of the virus, and a moderate risk of its transmission through these means was estimated for Poland. The risk of these specific modes of disease introduction into Europe is rated as very low, but surveillance and response capabilities and cooperation with the proximal endemic regions are recommended.
Collapse
|
26
|
Cross RW, Prasad AN, Borisevich V, Geisbert JB, Agans KN, Deer DJ, Fenton KA, Geisbert TW. Crimean-Congo hemorrhagic fever virus strains Hoti and Afghanistan cause viremia and mild clinical disease in cynomolgus monkeys. PLoS Negl Trop Dis 2020; 14:e0008637. [PMID: 32790668 PMCID: PMC7447009 DOI: 10.1371/journal.pntd.0008637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/25/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Development of vaccines and therapies against Crimean-Congo hemorrhagic fever virus (CCHFV) have been hindered by the lack of immunocompetent animal models. Recently, a lethal nonhuman primate model based on the CCHFV Hoti strain was reported. CCHFV Hoti caused severe disease in cynomolgus monkeys with 75% lethality when given by the intravenous (i.v.) route. METHODOLOGY/PRINCIPAL FINDINGS In a series of experiments, eleven cynomologus monkeys were exposed i.v. to CCHFV Hoti and four macaques were exposed i.v. to CCHFV Afghanistan. Despite transient viremia and changes in clinical pathology such as leukopenia and thrombocytopenia developing in all 15 animals, all macaques survived to the study endpoint without developing severe disease. CONCLUSIONS/SIGNIFICANCE We were unable to attribute differences in the results of our study versus the previous report to differences in the CCHFV Hoti stock, challenge dose, origin, or age of the macaques. The observed differences are most likely the result of the outbred nature of macaques and low animal numbers often used by necessity and for ethical considerations in BSL-4 studies. Nonetheless, while we were unable to achieve severe disease or lethality, the CCHFV Hoti and Afghanistan macaque models are useful for screening medical countermeasures using biomarkers including viremia and clinical pathology to assess efficacy.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Abhishek N. Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Joan B. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Daniel J. Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Karla A. Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
27
|
Tipih T, Burt FJ. Crimean-Congo Hemorrhagic Fever Virus: Advances in Vaccine Development. Biores Open Access 2020; 9:137-150. [PMID: 32461819 PMCID: PMC7247048 DOI: 10.1089/biores.2019.0057] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 01/12/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe human disease with mortality rates of up to 30%. The disease is widespread in Africa, Asia, the Middle East and Eastern Europe. The last few years have seen disease emergence in Spain for the first time and disease re-emergence in other regions of the world after periods of inactivity. Factors, such as climate change, movement of infected ticks, animals, and changes in human activity, are likely to broaden endemic foci. There are therefore concerns that CCHF might emerge in currently nonendemic regions. The absence of approved vaccines or therapies heightens these concerns; thus Crimean-Congo hemorrhagic fever virus (CCHFV) is listed by the World Health Organization as a priority organism. However, the current sporadic nature of CCHF cases may call for targeted vaccination of risk groups as opposed to mass vaccinations. CCHF vaccine development has accelerated in recent years, partly because of the discovery of CCHF animal models. In this review, we discuss CCHF risk groups who are most likely to benefit from vaccine development, the merits and demerits of available CCHF animal models, and the various approaches which have been explored for CCHF vaccine development. Lastly, we present concluding remarks and research areas which can be further explored to enhance the available CCHFV vaccine data.
Collapse
Affiliation(s)
- Thomas Tipih
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Felicity Jane Burt
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Health Laboratory Service, Bloemfontein, South Africa
| |
Collapse
|
28
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Rojas JLG, Schmidt CG, Michel V, Chueca MÁM, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Bett B, Cetre-Sossah C, Chevalier V, Devos C, Gubbins S, Monaco F, Sotiria-Eleni A, Broglia A, Abrahantes JC, Dhollander S, Stede YVD, Zancanaro G. Rift Valley Fever - epidemiological update and risk of introduction into Europe. EFSA J 2020; 18:e06041. [PMID: 33020705 PMCID: PMC7527653 DOI: 10.2903/j.efsa.2020.6041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub-Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5-15 years of inter-epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low-level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228-700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.
