1
|
Xiao J, Wang H, Callahan C, O’Donnell G, Rodriguez S, Staupe RP, Balibar CJ, Citron MP. Immunogenicity of RSV Fusion Protein Adsorbed to Non-Pathogenic Bacillus subtilis Spores: Implications for Mucosal Vaccine Delivery in Nonclinical Animal Models. Biomedicines 2025; 13:1112. [PMID: 40426939 PMCID: PMC12109483 DOI: 10.3390/biomedicines13051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Mucosal vaccines are rare but commercially desirable because of their real and theoretical biological advantages. Spores and vegetative forms from Bacillus have been used as probiotics due to their stability under various environmental conditions, including heat, gastric acidity, and moisture. Preclinical studies have shown that Bacillus subtilis (B. subtilis) spores can serve as effective mucosal adjuvants. Our study aimed to evaluate B. subtilis spores as a mucosal adjuvant. Methods and Results: We demonstrate in rodents that the fusion protein (F) from respiratory syncytial virus (RSV), when combined with either heat-inactivated or live B. subtilis spores, elicits robust IgG binding and neutralizes antibody titers following both systemic and intranasal administration in mice. The spores facilitate TH-1 and local IgA responses, which could enhance antiviral protection. However, this vaccine failed to elicit measurable antibodies when immunized using a strict intranasal administration method in cotton rats. Conclusions: Our findings illustrate the differing immune responses between the two rodent species, highlighting the need for the careful consideration of validated methods when evaluating intranasal vaccines in preclinical studies.
Collapse
Affiliation(s)
- Jianying Xiao
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Hao Wang
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Cheryl Callahan
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Gregory O’Donnell
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (S.R.)
| | - Silveria Rodriguez
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (S.R.)
| | - Ryan P. Staupe
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Carl J. Balibar
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| | - Michael P. Citron
- Infectious Disease and Vaccines, Merck & Co., Inc., Rahway, NJ 07065, USA; (J.X.); (H.W.); (C.C.)
| |
Collapse
|
2
|
Powell TJ, Jacobs A, Tang J, Cardenas E, Palath N, Daniels J, Boyd JG, Bergeron HC, Jorquera PA, Tripp RA. Microparticle RSV Vaccines Presenting the G Protein CX3C Chemokine Motif in the Context of TLR Signaling Induce Protective Th1 Immune Responses and Prevent Pulmonary Eosinophilia Post-Challenge. Vaccines (Basel) 2022; 10:vaccines10122078. [PMID: 36560488 PMCID: PMC9785538 DOI: 10.3390/vaccines10122078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Layer-by-layer microparticle (LbL-MP) fabrication was used to produce synthetic vaccines presenting a fusion peptide containing RSV G protein CX3C chemokine motif and a CD8 epitope of the RSV matrix protein 2 (GM2) with or without a covalently linked TLR2 agonist (Pam3.GM2). Immunization of BALB/c mice with either GM2 or Pam3.GM2 LbL-MP in the absence of adjuvant elicited G-specific antibody responses and M2-specific CD8+ T-cell responses. Following challenge with RSV, mice immunized with the GM2 LbL-MP vaccine developed a Th2-biased immune response in the lungs with elevated levels of IL-4, IL-5, IL-13, and eotaxin in the bronchoalveolar lavage (BAL) fluid and a pulmonary influx of eosinophils. By comparison, mice immunized with the Pam3.GM2 LbL-MP vaccine had considerably lower to non-detectable levels of the Th2 cytokines and chemokines and very low numbers of eosinophils in the BAL fluid post-RSV challenge. In addition, mice immunized with the Pam3.GM2 LbL-MP also had higher levels of RSV G-specific IgG2a and IgG2b in the post-challenge BAL fluid compared to those immunized with the GM2 LbL-MP vaccine. While both candidates protected mice from infection following challenge, as evidenced by the reduction or elimination of RSV plaques, the inclusion of the TLR2 agonist yielded a more potent antibody response, greater protection, and a clear shift away from Th2/eosinophil responses. Since the failure of formalin-inactivated RSV (FI-RSV) vaccines tested in the 1960s has been hypothesized to be partly due to the ablation of host TLR engagement by the vaccine and inappropriate Th2 responses upon subsequent viral infection, these findings stress the importance of appropriate engagement of the innate immune response during initial exposure to RSV G CX3C.
Collapse
Affiliation(s)
- Thomas J. Powell
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
- Correspondence:
| | - Andrea Jacobs
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Jie Tang
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Edwin Cardenas
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Naveen Palath
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Jennifer Daniels
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - James G. Boyd
- Artificial Cell Technologies, 5 Science Park, Suite 13, New Haven, CT 06511, USA
| | - Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Patricia A. Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Li W, Li T, Zhao C, Song T, Mi Y, Chuangfeng Z, Hou Y, Jia Z. XiaoEr LianHuaQinqGan alleviates viral pneumonia in mice infected by influenza A and respiratory syncytial viruses. PHARMACEUTICAL BIOLOGY 2022; 60:2355-2366. [PMID: 36444944 PMCID: PMC9809968 DOI: 10.1080/13880209.2022.2147961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Xiaoer lianhuaqinqgan (XELH), developed based on Lianhua Qingwen (LHQW) prescription, contains 13 traditional Chinese medicines. It has completed the investigational new drug application to treat respiratory viral infections in children in China. OBJECTIVE This study demonstrates the pharmacological effects of XELH against viral pneumonia. MATERIALS AND METHODS The antiviral and anti-inflammatory effects of XELH were investigated in vitro using H3N2-infected A549 and LPS-stimulated RAW264.7 cells and in vivo using BALB/c mice models of influenza A virus (H3N2) and respiratory syncytial virus (RSV)-infection. Mice were divided into 7 groups (n = 20): Control, Model, LHQW (0.5 g/kg), XELH-low (2 g/kg), XELH-medium (4 g/kg), XELH-high (8 g/kg), and positive drug (20 mg/kg oseltamivir or 60 mg/kg ribavirin) groups. The anti-inflammatory effects of XELH were tested in a rat model of LPS-induced fever and a mouse model of xylene-induced ear edoema. RESULTS In vitro, XELH inhibited the pro-inflammatory cytokines and replication of H1N1, H3N2, H1N1, FluB, H9N2, H6N2, H7N3, RSV, and HCoV-229E viruses, with (IC50 47.4, 114, 79, 250, 99.2, 170, 79, 62.5, and 93 μg/mL, respectively). In vivo, XELH reduced weight loss and lung index, inhibited viral replication and macrophage M1 polarization, ameliorated lung damage, decreased inflammatory cell infiltration and pro-inflammatory cytokines expression in lung tissues, and increased the CD4+/CD8+ ratio. XELH inhibited LPS-induced fever in rats and xylene-induced ear edoema in mice. CONCLUSION XELH efficacy partially depends on integrated immunoregulatory effects. XELH is a promising therapeutic option against childhood respiratory viral infections.
Collapse
Affiliation(s)
- Wenyan Li
- Hebei Yiling Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Chi Zhao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Song
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Yao Mi
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Zhang Chuangfeng
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
| | - Zhenhua Jia
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
- Hebei Yiling Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Komal S, Komal N, Mujtaba A, Wang SH, Zhang LR, Han SN. Potential therapeutic strategies for myocardial infarction: the role of Toll-like receptors. Immunol Res 2022; 70:607-623. [PMID: 35608723 DOI: 10.1007/s12026-022-09290-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Myocardial infarction (MI) is a life-threatening condition among patients with cardiovascular diseases. MI increases the risk of stroke and heart failure and is a leading cause of morbidity and mortality worldwide. Several genetic and epigenetic factors contribute to the development of MI, suggesting that further understanding of the pathomechanism of MI might help in the early management and treatment of this disease. Toll-like receptors (TLRs) are well-known members of the pattern recognition receptor (PRR) family and contribute to both adaptive and innate immunity. Collectively, studies suggest that TLRs have a cardioprotective effect. However, prolonged TLR activation in the response to signals generated by damage-associated molecular patterns (DAMPs) results in the release of inflammatory cytokines and contributes to the development and exacerbation of myocardial inflammation, MI, ischemia-reperfusion injury, myocarditis, and heart failure. The objective of this review is to discuss and summarize the association of TLRs with MI, highlighting their therapeutic potential for the development of advanced TLR-targeted therapies for MI.
