1
|
Jia Z, Zhang D, Zhu L, Xue J. Animal models of human herpesvirus infection. Animal Model Exp Med 2025; 8:615-628. [PMID: 39921263 PMCID: PMC12067922 DOI: 10.1002/ame2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/18/2025] [Indexed: 02/10/2025] Open
Abstract
Human herpesvirus, a specific group within the herpesvirus family, is responsible for a variety of human diseases. These viruses can infect humans and other vertebrates, primarily targeting the skin, mucous membranes, and neural tissues, thereby significantly impacting the health of both humans and animals. Animal models are crucial for studying virus pathogenesis, vaccine development, and drug testing. Despite several vaccine candidates being in preclinical and clinical stages, no vaccines are current available to prevent lifelong infections caused by these human herpesviruses, except for varicella-zoster virus (VZV) vaccine. However, the strict host tropism of herpesviruses and other limitations mean that no single animal model can fully replicate all key features of human herpesvirus-associated diseases. This makes it challenging to evaluate vaccines and antivirals against human herpesvirus comprehensively. Herein, we summarize the current animal models used to study the human herpesviruses including α-herpesviruses (herpes simplex virus type 1(HSV-1), HSV-2, VZV), β-herpesviruses (human cytomegalovirus (HCMV), γ-herpesviruses (Epstein-Barr virus (EBV)) and Kaposi's sarcoma herpesvirus (KSHV)). By providing concise information and detailed analysis of the potential, limitations and applications of various models, such as non-human primates, mice, rabbits, guinea pigs, and tree shrews, this summary aims to help researchers efficiently select the most appropriate animal model, offering practical guidance for studying human herpesvirus.
Collapse
Affiliation(s)
- Ziqing Jia
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dong Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lin Zhu
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Ministry of EducationChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Zhu J, Miner MD. Local Power: The Role of Tissue-Resident Immunity in Human Genital Herpes Simplex Virus Reactivation. Viruses 2024; 16:1019. [PMID: 39066181 PMCID: PMC11281577 DOI: 10.3390/v16071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
From established latency, human herpes virus type 2 (HSV-2) frequently reactivates into the genital tract, resulting in symptomatic ulcers or subclinical shedding. Tissue-resident memory (TRM) CD8+ T cells that accumulate and persist in the genital skin at the local site of recrudescence are the "first responders" to viral reactivation, performing immunosurveillance and containment and aborting the ability of the virus to induce clinical lesions. This review describes the unique spatiotemporal characteristics, transcriptional signatures, and noncatalytic effector functions of TRM CD8+ T cells in the tissue context of human HSV-2 infection. We highlight recent insights into the intricate overlaps between intrinsic resistance, innate defense, and adaptive immunity in the tissue microenvironment and discuss how rapid virus-host dynamics at the skin and mucosal level influence clinical outcomes of genital herpes diseases.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Maurine D. Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
4
|
Canova PN, Charron AJ, Leib DA. Models of Herpes Simplex Virus Latency. Viruses 2024; 16:747. [PMID: 38793628 PMCID: PMC11125678 DOI: 10.3390/v16050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Our current understanding of HSV latency is based on a variety of clinical observations, and in vivo, ex vivo, and in vitro model systems, each with unique advantages and drawbacks. The criteria for authentically modeling HSV latency include the ability to easily manipulate host genetics and biological pathways, as well as mimicking the immune response and viral pathogenesis in human infections. Although realistically modeling HSV latency is necessary when choosing a model, the cost, time requirement, ethical constraints, and reagent availability are also equally important. Presently, there remains a pressing need for in vivo models that more closely recapitulate human HSV infection. While the current in vivo, ex vivo, and in vitro models used to study HSV latency have limitations, they provide further insights that add to our understanding of latency. In vivo models have shed light on natural infection routes and the interplay between the host immune response and the virus during latency, while in vitro models have been invaluable in elucidating molecular pathways involved in latency. Below, we review the relative advantages and disadvantages of current HSV models and highlight insights gained through each.
Collapse
Affiliation(s)
- Paige N. Canova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - Audra J. Charron
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| | - David A. Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH 03755, USA;
| |
Collapse
|
5
|
Kutle I, Dittrich A, Wirth D. Mouse Models for Human Herpesviruses. Pathogens 2023; 12:953. [PMID: 37513800 PMCID: PMC10384569 DOI: 10.3390/pathogens12070953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
More than one hundred herpesviruses have been isolated from different species so far, with nine infecting humans. Infections with herpesviruses are characterized by life-long latency and represent a significant challenge for human health. To investigate the consequences of infections and identify novel treatment options, in vivo models are of particular relevance. The mouse has emerged as an economical small animal model to investigate herpesvirus infections. However, except for herpes simplex viruses (HSV-1, HSV-2), human herpesviruses cannot infect mice. Three natural herpesviruses have been identified in mice: mouse-derived cytomegalovirus (MCMV), mouse herpesvirus 68 (MHV-68), and mouse roseolovirus (MRV). These orthologues are broadly used to investigate herpesvirus infections within the natural host. In the last few decades, immunocompromised mouse models have been developed, allowing the functional engraftment of various human cells and tissues. These xenograft mice represent valuable model systems to investigate human-restricted viruses, making them particularly relevant for herpesvirus research. In this review, we describe the various mouse models used to study human herpesviruses, thereby highlighting their potential and limitations. Emphasis is laid on xenograft mouse models, covering the development and refinement of immune-compromised mice and their application in herpesvirus research.
Collapse
Affiliation(s)
- Ivana Kutle
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Dittrich
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
6
|
Piras F, Plitnick LM, Berglund P, Bernard MC, Desert P. Nonclinical safety evaluation of two vaccine candidates for herpes simplex virus type 2 to support combined administration in humans. J Appl Toxicol 2023; 43:534-556. [PMID: 36227735 DOI: 10.1002/jat.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is the most common cause of genital disease worldwide. The development of an effective HSV-2 vaccine would significantly impact global health based on the psychological distress caused by genital herpes for some individuals, the risk transmitting the infection from mother to infant, and the elevated risk of acquiring HIV-1. Five nonclinical safety studies were conducted with the replication defective HSV529 vaccine, alone or adjuvanted with GLA-SE, and the G103 subunit vaccine containing GLA-SE. A biodistribution study was conducted in guinea pigs to evaluate distribution, persistence, and shedding of HSV529. A preliminary immunogenicity study was conducted in rabbits to demonstrate HSV529-specific humoral response and its enhancement by GLA-SE. Three repeated-dose toxicity studies, one in guinea pigs and two in rabbits, were conducted to assess systemic toxicity and local tolerance of HSV529, alone or adjuvanted with GLA-SE, or G103 containing GLA-SE. Data from these studies show that both vaccines are safe and well tolerated and support the ongoing HSV-2 clinical trial in which the two vaccine candidates will be given either sequentially or concomitantly to explore their potential synergistic and incremental effects.
Collapse
Affiliation(s)
| | | | - Peter Berglund
- Immune Design Corp., Seattle, WA, USA, a wholly owned subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
- HDT Bio, Seattle, Washington, USA
| | | | | |
Collapse
|
7
|
Swingler M, Donadoni M, Bellizzi A, Cakir S, Sariyer IK. iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. J Neurovirol 2023; 29:121-134. [PMID: 37097597 PMCID: PMC10127962 DOI: 10.1007/s13365-023-01133-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.
Collapse
Affiliation(s)
- Michael Swingler
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Senem Cakir
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
8
|
Le-Trilling VTK, Jagnjić A, Brizić I, Eilbrecht M, Wohlgemuth K, Rožmanić C, Herdman A, Hoffmann K, Westendorf AM, Hengel H, Jonjić S, Trilling M. Maternal antibodies induced by a live attenuated vaccine protect neonatal mice from cytomegalovirus. NPJ Vaccines 2023; 8:8. [PMID: 36737485 PMCID: PMC9898546 DOI: 10.1038/s41541-023-00602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) frequently causes congenital infections, resulting in birth defects and developmental disorders. A vaccine is needed, but unavailable. We analyzed the potential of CMV mutants, lacking their STAT2 antagonists to serve as live attenuated vaccine viruses in mice. Infections with attenuated viruses elicited strong ELISA-reactive binding IgG responses and induced neutralizing antibodies as well as antibodies stimulating cellular Fcγ receptors, including the antibody-dependent cellular cytotoxicity (ADCC)-eliciting receptors FcγRIII/CD16 and FcγRIV. Accordingly, vaccinated mice were fully protected against challenge infections. Female mice vaccinated prior to gestation transmitted CMV-specific IgG to their offspring, which protected the progeny from perinatal infections in a mouse model for congenital CMV disease. To define the role of maternal antibodies, female mice either capable or incapable of producing antibodies were vaccinated and subsequently bred to males of the opposite genotype. Challenge infections of the genotypically identical F1 generation revealed the indispensability of maternal antibodies for vaccine-induced protection against cytomegaloviruses.
Collapse
Affiliation(s)
- Vu Thuy Khanh Le-Trilling
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreja Jagnjić
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ilija Brizić
- grid.22939.330000 0001 2236 1630Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mareike Eilbrecht
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Wohlgemuth
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carmen Rožmanić
- grid.22939.330000 0001 2236 1630Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alan Herdman
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katja Hoffmann
- grid.5963.9Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Astrid M. Westendorf
- grid.5718.b0000 0001 2187 5445Institute for Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hartmut Hengel
- grid.5963.9Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stipan Jonjić
- grid.22939.330000 0001 2236 1630Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mirko Trilling
- grid.5718.b0000 0001 2187 5445Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Mazzara PG, Criscuolo E, Rasponi M, Massimino L, Muggeo S, Palma C, Castelli M, Clementi M, Burioni R, Mancini N, Broccoli V, Clementi N. A Human Stem Cell-Derived Neurosensory–Epithelial Circuitry on a Chip to Model Herpes Simplex Virus Reactivation. Biomedicines 2022; 10:biomedicines10092068. [PMID: 36140168 PMCID: PMC9495731 DOI: 10.3390/biomedicines10092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Both emerging viruses and well-known viral pathogens endowed with neurotropism can either directly impair neuronal functions or induce physio-pathological changes by diffusing from the periphery through neurosensory–epithelial connections. However, developing a reliable and reproducible in vitro system modeling the connectivity between the different human sensory neurons and peripheral tissues is still a challenge and precludes the deepest comprehension of viral latency and reactivation at the cellular and molecular levels. This study shows a stable topographic neurosensory–epithelial connection on a chip using human stem cell-derived dorsal root ganglia (DRG) organoids. Bulk and single-cell transcriptomics showed that different combinations of key receptors for herpes simplex virus 1 (HSV-1) are expressed by each sensory neuronal cell type. This neuronal–epithelial circuitry enabled a detailed analysis of HSV infectivity, faithfully modeling its dynamics and cell type specificity. The reconstitution of an organized connectivity between human sensory neurons and keratinocytes into microfluidic chips provides a powerful in vitro platform for modeling viral latency and reactivation of human viral pathogens.