Collapse
|
29
|
Introducing of an integrated artificial neural network and Chou's pseudo amino acid composition approach for computational epitope-mapping of Crimean-Congo haemorrhagic fever virus antigens. Int Immunopharmacol 2020; 78:106020. [DOI: 10.1016/j.intimp.2019.106020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
|
30
|
Fine mapping epitope on glycoprotein Gc from Crimean-Congo hemorrhagic fever virus. Comp Immunol Microbiol Infect Dis 2019; 67:101371. [PMID: 31627038 DOI: 10.1016/j.cimid.2019.101371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/03/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonosis, caused by CCHF virus (CCHFV) and which there are no diagnostic or therapeutic strategies. The C-terminus of glycoprotein (Gc) encoded by the CCHFV M gene is responsible for CCHFV binding to cellular receptors and acts as a neutralizing-antibody target. In this study, a modified biosynthetic peptide technique (BSP) was used to identify fine epitopes of Gc from the CCHFV YL04057 strain using rabbit antiserum against CCHFV-Gc. Six B cell epitopes (BCEs) and one antigenic peptide (AP) were identified: E1 (88VEDASES94), E2 (117GDRQVEE123), E3 (241EIVTLH246), AP-4 (281DFQVYHVGNLLRGDKV296), E5a (370GDTP QLDL377), E5b (373PQLDLKAR380), and E6 (443HVRSSD448). Western blotting analysis showed that each epitope interacted with the positive serum of sheep that had been naturally infected with CCHFV, and the results were consistent with that of Dot-ELISA. The multiple sequence alignment (MSA) revealed high conservation of the identified epitopes among ten CCHFV strains from different areas, except for epitopes AP-4 and E6. Furthermore, three-dimensional structural modeling showed that all identified epitopes were located on the surface of the Gc "head" domain. These mapped epitopes of the CCHFV Gc would provide a basis for further increase our understanding CCHFV glycoprotein function and the development of a CCHFV epitope-based diagnostics vaccine and detection antigen.
Collapse
|
31
|
Ma J, Chen R, Huang W, Nie J, Liu Q, Wang Y, Yang X. In vitro and in vivo efficacy of a Rift Valley fever virus vaccine based on pseudovirus. Hum Vaccin Immunother 2019; 15:2286-2294. [PMID: 31170027 PMCID: PMC6816429 DOI: 10.1080/21645515.2019.1627820] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/15/2019] [Accepted: 06/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rift Valley fever virus (RVFV), a recognized category A priority pathogen, causes large outbreaks of Rift Valley fever with some fatalities in humans in humans and huge economic losses in livestock. As wild-type RVFV must be handled in BSL-3 or BSL-4 laboratories, we constructed a high-titer vesicular stomatitis virus (VSV) pseudotype bearing RVFV envelope glycoproteins to detect neutralizing antibodies in vitro under BSL-2 conditions. The neutralizing properties of 39 amino acid mutant sites that have occurred naturally over time in the RVFV envelope glycoproteins were analyzed with their corresponding pseudoviral mutants separately. Compared with the results in the primary strain, the variants showed no statistically significant differences. We next established a Balb/c mouse pseudovirus infection model for detecting neutralizing antibodies against pseudovirus. Five immunizations with pseudoviral DNA protected the mice from infection with the pseudovirus. Bioluminescence imaging, which we used to evaluate viral dissemination and distribution in the mice, showed a good relationship between the neutralizing antibodies titers in vitro. These pseudovirus methods will allow for the safe determination of neutralizing antibodies in vivo and in vitro, and will assist with studies on vaccines and drugs against RVFV with the long term objective of Rift Valley fever prevention.