Collapse
Affiliation(s)
- Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Nimrah Komal
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Ali Mujtaba
- Department of Pharmacology, Mohi-Ud-Din Islamic Medical College, Azad Jammu & Kashmir, Mirpur, 10250, Pakistan
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Pasharawipas T. Perspectives Concerning Various Symptoms of SARS-CoV-2 Detected Individuals. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After exposure to SARS-CoV-2, varying symptoms of COVID-19 ranging from asymptomatic symptoms to morbidity and mortality have been exhibited in each individual. SARS-CoV-2 requires various cellular molecules for penetration into a target host cell. Angiotensin-converting enzyme2 (ACE2) acts as the viral receptor molecule. After attachment, SARS-CoV-2 also requires the transmembrane protease serine-2 (TMPRSS-2) and furin molecules, which serve as co-receptors for penetration into the target cell and for subsequent replication. In the meantime, a major histocompatibility complex (MHC) is required for the induction of adaptive immune cells, especially cytotoxic T cells and helper T cells, to clear the virally infected cells. This perspective review article proposes different aspects to explain the varying symptoms of the individuals who have been exposed to SARS-CoV-2, which relates to the polymorphisms of these involved molecules.
Collapse
|
6
|
Munoz FM, Cramer JP, Dekker CL, Dudley MZ, Graham BS, Gurwith M, Law B, Perlman S, Polack FP, Spergel JM, Van Braeckel E, Ward BJ, Didierlaurent AM, Lambert PH. Vaccine-associated enhanced disease: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2021; 39:3053-3066. [PMID: 33637387 PMCID: PMC7901381 DOI: 10.1016/j.vaccine.2021.01.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
This is a Brighton Collaboration Case Definition of the term "Vaccine Associated Enhanced Disease" to be utilized in the evaluation of adverse events following immunization. The Case Definition was developed by a group of experts convened by the Coalition for Epidemic Preparedness Innovations (CEPI) in the context of active development of vaccines for SARS-CoV-2 vaccines and other emerging pathogens. The case definition format of the Brighton Collaboration was followed to develop a consensus definition and defined levels of certainty, after an exhaustive review of the literature and expert consultation. The document underwent peer review by the Brighton Collaboration Network and by selected Expert Reviewers prior to submission.
Collapse
Affiliation(s)
- Flor M Munoz
- Departments of Pediatrics, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Jakob P Cramer
- Coalition for Epidemic Preparedness Innovations, CEPI, London, UK
| | - Cornelia L Dekker
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Matthew Z Dudley
- Institute for Vaccine Safety, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Marc Gurwith
- Safety Platform for Emergency Vaccines, Los Altos Hills, CA, USA
| | - Barbara Law
- Safety Platform for Emergency Vaccines, Manta, Ecuador
| | - Stanley Perlman
- Department of Microbiology and Immunology, Department of Pediatrics, University of Iowa, USA
| | | | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, PA, USA
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, and Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Brian J Ward
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | | | | |
Collapse
|
7
|
Chattopadhyay P, Srinivasa Vasudevan J, Pandey R. Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Brief Funct Genomics 2021; 20:28-41. [PMID: 33491070 PMCID: PMC7929421 DOI: 10.1093/bfgp/elaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.
Collapse
Affiliation(s)
| | | | - Rajesh Pandey
- Corresponding author: Rajesh Pandey, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory. CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), North Campus, Near Jubilee Hall, Mall Road, Delhi-110007, India. Tel.: +91 9811029551; E-mail:
| |
Collapse
|
8
|
Kleski KA, Trabbic KR, Shi M, Bourgault JP, Andreana PR. Enhanced Immune Response Against the Thomsen-Friedenreich Tumor Antigen Using a Bivalent Entirely Carbohydrate Conjugate. Molecules 2020; 25:E1319. [PMID: 32183149 PMCID: PMC7144725 DOI: 10.3390/molecules25061319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
The Thomsen-Friedenreich (TF) antigen is a key target for the development of anticancer vaccines, and this ongoing challenge remains relevant due to the poor immunogenicity of the TF antigen. To overcome this challenge, we adopted a bivalent conjugate design which introduced both the TF antigen and the Thomsen-nouveau (Tn) antigen onto the immunologically relevant polysaccharide A1 (PS A1). The immunological results in C57BL/6 mice revealed that the bivalent, Tn-TF-PS A1 conjugate increased the immune response towards the TF antigen as compared to the monovalent TF-PS A1. This phenomenon was first observed with enzyme-linked immunosorbent assay (ELISA) where the bivalent conjugate generated high titers of IgG antibodies where the monovalent conjugate generated an exclusive IgM response. Fluorescence-activated cell sorting (FACS) analysis also revealed increased binding events to the tumor cell lines MCF-7 and OVCAR-5, which are consistent with the enhanced tumor cell lysis observed in a complement dependent cytotoxicity (CDC) assay. The cytokine profile generated by the bivalent construct revealed increased pro-inflammatory cytokines IL-17 and IFN-γ. This increase in cytokine concentration was matched with an increase in cytokine producing cells as observed by ELISpot. We hypothesized the mechanisms for this phenomenon to involve the macrophage galactose N-acetylgalactosamine specific lectin 2 (MGL2). This hypothesis was supported by using biotinylated probes and recombinant MGL2 to measure carbohydrate-protein interactions.
Collapse
Affiliation(s)
| | | | | | | | - Peter R. Andreana
- 2801 West Bancroft Street, Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH 43606, USA; (K.A.K.); (K.R.T.); (M.S.); (J.-P.B.)
| |
Collapse
|
9
|
Chen C, Zhang C, Li R, Wang Z, Yuan Y, Li H, Fu Z, Zhou M, Zhao L. Monophosphoryl-Lipid A (MPLA) is an Efficacious Adjuvant for Inactivated Rabies Vaccines. Viruses 2019; 11:E1118. [PMID: 31816996 PMCID: PMC6950009 DOI: 10.3390/v11121118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Rabies, as one of the most threatening zoonoses in the world, causes a fatal central nervous system (CNS) disease. So far, vaccination with rabies vaccines has been the most effective measure to prevent and control this disease. At present, inactivated rabies vaccines are widely used in humans and domestic animals. However, humoral immune responses induced by inactivated rabies vaccines are relatively low and multiple shots are required to achieve protective immunity. Supplementation with an adjuvant is a practical way to improve the immunogenicity of inactivated rabies vaccines. In this study, we found that monophosphoryl-lipid A (MPLA), a well-known TLR4 agonist, could significantly promote the maturation of bone marrow-derived dendritic cells (BMDC) through a TLR4-dependent pathway in vitro and the maturation of conventional DCs (cDCs) in vivo. We also found that MPLA, serving as an adjuvant for inactivated rabies vaccines, could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, and plasma cells (PCs), consequently enhancing the production of RABV-specific total-IgG, IgG2a, IgG2b, and the virus-neutralizing antibodies (VNAs). Furthermore, MPLA could increase the survival ratio of mice challenged with virulent RABV. In conclusion, our results demonstrate that MPLA serving as an adjuvant enhances the intensity of humoral immune responses by activating the cDC-Tfh-GC B axis. Our findings will contribute to the improvement of the efficiency of traditional rabies vaccines.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoqi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Original Antigenic Sin and Respiratory Syncytial Virus Vaccines. Vaccines (Basel) 2019; 7:vaccines7030107. [PMID: 31500131 PMCID: PMC6789633 DOI: 10.3390/vaccines7030107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023] Open
Abstract
The original antigenic sin (OAS) theory considers the outcome of the first encounter with an antigen. It favors a memory response to the original antigen upon exposure to a similar or related antigen, and includes both positive and negative impacts of past exposure on the memory response to challenge, and, in particular, on vaccine efficacy. This phenomenon is closely linked with imprinting and the hierarchical nature of immune responses to previously encountered antigens. The focus of this commentary centers on the potential role of OAS or immunological imprinting on respiratory syncytial virus memory responses.
Collapse
|
11
|
Majzoub K, Wrensch F, Baumert TF. The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Viruses 2019; 11:v11080758. [PMID: 31426357 PMCID: PMC6723221 DOI: 10.3390/v11080758] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Animal cells have evolved dedicated molecular systems for sensing and delivering a coordinated response to viral threats. Our understanding of these pathways is almost entirely defined by studies in humans or model organisms like mice, fruit flies and worms. However, new genomic and functional data from organisms such as sponges, anemones and mollusks are helping redefine our understanding of these immune systems and their evolution. In this review, we will discuss our current knowledge of the innate immune pathways involved in sensing, signaling and inducing genes to counter viral infections in vertebrate animals. We will then focus on some central conserved players of this response including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and cGAS-STING, attempting to put their evolution into perspective. To conclude, we will reflect on the arms race that exists between viruses and their animal hosts, illustrated by the dynamic evolution and diversification of innate immune pathways. These concepts are not only important to understand virus-host interactions in general but may also be relevant for the development of novel curative approaches against human disease.