Collapse
Affiliation(s)
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Palma
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy
- Correspondence: (V.B.); (N.C.); Tel.: +39-022-643-4616 (V.B.); +39-022-643-3144 (N.C.)
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Correspondence: (V.B.); (N.C.); Tel.: +39-022-643-4616 (V.B.); +39-022-643-3144 (N.C.)
| |
Collapse
|
10
|
Assessing the Immunomodulatory Effect of Size on the Uptake and Immunogenicity of Influenza- and Hepatitis B Subunit Vaccines In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15070887. [PMID: 35890185 PMCID: PMC9321264 DOI: 10.3390/ph15070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Viral subunit vaccines are a safer and more tolerable alternative to whole inactivated virus vaccines. However, they often come with limited efficacy, necessitating the use of adjuvants. Using free and particle-bound viral antigens, we assessed whether size affects the uptake of those antigens by human monocyte-derived dendritic cells (Mo-DCs) and whether differences in uptake affect their capacity to stimulate cytokine production by T cells. To this end, influenza antigens and hepatitis B surface antigen (HBsAg) were covalently conjugated to polystyrene particles of 500 nm and 3 μm. Cellular uptake of the antigens, either unconjugated or conjugated, and their capacity to stimulate T cells within a population of human peripheral blood mononuclear cells (PBMCs) were measured by flow cytometry. Conjugation of both antigens to particles significantly increased their uptake by Mo-DCs. Moreover, both the 500 nm and 3 μm influenza conjugates induced significantly higher numbers of cytokine-producing CD4+ T cells and induced increased production of the pro-inflammatory cytokines IFNγ and TNFα. In contrast, conjugation of HBsAg to particles did not notably affect the T cell response. In conclusion, conjugation of antigen to 500 nm and 3 μm particles leads to increased antigen uptake by human Mo-DCs, although the capacity of such conjugates to induce T cell stimulation likely depends on the immunological status of the PBMC donor.
Collapse
|
11
|
Sehl-Ewert J, Schwaiger T, Schäfer A, Hölper JE, Klupp BG, Teifke JP, Blohm U, Mettenleiter TC. Clinical, neuropathological, and immunological short- and long-term feature of a mouse model mimicking human herpes virus encephalitis. Brain Pathol 2021; 32:e13031. [PMID: 34709694 PMCID: PMC9048517 DOI: 10.1111/bpa.13031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex encephalitis (HSE) is one of the most serious diseases of the nervous system in humans. However, its pathogenesis is still only poorly understood. Although several mouse models of predominantly herpes simplex virus 1 (HSV-1) infections mimic different crucial aspects of HSE, central questions remain unanswered. They comprise the specific temporofrontal tropism, viral spread within the central nervous system (CNS), as well as potential molecular and immunological barriers that drive virus into latency while only rarely resulting in severe HSE. We have recently proposed an alternative mouse model by using a pseudorabies virus (PrV) mutant that more faithfully represents the striking features of human HSE: temporofrontal meningoencephalitis with few severely, but generally only moderately to subclinically affected mice as well as characteristic behavioral abnormalities. Here, we characterized this animal model using 6- to 8-week-old female CD-1 mice in more detail. Long-term investigation over 6 months consistently revealed a biphasic course of infection accompanied by recurring clinical signs including behavioral alterations and mainly mild meningoencephalitis restricted to the temporal and frontal lobes. By histopathological and immunological analyses, we followed the kinetics and spatial distribution of inflammatory lesions as well as the underlying cytokine expression in the CNS over 21 days within the acute phase of infection. Affecting the temporal lobes, the inflammatory infiltrate was composed of lymphocytes and macrophages showing a predominantly lymphocytic shift 15 days after infection. A strong increase was observed in cytokines CXCL10, CCL2, CCL5, and CXCL1 recruiting inflammatory cells to the CNS. Unlike the majority of infected mice, strongly affected animals demonstrated extensive temporal lobe edema, which is typically present in severe human HSE cases. In summary, these results support the validity of our animal model for in-depth investigation of HSE pathogenesis.
Collapse
Affiliation(s)
- Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Theresa Schwaiger
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.,ViraTherapeutics GmbH, Rum, Austria
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia E Hölper
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.,Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jens P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Abstract
Recent studies have renewed the debate on infectious etiology in late-onset Alzheimer's disease. Bocharova et al. reported that abundant expression of human beta amyloid (Aβ) in the mouse brain (5XFAD animals) failed to protect against acute herpes simplex virus type 1 infection relative to control mice. While this study does not confirm the antiviral actions of Aβ, it neither supports nor disproves the hypothesis that infection with microbial pathogens is the major cause of Alzheimer's disease.
Collapse
|
13
|
Singh T, Otero CE, Li K, Valencia SM, Nelson AN, Permar SR. Vaccines for Perinatal and Congenital Infections-How Close Are We? Front Pediatr 2020; 8:569. [PMID: 33384972 PMCID: PMC7769834 DOI: 10.3389/fped.2020.00569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Congenital and perinatal infections are transmitted from mother to infant during pregnancy across the placenta or during delivery. These infections not only cause pregnancy complications and still birth, but also result in an array of pediatric morbidities caused by physical deformities, neurodevelopmental delays, and impaired vision, mobility and hearing. Due to the burden of these conditions, congenital and perinatal infections may result in lifelong disability and profoundly impact an individual's ability to live to their fullest capacity. While there are vaccines to prevent congenital and perinatal rubella, varicella, and hepatitis B infections, many more are currently in development at various stages of progress. The spectrum of our efforts to understand and address these infections includes observational studies of natural history of disease, epidemiological evaluation of risk factors, immunogen design, preclinical research of protective immunity in animal models, and evaluation of promising candidates in vaccine trials. In this review we summarize this progress in vaccine development research for Cytomegalovirus, Group B Streptococcus, Herpes simplex virus, Human Immunodeficiency Virus, Toxoplasma, Syphilis, and Zika virus congenital and perinatal infections. We then synthesize this evidence to examine how close we are to developing a vaccine for these infections, and highlight areas where research is still needed.
Collapse
Affiliation(s)
- Tulika Singh
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Claire E. Otero
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Katherine Li
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sarah M. Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Ashley N. Nelson
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sallie R. Permar
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Xu X, Feng X, Wang L, Yi T, Zheng L, Jiang G, Fan S, Liao Y, Feng M, Zhang Y, Li D, Li Q. A HSV1 mutant leads to an attenuated phenotype and induces immunity with a protective effect. PLoS Pathog 2020; 16:e1008703. [PMID: 32776994 PMCID: PMC7440667 DOI: 10.1371/journal.ppat.1008703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/20/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1) is a complicated structural agent with a sophisticated transcription process and a high infection rate. A vaccine against HSV1 is urgently needed. As multiple viral-encoded proteins, including structural and nonstructural proteins, contribute to immune response stimulation, an attenuated or deficient HSV1 vaccine may be relatively reliable. Advances in genomic modification technologies provide reliable means of constructing various HSV vaccine candidates. Based on our previous work, an M6 mutant with mutations in the UL7, UL41, LAT, Us3, Us11 and Us12 genes was established. The mutant exhibited low proliferation in cells and an attenuated phenotype in an animal model. Furthermore, in mice and rhesus monkeys, the mutant can induce remarkable serum neutralizing antibody titers and T cell activation and protect against HSV1 challenge by impeding viral replication, dissemination and pathogenesis.
Collapse
Affiliation(s)
- Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xiao Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ting Yi
- Weirui Biotechnology (Kunming) Co., Ltd, Kunming, China
| | - Lichun Zheng
- Weirui Biotechnology (Kunming) Co., Ltd, Kunming, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
15
|
Ramsey NLM, Visciano M, Hunte R, Loh LN, Burn Aschner C, Jacobs WR, Herold BC. A Single-Cycle Glycoprotein D Deletion Viral Vaccine Candidate, ΔgD-2, Elicits Polyfunctional Antibodies That Protect against Ocular Herpes Simplex Virus. J Virol 2020; 94:e00335-20. [PMID: 32295919 PMCID: PMC7307146 DOI: 10.1128/jvi.00335-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a leading cause of infectious blindness, highlighting the need for effective vaccines. A single-cycle HSV-2 strain with the deletion of glycoprotein D, ΔgD-2, completely protected mice from HSV-1 and HSV-2 skin or vaginal disease and prevented latency following active or passive immunization in preclinical studies. The antibodies functioned primarily by activating Fc receptors to mediate antibody-dependent cellular cytotoxicity (ADCC). The ability of ADCC to protect the immune-privileged eye, however, may differ from skin or vaginal infections. Thus, the current studies were designed to compare active and passive immunization with ΔgD-2 versus an adjuvanted gD subunit vaccine (rgD-2) in a primary lethal ocular murine model. ΔgD-2 provided significantly greater protection than rgD-2 following a two-dose vaccine regimen, although both vaccines were protective compared to an uninfected cell lysate. However, only immune serum from ΔgD-2-vaccinated, but not rgD-2-vaccinated, mice provided significant protection against lethality in passive transfer studies. The significantly greater passive protection afforded by ΔgD-2 persisted after controlling for the total amount of HSV-specific IgG in the transferred serum. The antibodies elicited by rgD-2 had significantly higher neutralizing titers, whereas those elicited by ΔgD-2 had significantly more C1q binding and Fc gamma receptor activation, a surrogate for ADCC function. Together, the findings suggest ADCC is protective in the eye and that nonneutralizing antibodies elicited by ΔgD-2 provide greater protection than neutralizing antibodies elicited by rgD-2 against primary ocular HSV disease. The findings support advancement of vaccines, including ΔgD-2, that elicit polyfunctional antibody responses.IMPORTANCE Herpes simplex virus 1 is the leading cause of infectious corneal blindness in the United States and Europe. Developing vaccines to prevent ocular disease is challenging because the eye is a relatively immune-privileged site. In this study, we compared a single-cycle viral vaccine candidate, which is unique in that it elicits predominantly nonneutralizing antibodies that activate Fc receptors and bind complement, and a glycoprotein D subunit vaccine that elicits neutralizing but not Fc receptor-activating or complement-binding responses. Only the single-cycle vaccine provided both active and passive protection against a lethal ocular challenge. These findings greatly expand our understanding of the types of immune responses needed to protect the eye and will inform future prophylactic and therapeutic strategies.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Chlorocebus aethiops
- Eye/immunology
- Female
- Herpesvirus 1, Human/metabolism
- Herpesvirus 2, Human/metabolism
- Herpesvirus Vaccines/immunology
- Immunization, Passive/methods
- Keratitis, Herpetic/genetics
- Keratitis, Herpetic/immunology
- Mice
- Mice, Inbred BALB C
- Receptors, Fc/immunology
- Vaccines, Subunit/immunology
- Vero Cells
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Viral Vaccines/administration & dosage
Collapse
Affiliation(s)
- Natalie L M Ramsey
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maria Visciano
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Richard Hunte
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lip Nam Loh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Clare Burn Aschner
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Betsy C Herold
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
16
|
Egan K, Hook LM, LaTourette P, Desmond A, Awasthi S, Friedman HM. Vaccines to prevent genital herpes. Transl Res 2020; 220:138-152. [PMID: 32272093 PMCID: PMC7293938 DOI: 10.1016/j.trsl.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Genital herpes increases the risk of acquiring and transmitting Human Immunodeficiency Virus (HIV), is a source of anxiety for many about transmitting infection to intimate partners, and is life-threatening to newborns. A vaccine that prevents genital herpes infection is a high public health priority. An ideal vaccine will prevent both genital lesions and asymptomatic subclinical infection to reduce the risk of inadvertent transmission to partners, will be effective against genital herpes caused by herpes simplex virus types 1 and 2 (HSV-1, HSV-2), and will protect against neonatal herpes. Three phase 3 human trials were performed over the past 20 years that used HSV-2 glycoproteins essential for virus entry as immunogens. None achieved its primary endpoint, although each was partially successful in either delaying onset of infection or protecting a subset of female subjects that were HSV-1 and HSV-2 uninfected against HSV-1 genital infection. The success of future vaccine candidates may depend on improving the predictive value of animal models by requiring vaccines to achieve near-perfect protection in these models and by using the models to better define immune correlates of protection. Many vaccine candidates are under development, including DNA, modified mRNA, protein subunit, killed virus, and attenuated live virus vaccines. Lessons learned from prior vaccine studies and select candidate vaccines are discussed, including a trivalent nucleoside-modified mRNA vaccine that our laboratory is pursuing. We are optimistic that an effective vaccine for prevention of genital herpes will emerge in this decade.