Collapse
Affiliation(s)
- Jian Ma
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
- National Engineering Technology Research Center of Combination Vaccines, Wuhan, China
| | - Ruifeng Chen
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Qiang Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xiaoming Yang
- National Engineering Technology Research Center of Combination Vaccines, Wuhan, China
- China National Biotec Group Company Limited, Beijing, China
| |
Collapse
|
32
|
A. Gómez L, A. Oñate A. Plasmid-Based DNA Vaccines. Plasmid 2019. [DOI: 10.5772/intechopen.76754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Sci Rep 2019; 9:7755. [PMID: 31123310 PMCID: PMC6533279 DOI: 10.1038/s41598-019-44210-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne bunyavirus, can cause a life-threatening hemorrhagic syndrome in humans but not in its animal host. The virus is widely distributed throughout southeastern Europe, the Middle East, Africa, and Asia. Disease management has proven difficult and there are no broadly licensed vaccines or therapeutics. Recombinant vesicular stomatitis viruses (rVSV) expressing foreign glycoproteins (GP) have shown promise as experimental vaccines for several viral hemorrhagic fevers. Here, we developed and assessed a replication competent rVSV vector expressing the CCHFV glycoprotein precursor (GPC), which encodes CCHFV structural glycoproteins. This construct drives strong expression of CCHFV-GP, in vitro. Using these vectors, we vaccinated STAT-1 knock-out mice, an animal model for CCHFV. The vector was tolerated and 100% efficacious against challenge from a clinical strain of CCHFV. Anti-CCHFV-GP IgG and neutralizing antibody titers were observed in surviving animals. This study demonstrates that a rVSV expressing only the CCHFV-GP has the potential to serve as a replication competent vaccine platform against CCHF infections.
Collapse
|
34
|
The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses 2019; 11:v11020139. [PMID: 30736362 PMCID: PMC6410127 DOI: 10.3390/v11020139] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022] Open
Abstract
Rift Valley fever (RVF) is an emerging transboundary, mosquito-borne, zoonotic viral disease caused high morbidity and mortality in both human and ruminant populations. It is considered an important threat to both agriculture and public health in African and the Middle Eastern countries including Egypt. Five major RVF epidemics have been reported in Egypt (1977, 1993, 1994, 1997, and 2003). The virus is transmitted in Egypt by different mosquito’s genera such as Aedes, Culex, Anopheles, and Mansonia, leading to abortions in susceptible animal hosts especially sheep, goat, cattle, and buffaloes. Recurrent RVF outbreaks in Egypt have been attributed in part to the lack of routine surveillance for the virus. These periodic epizootics have resulted in severe economic losses. We posit that there is a critical need for new approaches to RVF control that will prevent or at least reduce future morbidity and economic stress. One Health is an integrated approach for the understanding and management of animal, human, and environmental determinants of complex problems such as RVF. Employing the One Health approach, one might engage local communities in surveillance and control of RVF efforts, rather than continuing their current status as passive victims of the periodic RVF incursions. This review focuses upon endemic and epidemic status of RVF in Egypt, the virus vectors and their ecology, transmission dynamics, risk factors, and the ecology of the RVF at the animal/human interface, prevention, and control measures, and the use of environmental and climate data in surveillance systems to predict disease outbreaks.
Collapse
|
35
|
Shimojima M. Similarity and Difference in Characteristics of Two Diseases, SFTS and CCHF, and Their Causative Agents. SEVERE FEVER WITH THROMBOCYTOPENIA SYNDROME 2019:231-246. [DOI: 10.1007/978-981-13-9562-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach. INFECTION GENETICS AND EVOLUTION 2017; 56:75-91. [PMID: 29107145 PMCID: PMC7106247 DOI: 10.1016/j.meegid.2017.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Rift Valley fever virus (RVFV) is an emergent arthropod-borne zoonotic infectious viral pathogen which causes fatal diseases in the humans and ruminants. Currently, no effective and licensed vaccine is available for the prevention of RVFV infection in endemic as well as in non-endemic regions. So, an immunoinformatics-driven genome-wide screening approach was performed for the identification of overlapping CD8+ and CD4+ T-cell epitopes and also linear B-cell epitopes from the conserved sequences of the nucleocapsid (N) and glycoprotein (G) of RVFV. We identified overlapping 99.39% conserved 1 CD8+ T-cell epitope (MMHPSFAGM) from N protein and 100% conserved 7 epitopes (AVFALAPVV, LAVFALAPV, FALAPVVFA, VFALAPVVF, IAMTVLPAL, FFDWFSGLM, and FLLIYLGRT) from G protein and also identified IL-4 and IFN-γ induced (99.39% conserved) 1 N protein CD4+ T-cell epitope (HMMHPSFAGMVDPSL) and 100% conserved 5 G protein CD4+ T-cell epitopes (LPALAVFALAPVVFA, PALAVFALAPVVFAE, GIAMTVLPALAVFAL, GSWNFFDWFSGLMSW, and FFLLIYLGRTGLSKM). The overlapping CD8+ and CD4+ T-cell epitopes were bound with most conserved HLA-C*12:03 and HLA-DRB1*01:01, respectively with the high binding affinity (kcal/mol). The combined population coverage analysis revealed that the allele frequencies of these epitopes are high in endemic and non-endemic regions. Besides, we found 100% conserved and non-allergenic 2 decamer B-cell epitopes, GVCEVGVQAL and RVFNCIDWVH of G protein had the sequence similarity with the nonamer CD8+ T-cell epitopes, VCEVGVQAL and RVFNCIDWV, respectively. Consequently, these epitopes may be used for the development of epitope-based peptide vaccine against emerging RVFV. However, in vivo and in vitro experiments are required for their efficient use as a vaccine.