Collapse
Affiliation(s)
- Karim Majzoub
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France.
| | - Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
- Institut Universitaire de France, 75231 Paris, France.
| |
Collapse
|
12
|
Muralidharan A, Larocque L, Russell M, Creskey M, Li C, Chen W, Van Domselaar G, Cao J, Cyr T, Rosu-Myles M, Wang L, Li X. PD-1 of Sigmodon hispidus: Gene identification, characterization and preliminary evaluation of expression in inactivated RSV vaccine-induced enhanced respiratory disease. Sci Rep 2019; 9:11638. [PMID: 31406266 PMCID: PMC6690999 DOI: 10.1038/s41598-019-48225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/29/2019] [Indexed: 12/03/2022] Open
Abstract
Sigmodon hispidus or cotton rat is an excellent animal model for studying human infections of respiratory viruses including respiratory syncytial virus (RSV), which is the leading cause of hospitalization in infants and causes high rates of infection in the elderly and immunocompromised patient populations. Despite several decades of research, no vaccine has been licensed whereas inactivated vaccines have been shown to induce severe adverse reaction in a clinical trial, with other forms of RSV vaccine also found to induce enhanced disease in preclinical animal studies. While arguably the cotton rat is the best small animal model for evaluation of RSV vaccines and antivirals, many important genes of the immune system remain to be isolated. Programmed cell death-1 (PD-1) plays an integral role in regulating many aspects of immunity by inducing suppressive signals. In this study, we report the isolation of mRNA encoding the cotton rat PD-1 (crPD-1) and characterization of the PD-1 protein. crPD-1 bound to its cognate ligand on dendritic cells and effectively suppressed cytokine secretion. Moreover, using the newly acquired gene sequence, we observed a decreased level of crPD-1 levels in cotton rats with enhanced respiratory disease induced by inactivated RSV vaccine, unraveling a new facet of vaccine-induced disease.
Collapse
MESH Headings
- Animals
- Cytokines/immunology
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Gene Expression Regulation/immunology
- HEK293 Cells
- Humans
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Respiratory Syncytial Virus Infections/blood
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/adverse effects
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/immunology
- Sequence Analysis, RNA
- Sigmodontinae/genetics
- Sigmodontinae/immunology
- Vaccination/adverse effects
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Marsha Russell
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Marybeth Creskey
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Changgui Li
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wangxue Chen
- Human Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Mucosal Vaccination via the Respiratory Tract. Pharmaceutics 2019; 11:pharmaceutics11080375. [PMID: 31374959 PMCID: PMC6723941 DOI: 10.3390/pharmaceutics11080375] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Vaccine delivery via mucosal surfaces is an interesting alternative to parenteral vaccine administration, as it avoids the use of a needle and syringe. Mucosal vaccine administration also targets the mucosal immune system, which is the largest lymphoid tissue in the human body. The mucosal immune response involves systemic, antigen-specific humoral and cellular immune response in addition to a local response which is characterised by a predominantly cytotoxic T cell response in combination with secreted IgA. This antibody facilitates pathogen recognition and deletion prior to entrance into the body. Hence, administration via the respiratory mucosa can be favoured for all pathogens which use the respiratory tract as entry to the body, such as influenza and for all diseases directly affecting the respiratory tract such as pneumonia. Additionally, the different mucosal tissues of the human body are interconnected via the so-called “common mucosal immune system”, which allows induction of an antigen-specific immune response in distant mucosal sites. Finally, mucosal administration is also interesting in the area of therapeutic vaccination, in which a predominant cellular immune response is required, as this can efficiently be induced by this route of delivery. The review gives an introduction to respiratory vaccination, formulation approaches and application strategies.
Collapse
|
14
|
Boukhvalova MS, Yim KC, Blanco J. Cotton rat model for testing vaccines and antivirals against respiratory syncytial virus. Antivir Chem Chemother 2019; 26:2040206618770518. [PMID: 29768937 PMCID: PMC5987903 DOI: 10.1177/2040206618770518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus is the leading cause of pneumonia and bronchiolitis in infants and is a serious health risk for elderly and immunocompromised individuals. No vaccine has yet been approved to prevent respiratory syncytial virus infection and the only available treatment is immunoprophylaxis of severe respiratory syncytial virus disease in high-risk infants with Palivizumab (Synagis®). The development of respiratory syncytial virus vaccine has been hampered by the phenomenon of enhanced respiratory syncytial virus disease observed during trials of a formalin-inactivated respiratory syncytial virus in 1960s. A search for effective respiratory syncytial virus therapeutics has been complicated by the fact that some of the most advanced respiratory syncytial virus antivirals, while highly effective in a prophylactic setting, had not demonstrated clinical efficacy when given after infection. A number of respiratory syncytial virus vaccines and antivirals are currently under development, including several vaccines proposed for maternal immunization. The cotton rat Sigmodon hispidus is an animal model of respiratory syncytial virus infection with demonstrated translational value. Special cohort scenarios, such as infection under conditions of immunosuppression and maternal immunization have been modeled in the cotton rat and are summarized here. In this review, we focus on the recent use of the cotton rat model for testing respiratory syncytial virus vaccine and therapeutic candidates in preclinical setting, including the use of special cohort models. An overview of published studies spanning the period of the last three years is provided. The emphasis, where possible, is made on candidates in the latest stages of preclinical development or currently in clinical trials.
Collapse
Affiliation(s)
| | - K C Yim
- Sigmovir Biosystems, Inc., Rockville, MD, USA
| | - Jcg Blanco
- Sigmovir Biosystems, Inc., Rockville, MD, USA
| |
Collapse
|
15
|
Lee Y, Ko EJ, Kim KH, Lee YT, Hwang HS, Kwon YM, Graham BS, Kang SM. A unique combination adjuvant modulates immune responses preventing vaccine-enhanced pulmonary histopathology after a single dose vaccination with fusion protein and challenge with respiratory syncytial virus. Virology 2019; 534:1-13. [PMID: 31163351 DOI: 10.1016/j.virol.2019.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
Alum adjuvanted formalin-inactivated respiratory syncytial virus (RSV) vaccination resulted in enhanced respiratory disease in young children upon natural infection. Here, we investigated the adjuvant effects of monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG (CpG) on vaccine-enhanced respiratory disease after fusion (F) protein prime vaccination and RSV challenge in infant and adult mouse models. Combination CpG + MPL adjuvant in RSV F protein single dose priming of infant and adult age mice was found to promote the induction of IgG2a isotype antibodies and neutralizing activity, and lung viral clearance after challenge. CpG + MPL adjuvanted F protein (Fp) priming of infant and adult age mice was effective in avoiding lung histopathology, in reducing interleukin-4+ CD4 T cells and cellular infiltration of monocytes and neutrophils after RSV challenge. This study suggests that combination CpG and MPL adjuvant in RSV subunit vaccination might contribute to priming protective immune responses and preventing inflammatory RSV disease after infection.
Collapse
Affiliation(s)
- Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, South Korea
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sang Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
16
|
Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019; 10:873. [PMID: 31130923 PMCID: PMC6510261 DOI: 10.3389/fmicb.2019.00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.
Collapse
Affiliation(s)
- María José Altamirano-Lagos
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E. Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Andrés Mansilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Soto
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Abel E. Vasquez
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
de Souza GF, Muraro SP, Santos LD, Monteiro APT, da Silva AG, de Souza APD, Stein RT, Bozza PT, Porto BN. Macrophage migration inhibitory factor (MIF) controls cytokine release during respiratory syncytial virus infection in macrophages. Inflamm Res 2019; 68:481-491. [PMID: 30944975 DOI: 10.1007/s00011-019-01233-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE AND DESIGN Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.