Collapse
Affiliation(s)
- Kevin Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Philip LaTourette
- University Laboratory Animal Resources, Philadelphia, PA; Department of Pathobiology, School of Veterinary Medicine, Philadelphia, PA
| | - Angela Desmond
- Infectious Disease Division, Department of Pediatrics, The Children's Hospital of Philadelphia; University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
17
|
Li L, Li Y, Li X, Xia Y, Wang E, Gong D, Chen G, Yang L, Zhang K, Zhao Z, Fraser NW, Fan Q, Li B, Zhang H, Cao X, Zhou J. HSV-1 infection and pathogenesis in the tree shrew eye following corneal inoculation. J Neurovirol 2020; 26:391-403. [PMID: 32301037 DOI: 10.1007/s13365-020-00837-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022]
Abstract
Herpes simplex virus type I (HSV-1) infection causes inflammation in the cornea known as herpes simplex virus keratitis (HSK), a common but serious corneal disease. It is not entirely clear whether the virus during recurring infection comes from the trigeminal ganglia or the eye tissue, including the retina and ciliary ganglion. Because the tree shrew is closely related to primates and tree shrew eye anatomic structures are similar to humans, we studied HSV-1 corneal infection in the tree shrew. We found that HSK symptoms closely mimic those found in human HSK showing typical punctiform and dendritic viral keratitis during the acute infection period. Following the HSV-specific lesions, complications such as stromal scarring, corneal thickening (primary infection), opacity, and neovascularization were observed. In the tree shrew model, following ocular inoculation, the cornea becomes infected, and viral protein can be detected using anti-HSV-1 antibodies in the epithelial layer and retina neuronal ganglion cells. The HSV-1 transcripts, ICP0, ICP4, and LAT can be detected at 3 days post-infection (dpi), peaking at 5 dpi. After 2 weeks, ICP4 and ICP0 transcripts are reduced to a basal level, but the Latency Associated Transcripts (LATs) continue to accumulate. Interestingly, after the acute infection, we still detected abundant active HSV-1 in tree shrew eyes. Further, we found HSV-1 persistent in the ciliary ganglion and cornea. These findings are discussed in support of the tree shrew as a non-human primate HSK model, which could be useful for mechanistic studies of HSK.
Collapse
Affiliation(s)
- Lihong Li
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Center for Disease Control and Prevention of Western Theater Command, Chengdu, 610021, Sichuan, China.,Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Center for Drug Safety Evaluation, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yan Li
- Department of Ophthalmology, The Second People Hospital of Yunnan Province, Kunming, 650031, Yunnan, China
| | - Xin Li
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yujie Xia
- Center for Drug Safety Evaluation, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Qingdao Haihua Biomedicine Technology Co. Ltd, Qingdao, 266555, Shandong, China
| | - Erlin Wang
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Daohua Gong
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Liping Yang
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ke Zhang
- Department of Key Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Zhuanghong Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Quanshui Fan
- Center for Disease Control and Prevention of Western Theater Command, Chengdu, 610021, Sichuan, China.
| | - Bing Li
- Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Drug Safety Evaluation, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Hui Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| | - Xia Cao
- Department of Key Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
18
|
Blockade of PD-1 and LAG-3 Immune Checkpoints Combined with Vaccination Restores the Function of Antiviral Tissue-Resident CD8 + T RM Cells and Reduces Ocular Herpes Simplex Infection and Disease in HLA Transgenic Rabbits. J Virol 2019; 93:JVI.00827-19. [PMID: 31217250 DOI: 10.1128/jvi.00827-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic viruses such as herpes simplex virus 1 (HSV-1) evade the hosts' immune system by inducing the exhaustion of antiviral T cells. In the present study, we found that exhausted HSV-specific CD8+ T cells, with elevated expression of programmed death ligand-1 (PD-1) and lymphocyte activation gene-3 (LAG-3) receptors were frequent in symptomatic patients, with a history of numerous episodes of recurrent corneal herpetic disease, compared to asymptomatic patients who never had corneal herpetic disease. Subsequently, using a rabbit model of recurrent ocular herpes, we found that the combined blockade of PD-1 and LAG-3 pathways with antagonist antibodies significantly restored the function of tissue-resident antiviral CD8+ TRM cells in both the cornea and the trigeminal ganglia (TG). An increased number of functional tissue-resident HSV-specific CD8+ TRM cells in latently infected rabbits was associated with protection against recurrent herpes infection and disease. Compared to the PD-1 or LAG-3 blockade alone, the combined blockade of PD-1 and LAG-3 appeared to have a synergistic effect in generating frequent polyfunctional Ki-67+, IFN-γ+, CD107+, and CD8+ T cells. Moreover, using the human leukocyte antigen (HLA) transgenic rabbit model, we found that dual blockade of PD-1 and LAG-3 reinforced the effect of a multiepitope vaccine in boosting the frequency of HSV-1-specific CD8+ TRM cells and reducing disease severity. Thus, both the PD-1 and the LAG-3 exhaustion pathways play a fundamental role in ocular herpes T cell immunopathology and provide important immune checkpoint targets to combat ocular herpes.IMPORTANCE HSV-specific tissue-resident memory CD8+ TRM cells play a critical role in preventing virus reactivation from latently infected TG and subsequent virus shedding in tears that trigger the recurrent corneal herpetic disease. In this report, we determined how the dual blockade of PD-1 and LAG-3 immune checkpoints, combined with vaccination, improved the function of CD8+ TRM cells associated with a significant reduction in recurrent ocular herpes in HLA transgenic (Tg) rabbit model. The combined blockade of PD-1 and LAG-3 appeared to have a synergistic effect in generating frequent polyfunctional CD8+ TRM cells that infiltrated both the cornea and the TG. The preclinical findings using the established HLA Tg rabbit model of recurrent herpes highlight that blocking immune checkpoints combined with a T cell-based vaccine would provide an important strategy to combat recurrent ocular herpes in the clinic.
Collapse
|
19
|
Sun B, Wang Q, Pan D. [Mechanisms of herpes simplex virus latency and reactivation]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:89-101. [PMID: 31102363 PMCID: PMC8800643 DOI: 10.3785/j.issn.1008-9292.2019.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Herpes simplex virus (HSV), including HSV-1 and HSV-2, is an important pathogen that can cause many diseases. Usually these diseases are recurrent and incurable. After lytic infection on the surface of peripheral mucosa, HSV can enter sensory neurons and establish latent infection during which viral replication ceases. Moreover, latent virus can re-enter the replication cycle by reactivation and return to peripheral tissues to start recurrent infection. This ability to escape host immune surveillance during latent infection and to spread during reactivation is a viral survival strategy and the fundamental reason why no drug can completely eradicate the virus at present. Although there are many studies on latency and reactivation of HSV, and much progress has been made, many specific mechanisms of the process remain obscure or even controversial due to the complexity of this process and the limitations of research models. This paper reviews the major results of research on HSV latency and reactivation, and discusses future research directions in this field.
Collapse
Affiliation(s)
- Boqiang Sun
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiongyan Wang
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongli Pan
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
20
|
Unique Type I Interferon, Expansion/Survival Cytokines, and JAK/STAT Gene Signatures of Multifunctional Herpes Simplex Virus-Specific Effector Memory CD8 + T EM Cells Are Associated with Asymptomatic Herpes in Humans. J Virol 2019; 93:JVI.01882-18. [PMID: 30487281 DOI: 10.1128/jvi.01882-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 01/23/2023] Open
Abstract
A large proportion of the world population harbors herpes simplex virus 1 (HSV-1), a major cause of infectious corneal blindness. HSV-specific CD8+ T cells protect from herpesvirus infection and disease. However, the genomic, phenotypic, and functional characteristics of CD8+ T cells associated with the protection seen in asymptomatic (ASYMP) individuals, who, despite being infected, never experienced any recurrent herpetic disease, remains to be fully elucidated. In this investigation, we compared the phenotype, function, and level of expression of a comprehensive panel of 579 immune genes of memory CD8+ T cells, sharing the same HSV-1 epitope specificities, and freshly isolated peripheral blood from well-characterized cohorts of protected ASYMP and nonprotected symptomatic (SYMP) individuals, with a history of numerous episodes of recurrent herpetic disease, using the high-throughput digital NanoString nCounter system and flow cytometry. Interestingly, our results demonstrated that memory CD8+ T cells from ASYMP individuals expressed a unique set of genes involved in expansion and survival, type I interferon (IFN-I), and JAK/STAT pathways. Frequent multifunctional HSV-specific effector memory CD62Llow CD44high CD8+ TEM cells were detected in ASYMP individuals compared to more of monofunctional central memory CD62Lhigh CD44high CD8+ TCM cells in SYMP individuals. Shedding light on the genotype, phenotype, and function of antiviral CD8+ T cells from "naturally protected" ASYMP individuals will help design future T-cell-based ocular herpes immunotherapeutic vaccines.IMPORTANCE A staggering number of the world population harbors herpes simplex virus 1 (HSV-1) potentially leading to blinding recurrent herpetic disease. While the majority are asymptomatic (ASYMP) individuals who never experienced any recurrent herpetic disease, symptomatic (SYMP) individuals have a history of numerous episodes of recurrent ocular herpetic disease. This study elucidates the phenotype, the effector function, and the gene signatures of memory CD8+ T-cell populations associated with protection seen in ASYMP individuals. Frequent multifunctional HSV-specific effector memory CD8+ TEM cells were detected in ASYMP individuals. In contrast, nonprotected SYMP individuals had more central memory CD8+ TCM cells. The memory CD8+ TEM cells from ASYMP individuals expressed unique gene signatures characterized by higher levels of type I interferon (IFN), expansion and expansion/survival cytokines, and JAK/STAT pathways. Future studies on the genotype, phenotype, and function of antiviral CD8+ T cells from "naturally protected" ASYMP individuals will help in the potential design of T-cell-based ocular herpes vaccines.