Collapse
|
37
|
Dowall SD, Carroll MW, Hewson R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine 2017; 35:6015-6023. [PMID: 28687403 PMCID: PMC5637709 DOI: 10.1016/j.vaccine.2017.05.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022]
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) is a deadly human pathogen of the utmost seriousness being highly lethal causing devastating disease symptoms that result in intense and prolonged suffering to those infected. During the past 40years, this virus has repeatedly caused sporadic outbreaks responsible for relatively low numbers of human casualties, but with an alarming fatality rate of up to 80% in clinically infected patients. CCHFV is transmitted to humans by Hyalomma ticks and contact with the blood of viremic livestock, additionally cases of human-to-human transmission are not uncommon in nosocomial settings. The incidence of CCHF closely matches the geographical range of permissive ticks, which are widespread throughout Africa, Asia, the Middle East and Europe. As such, CCHFV is the most widespread tick-borne virus on earth. It is a concern that recent data shows the geographic distribution of Hyalomma ticks is expanding. Migratory birds are also disseminating Hyalomma ticks into more northerly parts of Europe thus potentially exposing naïve human populations to CCHFV. The virus has been imported into the UK on two occasions in the last five years with the first fatal case being confirmed in 2012. A licensed vaccine to CCHF is not available. In this review, we discuss the background and complications surrounding this limitation and examine the current status and recent advances in the development of vaccines against CCHFV.
Collapse
Affiliation(s)
- Stuart D Dowall
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Miles W Carroll
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|
38
|
Current Status of Rift Valley Fever Vaccine Development. Vaccines (Basel) 2017; 5:vaccines5030029. [PMID: 28925970 PMCID: PMC5620560 DOI: 10.3390/vaccines5030029] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease.
Collapse
|
39
|
Garrison AR, Shoemaker CJ, Golden JW, Fitzpatrick CJ, Suschak JJ, Richards MJ, Badger CV, Six CM, Martin JD, Hannaman D, Zivcec M, Bergeron E, Koehler JW, Schmaljohn CS. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl Trop Dis 2017; 11:e0005908. [PMID: 28922426 PMCID: PMC5619839 DOI: 10.1371/journal.pntd.0005908] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/28/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV. Crimean-Congo hemorrhagic Fever Virus (CCHFV) is a tick-borne virus capable of causing lethal human disease against which there are currently no approved vaccines. In this study, we compared the immunogenicity and protective efficacy of a candidate DNA vaccine expressing the glycoprotein precursor gene of CCHFV in two mouse models. In addition to the recently established IFNAR-/- mouse pathogenesis model, we also tested the vaccine in a novel murine system in which the interferon (IFN) α/β signaling response of immunocompetent mice is transiently suppressed. We found that the DNA vaccine elicited high humoral immune responses and provided significant protection against challenge with CCHFV in both mouse models. These findings further our understanding of the requirements for a CCHFV vaccine and provide a new mouse model for the development of CCHFV countermeasures.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Disease Models, Animal
- Glycoproteins/genetics
- Glycoproteins/immunology
- Hemorrhagic Fever Virus, Crimean-Congo/genetics
- Hemorrhagic Fever Virus, Crimean-Congo/immunology
- Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification
- Hemorrhagic Fever, Crimean/immunology
- Hemorrhagic Fever, Crimean/prevention & control
- Hemorrhagic Fever, Crimean/virology
- Humans
- Immunity, Humoral
- Immunocompromised Host
- Immunogenicity, Vaccine
- Mice
- Mice, Knockout
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Th1 Cells/immunology
- Th2 Cells/immunology
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Aura R. Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail: (CSS); (ARG)
| | - Charles J. Shoemaker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Joseph W. Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Collin J. Fitzpatrick
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - John J. Suschak
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Michelle J. Richards