Collapse
Affiliation(s)
- Gabriela F de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stéfanie P Muraro
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Leonardo D Santos
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula T Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Amanda G da Silva
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula D de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Renato T Stein
- Laboratory of Pediatric Respirology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
18
|
Russell MS, Creskey M, Muralidharan A, Li C, Gao J, Chen W, Larocque L, Lavoie JR, Farnsworth A, Rosu-Myles M, Hashem AM, Yauk CL, Cao J, Van Domselaar G, Cyr T, Li X. Unveiling Integrated Functional Pathways Leading to Enhanced Respiratory Disease Associated With Inactivated Respiratory Syncytial Viral Vaccine. Front Immunol 2019; 10:597. [PMID: 30984178 PMCID: PMC6449435 DOI: 10.3389/fimmu.2019.00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/06/2019] [Indexed: 02/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is a severe threat to young children and the elderly. Despite decades of research, no vaccine has been approved. Notably, instead of affording protection, a formalin-inactivated RSV vaccine induced severe respiratory disease including deaths in vaccinated children in a 1960s clinical trial; however, recent studies indicate that other forms of experimental vaccines can also induce pulmonary pathology in pre-clinical studies. These findings suggest that multiple factors/pathways could be involved in the development of enhanced respiratory diseases. Clearly, a better understanding of the mechanisms underlying such adverse reactions is critically important for the development of safe and efficacious vaccines against RSV infection, given the exponential growth of RSV vaccine clinical trials in recent years. By employing an integrated systems biology approach in a pre-clinical cotton rat model, we unraveled a complex network of pulmonary canonical pathways leading to disease development in vaccinated animals upon subsequent RSV infections. Cytokines including IL-1, IL-6 GRO/IL-8, and IL-17 in conjunction with mobilized pulmonary inflammatory cells could play important roles in disease development, which involved a wide range of host responses including exacerbated pulmonary inflammation, oxidative stress, hyperreactivity, and homeostatic imbalance between coagulation and fibrinolysis. Moreover, the observed elevated levels of MyD88 implicate the involvement of this critical signal transduction module as the central node of the inflammatory pathways leading to exacerbated pulmonary pathology. Finally, the immunopathological consequences of inactivated vaccine immunization and subsequent RSV exposure were further substantiated by histological analyses of these key proteins along with inflammatory cytokines, while hypercoagulation was supported by increased pulmonary fibrinogen/fibrin accompanied by reduced levels of plasma D-dimers. Enhanced respiratory disease associated with inactivated RSV vaccine involves a complex network of host responses, resulting in significant pulmonary lesions and clinical manifestations such as tachypnea and airway obstruction. The mechanistic insight into the convergence of different signal pathways and identification of biomarkers could help facilitate the development of safe and effective RSV vaccine and formulation of new targeted interventions.
Collapse
Affiliation(s)
- Marsha S Russell
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Marybeth Creskey
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Changgui Li
- National Institutes for Food and Drug Control, WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jun Gao
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jessie R Lavoie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anwar M Hashem
- Immunotherapy Unit, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Vaccines, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Carole L Yauk
- Mechanistic Studies Division, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, Ottawa, ON, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Products and Food Branch (HPFB), Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Park S, Lee Y, Kwon YM, Lee YT, Kim KH, Ko EJ, Jung JH, Song M, Graham B, Prausnitz MR, Kang SM. Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid A enhances the protective efficacy and diminishes inflammatory disease after challenge. PLoS One 2018; 13:e0205071. [PMID: 30365561 PMCID: PMC6203256 DOI: 10.1371/journal.pone.0205071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Intramuscular (IM) vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) failed in clinical trials due to vaccine-enhanced respiratory disease. To test the efficacy of skin vaccination against respiratory syncytial virus (RSV), we investigated the immunogenicity, efficacy, and inflammatory disease after microneedle (MN) patch delivery of FI-RSV vaccine (FI-RSV MN) to the mouse skin with or without an adjuvant of monophosphoryl lipid A (MPL). Compared to IM vaccination, MN patch delivery of FI-RSV was more effective in clearing lung viral loads and preventing weight loss, and in diminishing inflammation, infiltrating immune cells, and T helper type 2 (Th2) CD4 T cell responses after RSV challenge. With MPL adjuvant, MN patch delivery of FI-RSV significantly increased the immunogenicity and efficacy as well as preventing RSV disease as evidenced by lung viral clearance and avoiding pulmonary histopathology. Improved efficacy and prevention of disease by FI-RSV MN with MPL were correlated with no sign of airway resistance, lower levels of Th2 cytokines and infiltrating innate inflammatory cells, and higher levels of Th1 T cell responses into the lung. This study suggests that MN patch delivery of RSV vaccines to the skin with MPL adjuvant would be a promising vaccination method.
Collapse
Affiliation(s)
- Soojin Park
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Jae Hwan Jung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Manki Song
- International Vaccine Institute, Seoul, Korea
| | - Barney Graham
- Vaccine Research Center, National Institute of Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Blanco JCG, Pletneva LM, McGinnes-Cullen L, Otoa RO, Patel MC, Fernando LR, Boukhvalova MS, Morrison TG. Efficacy of a respiratory syncytial virus vaccine candidate in a maternal immunization model. Nat Commun 2018; 9:1904. [PMID: 29765035 PMCID: PMC5953919 DOI: 10.1038/s41467-018-04216-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/12/2018] [Indexed: 01/10/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants. Maternal immunization is an option to increase maternal antibody levels and protect infants from infection. Here we assess the efficacy of virus-like particle (VLP) vaccine candidates containing stabilized pre-fusion (pre-F) or post-fusion (post-F) conformations of the RSV F protein and the attachment RSV G protein in a maternal immunization model using cotton rats. VLP vaccines containing RSV F and G proteins strongly boost pre-existing RSV immunity in dams preventing their perinatal drop in immunity. Boosting is stronger for the pre-F VLP than for the post-F VLP or purified subunit F protein vaccines, giving an advantage on mothers’ protection. VLP immunization of dams provides significant protection to pups from RSV challenge and reduced pulmonary inflammation. Collectively, our results show that a VLP vaccine with RSV F and G proteins is safe and effective for maternal and adult vaccination. RSV infection is a major cause of bronchiolitis in infants and maternal vaccination is a potential preventive option. Here, Blanco et al. show efficacy of a Newcastle disease virus-based virus-like particle vaccine candidate in naive and pre-exposed cotton rat dams and their offspring.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
| | - Lioubov M Pletneva
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Lori McGinnes-Cullen
- Department of Microbiology and Physiological Systems, Program of Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Raymonde O Otoa
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Lurds R Fernando
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Trudy G Morrison
- Department of Microbiology and Physiological Systems, Program of Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
21
|
Ascough S, Paterson S, Chiu C. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Front Immunol 2018; 9:323. [PMID: 29552008 PMCID: PMC5840263 DOI: 10.3389/fimmu.2018.00323] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines.
Collapse
Affiliation(s)
- Stephanie Ascough
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Suzanna Paterson
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
A Mathematical Model for the Macrophage Response to Respiratory Viral Infection in Normal and Asthmatic Conditions. Bull Math Biol 2017; 79:1979-1998. [PMID: 28741104 DOI: 10.1007/s11538-017-0315-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/30/2017] [Indexed: 12/30/2022]
Abstract
Respiratory viral infections are common in the general population and one of the most important causes of asthma aggravation and exacerbation. Despite many studies, it is not well understood how viral infections cause more severe symptoms and exacerbations in asthmatics. We develop a mathematical model of two types of macrophages that play complementary roles in fighting viral infection: classically [Formula: see text]-[Formula: see text] and alternatively activated macrophages [Formula: see text]-[Formula: see text]. [Formula: see text]-[Formula: see text] destroy infected cells and tissues to remove viruses, while [Formula: see text]-[Formula: see text] repair damaged tissues. We show that a higher viral load or longer duration of infection provokes a stronger immune response from the macrophage system. By adjusting the parameters, we model the differences in response to respiratory viral infection in normal and asthmatic subjects and show how this skews the system toward a response that generates more severe symptoms in asthmatic patients.
Collapse
|
23
|
Blanco JCG, Pletneva LM, Otoa RO, Patel MC, Vogel SN, Boukhvalova MS. Preclinical assessment of safety of maternal vaccination against respiratory syncytial virus (RSV) in cotton rats. Vaccine 2017. [PMID: 28624306 DOI: 10.1016/j.vaccine.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Maternal immunization directed to control RSV infection in newborns and infants is an appealing vaccination strategy currently under development. In this work we have modeled maternal vaccination against RSV in cotton rats (CR) to answer two fundamental questions on maternal vaccine safety. We tested (i), whether a known, unsafe RSV vaccine (i.e., FI-RSV Lot 100 vaccine) induces vaccine enhanced disease in the presence of passively transferred, RSV maternal immunity, and (ii) whether the same FI-RSV vaccine could induce vaccine enhanced disease in CR litters when used to immunize their RSV-primed mothers. Our data show that FI-RSV immunization of pups with subsequent RSV infection results in vaccine-enhanced disease independent of whether the pups were born to RSV-seropositive or RSV-seronegative mothers, and that FI-RSV immunization of RSV-seropositive mothers does not present a health risk to either the mother or the infant. Our study also raises a novel concern regarding infant immunization, namely that "safe" RSV vaccines (e.g., live RSV administered intramuscularly) may induce vaccine-enhanced disease in RSV-infected pups born to seropositive mothers. Finally, we describe for the first time a sharp decrease in RSV neutralizing antibody titers in immunized seropositive CR at the time of delivery. This decline may reflect maternal immune suppression, potentially pinpointing a window of increased vulnerability to RSV infection that could be alleviated by effective immunization of expectant mothers.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States.