Collapse
|
21
|
Srivastava R, Coulon PG, Roy S, Chilukuri S, Garg S, BenMohamed L. Phenotypic and Functional Signatures of Herpes Simplex Virus-Specific Effector Memory CD73 +CD45RA highCCR7 lowCD8 + T EMRA and CD73 +CD45RA lowCCR7 lowCD8 + T EM Cells Are Associated with Asymptomatic Ocular Herpes. THE JOURNAL OF IMMUNOLOGY 2018; 201:2315-2330. [PMID: 30201808 DOI: 10.4049/jimmunol.1800725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
HSV type 1 (HSV-1)-specific CD8+ T cells protect from herpes infection and disease. However, the nature of protective CD8+ T cells in HSV-1 seropositive healthy asymptomatic (ASYMP) individuals (with no history of clinical herpes disease) remains to be determined. In this study, we compared the phenotype and function of HSV-specific CD8+ T cells from HLA-A*02:01-positive ASYMP and symptomatic (SYMP) individuals (with a documented history of numerous episodes of recurrent ocular herpetic disease). We report that although SYMP and ASYMP individuals have similar frequencies of HSV-specific CD8+ T cells, the "naturally" protected ASYMP individuals have a significantly higher proportion of multifunctional HSV-specific effector memory CD8+ T cells (CD73+CD45RAhighCCR7lowCD8+ effector memory RA (TEMRA) and CD73+CD45RAlowCCR7lowCD8+ effector memory (TEM) as compared with SYMP individuals. Similar to humans, HSV-1-infected ASYMP B6 mice had frequent multifunctional HSV-specific CD73+CD8+ T cells in the cornea, as compared with SYMP mice. Moreover, in contrast to wild type B6, CD73-/- deficient mice infected ocularly with HSV-1 developed more recurrent corneal herpetic infection and disease. This was associated with less functional CD8+ T cells in the cornea and trigeminal ganglia, the sites of acute and latent infection. The phenotypic and functional characteristics of HSV-specific circulating and in situ CD73+CD8+ T cells, demonstrated in both ASYMP humans and mice, suggest a positive role for effector memory CD8+ T cells expressing the CD73 costimulatory molecule in the protection against ocular herpes infection and disease. These findings are important for the development of safe and effective T cell-based herpes immunotherapy.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pierre-Grégoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Sravya Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Sumit Garg
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, University of California Irvine, School of Medicine, Irvine, CA 92697; and.,Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
22
|
Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107 + CD8 + T Cells That Infiltrate the Corneas and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge. J Virol 2018; 92:JVI.00535-18. [PMID: 29899087 DOI: 10.1128/jvi.00535-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea, causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in a human leukocyte antigen (HLA) transgenic rabbit model of ocular herpes (HLA Tg rabbits). Three peptide epitopes were selected, from the HSV-1 membrane glycoprotein C (UL44400-408), the DNA replication binding helicase (UL9196-204), and the tegument protein (UL25572-580), all preferentially recognized by CD8+ T cells from "naturally protected" HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8+ T cell peptide epitopes (UL44400-408, UL9196-204, and UL25572-580), which were delivered subcutaneously with CpG2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic adeno-associated virus type 8 (AAV8) vector expressing the T cell-attracting CXCL10 chemokine (pull). The frequency and function of HSV-specific CD8+ T cells induced by the prime/pull vaccine were assessed in the peripheral blood, cornea, and trigeminal ganglion (TG). Compared to the cells generated in response to peptide immunization alone, the peptide/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ+) CD107+ CD8+ T cells that infiltrated both the cornea and TG. CD8+ T cell mobilization into the cornea and TG of prime/pull-vaccinated rabbits was associated with a significant reduction in corneal herpesvirus infection and disease following an ocular HSV-1 (strain McKrae) challenge. These findings draw attention to the novel prime/pull vaccine strategy for mobilizing antiviral CD8+ T cells into tissues to protect against herpesvirus infection and disease.IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA transgenic rabbits with a peptide/CXCL10 prime/pull vaccine triggered mobilization of HSV-specific CD8+ T cells locally into the cornea and TG, the sites of acute and latent herpesvirus infections, respectively. Mobilization of antiviral CD8+ T cells into the cornea and TG of rabbits that received the prime/pull vaccine was associated with protection against ocular herpesvirus infection and disease following an ocular HSV-1 challenge. These results highlight the importance of the prime/pull vaccine strategy to bolster the number and function of protective CD8+ T cells within infected tissues.
Collapse
|
23
|
Esteves PJ, Abrantes J, Baldauf HM, BenMohamed L, Chen Y, Christensen N, González-Gallego J, Giacani L, Hu J, Kaplan G, Keppler OT, Knight KL, Kong XP, Lanning DK, Le Pendu J, de Matos AL, Liu J, Liu S, Lopes AM, Lu S, Lukehart S, Manabe YC, Neves F, McFadden G, Pan R, Peng X, de Sousa-Pereira P, Pinheiro A, Rahman M, Ruvoën-Clouet N, Subbian S, Tuñón MJ, van der Loo W, Vaine M, Via LE, Wang S, Mage R. The wide utility of rabbits as models of human diseases. Exp Mol Med 2018; 50:1-10. [PMID: 29789565 PMCID: PMC5964082 DOI: 10.1038/s12276-018-0094-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Studies using the European rabbit Oryctolagus cuniculus contributed to elucidating numerous fundamental aspects of antibody structure and diversification mechanisms and continue to be valuable for the development and testing of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of the European rabbit as an animal model has been increasingly extended to many human diseases. This review documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur’s rabies vaccine in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS. Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit and provide unique models to understand co-evolution between a vertebrate host and viral pathogens. Rabbits offer a powerful complement to rodents as a model for studying human immunology, disease pathology, and responses to infectious disease. A review from Pedro Esteves at the University of Porto, Portugal, Rose Mage of the National Institute of Allergy and Infectious Disease, Bethesda, USA and colleagues highlights some of the areas of research where rabbits offer an edge over rats and mice. Rabbits have a particularly sophisticated adaptive immune system, which could provide useful insights into human biology and produce valuable research and clinical reagents. They are also excellent models for studying - infectious diseases such as syphilis and tuberculosis, which produce pathology that closely resembles that of human patients. Rabbit-specific infections such as myxomatosis are giving researchers insights into how pathogens and hosts can shape each other’s evolution.
Collapse
Affiliation(s)
- Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal.
| | - Joana Abrantes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.,Institute for Immunology, University of California, Irvine School of Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Yuxing Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Neil Christensen
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Lorenzo Giacani
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Jiafen Hu
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Gilla Kaplan
- Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | - Ana Lemos de Matos
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, 72205, USA
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ana M Lopes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sheila Lukehart
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabiana Neves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Grant McFadden
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Xuwen Peng
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Patricia de Sousa-Pereira
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Ana Pinheiro
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Masmudur Rahman
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | | | - Selvakumar Subbian
- The Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, Newark, NJ, USA
| | - Maria Jesús Tuñón
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Wessel van der Loo
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Michael Vaine
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Laura E Via
- Tubercolosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Infectious Disease and Molecular Medicine, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Rose Mage
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Srivastava R, Hernández-Ruiz M, Khan AA, Fouladi MA, Kim GJ, Ly VT, Yamada T, Lam C, Sarain SAB, Boldbaatar U, Zlotnik A, Bahraoui E, BenMohamed L. CXCL17 Chemokine-Dependent Mobilization of CXCR8 +CD8 + Effector Memory and Tissue-Resident Memory T Cells in the Vaginal Mucosa Is Associated with Protection against Genital Herpes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2915-2926. [PMID: 29549178 PMCID: PMC5893430 DOI: 10.4049/jimmunol.1701474] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
Circulating conventional memory CD8+ T cells (i.e., the CD8+ effector memory T [TEM] cell and CD8+ central memory T [TCM] cell subsets) and the noncirculating CD8+ tissue-resident memory T (TRM) cell subset play a critical role in mucosal immunity. Mucosal chemokines, including the recently discovered CXCL17, are also important in mucosal immunity because they are homeostatically expressed in mucosal tissues. However, whether the CXCL17 chemokine contributes to the mobilization of memory CD8+ T cell subsets to access infected mucosal tissues remains to be elucidated. In this study, we report that after intravaginal HSV type 1 infection of B6 mice, we detected high expression levels of CXCL17 and increased numbers of CD44highCD62LlowCD8+ TEM and CD103highCD8+ TRM cells expressing CXCR8, the cognate receptor of CXCL17, in the vaginal mucosa (VM) of mice with reduced genital herpes infection and disease. In contrast to wild-type B6 mice, the CXCL17-/- mice developed 1) fewer CXCR8+CD8+ TEM and TRM cells associated with more virus replication in the VM and more latency established in dorsal root ganglia, and 2) reduced numbers and frequencies of functional CD8+ T cells in the VM. These findings suggest that the CXCL17/CXCR8 chemokine pathway plays a crucial role in mucosal vaginal immunity by promoting the mobilization of functional protective CD8+ TEM and CD8+ TRM cells, within this site of acute and recurrent herpes infection.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Marcela Hernández-Ruiz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Mona A Fouladi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Grace J Kim
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Vincent T Ly
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Taikun Yamada
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Cynthia Lam
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Sheilouise A B Sarain
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Undariya Boldbaatar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Elmostafa Bahraoui
- INSERM, U1043, 31000 Toulouse, France
- CNRS, U5282, 31000 Toulouse, France
- Université Paul Sabatier Toulouse, 31000 Toulouse, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697;
- Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, Irvine, CA 92697; and
- Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697
| |
Collapse
|
25
|
Stanfield BA, Rider PJF, Caskey J, Del Piero F, Kousoulas KG. Intramuscular vaccination of guinea pigs with the live-attenuated human herpes simplex vaccine VC2 stimulates a transcriptional profile of vaginal Th17 and regulatory Tr1 responses. Vaccine 2018; 36:2842-2849. [PMID: 29655629 DOI: 10.1016/j.vaccine.2018.03.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
Herpes simplex virus is a common causative agent of oral and genital diseases. Novel vaccines and therapeutics are needed to combat herpes infections especially after the failure of subunit vaccines in human clinical trials. We have shown that the live-attenuated HSV-1 VC2 vaccine strain is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. The guinea pig represents the best small animal model of genital HSV-2 disease. Reported here, twenty-one female Hartley guinea pigs received intramuscular injection with either the VC2 vaccine, or equal volume of conditioned tissue culture media. Animals received 2 booster vaccinations at 21 day intervals following the initial vaccination. After vaccination, animals were challenged with the highly virulent HSV-2 (G) strain. Histologically, VC2 vaccinated animals had little to no apparent inflammation/disease following challenge. Unvaccinated animals developed moderate to severe erosive and ulcerative vaginitis. Quantitative reverse-transcriptase PCR analysis in VC2 vaccinated and challenged animals identified transcriptional signatures of Th17 and regulatory Tr1 cells associated with the inflammatory response primed by VC2 vaccination. Treatment of cultured human vaginal epithelial cells (VK2 cells) with a combination of IL-17A and IL-22 resulted in the significant induction of beta-defensin 3 expression. Further, treatment of VK2 cells with IL-17A, IL-22, IL-36 or beta-defensin 3 resulted in diminished HSV-2 replication. Overall, these results suggest that intramuscular vaccination with the live-attenuated vaccine VC2 primes a mucosal immune response predisposing the adaptive expression of transcripts associated with a Th17 response to challenge and these responses contribute to antiviral immunity.