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Catherine V. Badger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Carolyn M. Six
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jacqueline D. Martin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Drew Hannaman
- Ichor Medical Systems, Inc., San Diego, California, United States of America
| | - Marko Zivcec
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Eric Bergeron
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeffrey W. Koehler
- Diagnostics Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Connie S. Schmaljohn
- Headquarters Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail: (CSS); (ARG)
| |
Collapse
|
40
|
Bounds CE, Terry FE, Moise L, Hannaman D, Martin WD, De Groot AS, Suschak JJ, Dupuy LC, Schmaljohn CS. An immunoinformatics-derived DNA vaccine encoding human class II T cell epitopes of Ebola virus, Sudan virus, and Venezuelan equine encephalitis virus is immunogenic in HLA transgenic mice. Hum Vaccin Immunother 2017; 13:2824-2836. [PMID: 28575582 PMCID: PMC5718811 DOI: 10.1080/21645515.2017.1329788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Immunoinformatics tools were used to predict human leukocyte antigen (HLA) class II-restricted T cell epitopes within the envelope glycoproteins and nucleocapsid proteins of Ebola virus (EBOV) and Sudan virus (SUDV) and the structural proteins of Venezuelan equine encephalitis virus (VEEV). Selected epitopes were tested for binding to soluble HLA molecules representing 5 class II alleles (DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, and DRB1*1501). All but one of the 25 tested peptides bound to at least one of the DRB1 alleles, and 4 of the peptides bound at least moderately or weakly to all 5 DRB1 alleles. Additional algorithms were used to design a single "string-of-beads" expression construct with 44 selected epitopes arranged to avoid creation of spurious junctional epitopes. Seventeen of these 44 predicted epitopes were conserved between the major histocompatibility complex (MHC) of humans and mice, allowing initial testing in mice. BALB/c mice vaccinated with the multi-epitope construct developed statistically significant cellular immune responses to EBOV, SUDV, and VEEV peptides as measured by interferon (IFN)-γ ELISpot assays. Significant levels of antibodies to VEEV, but not EBOV, were also detected in vaccinated BALB/c mice. To assess immunogenicity in the context of a human MHC, HLA-DR3 transgenic mice were vaccinated with the multi-epitope construct and boosted with a mixture of the 25 peptides used in the binding assays. The vaccinated HLA-DR3 mice developed significant cellular immune responses to 4 of the 25 (16%) tested individual class II peptides as measured by IFN-γ ELISpot assays. In addition, these mice developed antibodies against EBOV and VEEV as measured by ELISA. While a low but significant level of protection was observed in vaccinated transgenic mice after aerosol exposure to VEEV, no protection was observed after intraperitoneal challenge with mouse-adapted EBOV. These studies provide proof of concept for the use of an informatics approach to design a multi-agent, multi-epitope immunogen and provide a basis for further testing aimed at focusing immune responses toward desired protective T cell epitopes.
Collapse
Affiliation(s)
- Callie E Bounds
- a United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Leonard Moise
- b EpiVax, Inc. , Providence , RI , USA.,c Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | - Drew Hannaman
- d Ichor Medical Systems, Inc. , San Diego , CA , USA
| | | | - Anne S De Groot
- b EpiVax, Inc. , Providence , RI , USA.,c Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| | - John J Suschak
- a United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Lesley C Dupuy
- a United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | - Connie S Schmaljohn
- a United States Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
41
|
Immunization with DNA Plasmids Coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope Proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged Mice. J Virol 2017; 91:JVI.02076-16. [PMID: 28250124 PMCID: PMC5411611 DOI: 10.1128/jvi.02076-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/20/2017] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR−/−) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates.