| | - Lioubov M Pletneva
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Raymonde O Otoa
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| |
Collapse
|
24
|
Shafique M, Rasool MH, Khurshid M. Respiratory syncytial virus: an overview of infection biology and vaccination strategies. Future Virol 2017. [DOI: 10.2217/fvl-2017-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Respiratory syncytial virus (RSV) is the foremost cause of lower respiratory tract infections, especially in infants and young children. To date, there is no licensed vaccine available for RSV. Only option to restrain RSV is a prophylactic treatment in the form of monoclonal antibody (palivizumab). However, it is quite expensive and used in few patients with co-morbidities. In ongoing research, virologists contemplate about various vaccine candidates to control RSV infection. This review will help in understating the RSV pathobiology and encompass the advancement on various vaccine candidates that would lead to reduce the incidence, mortality and morbidity. Furthermore, it will lighten up the different avenues which might be useful for the development of novel vaccination approaches.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Microbiology, Government College University Faisalabad, Pakistan
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Pakistan
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
25
|
Shafique M, Rasool MH, Khurshid M. Respiratory Syncytial Virus: An Overview of Infection Biology and Vaccination Strategies. Future Virol 2017; 12:297-313. [DOI: doi.org/10.2217/fvl-2017-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/27/2017] [Indexed: 04/10/2025]
Affiliation(s)
- Muhammad Shafique
- Department of Microbiology Government College University Faisalabad
Pakistan
| | | | - Mohsin Khurshid
- Department of Microbiology Government College University Faisalabad
Pakistan
- College of Allied Health Professionals Directorate of Medical Sciences Government College University Faisalabad
Pakistan
| |
Collapse
|
26
|
CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs. J Virol 2017; 91:JVI.02111-16. [PMID: 28275186 DOI: 10.1128/jvi.02111-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/14/2017] [Indexed: 12/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8+ lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs.IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and effective killed RSV vaccine. Using adjuvants to regulate innate and adaptive immune responses could be an effective method to prevent ERD. We evaluated the impact of TLR and Notch signaling on ERD by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling, during FI-RSV immunization. The data showed that treatment of TLR or Notch signaling alone did not suppress FI-RSV-enhanced airway inflammation, while CpG plus L685,458 markedly inhibited ERD. The mechanism appears to involve suppressing Th17 memory responses and promoting tissue-resident memory cells. Moreover, these results suggest that regulation of lung immune memory with adjuvant compounds containing more than one immune-stimulatory molecule may be a good strategy to prevent FI-RSV ERD.
Collapse
|
27
|
Muralidharan A, Li C, Wang L, Li X. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. Expert Rev Vaccines 2016; 16:351-360. [DOI: 10.1080/14760584.2017.1260452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologics, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Changgui Li
- Department of Viral Vaccine III, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, PR China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologics, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
A De- O-acylated Lipooligosaccharide-Based Adjuvant System Promotes Antibody and Th1-Type Immune Responses to H1N1 Pandemic Influenza Vaccine in Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3713656. [PMID: 27891512 PMCID: PMC5116492 DOI: 10.1155/2016/3713656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022]
Abstract
Vaccine adjuvants are agents that are used to promote immune responses to vaccine antigens and thereby to enhance the protective efficacy of the vaccines. In this study, we investigated the adjuvant activity of CIA06, an adjuvant system that is composed of a toll-like receptor 4 agonist de-O-acylated lipooligosaccharide (dLOS) and aluminum hydroxide, on the H1N1 pandemic influenza vaccine Greenflu-S® in mice. CIA06 significantly enhanced influenza-specific serum IgG, hemagglutination-inhibition, and virus-neutralizing antibody titers, which eliminated vaccine dose-dependency in the antibody response. Mice immunized with the CIA06-adjuvanted Greenflu-S showed Th1-type-predominant cytokine profiles, and both CD4+ and CD8+ T cell responses were induced. Immunization of mice with the CIA06-adjuvanted vaccine reduced the mortality and morbidity of mice upon lethal challenges with influenza virus, and no excessive inflammatory responses were observed in the lung tissues of the immunized mice after viral infection. These data suggest that the dLOS-based adjuvant system CIA06 can be used to promote the immune responses to influenza vaccine or to spare antigen dose without causing harmful inflammatory responses.
Collapse
|
29
|
Patel MC, Wang W, Pletneva LM, Rajagopala SV, Tan Y, Hartert TV, Boukhvalova MS, Vogel SN, Das SR, Blanco JCG. Enterovirus D-68 Infection, Prophylaxis, and Vaccination in a Novel Permissive Animal Model, the Cotton Rat (Sigmodon hispidus). PLoS One 2016; 11:e0166336. [PMID: 27814404 PMCID: PMC5096705 DOI: 10.1371/journal.pone.0166336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a significant increase in detection of Enterovirus D-68 (EV-D68) among patients with severe respiratory infections worldwide. EV-D68 is now recognized as a re-emerging pathogen; however, due to lack of a permissive animal model for EV-D68, a comprehensive understanding of the pathogenesis and immune response against EV-D68 has been hampered. Recently, it was shown that EV-D68 has a strong affinity for α2,6-linked sialic acids (SAs) and we have shown previously that α2,6-linked SAs are abundantly present in the respiratory tract of cotton rats (Sigmodon hispidus). Thus, we hypothesized that cotton rats could be a potential model for EV-D68 infection. Here, we evaluated the ability of two recently isolated EV-D68 strains (VANBT/1 and MO/14/49), along with the historical prototype Fermon strain (ATCC), to infect cotton rats. We found that cotton rats are permissive to EV-D68 infection without virus adaptation. The different strains of EV-D68 showed variable infection profiles and the ability to produce neutralizing antibody (NA) upon intranasal infection or intramuscular immunization. Infection with the VANBT/1 resulted in significant induction of pulmonary cytokine gene expression and lung pathology. Intramuscular immunization with live VANBT/1 or MO/14/49 induced strong homologous antibody responses, but a moderate heterologous NA response. We showed that passive prophylactic administration of serum with high content of NA against VANBT/1 resulted in an efficient antiviral therapy. VANBT/1-immunized animals showed complete protection from VANBT/1 challenge, but induced strong pulmonary Th1 and Th2 cytokine responses and enhanced lung pathology, indicating the generation of exacerbated immune response by immunization. In conclusion, our data illustrate that the cotton rat is a powerful animal model that provides an experimental platform to investigate pathogenesis, immune response, anti-viral therapies and vaccines against EV-D68 infection.
Collapse
Affiliation(s)
- Mira C. Patel
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Wei Wang
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Seesandra V. Rajagopala
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi Tan
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Suman R. Das
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| | - Jorge C. G. Blanco
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| |
Collapse
|
30
|
Qiao L, Zhang Y, Chai F, Tan Y, Huo C, Pan Z. Chimeric virus-like particles containing a conserved region of the G protein in combination with a single peptide of the M2 protein confer protection against respiratory syncytial virus infection. Antiviral Res 2016; 131:131-40. [PMID: 27154395 DOI: 10.1016/j.antiviral.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023]
Abstract
To investigate the feasibility and efficacy of a virus-like particle (VLP) vaccine composed of the conserved antigenic epitopes of respiratory syncytial virus (RSV), the chimeric RSV VLPs HBcΔ-tG and HBcΔ-tG/M282-90 were generated based on the truncated hepatitis B virus core protein (HBcΔ). HBcΔ-tG consisted of HBcΔ, the conserved region (aa 144-204) of the RSV G protein. HBcΔ-tG was combined with a single peptide (aa 82-90) of the M2 protein to generate HBcΔ-tG/M282-90. Immunization of mice with the HBcΔ-tG or HBcΔ-tG/M282-90 VLPs elicited RSV-specific IgG and neutralizing antibody production and conferred protection against RSV infection. Compared with HBcΔ-tG, HBcΔ-tG/M282-90 induced decreased Th2 cytokine production (IL-4 and IL-5), increased Th1 cytokine response (IFN-γ, TNF-α, and IL-2), and increased ratios of IgG2a/IgG1 antibodies, thereby relieving pulmonary pathology upon subsequent RSV infection. Our results demonstrated that chimeric HBcΔ-tG/M282-90 VLPs represented an effective RSV subunit vaccine candidate.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Chai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yiluo Tan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chunling Huo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Shah M, Anwar MA, Kim JH, Choi S. Advances in Antiviral Therapies Targeting Toll-like Receptors. Expert Opin Investig Drugs 2016; 25:437-53. [DOI: 10.1517/13543784.2016.1154040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Blanco JCG, Pletneva LM, Oue RO, Patel MC, Boukhvalova MS. Maternal transfer of RSV immunity in cotton rats vaccinated during pregnancy. Vaccine 2015; 33:5371-5379. [PMID: 26335771 PMCID: PMC5155338 DOI: 10.1016/j.vaccine.2015.08.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/07/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022]
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of pneumonia and bronchiolitis in infants, resulting in significant morbidity and mortality worldwide. There is currently no RSV vaccine. Although maternal serum antibodies against RSV are efficiently transferred through placenta protecting human infants from RSV-induced disease, this protection is short-lived and the methods for extending and augmenting protection are not known. The objective of this study was to develop an animal model of maternal RSV vaccination using the Sigmodon hispidus cotton rat. Naïve or RSV-primed female cotton rats were inoculated with live RSV and set in breeding pairs. Antibody transfer to the litters was quantified and the offspring were challenged with RSV at different ages for analysis of protection against viral replication and lung inflammation. There was a strong correlation between RSV-neutralizing antibody (NA) titers in cotton rat mothers and their pups, which also correlated with protection of litters against virus challenge. Passive protection was short-lived and strongly reduced in animals at 4 weeks after birth. Protection of litters was significantly enhanced by inoculating mothers parenterally with live RSV and inversely correlated with the expression of lung cytokines and pathology. Importantly, vaccination and boosting of naïve mothers with the live RSV produced the highest levels of NAs. We conclude that maternal vaccination against RSV in the cotton rat can be used to define vaccine preparations that could improve preexistent immunity and induce subsequent transfer of efficient immunity to infants.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States.