Collapse
Affiliation(s)
- Brent A Stanfield
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Paul J F Rider
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John Caskey
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabio Del Piero
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
26
|
CXCL10/CXCR3-Dependent Mobilization of Herpes Simplex Virus-Specific CD8 + T EM and CD8 + T RM Cells within Infected Tissues Allows Efficient Protection against Recurrent Herpesvirus Infection and Disease. J Virol 2017; 91:JVI.00278-17. [PMID: 28468883 DOI: 10.1128/jvi.00278-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency within the sensory neurons of the trigeminal ganglia (TG). HSV-specific memory CD8+ T cells play a critical role in preventing HSV-1 reactivation from TG and subsequent virus shedding in tears that trigger recurrent corneal herpetic disease. The CXC chemokine ligand 10 (CXCL10)/CXC chemokine receptor 3 (CXCR3) chemokine pathway promotes T cell immunity to many viral pathogens, but its importance in CD8+ T cell immunity to recurrent herpes has been poorly elucidated. In this study, we determined how the CXCL10/CXCR3 pathway affects TG- and cornea-resident CD8+ T cell responses to recurrent ocular herpesvirus infection and disease using a well-established murine model in which HSV-1 reactivation was induced from latently infected TG by UV-B light. Following UV-B-induced HSV-1 reactivation, a significant increase in both the number and function of HSV-specific CXCR3+ CD8+ T cells was detected in TG and corneas of protected C57BL/6 (B6) mice, but not in TG and corneas of nonprotected CXCL10-/- or CXCR3-/- deficient mice. This increase was associated with a significant reduction in both virus shedding and recurrent corneal herpetic disease. Furthermore, delivery of exogenous CXCL10 chemokine in TG of CXCL10-/- mice, using the neurotropic adeno-associated virus type 8 (AAV8) vector, boosted the number and function of effector memory CD8+ T cells (TEM) and tissue-resident memory CD8+ T cells (TRM), but not of central memory CD8+ T cells (TCM), locally within TG, and improved protection against recurrent herpesvirus infection and disease in CXCL10-/- deficient mice. These findings demonstrate that the CXCL10/CXCR3 chemokine pathway is critical in shaping CD8+ T cell immunity, locally within latently infected tissues, which protects against recurrent herpesvirus infection and disease.IMPORTANCE We determined how the CXCL10/CXCR3 pathway affects CD8+ T cell responses to recurrent ocular herpesvirus infection and disease. Using a well-established murine model, in which HSV-1 reactivation in latently infected trigeminal ganglia was induced by UV-B light, we demonstrated that lack of either CXCL10 chemokine or its CXCR3 receptor compromised the mobilization of functional CD8+ TEM and CD8+ TRM cells within latently infected trigeminal ganglia following virus reactivation. This lack of T cell mobilization was associated with an increase in recurrent ocular herpesvirus infection and disease. Inversely, augmenting the amount of CXCL10 in trigeminal ganglia of latently infected CXCL10-deficient mice significantly restored the number of local antiviral CD8+ TEM and CD8+ TRM cells associated with protection against recurrent ocular herpes. Based on these findings, a novel "prime/pull" therapeutic ocular herpes vaccine strategy is proposed and discussed.
Collapse
|
27
|
Immuno-informatics based approaches to identify CD8+ T cell epitopes within the Leishmania donovani 3-ectonucleotidase in cured visceral leishmaniasis subjects. Microbes Infect 2017; 19:358-369. [DOI: 10.1016/j.micinf.2017.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 01/22/2023]
|
28
|
Khan AA, Srivastava R, Chentoufi AA, Kritzer E, Chilukuri S, Garg S, Yu DC, Vahed H, Huang L, Syed SA, Furness JN, Tran TT, Anthony NB, McLaren CE, Sidney J, Sette A, Noelle RJ, BenMohamed L. Bolstering the Number and Function of HSV-1-Specific CD8 + Effector Memory T Cells and Tissue-Resident Memory T Cells in Latently Infected Trigeminal Ganglia Reduces Recurrent Ocular Herpes Infection and Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:186-203. [PMID: 28539429 DOI: 10.4049/jimmunol.1700145] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/21/2017] [Indexed: 01/09/2023]
Abstract
HSV type 1 (HSV-1) is a prevalent human pathogen that infects >3.72 billion individuals worldwide and can cause potentially blinding recurrent corneal herpetic disease. HSV-1 establishes latency within sensory neurons of trigeminal ganglia (TG), and TG-resident CD8+ T cells play a critical role in preventing its reactivation. The repertoire, phenotype, and function of protective CD8+ T cells are unknown. Bolstering the apparent feeble numbers of CD8+ T cells in TG remains a challenge for immunotherapeutic strategies. In this study, a comprehensive panel of 467 HLA-A*0201-restricted CD8+ T cell epitopes was predicted from the entire HSV-1 genome. CD8+ T cell responses to these genome-wide epitopes were compared in HSV-1-seropositive symptomatic individuals (with a history of numerous episodes of recurrent herpetic disease) and asymptomatic (ASYMP) individuals (who are infected but never experienced any recurrent herpetic disease). Frequent polyfunctional HSV-specific IFN-γ+CD107a/b+CD44highCD62LlowCD8+ effector memory T cells were detected in ASYMP individuals and were primarily directed against three "ASYMP" epitopes. In contrast, symptomatic individuals have more monofunctional CD44highCD62LhighCD8+ central memory T cells. Furthermore, therapeutic immunization with an innovative prime/pull vaccine, based on priming with multiple ASYMP epitopes (prime) and neurotropic TG delivery of the T cell-attracting chemokine CXCL10 (pull), boosted the number and function of CD44highCD62LlowCD8+ effector memory T cells and CD103highCD8+ tissue-resident T cells in TG of latently infected HLA-A*0201-transgenic mice and reduced recurrent ocular herpes following UV-B-induced reactivation. These findings have profound implications in the development of T cell-based immunotherapeutic strategies to treat blinding recurrent herpes infection and disease.
Collapse
Affiliation(s)
- Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Aziz A Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Elizabeth Kritzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Sravya Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Sumit Garg
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - David C Yu
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Lei Huang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Sabrina A Syed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Julie N Furness
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Tien T Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Nesburn B Anthony
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Christine E McLaren
- Department of Epidemiology, University of California, Irvine, Irvine, CA 92697
| | - John Sidney
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA 92697; and.,Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
29
|
Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection. J Virol 2017; 91:JVI.01793-16. [PMID: 27847359 DOI: 10.1128/jvi.01793-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8+ T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8+ T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8+ T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107a/b cytotoxic degranulation. High frequencies of multifunctional CD8+ T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14286-294), VP13/14 from amino acids 504 to 512 (VP13/14504-512), and VP13/14 from amino acids 544 to 552 (VP13/14544-552), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RAlow CD44high CCR7low CD62Llow CD8+ effector memory T cells (TEM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8+ TEM-cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8+ TEM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic and functional features of protective HSV-specific CD8+ T cells that should guide the development of a safe and effective T-cell-based herpes simplex vaccine. IMPORTANCE Although most herpes simplex virus 1 (HSV-1)-infected individuals shed the virus in their body fluids following reactivation from latently infected sensory ganglia, the majority never develop a recurrent herpetic disease and remain asymptomatic (ASYMP). In contrast, small proportions of individuals are symptomatic (SYMP) and develop frequent bouts of recurrent disease. The present study demonstrates that naturally protected ASYMP individuals have a higher frequency of effector memory CD8+ T cells (CD8+ TEM cells) specific to three epitopes derived from the HSV-1 tegument protein VP13/14 (VP13/14286-294,VP13/14504-512, and VP13/14544-552) than SYMP patients. Moreover, immunization of humanized HLA-A*02:01 transgenic mice with the three CD8+ TEM-cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8+ T cells associated with strong protective immunity against ocular herpesvirus infection and disease. The findings support the emerging concept of the development of a safe and effective asymptomatic herpes simplex vaccine that is selectively based on CD8+ T-cell epitopes from ASYMP individuals.
Collapse
|
30
|
Antoine TE, Hadigal SR, Yakoub AM, Mishra YK, Bhattacharya P, Haddad C, Valyi-Nagy T, Adelung R, Prabhakar BS, Shukla D. Intravaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents against Genital Herpes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4566-75. [PMID: 27183601 PMCID: PMC4875784 DOI: 10.4049/jimmunol.1502373] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/26/2016] [Indexed: 11/19/2022]
Abstract
Virtually all efforts to generate an effective protection against the life-long, recurrent genital infections caused by HSV-2 have failed. Apart from sexual transmission, the virus can also be transmitted from mothers to neonates, and it is a key facilitator of HIV coacquisition. In this article, we uncover a nanoimmunotherapy using specially designed zinc oxide tetrapod nanoparticles (ZOTEN) with engineered oxygen vacancies. We demonstrate that ZOTEN, when used intravaginally as a microbicide, is an effective suppressor of HSV-2 genital infection in female BALB/c mice. The strong HSV-2 trapping ability of ZOTEN significantly reduced the clinical signs of vaginal infection and effectively decreased animal mortality. In parallel, ZOTEN promoted the presentation of bound HSV-2 virions to mucosal APCs, enhancing T cell-mediated and Ab-mediated responses to the infection, and thereby suppressing a reinfection. We also found that ZOTEN exhibits strong adjuvant-like properties, which is highly comparable with alum, a commonly used adjuvant. Overall, to our knowledge, our study provides the very first evidence for the protective efficacy of an intravaginal microbicide/vaccine or microbivac platform against primary and secondary female genital herpes infections.