Collapse
|
42
|
Boshra HY, Charro D, Lorenzo G, Sánchez I, Lazaro B, Brun A, Abrescia NGA. DNA vaccination regimes against Schmallenberg virus infection in IFNAR -/- mice suggest two targets for immunization. Antiviral Res 2017; 141:107-115. [PMID: 28235558 DOI: 10.1016/j.antiviral.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/04/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
Abstract
Schmallenberg virus (SBV) is an RNA virus of the Bunyaviridae family, genus Orthobunyavirus that infects wild and livestock species of ruminants. While inactivated and attenuated vaccines have been shown to prevent SBV infection, little is known about their mode of immunity; specifically, which components of the virus are responsible for inducing immunological responses in the host. As previous DNA vaccination experiments on other bunyaviruses have found that glycoproteins, as well as modified (i.e. ubiquitinated) nucleoproteins (N) can confer immunity against virulent viral challenge, constructs encoding for fragments of SBV glycoproteins GN and GC, as well as ubiquitinated and non-ubiquitinated N were cloned in mammalian expression vectors, and vaccinated intramuscularly in IFNAR-/- mice. Upon viral challenge with virulent SBV, disease progression was monitored. Both the ubiquitinated and non-ubiquitinated nucleoprotein candidates elicited high titers of antibodies against SBV, but only the non-ubiquitinated candidate induced statistically significant protection of the vaccinated mice from viral challenge. Another construct encoding for a putative ectodomain of glycoprotein GC (segment aa. 678-947) also reduced the SBV-viremia in mice after SBV challenge. When compared to other experimental groups, both the nucleoprotein and GC-ectodomain vaccinated groups displayed significantly reduced viremia, as well as exhibiting no clinical signs of SBV infection. These results show that both the nucleoprotein and the putative GC-ectodomain can serve as protective immunological targets against SBV infection, highlighting that viral glycoproteins, as well as nucleoproteins are potent targets in vaccination strategies against bunyaviruses.
Collapse
Affiliation(s)
- Hani Y Boshra
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | - Diego Charro
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | | | | | | | | | - Nicola G A Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
43
|
Abstract
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. The virus carries a tripartite, single-stranded, and negative-sense RNA genome, designated as L, M, and S RNAs. RVFV spread can be prevented by the effective vaccination of animals and humans. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, MP-12 showed neuroinvasiveness and neurovirulence in young mice and immunodeficiency mice. Hence, there is a concern for the use of MP-12 to certain individuals, especially those that are immunocompromised. To improve MP-12 safety, we have generated a single-cycle, replicable MP-12 (scMP-12), which carries L RNA, S RNA encoding green fluorescent protein in place of a viral nonstructural protein NSs, and an M RNA encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function. The scMP-12 undergoes efficient amplification in the Vero-G cell line, which is a Vero cell line stably expressing viral envelope proteins, while it undergoes single-cycle replication in naïve cells and completely lacks neurovirulence in suckling mice after intracranial inoculation. A single-dose vaccination of mice with scMP-12 confers protective immunity. Thus, scMP-12 represents a new, promising RVF vaccine candidate. Here we describe protocols for scMP-12 generation by using a reverse genetics system, establishment of Vero-G cells, and titration of scMP-12 in Vero-G cells.
Collapse
|
44
|
Kortekaas J, Vloet RPM, McAuley AJ, Shen X, Bosch BJ, de Vries L, Moormann RJM, Bente DA. Crimean-Congo Hemorrhagic Fever Virus Subunit Vaccines Induce High Levels of Neutralizing Antibodies But No Protection in STAT1 Knockout Mice. Vector Borne Zoonotic Dis 2016; 15:759-64. [PMID: 26684523 DOI: 10.1089/vbz.2015.1855] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus is a tick-borne bunyavirus of the Nairovirus genus that causes hemorrhagic fever in humans with high case fatality. Here, we report the development of subunit vaccines and their efficacy in signal transducer and activator of transcription 1 (STAT1) knockout mice. Ectodomains of the structural glycoproteins Gn and Gc were produced using a Drosophila insect cell-based expression system. A single vaccination of STAT129 mice with adjuvanted Gn or Gc ectodomains induced neutralizing antibody responses, which were boosted by a second vaccination. Despite these antibody responses, mice were not protected from a CCHFV challenge infection. These results suggest that neutralizing antibodies against CCHFV do not correlate with protection of STAT1 knockout mice.