| | - Lioubov M Pletneva
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Raymonde O Oue
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States; University of Maryland School of Medicine, Baltimore, MD 21101, United States
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, United States
| |
Collapse
|
33
|
Walpita P, Johns LM, Tandon R, Moore ML. Mammalian Cell-Derived Respiratory Syncytial Virus-Like Particles Protect the Lower as well as the Upper Respiratory Tract. PLoS One 2015; 10:e0130755. [PMID: 26172453 PMCID: PMC4501727 DOI: 10.1371/journal.pone.0130755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
Globally, Respiratory Syncytial Virus (RSV) is a leading cause of bronchiolitis and pneumonia in children less than one year of age and in USA alone, between 85,000 and 144,000 infants are hospitalized every year. To date, there is no licensed vaccine. We have evaluated vaccine potential of mammalian cell-derived native RSV virus-like particles (RSV VLPs) composed of the two surface glycoproteins G and F, and the matrix protein M. Results of in vitro testing showed that the VLPs were functionally assembled and immunoreactive, and that the recombinantly expressed F protein was cleaved intracellularly similarly to the virus-synthesized F protein to produce the F1 and F2 subunits; the presence of the F1 fragment is critical for vaccine development since all the neutralizing epitopes present in the F protein are embedded in this fragment. Additional in vitro testing in human macrophage cell line THP-1 showed that both virus and the VLPs were sensed by TLR-4 and induced a Th1-biased cytokine response. Cotton rats vaccinated with RSV VLPs adjuvanted with alum and monophosphoryl lipid A induced potent neutralizing antibody response, and conferred protection in the lower as well as the upper respiratory tract based on substantial virus clearance from these sites. To the best of our knowledge, this is the first VLP/virosome vaccine study reporting protection of the lower as well as the upper respiratory tract: Prevention from replication in the nose is an important consideration if the target population is infants < 6 months of age. This is because continued virus replication in the nose results in nasal congestion and babies at this age are obligate nose breathers. In conclusion, these results taken together suggest that our VLPs show promise to be a safe and effective vaccine for RSV.
Collapse
Affiliation(s)
- Pramila Walpita
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Lisa M. Johns
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Ravi Tandon
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Martin L. Moore
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
34
|
Branche AR, Falsey AR. Respiratory syncytial virus infection in older adults: an under-recognized problem. Drugs Aging 2015; 32:261-9. [PMID: 25851217 DOI: 10.1007/s40266-015-0258-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human respiratory syncytial virus (RSV) is an enveloped, single-stranded, negative-sense RNA virus and member of the Paramyxoviridae family of the genus Pneumovirus that was first reported as a major pathogen in pediatric populations. However, since its discovery, RSV has not infrequently been detected in adults. Reinfection occurs throughout life, with more severe disease occurring in older adults, immunocompromised patients, and those with underlying cardiopulmonary disease. Initially described as the cause of nursing home outbreaks of respiratory disease, there is a now significant body of literature describing the clinical importance of RSV in older adults in a multitude of settings including long-term care, adult daycares, and in community-dwelling adults. Moreover, recent reports from China and other countries emphasize that RSV is a global pathogen that will become increasingly important in developed nations with aging populations. Annual attack rates in the USA range from 2 to 10% in community-dwelling older adults and 5-10% in older adults living in congregate settings. Population-based calculations of the proportion of acute respiratory illnesses attributable to RSV estimate that 11,000 elderly persons die annually in the USA of illnesses related to RSV infection. Clinical manifestations of RSV infections are similar to that of other viral respiratory pathogens and include cough, nasal congestion, rhinorrhea, sore throat, and dyspnea. Lower respiratory tract disease is common and may result in respiratory failure (8-13%) or death (2-5%). Recent advances in molecular diagnostics have made it possible to rapidly identify RSV infection using nucleic acid amplification tests, although clinicians will need to suspect the diagnosis when viral activity is high. At the present time, treatment is supportive. Effective antiviral agents for the treatment and vaccines for prevention of RSV remain a significant unmet medical need in the older adult population.
Collapse
Affiliation(s)
- Angela R Branche
- Infectious Disease Unit, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA,
| | | |
Collapse
|
35
|
Abstract
Respiratory syncytial virus (RSV) can induce severe lower respiratory tract infections in infants and is the leading cause of bronchiolitis in children worldwide. RSV-induced inflammation is believed to contribute substantially to the severity of disease. T helper (Th)2-, Th9-, and Th17-related cytokines are all observed in infants hospitalized following a severe RSV infection. These cytokines cause an influx of inflammatory cells, resulting in mucus production and reduced lung function. Consistent with the data from RSV-infected infants, CD4 T cell production of Interleukin (IL)-9, IL-13, and IL-17 has all been shown to contribute to RSV-induced disease in a murine model of RSV infection. Conversely, murine studies indicate that the combined actions of regulatory factors such as CD4 regulatory T cells and IL-10 inhibit the inflammatory cytokine response and limit RSV-induced disease. In support of this, IL-10 polymorphisms are associated with susceptibility to severe disease in infants. Insufficient regulation and excess inflammation not only impact disease following primary RSV infection it can also have a major impact following vaccination. Prior immunization with a formalin-inactivated (FI-RSV) vaccine resulted in enhanced disease in infants following a natural RSV infection. A Th2 CD4 T cell response has been implicated to be a major contributor in mediating vaccine-enhanced disease. Thus, future RSV vaccines must induce a balanced CD4 T cell response in order to facilitate viral clearance while inducing proper regulation of the immune response.
Collapse
|
36
|
Abstract
Acute respiratory tract infection (RTI) is a leading cause of morbidity and mortality worldwide and the majority of RTIs are caused by viruses, among which respiratory syncytial virus (RSV) and the closely related human metapneumovirus (hMPV) figure prominently. Host innate immune response has been implicated in recognition, protection and immune pathological mechanisms. Host-viral interactions are generally initiated via host recognition of pathogen-associated molecular patterns (PAMPs) of the virus. This recognition occurs through host pattern recognition receptors (PRRs) which are expressed on innate immune cells such as epithelial cells, dendritic cells, macrophages and neutrophils. Multiple PRR families, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), contribute significantly to viral detection, leading to induction of cytokines, chemokines and type I interferons (IFNs), which subsequently facilitate the eradication of the virus. This review focuses on the current literature on RSV and hMPV infection and the role of PRRs in establishing/mediating the infection in both in vitro and in vivo models. A better understanding of the complex interplay between these two viruses and host PRRs might lead to efficient prophylactic and therapeutic treatments, as well as the development of adequate vaccines.
Collapse
|
37
|
Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, Blanco JC. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol 2014; 9:811-829. [PMID: 25620999 DOI: 10.2217/fvl.14.70] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.