Collapse
Affiliation(s)
- Thessicar E Antoine
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612; Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612
| | - Satvik R Hadigal
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612
| | - Abraam M Yakoub
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612; Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612
| | | | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612
| | - Christine Haddad
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612
| | - Tibor Valyi-Nagy
- Department of Pathology, University of Illinois, Chicago, IL 60612
| | - Rainer Adelung
- Institute for Materials Science, Kiel University, Kiel 24143, Germany; and
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612; Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612;
| |
Collapse
|
31
|
Confocal Microscopic Analysis of a Rabbit Eye Model of High-Incidence Recurrent Herpes Stromal Keratitis. Cornea 2016; 35:81-8. [PMID: 26555580 DOI: 10.1097/ico.0000000000000666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Using CJLAT, a chimeric herpes simplex virus (HSV-1) that produces a high incidence of herpes stromal keratitis (HSK) in latently infected rabbits, and in vivo confocal microscopy (CM), we characterized the cellular events that precede the development of HSK. METHODS Thirty days after infection, in vivo CM was performed daily for 10 days and then weekly for up to 80 days after infection. RESULTS We detected 3 types of subclinical corneal lesions before HSK was clinically apparent: (1) small epithelial erosions; (2) regenerating epithelium overlying small cell infiltrates within the basal epithelial cell layer; and (3) dendritic-like cells within the basal epithelial layer overlying stromal foci containing infiltrating cells. Sequential in vivo CM observations suggested that subclinical foci resolved over time but were larger and more abundant with CJLAT than with wild-type HSV-1 McKrae. Active HSK was observed only with CJLAT and was initially associated with a large epithelial lesion overlying stromal immune cell infiltrates. CONCLUSIONS These results suggest that replication in the cornea of reactivated virus from the trigeminal ganglia produces epithelial lesions, which recruit immune cell infiltrates into the basal epithelial layer and anterior stroma. The virus is usually cleared rapidly eliminating viral antigens before the arrival of the immune cells, which disperse. However, if the virus is not cleared rapidly, or if an additional reactivation results in an additional round of virus at the same site before the immune cells disperse, then the immune cells are stimulated and may induce an immunopathological response leading to the development of HSK.
Collapse
|
32
|
Fan Y, Moon JJ. Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27038091 DOI: 10.1002/wnan.1403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 01/15/2023]
Abstract
Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. WIREs Nanomed Nanobiotechnol 2017, 9:e1403. doi: 10.1002/wnan.1403 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine 2016; 34:2948-2952. [PMID: 26973067 DOI: 10.1016/j.vaccine.2015.12.076] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/23/2015] [Indexed: 11/27/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Anna Wald
- Department of Medicine, Seattle, WA, USA; Laboratory Medicine, University of Washington, Seattle, WA, USA; Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
34
|
Zhou L, Li JL, Zhou Y, Liu JB, Zhuang K, Gao JF, Liu S, Sang M, Wu JG, Ho WZ. Induction of interferon-λ contributes to TLR3 and RIG-I activation-mediated inhibition of herpes simplex virus type 2 replication in human cervical epithelial cells. Mol Hum Reprod 2015; 21:917-29. [PMID: 26502803 PMCID: PMC4664393 DOI: 10.1093/molehr/gav058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/27/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
STUDY HYPOTHESIS Is it possible to immunologically activate human cervical epithelial cells to produce antiviral factors that inhibit herpes simplex virus type 2 (HSV-2) replication? STUDY FINDING Our results indicate that human cervical epithelial cells possess a functional TLR3/RIG-I signaling system, the activation of which can mount an Interferon-λ (IFN-λ)-mediated anti-HSV-2 response. WHAT IS KNOWN ALREADY There is limited information about the role of cervical epithelial cells in genital innate immunity against HSV-2 infection. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We examined the expression of toll-like receptors (TLRs) and retinoic acid-inducible I (RIG-I) in End1/E6E7 cells by real-time PCR. The IFN-λ induced by TLR3 and RIG-I activation of End1/E6E7 cells was also examined by real-time PCR and ELISA. HSV-2 infection of End1/E6E7 cells was evaluated by the real-time PCR detection of HSV-2 gD expression. The antibody to IL-10Rβ was used to determine whether IFN-λ contributes to TLR3/RIG-I mediated HSV-2 inhibition. Expression of interferon regulatory factor 3 (IRF3), IRF7, IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA) were determined by the real-time PCR and western blot. End1/E6E7 cells were transfected with shRNA to knockdown the IRF3, IRF7 or RIG-I expression. Student's t-test and post Newman-Keuls test were used to analyze stabilized differences in the immunological parameters above between TLR3/RIG-I-activated cells and control cells. MAIN RESULTS AND THE ROLE OF CHANCE Human cervical epithelial cells expressed functional TLR3 and RIG-I, which could be activated by poly I:C and 5'ppp double-strand RNAs (5'ppp dsRNA), resulting in the induction of endogenous interferon lambda (IFN-λ). The induced IFN-λ contributed to TLR3/RIG-I-mediated inhibition of HSV-2 replication in human cervical epithelial cells, as an antibody to IL-10Rβ, an IFN-λ receptor subunit, could compromise TLR3/RIG-I-mediated inhibition of HSV-2. Further studies showed that TLR3/RIG-I signaling in the cervical epithelial cells by dsRNA induced the expression of the IFN-stimulated genes (ISGs), ISG56, 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA), the key antiviral elements in the IFN signaling pathway. In addition, we observed that the topical treatment of genital mucosa with poly I:C could protect mice from genital HSV-2 infection. LIMITATIONS, REASONS FOR CAUTION Future prospective studies with primary cells and suitable animal models are needed in order to confirm these outcomes. WIDER IMPLICATIONS OF THE FINDINGS The findings provide direct and compelling evidence that there is intracellular expression and regulation of IFN-λ in human cervical epithelial cells, which may have a key role in the innate genital protection against viral infections. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This work was supported by the National Natural Science Foundation of China (81301428 to L.Z. and 81271334 to W.-Z.H.), the Fundamental Research Funds for the Central Universities (2042015kf0188 to L.Z.), the China Postdoctoral Science Foundation (2013M531745 to L.Z.), the Development Program of China ('973', 2012CB518900 to W.-Z.H.) from the Ministry of Science and Technology of the People's Republic of China, grants (DA12815 and DA022177 to W.-Z.H.) from the National Institute on Drug Abuse (NIDA) and the open project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (WDCM005 to M.S.). The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jin-Biao Liu
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Ke Zhuang
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Jian-Feng Gao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Ming Sang
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China Present address: College of Basic Medical Sciences, Central Laboratory of the Fourth Affiliated Hospital in Xiangyang, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 44200, China
| | - Jian-Guo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Wen-Zhe Ho
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
35
|
Herpes Simplex Virus 1 Infection of Tree Shrews Differs from That of Mice in the Severity of Acute Infection and Viral Transcription in the Peripheral Nervous System. J Virol 2015; 90:790-804. [PMID: 26512084 DOI: 10.1128/jvi.02258-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Studies of herpes simplex virus (HSV) infections of humans are limited by the use of rodent models such as mice, rabbits, and guinea pigs. Tree shrews (Tupaia belangeri chinensis) are small mammals indigenous to southwest Asia. At behavioral, anatomical, genomic, and evolutionary levels, tree shrews are much closer to primates than rodents are, and tree shrews are susceptible to HSV infection. Thus, we have studied herpes simplex virus 1 (HSV-1) infection in the tree shrew trigeminal ganglion (TG) following ocular inoculation. In situ hybridization, PCR, and quantitative reverse transcription-PCR (qRT-PCR) analyses confirm that HSV-1 latently infects neurons of the TG. When explant cocultivation of trigeminal ganglia was performed, the virus was recovered after 5 days of cocultivation with high efficiency. Swabbing the corneas of latently infected tree shrews revealed that tree shrews shed virus spontaneously at low frequencies. However, tree shrews differ significantly from mice in the expression of key HSV-1 genes, including ICP0, ICP4, and latency-associated transcript (LAT). In acutely infected tree shrew TGs, no level of ICP4 was observed, suggesting the absence of infection or a very weak, acute infection compared to that of the mouse. Immunofluorescence staining with ICP4 monoclonal antibody, and immunohistochemistry detection by HSV-1 polyclonal antibodies, showed a lack of viral proteins in tree shrew TGs during both acute and latent phases of infection. Cultivation of supernatant from homogenized, acutely infected TGs with RS1 cells also exhibited an absence of infectious HSV-1 from tree shrew TGs. We conclude that the tree shrew has an undetectable, or a much weaker, acute infection in the TGs. Interestingly, compared to mice, tree shrew TGs express high levels of ICP0 transcript in addition to LAT during latency. However, the ICP0 transcript remained nuclear, and no ICP0 protein could be seen during the course of mouse and tree shrew TG infections. Taken together, these observations suggest that the tree shrew TG infection differs significantly from the existing rodent models. IMPORTANCE Herpes simplex viruses (HSVs) establish lifelong infection in more than 80% of the human population, and their reactivation leads to oral and genital herpes. Currently, rodent models are the preferred models for latency studies. Rodents are distant from primates and may not fully represent human latency. The tree shrew is a small mammal, a prosimian primate, indigenous to southwest Asia. In an attempt to further develop the tree shrew as a useful model to study herpesvirus infection, we studied the establishment of latency and reactivation of HSV-1 in tree shrews following ocular inoculation. We found that the latent virus, which resides in the sensory neurons of the trigeminal ganglion, could be stress reactivated to produce infectious virus, following explant cocultivation and that spontaneous reactivation could be detected by cell culture of tears. Interestingly, the tree shrew model is quite different from the mouse model of HSV infection, in that the virus exhibited only a mild acute infection following inoculation with no detectable infectious virus from the sensory neurons. The mild infection may be more similar to human infection in that the sensory neurons continue to function after herpes reactivation and the affected skin tissue does not lose sensation. Our findings suggest that the tree shrew is a viable model to study HSV latency.
Collapse
|
36
|
BenMohamed L, Osorio N, Khan AA, Srivastava R, Huang L, Krochmal JJ, Garcia JM, Simpson JL, Wechsler SL. Prior Corneal Scarification and Injection of Immune Serum are Not Required Before Ocular HSV-1 Infection for UV-B-Induced Virus Reactivation and Recurrent Herpetic Corneal Disease in Latently Infected Mice. Curr Eye Res 2015; 41:747-56. [PMID: 26398722 DOI: 10.3109/02713683.2015.1061024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Blinding ocular herpetic disease in humans is due to spontaneous reactivation of herpes simplex virus type 1 (HSV-1) from latency, rather than to primary acute infection. Mice latently infected with HSV-1 undergo little or no in vivo spontaneous reactivation with accompanying virus shedding in tears. HSV-1 reactivation can be induced in latently infected mice by several in vivo procedures, with UV-B-induced reactivation being one commonly used method. In the UV-B model, corneas are scarified (lightly scratched) just prior to ocular infection to increase efficiency of the primary infection and immune serum containing HSV-1 neutralizing antibodies is injected intraperitoneally (i.p.) to increase survival and decrease acute corneal damage. Since scarification can significantly alter host gene transcription in the cornea and in the trigeminal ganglia (TG; the site of HSV-1 latency) and since injection of immune serum likely modulates innate and adaptive herpes immunity, we investigated eliminating both treatments. MATERIAL AND METHODS Mice were infected with HSV-1 with or without corneal scarification and immune serum. HSV-1 reactivation and recurrent disease were induced by UV-B irradiation. RESULTS When corneal scarification and immune serum were both eliminated, UV-B irradiation still induced both HSV-1 reactivation, as measured by shedding of reactivated virus in tears and herpetic eye disease, albeit at reduced levels compared to the original procedure. CONCLUSION Despite the reduced reactivation and disease, avoidance of both corneal scarification and immune serum should improve the clinical relevance of the UV-B mouse model.