Collapse
Affiliation(s)
- Jeroen Kortekaas
- 1 Department of Virology, Central Veterinary Institute (CVI-Lelystad), part of Wageningen University and Research Centre , Lelystad, The Netherlands
| | - Rianka P M Vloet
- 1 Department of Virology, Central Veterinary Institute (CVI-Lelystad), part of Wageningen University and Research Centre , Lelystad, The Netherlands
| | - Alexander J McAuley
- 2 Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, Texas.,3 Galveston National Laboratory , Galveston, Texas
| | - Xiaoli Shen
- 2 Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, Texas.,3 Galveston National Laboratory , Galveston, Texas
| | - Berend Jan Bosch
- 4 Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Laura de Vries
- 4 Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Rob J M Moormann
- 1 Department of Virology, Central Veterinary Institute (CVI-Lelystad), part of Wageningen University and Research Centre , Lelystad, The Netherlands .,4 Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Dennis A Bente
- 2 Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston, Texas.,3 Galveston National Laboratory , Galveston, Texas
| |
Collapse
|
45
|
Dowall SD, Buttigieg KR, Findlay-Wilson SJD, Rayner E, Pearson G, Miloszewska A, Graham VA, Carroll MW, Hewson R. A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Hum Vaccin Immunother 2016; 12:519-27. [PMID: 26309231 PMCID: PMC5049717 DOI: 10.1080/21645515.2015.1078045] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Crimean-Congo Hemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. Between 15–70% of reported cases are fatal with no approved vaccine available. In the present study, the attenuated poxvirus vector, Modified Vaccinia virus Ankara, was used to develop a recombinant candidate vaccine expressing the CCHF virus nucleoprotein. Cellular and humoral immunogenicity was confirmed in 2 mouse strains, including type I interferon receptor knockout mice, which are susceptible to CCHF disease. Despite the immune responses generated post-immunisation, the vaccine failed to protect animals from lethal disease in a challenge model.
Collapse
Affiliation(s)
- S D Dowall
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - K R Buttigieg
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | | | - E Rayner
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - G Pearson
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - A Miloszewska
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - V A Graham
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - M W Carroll
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - R Hewson
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| |
Collapse
|
46
|
Faburay B, Lebedev M, McVey DS, Wilson W, Morozov I, Young A, Richt JA. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep. Vector Borne Zoonotic Dis 2016; 14:746-56. [PMID: 25325319 DOI: 10.1089/vbz.2014.1650] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.
Collapse
Affiliation(s)
- Bonto Faburay
- 1 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | | | | | | | | | | | | |
Collapse
|
47
|
Faburay B, Wilson WC, Gaudreault NN, Davis AS, Shivanna V, Bawa B, Sunwoo SY, Ma W, Drolet BS, Morozov I, McVey DS, Richt JA. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep. Sci Rep 2016; 6:27719. [PMID: 27296136 PMCID: PMC4906348 DOI: 10.1038/srep27719] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.
Collapse
Affiliation(s)
- Bonto Faburay
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - William C Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - A Sally Davis
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Vinay Shivanna
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Sun Young Sunwoo
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Barbara S Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Igor Morozov
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - D Scott McVey
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
48
|
Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses. PLoS One 2016; 11:e0156637. [PMID: 27272940 PMCID: PMC4896484 DOI: 10.1371/journal.pone.0156637] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/17/2016] [Indexed: 01/26/2023] Open
Abstract
Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge.
Collapse
|
49
|
Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression. Viruses 2016; 8:v8060151. [PMID: 27231931 PMCID: PMC4926171 DOI: 10.3390/v8060151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023] Open
Abstract
The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment.
Collapse
|
50
|
Mansfield KL, Banyard AC, McElhinney L, Johnson N, Horton DL, Hernández-Triana LM, Fooks AR. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine 2015; 33:5520-5531. [PMID: 26296499 DOI: 10.1016/j.vaccine.2015.08.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Lorraine McElhinney
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|