Collapse
Affiliation(s)
- Mira C Patel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Kari Ann Shirey
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Alfredo Garzino-Demo
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA ; Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Stefanie N Vogel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
38
|
Rudraraju R, Sealy RE, Surman SL, Thomas PG, Dayton BH, Hurwitz JL. Non-random lymphocyte distribution among virus-infected cells of the respiratory tract. Viral Immunol 2014; 26:378-84. [PMID: 24328934 DOI: 10.1089/vim.2013.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rules of T cell positioning within virus-infected respiratory tract tissues are poorly understood. We therefore marked cervical lymph node or spleen cells from Sendai virus (SeV) primed mice and transferred lymphocytes to animals infected with SeV expressing an enhanced green fluorescent protein (SeV-eGFP). Confocal imaging showed that when T cells entered a field of infected respiratory tract epithelium, they assumed a spatial distribution that maximized distances between each donor cell and its nearest neighbor. We therefore hypothesized that lymphocytes repelled one another by altering their chemokine/cytokine microenvironment. Subsequent in vitro tests confirmed that when SeV-primed lymphocytes were co-cultured with infected respiratory tract stroma, there was a profound upregulation of chemokines including RANTES, CXCL9, CXCL10, and CCL2. Based on these data, we propose that newly resident lymphocytes within virus-infected respiratory tract tissues may create halos of chemokines/cytokines to mark their territories; lymphocyte cross-talk may then inhibit cell overlap and redundancy to expedite virus clearance.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | | | | | | | | | |
Collapse
|
39
|
Yamaji Y, Nakayama T. Recombinant measles viruses expressing respiratory syncytial virus proteins induced virus-specific CTL responses in cotton rats. Vaccine 2014; 32:4529-4536. [PMID: 24951869 DOI: 10.1016/j.vaccine.2014.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Respiratory syncytial virus (RSV) is a common cause of serious lower respiratory tract illnesses in infants. Natural infections with RSV provide limited protection against reinfection because of inefficient immunological responses that do not induce long-term memory. RSV natural infection has been shown to induce unbalanced immune response. The effective clearance of RSV is known to require the induction of a balanced Th1/Th2 immune response, which involves the induction of cytotoxic T lymphocytes (CTL). In our previous study, recombinant AIK-C measles vaccine strains MVAIK/RSV/F and MVAIK/RSV/G were developed, which expressed the RSV fusion (F) protein or glycoprotein (G). These recombinant viruses elicited antibody responses against RSV in cotton rats, and no infectious virus was recovered, but small amounts of infiltration of inflammatory cells were observed in the lungs following RSV challenge. In the present study, recombinant AIK-C measles vaccine strains MVAIK/RSV/M2-1 and MVAIK/RSV/NP were developed, expressing RSV M2-1 or Nucleoprotein (NP), respectively. These viruses exhibited temperature-sensitivity (ts), which was derived from AIK-C, and expressed respective RSV antigens. The intramuscular inoculation of cotton rats with the recombinant measles virus led to the induction of CD8(+) IFN-γ(+) cells. No infectious virus was recovered from a lung homogenate following the challenge. A Histological examination of the lungs revealed a significant reduction in inflammatory reactions without alveolar damage. These results support the recombinant measles viruses being effective vaccine candidates against RSV that induce RSV-specific CTL responses with or without the development of an antibody response.
Collapse
Affiliation(s)
- Yoshiaki Yamaji
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
40
|
Jorquera PA, Oakley KE, Tripp RA. Advances in and the potential of vaccines for respiratory syncytial virus. Expert Rev Respir Med 2014; 7:411-27. [PMID: 23964629 DOI: 10.1586/17476348.2013.814409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of serious lower respiratory track illness causing bronchiolitis and some mortality in infants and the elderly. Despite decades of research there is no licensed RSV vaccine. To enable the development of RSV vaccines, several major obstacles must be overcome including immature and waning immunity to RSV infection, the capacity of RSV to evade immunity and the failure of RSV infection to induce robust enduring immunity. Since the failure of the formalin-inactivated RSV vaccine trial, more cautious and deliberate progress has been made toward RSV vaccine development using a variety of experimental approaches. The scientific rational and the state of development of these approaches are reviewed in this article.
Collapse
Affiliation(s)
- Patricia A Jorquera
- College of Veterinary Medicine, Department of Infectious Disease, Animal Health Research Center, 111 Carlton Street, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
41
|
Blanco JCG, Boukhvalova MS, Pletneva LM, Shirey KA, Vogel SN. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects against RSV-induced replication and lung pathology. Vaccine 2014; 32:1495-500. [PMID: 24252693 PMCID: PMC3947896 DOI: 10.1016/j.vaccine.2013.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen.
Collapse
Affiliation(s)
| | | | | | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, United States
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, United States
| |
Collapse
|
42
|
Schijf MA, Lukens MV, Kruijsen D, van Uden NOP, Garssen J, Coenjaerts FEJ, van’t Land B, van Bleek GM. Respiratory syncytial virus induced type I IFN production by pDC is regulated by RSV-infected airway epithelial cells, RSV-exposed monocytes and virus specific antibodies. PLoS One 2013; 8:e81695. [PMID: 24303065 PMCID: PMC3841124 DOI: 10.1371/journal.pone.0081695] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/15/2013] [Indexed: 12/25/2022] Open
Abstract
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.
Collapse
Affiliation(s)
- Marcel A. Schijf
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Michael V. Lukens
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Debby Kruijsen
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Nathalie O. P. van Uden
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Johan Garssen
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht, The Netherlands
| | | | - Belinda van’t Land
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- Department of Immunology, Danone Research - Centre for Specialised Nutrition, Wageningen, The Netherlands
| | - Grada M. van Bleek
- Department of Pediatrics, The Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
43
|
Marr N, Turvey SE, Grandvaux N. Pathogen recognition receptor crosstalk in respiratory syncytial virus sensing: a host and cell type perspective. Trends Microbiol 2013; 21:568-74. [PMID: 24119913 DOI: 10.1016/j.tim.2013.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Human respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. The innate immune response plays a pivotal role in host defense against RSV, but whether severe outcomes following RSV infection result from excessive or poor innate immune recognition remains unclear. Recent research suggests a situation in which crosstalk between families of pattern recognition receptors (PRRs) occurs in a cell type-dependent manner. The current challenge to empower novel therapeutic approaches and vaccine development is to confirm the role of the individual receptors in RSV pathogenesis in humans.
Collapse
Affiliation(s)
- Nico Marr
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada; Child & Family Research Institute, Vancouver, BC V5Z 4H4, Canada
| | | | | |
Collapse
|
44
|
Garg R, Shrivastava P, van Drunen Littel-van den Hurk S. The role of dendritic cells in innate and adaptive immunity to respiratory syncytial virus, and implications for vaccine development. Expert Rev Vaccines 2013; 11:1441-57. [PMID: 23252388 DOI: 10.1586/erv.12.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Respiratory syncytial virus (RSV) is a common human pathogen that causes cold-like symptoms in most healthy adults and children. However, RSV often moves into the lower respiratory tract in infants and young children predisposed to respiratory illness, making it the most common cause of pediatric broncheolitis and pneumonia. The development of an appropriate balanced immune response is critical for recovery from RSV, while an unbalanced and/or excessively vigorous response may lead to immunopathogenesis. Different dendritic cell (DC) subsets influence the magnitude and quality of the host response to RSV infection, with myeloid DCs mediating and plasmacytoid DCs modulating immunopathology. Furthermore, stimulation of DCs through Toll-like receptors is essential for induction of protective immunity to RSV. These characteristics have implications for the rational design of a RSV vaccine.
Collapse
Affiliation(s)
- Ravendra Garg
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | | | | |
Collapse
|
45
|
Abstract
Respiratory syncytial virus (RSV) is a major worldwide pathogen for which there is still no effective vaccine or antiviral treatment available, and immunoprophylaxis with RSV-specific antibodies (e.g., palivizumab) is used in limited clinical settings. In this review, we discuss virus-host interactions relevant to RSV pathobiology and how advances in cell and systems biology have accelerated knowledge in this area. We also highlight recent advances in understanding the relationship between RSV bronchiolitis and sequelae of recurrent wheezing and asthma, new findings into an intriguing interaction between RSV and air pollution, and exciting developments toward the goal of realizing a safe and effective RSV vaccine.