Collapse
Affiliation(s)
- Lbachir BenMohamed
- a Laboratory of Cellular and Molecular Immunology , Gavin Herbert Eye Institute, University of California Irvine, School of Medicine , Irvine , CA , USA .,b Department of Molecular Biology & Biochemistry, School of Medicine , University of California Irvine , Irvine , CA , USA .,c School of Medicine, Institute for Immunology, University of California Irvine , Irvine , CA , USA
| | - Nelson Osorio
- d Department of Ophthalmology, Virology Research , Gavin Herbert Eye Institute, University of California Irvine, School of Medicine , Irvine , CA , USA
| | - Arif A Khan
- a Laboratory of Cellular and Molecular Immunology , Gavin Herbert Eye Institute, University of California Irvine, School of Medicine , Irvine , CA , USA
| | - Ruchi Srivastava
- a Laboratory of Cellular and Molecular Immunology , Gavin Herbert Eye Institute, University of California Irvine, School of Medicine , Irvine , CA , USA
| | - Lei Huang
- a Laboratory of Cellular and Molecular Immunology , Gavin Herbert Eye Institute, University of California Irvine, School of Medicine , Irvine , CA , USA
| | - John J Krochmal
- d Department of Ophthalmology, Virology Research , Gavin Herbert Eye Institute, University of California Irvine, School of Medicine , Irvine , CA , USA
| | - Jairo M Garcia
- d Department of Ophthalmology, Virology Research , Gavin Herbert Eye Institute, University of California Irvine, School of Medicine , Irvine , CA , USA
| | - Jennifer L Simpson
- e Department of Ophthalmology , School of Medicine, Gavin Herbert Eye Institute, University of California Irvine , Irvine , CA , USA
| | - Steven L Wechsler
- d Department of Ophthalmology, Virology Research , Gavin Herbert Eye Institute, University of California Irvine, School of Medicine , Irvine , CA , USA .,f Department of Microbiology and Molecular Genetics , School of Medicine, University of California Irvine , Irvine , CA , USA and.,g Center for Virus Research, University of California Irvine , Irvine , CA , USA
| |
Collapse
|
37
|
Srivastava R, Khan AA, Huang J, Nesburn AB, Wechsler SL, BenMohamed L. A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+ T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a "Humanized" HLA Transgenic Rabbit Model. Invest Ophthalmol Vis Sci 2015; 56:4013-28. [PMID: 26098469 DOI: 10.1167/iovs.15-17074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE A clinical vaccine that protects from ocular herpes simplex virus type 1 (HSV-1) infection and disease still is lacking. In the present study, preclinical vaccine trials of nine asymptomatic (ASYMP) peptides, selected from HSV-1 glycoproteins B (gB), and tegument proteins VP11/12 and VP13/14, were performed in the "humanized" HLA-transgenic rabbit (HLA-Tg rabbit) model of ocular herpes. We recently reported that these peptides are highly recognized by CD8+ T cells from "naturally" protected HSV-1-seropositive healthy ASYMP individuals (who have never had clinical herpes disease). METHODS Mixtures of three ASYMP CD8+ T-cell peptides derived from either HSV-1 gB, VP11/12, or VP13/14 were delivered subcutaneously to different groups of HLA-Tg rabbits (n = 10) in incomplete Freund's adjuvant, twice at 15-day intervals. The frequency and function of HSV-1 epitope-specific CD8+ T cells induced by these peptides and their protective efficacy, in terms of survival, virus replication in the eye, and ocular herpetic disease were assessed after an ocular challenge with HSV-1 (strain McKrae). RESULTS All mixtures elicited strong and polyfunctional IFN-γ- and TNF-α-producing CD107+CD8+ cytotoxic T cells, associated with a significant reduction in death, ocular herpes infection, and disease (P < 0.015). CONCLUSIONS The results of this preclinical trial support the screening strategy used to select the HSV-1 ASYMP CD8+ T-cell epitopes, emphasize their valuable immunogenic and protective efficacy against ocular herpes, and provide a prototype vaccine formulation that may be highly efficacious for preventing ocular herpes in humans.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Jiawei Huang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Steven L Wechsler
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States 2Department of Microbiology and Molecular Genetics, University of California Irvine, Schoo
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, United States 4Department of Molecular Biology & Biochemistry 5Institute for Immunology, University of C
| |
Collapse
|
38
|
Therapeutic immunization with a mixture of herpes simplex virus 1 glycoprotein D-derived “asymptomatic” human CD8+ T-cell epitopes decreases spontaneous ocular shedding in latently infected HLA transgenic rabbits: association with low frequency of local PD-1+ TIM-3+ CD8+ exhausted T cells. J Virol 2015; 89:6619-32. [PMID: 25878105 DOI: 10.1128/jvi.00788-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Most blinding ocular herpetic disease is due to reactivation of herpes simplex virus 1 (HSV-1) from latency rather than to primary acute infection. No herpes simplex vaccine is currently available for use in humans. In this study, we used the HLA-A*02:01 transgenic (HLA Tg) rabbit model of ocular herpes to assess the efficacy of a therapeutic vaccine based on HSV-1 gD epitopes that are recognized mainly by CD8(+) T cells from "naturally" protected HLA-A*02:01-positive, HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease). Three ASYMP CD8(+) T-cell epitopes (gD(53-61), gD(70-78), and gD(278-286)) were linked with a promiscuous CD4(+) T-cell epitope (gD(287-317)) to create 3 separate pairs of CD4-CD8 peptides, which were then each covalently coupled to an Nε-palmitoyl-lysine moiety, a Toll-like receptor 2 (TLR-2) ligand. This resulted in the construction of 3 CD4-CD8 lipopeptide vaccines. Latently infected HLA Tg rabbits were immunized with a mixture of these 3 ASYMP lipopeptide vaccines, delivered as eye drops in sterile phosphate-buffered saline (PBS). The ASYMP therapeutic vaccination (i) induced HSV-specific CD8(+) T cells that prevent HSV-1 reactivation ex vivo from latently infected explanted trigeminal ganglia (TG), (ii) significantly reduced HSV-1 shedding detected in tears, (iii) boosted the number and function of HSV-1 gD epitope-specific CD8(+) T cells in draining lymph nodes (DLN), conjunctiva, and TG, and (iv) was associated with fewer exhausted HSV-1 gD-specific PD-1(+) TIM-3+ CD8(+) T cells. The results underscore the potential of an ASYMP CD8(+) T-cell epitope-based therapeutic vaccine strategy against recurrent ocular herpes. IMPORTANCE Seventy percent to 90% of adults harbor herpes simplex virus 1 (HSV-1), which establishes lifelong latency in sensory neurons of the trigeminal ganglia. This latent state sporadically switches to spontaneous reactivation, resulting in viral shedding in tears. Most blinding herpetic disease in humans is due to reactivation of HSV-1 from latency rather than to primary acute infection. To date, there is no licensed therapeutic vaccine that can effectively stop or reduce HSV-1 reactivation from latently infected sensory ganglia and the subsequent shedding in tears. In the present study, we demonstrated that topical ocular therapeutic vaccination of latently infected HLA transgenic rabbits with a lipopeptide vaccine that contains exclusively human “asymptomatic” CD8(+) T-cell epitopes successfully decreased spontaneous HSV-1 reactivation, as judged by a significant reduction in spontaneous shedding in tears. The findings should guide the clinical development of a safe and effective T-cell-based therapeutic herpes vaccine.
Collapse
|
39
|
Douglas DN, Kneteman NM. Generation of improved mouse models for the study of hepatitis C virus. Eur J Pharmacol 2015; 759:313-25. [PMID: 25814250 DOI: 10.1016/j.ejphar.2015.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
Abstract
Approximately 3% of the world׳s population suffers from chronic infections with hepatitis C virus (HCV). Although current treatment regimes are capable of effectively eradicating HCV infection from these patients, the cost of these combinations of direct-acting antivirals are prohibitive. Approximately 80% of untreated chronic HCV carriers will be at high risk for developing severe liver disease, including fibrosis, cirrhosis, and hepatocellular carcinoma. A vaccine is urgently needed to lessen this global burden. Besides humans, HCV infection can be experimentally transmitted to chimpanzees, and this is the best model for studies of HCV infection and related innate and adaptive immune responses. Although the chimpanzee model yielded valuable insight, limited availability, high cost and ethical considerations limit their utility. The only small animal models of robust HCV infection are highly immunodeficient mice with human chimeric livers. However, these mice cannot be used to study adaptive immune responses and therefore a more relevant animal model is needed to assist in vaccine development. Novel strains of immunodeficient mice have been developed that allow for the engraftment of human hepatopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in otherwise immunodeficient mice. These humanized mice are rapidly emerging as pre-clinical bridges for numerous pathogens that, like HCV, only cause infectious disease in humans. This review highlights the potential these new models have for changing the current landscape for HCV research and vaccine development.
Collapse
Affiliation(s)
- Donna N Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada T6G 2E1; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| | - Norman M Kneteman
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada T6G 2E1; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada T6G 2E1; KMT Hepatech Inc., Edmonton, Alberta, Canada T6G 2M9
| |
Collapse
|
40
|
Srivastava R, Khan AA, Spencer D, Vahed H, Lopes PP, Thai NTU, Wang C, Pham TT, Huang J, Scarfone VM, Nesburn AB, Wechsler SL, BenMohamed L. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes. THE JOURNAL OF IMMUNOLOGY 2015; 194:2232-48. [PMID: 25617474 DOI: 10.4049/jimmunol.1402606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Doran Spencer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Patricia P Lopes
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nhi Thi Uyen Thai
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Christine Wang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Thanh T Pham
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Jiawei Huang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Vanessa M Scarfone
- Stem Cell Research Center, University of California Irvine, Irvine, CA 92697
| | - Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Steven L Wechsler
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697; Virology Research, Gavin Herbert Eye Institute and Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA 92697; Department of Microbiology and Molecular Genetics, University of California Irvine, School of Medicine, Irvine, CA 92697; Center for Virus Research, University of California Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697; Department of Molecular Biology and Biochemistry, University of California Irvine, School of Medicine, Irvine, CA 92697; and Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
41
|
Royer DJ, Cohen A, Carr D. The Current State of Vaccine Development for Ocular HSV-1 Infection. EXPERT REVIEW OF OPHTHALMOLOGY 2015; 10:113-126. [PMID: 25983856 DOI: 10.1586/17469899.2015.1004315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HSV-1 continues to be the leading cause of infectious corneal blindness. Clinical trials for vaccines against genital HSV infection have been ongoing for more than three decades. Despite this, no approved vaccine exists, and no formal clinical trials have evaluated the impact of HSV vaccines on eye health. We review here the current state of development for an efficacious HSV-1 vaccine and call for involvement of ophthalmologists and vision researchers.