Collapse
Affiliation(s)
- Peter Mastrangelo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 6231-1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Richard G. Hegele
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 6231-1 King’s College Circle, Toronto, ON M5S 1A8 Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
46
|
Kamphuis T, Shafique M, Meijerhof T, Stegmann T, Wilschut J, de Haan A. Efficacy and safety of an intranasal virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice and cotton rats. Vaccine 2013; 31:2169-2176. [PMID: 23499594 DOI: 10.1016/j.vaccine.2013.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/22/2013] [Accepted: 02/25/2013] [Indexed: 01/23/2023]
Abstract
Respiratory syncytial virus infection remains a serious health problem, not only in infants but also in immunocompromised adults and the elderly. An effective and safe vaccine is not available due to several obstacles: non-replicating RSV vaccines may prime for excess Th2-type responses and enhanced respiratory disease (ERD) upon natural RSV infection of vaccine recipients. We previously found that inclusion of the Toll-like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) in reconstituted RSV membranes (virosomes) potentiates vaccine-induced immunity and skews immune responses toward a Th1-phenotype, without priming for ERD. As mucosal immunization is an attractive approach for induction of RSV-specific systemic and mucosal antibody responses and TLR ligands could potentiate such responses, we explored the efficacy and safety of RSV-MPLA virosomes administered intranasally (IN) to mice and cotton rats. In mice, we found that incorporation of MPLA in IN-administered RSV virosomes increased both systemic IgG and local secretory-IgA (S-IgA) antibody levels and resulted in significantly reduced lung viral titers upon live virus challenge. Also, RSV MPLA virosomes induced more Th1-skewed responses compared to responses induced by FI-RSV. Antibody responses and Th1/Th2-cytokine responses induced by RSV-MPLA virosomes were comparable to those induced by live RSV infection. By comparison, formalin-inactivated RSV (FI-RSV) induced serum IgG that inhibited viral shedding upon challenge, but also induced Th2-skewed responses. In cotton rats, similar effects of incorporation of MPLA in virosomes were observed with respect to induction of systemic antibodies and inhibition of lung viral shedding upon challenge, but mucosal sS-IgA responses were only moderately enhanced. Importantly, IN immunization with RSV-MPLA virosomes, like live virus infection, did not lead to any signs of ERD upon live virus challenge of vaccinated animals, whereas IM immunization with FI-RSV did induce severe lung immunopathology under otherwise comparable conditions. Taken together, these data show that mucosally administered RSV-MPLA virosomes hold promise for a safe and effective vaccine against RSV.
Collapse
Affiliation(s)
- Tobias Kamphuis
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Kamphuis T, Stegmann T, Meijerhof T, Wilschut J, de Haan A. A virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A provides protection against viral challenge without priming for enhanced disease in cotton rats. Influenza Other Respir Viruses 2013; 7:1227-36. [PMID: 23575113 PMCID: PMC4634254 DOI: 10.1111/irv.12112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Non-replicating respiratory syncytial virus (RSV) vaccine candidates could potentially prime for enhanced respiratory disease (ERD) due to a T-cell-mediated immunopathology, following RSV infection. Vaccines with built-in immune response modifiers, such as Toll-like receptor (TLR) ligands, may avoid such aberrant imprinting of the immune system. METHODS We developed reconstituted RSV envelopes (virosomes) with incorporated TLR4 ligand, monophosphoryl lipid A (RSV-MPLA virosomes). Immune responses and lung pathology after vaccination and challenge were investigated in ERD-prone cotton rats and compared with responses induced by live virus and formaldehyde-inactivated vaccine (FI-RSV), a known cause of ERD upon RSV challenge. RESULTS Vaccination with RSV-MPLA virosomes induced higher levels of virus-neutralizing antibodies than FI-RSV or live virus infection and provided protection against infection. FI-RSV, but not RSV-MPLA virosomes, primed for increases in expression of Th2 cytokines IL-4, IL-5, IL-13, and Th1 cytokine IL-1b, 6 hour-5 days after infection. By contrast, RSV-MPLA virosomes induced IFN-γ transcripts to similar levels as induced by live virus. Animals vaccinated with FI-RSV, but not RSV-MPLA virosomes showed alveolitis, with prominent neutrophil influx and peribronchiolar and perivascular infiltrates. CONCLUSION These results show that RSV-MPLA virosomes represent a safe and immunogenic vaccine candidate that warrants evaluation in a clinical setting.
Collapse
Affiliation(s)
- Tobias Kamphuis
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Kim D, Niewiesk S. Synergistic induction of interferon α through TLR-3 and TLR-9 agonists identifies CD21 as interferon α receptor for the B cell response. PLoS Pathog 2013; 9:e1003233. [PMID: 23516365 PMCID: PMC3597509 DOI: 10.1371/journal.ppat.1003233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/21/2013] [Indexed: 12/13/2022] Open
Abstract
Maternal antibodies inhibit seroconversion and the generation of measles virus (MeV)-specific antibodies (both neutralizing and non-neutralizing antibodies) after vaccination whereas T cell responses are usually unaffected. The lack of seroconversion leaves individuals susceptible to vaccine-preventable infections. Inhibition of antibody secretion is due to the inhibition of B cells through a cross-link of the B cell receptor with the inhibitory FcγIIB receptor (CD32) by maternal antibody/vaccine complexes. Here, we demonstrate that a combination of TLR-3 and TLR-9 agonists induces synergistically higher levels of type I interferon in vitro and in vivo than either agonist alone. The synergistic action of TLR-3 and TLR-9 agonists is based on a feedback loop through the interferon receptor. Finally, we have identified CD21 as a potential receptor for interferon α on B cells which contributes to interferon α-mediated activation of B cells in the presence of maternal antibodies. The combination leads to complete restoration of B cell and antibody responses after immunization in the presence of inhibitory MeV-specific IgG. The strong stimulatory action of type I interferon is due to the fact that type I interferon uses not only the interferon receptor but also CD21 as a functional receptor for B cell activation. Maternal antibodies provide protection against infection with pathogens early in life but also interfere with vaccination. This interference is caused by a vaccine/maternal antibody complex which links the B cell receptor to the inhibitory CD32 molecule. Here, we show that this cross-link results in impaired B cell activation and proliferation which is correlated with diminished antibody responses. We also found that induction of large amounts of type I interferon restores the neutralizing antibody response in the presence of maternal antibodies. The best induction of type I interferon was accomplished by a combination of known activators of interferon secretion (a combination of TLR-3 and TLR-9 agonists). The strong stimulation by interferon is due to the previously unappreciated role of CD21 as functional receptor for interferon alpha. Our findings demonstrate that the dual receptor usage of type I interferon receptor and CD21 is crucial for B cell activation in the presence of maternal antibodies. This study suggests that measles vaccine, and potentially other vaccines, may induce optimal antibody responses when they are reconstituted with TLR-3 and TLR-9 agonists and thus these agonists may have great potential for clinical use.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- B-Lymphocytes/immunology
- Chlorocebus aethiops
- Dendritic Cells/immunology
- Female
- Humans
- Immunization
- Immunologic Factors/genetics
- Immunologic Factors/immunology
- Immunologic Factors/metabolism
- Interferon-alpha/genetics
- Interferon-alpha/immunology
- Interferon-alpha/metabolism
- Lymphocyte Activation
- Measles virus/immunology
- Mice
- Mice, Inbred C57BL
- Oligodeoxyribonucleotides/immunology
- Oligodeoxyribonucleotides/metabolism
- Rabbits
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Receptor, Interferon alpha-beta/metabolism
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/immunology
- Receptors, Complement 3d/metabolism
- Sequence Deletion
- Sigmodontinae
- Toll-Like Receptor 3/agonists
- Toll-Like Receptor 3/immunology
- Toll-Like Receptor 9/agonists
- Toll-Like Receptor 9/immunology
- Vero Cells
Collapse
Affiliation(s)
- Dhohyung Kim
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
49
|
The cotton rat Sigmodon hispidus model of respiratory syncytial virus infection. Curr Top Microbiol Immunol 2013; 372:347-58. [PMID: 24362698 DOI: 10.1007/978-3-642-38919-1_17] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The cotton rat Sigmodon hispidus is a New World rodent that has become an important model of respiratory syncytial virus (RSV) infection. This small animal is relatively permissive to RSV and can be infected throughout life. It recapitulates the pathology associated with the FI-RSV vaccine-enhanced disease, the phenomenon of maternally transmitted immunity and the ability of passive immunity to suppress efficacy of RSV vaccines. Different highly susceptible human cohort scenarios have been modeled in the cotton rat, including RSV disease in infants, elderly, and immunosuppressed individuals. The cotton rat has accurately predicted efficacy and dose of antibody immunoprophylaxis, and the lack of efficacy of antibody immunotherapy for disease treatment. With the recent development of molecular reagents and tools for the model, the cotton rat is an important model of RSV infection to consider for vaccine and drug testing, and will continue to advance our understanding of RSV disease pathogenesis.
Collapse
|
50
|
Shaw CA, Galarneau JR, Bowenkamp KE, Swanson KA, Palmer GA, Palladino G, Markovits JE, Valiante NM, Dormitzer PR, Otten GR. The role of non-viral antigens in the cotton rat model of respiratory syncytial virus vaccine-enhanced disease. Vaccine 2013; 31:306-12. [DOI: 10.1016/j.vaccine.2012.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/02/2012] [Accepted: 11/04/2012] [Indexed: 11/29/2022]
|