Collapse
Affiliation(s)
- D J Royer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center
| | - A Cohen
- Ophthalmology, University of Oklahoma Health Sciences Center
| | - Djj Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center ; Ophthalmology, University of Oklahoma Health Sciences Center
| |
Collapse
|
42
|
Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol 2015; 89:3776-92. [PMID: 25609800 DOI: 10.1128/jvi.03419-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8(+) T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8(+) T cells play a key role in the "natural" protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8(+) T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)). In contrast, SYMP patients had frequent less-differentiated central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8(+) T cells which responded mainly to gB342-350 and gB561-569 "ASYMP" epitopes, and simultaneously produced IFN-γ, CD107(a/b), granzyme B, and perforin. In contrast, effector CD8(+) T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17-25 and gB183-191 "SYMP" epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong CD8(+) T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8(+) TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)) were found in healthy ASYMP individuals who are seropositive for HSV-1 but never had any recurrent herpetic disease, while there were frequent less-differentiated and monofunctional central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)) in SYMP patients. Immunization with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong protective HSV-specific CD8(+) T cell response in HLA-A*02:01 transgenic mice. These findings are important for the development of a safe and effective T cell-based herpes vaccine.
Collapse
|
43
|
Bustin SA. The reproducibility of biomedical research: Sleepers awake! BIOMOLECULAR DETECTION AND QUANTIFICATION 2014; 2:35-42. [PMID: 27896142 PMCID: PMC5121206 DOI: 10.1016/j.bdq.2015.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/03/2023]
Abstract
There is increasing concern about the reliability of biomedical research, with recent articles suggesting that up to 85% of research funding is wasted. This article argues that an important reason for this is the inappropriate use of molecular techniques, particularly in the field of RNA biomarkers, coupled with a tendency to exaggerate the importance of research findings.
Collapse
Affiliation(s)
- Stephen A. Bustin
- Faculty of Medical Science, Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| |
Collapse
|
44
|
Kuo T, Wang C, Badakhshan T, Chilukuri S, BenMohamed L. The challenges and opportunities for the development of a T-cell epitope-based herpes simplex vaccine. Vaccine 2014; 32:6733-45. [PMID: 25446827 DOI: 10.1016/j.vaccine.2014.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 10/01/2014] [Indexed: 01/29/2023]
Abstract
Herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) infections have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a billion individuals worldwide. HSV-1 infections are predominant than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries, their development has been difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One "common denominator" among previously failed clinical herpes vaccine trials is that they either used a whole virus or a whole viral protein, which contain both "pathogenic symptomatic" and "protective asymptomatic" antigens and epitopes. In this report, we continue to advocate developing "asymptomatic" epitope-based sub-unit vaccine strategies that selectively incorporate "protective asymptomatic" epitopes which: (i) are exclusively recognized by effector memory CD4(+) and CD8(+) T cells (TEM cells) from "naturally" protected seropositive asymptomatic individuals; and (ii) protect human leukocyte antigen (HLA) transgenic animal models of ocular and genital herpes. We review the role of animal models in herpes vaccine development and discuss their current status, challenges, and prospects.
Collapse
Affiliation(s)
- Tiffany Kuo
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Christine Wang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Tina Badakhshan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Sravya Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375, USA; Department of Molecular Biology & Biochemistry, University of California Irvine, School of Medicine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697, USA.
| |
Collapse
|
45
|
McAllister SC, Schleiss MR. Prospects and perspectives for development of a vaccine against herpes simplex virus infections. Expert Rev Vaccines 2014; 13:1349-60. [PMID: 25077372 DOI: 10.1586/14760584.2014.932694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.
Collapse
Affiliation(s)
- Shane C McAllister
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, 3-216 McGuire Translational Research Facility, 2001 6th Street S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
46
|
Samandary S, Kridane-Miledi H, Sandoval JS, Choudhury Z, Langa-Vives F, Spencer D, Chentoufi AA, Lemonnier FA, BenMohamed L. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum Immunol 2014; 75:715-29. [PMID: 24798939 DOI: 10.1016/j.humimm.2014.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 02/01/2023]
Abstract
A significant portion of the world's population is infected with herpes simplex virus type 1 and/or type 2 (HSV-1 and/or HSV-2), that cause a wide range of diseases including genital herpes, oro-facial herpes, and the potentially blinding ocular herpes. While the global prevalence and distribution of HSV-1 and HSV-2 infections cannot be exactly established, the general trends indicate that: (i) HSV-1 infections are much more prevalent globally than HSV-2; (ii) over a half billion people worldwide are infected with HSV-2; (iii) the sub-Saharan African populations account for a disproportionate burden of genital herpes infections and diseases; (iv) the dramatic differences in the prevalence of herpes infections between regions of the world appear to be associated with differences in the frequencies of human leukocyte antigen (HLA) alleles. The present report: (i) analyzes the prevalence of HSV-1 and HSV-2 infections across various regions of the world; (ii) analyzes potential associations of common HLA-A, HLA-B and HLA-C alleles with the prevalence of HSV-1 and HSV-2 infections in the Caucasoid, Oriental, Hispanic and Black major populations; and (iii) discusses how our recently developed HLA-A, HLA-B, and HLA-C transgenic/H-2 class I null mice will help validate HLA/herpes prevalence associations. Overall, high prevalence of herpes infection and disease appears to be associated with high frequency of HLA-A(∗)24, HLA-B(∗)27, HLA-B(∗)53 and HLA-B(∗)58 alleles. In contrast, low prevalence of herpes infection and disease appears to be associated with high frequency of HLA-B(∗)44 allele. The finding will aid in developing a T-cell epitope-based universal herpes vaccine and immunotherapy.
Collapse
Affiliation(s)
- Sarah Samandary
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Hédia Kridane-Miledi
- UNITE INSERM 1016, Institut Cochin, Hôpital Saint-Vincent-de-Paul, 82, Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France
| | - Jacqueline S Sandoval
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Zareen Choudhury
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Francina Langa-Vives
- Plate-Forme Technologique, Centre d'Ingénierie Génétique Murine, Département de Biologie du Développement, Institut Pasteur, 75015 Paris, France
| | - Doran Spencer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Aziz A Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - François A Lemonnier
- UNITE INSERM 1016, Institut Cochin, Hôpital Saint-Vincent-de-Paul, 82, Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
47
|
Dervillez X, Qureshi H, Chentoufi AA, Khan AA, Kritzer E, Yu DC, Diaz OR, Gottimukkala C, Kalantari M, Villacres MC, Scarfone VM, McKinney DM, Sidney J, Sette A, Nesburn AB, Wechsler SL, BenMohamed L. Asymptomatic HLA-A*02:01-restricted epitopes from herpes simplex virus glycoprotein B preferentially recall polyfunctional CD8+ T cells from seropositive asymptomatic individuals and protect HLA transgenic mice against ocular herpes. THE JOURNAL OF IMMUNOLOGY 2013; 191:5124-38. [PMID: 24101547 DOI: 10.4049/jimmunol.1301415] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence from C57BL/6 mice suggests that CD8(+) T cells, specific to the immunodominant HSV-1 glycoprotein B (gB) H-2(b)-restricted epitope (gB498-505), protect against ocular herpes infection and disease. However, the possible role of CD8(+) T cells, specific to HLA-restricted gB epitopes, in protective immunity seen in HSV-1-seropositive asymptomatic (ASYMP) healthy individuals (who have never had clinical herpes) remains to be determined. In this study, we used multiple prediction algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the HSV-1 gB amino acid sequence. Six of these epitopes exhibited high-affinity binding to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive, HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional CD8(+) T cell responses, as assessed by a combination of tetramer, IFN-γ-ELISPOT, CFSE proliferation, CD107a/b cytotoxic degranulation, and multiplex cytokine assays, were directed mainly against epitopes gB342-350 and gB561-569. In contrast, in 10 HLA-A*02:01-positive, HSV-1-seropositive symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent clinical herpes disease) frequent, but less robust, CD8(+) T cell responses were directed mainly against nonoverlapping epitopes (gB183-191 and gB441-449). ASYMP individuals had a significantly higher proportion of HSV-gB-specific CD8(+) T cells expressing CD107a/b degranulation marker and producing effector cytokines IL-2, IFN-γ, and TNF-α than did SYMP individuals. Moreover, immunization of a novel herpes-susceptible HLA-A*02:01 transgenic mouse model with ASYMP epitopes, but not with SYMP epitopes, induced strong CD8(+) T cell-dependent protective immunity against ocular herpes infection and disease. These findings should guide the development of a safe and effective T cell-based herpes vaccine.
Collapse
Affiliation(s)
- Xavier Dervillez
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine School of Medicine, Irvine, CA 92697
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sunohara-Neilson JR, Brash M, Carman S, Nagy É, Turner PV. Experimental infection of New Zealand white rabbits (Oryctolagus cuniculi) with Leporid herpesvirus 4. Comp Med 2013; 63:422-431. [PMID: 24210019 PMCID: PMC3796753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/01/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Leporid herpesvirus 4 (LHV4) is a novel alphaherpesvirus recently identified in domestic rabbits (Oryctolagus cuniculi). Little is known about the pathogenesis or time course of disease induced by this virus. We therefore intranasally inoculated 22 female New Zealand white rabbits with 8.4 × 10(4) CCID50 of a clinical viral isolate. Rabbits were monitored for clinical signs, viral shedding in oculonasal secretions, and development and persistence of serum antibodies. Rabbits were euthanized at 3, 5, 7, 14, and 22 d postinfection (dpi) to evaluate gross and microscopic changes. Clinical signs were apparent between 3 to 8 dpi, and included oculonasal discharge, respiratory distress, and reduced appetite, and viral shedding occurred between 2 and 8 dpi. Seroconversion was seen at 11 dpi and persisted to the end of the study (day 22). Severe necrohemorrhagic bronchopneumonia and marked pulmonary edema were noted by 5 dpi and were most severe at 7 dpi. Pulmonary changes largely resolved by 22 dpi. In addition, multifocal splenic necrosis was present at 5 dpi and progressed to submassive necrosis by 7 dpi. Eosinophilic herpesviral intranuclear inclusion bodies were detected in the nasal mucosa, skin, spleen, and lung between 3 to 14 dpi. LHV4 is a pathogen that should be considered for rabbits that present with acute respiratory disease. LHV4 infection can be diagnosed based on characteristic microscopic changes in the lungs and spleen and by virus isolation. Serum antibody levels may be used to monitor viral prevalence in colonies.
Collapse
Affiliation(s)
| | - Marina Brash
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Susy Carman
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
49
|
Brehm MA, Jouvet N, Greiner DL, Shultz LD. Humanized mice for the study of infectious diseases. Curr Opin Immunol 2013; 25:428-35. [PMID: 23751490 DOI: 10.1016/j.coi.2013.05.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Abstract
Many of the pathogens that cause human infectious diseases do not infect rodents or other mammalian species. Small animal models that allow studies of the pathogenesis of these agents and evaluation of drug efficacy are critical for identifying ways to prevent and treat human infectious diseases. Immunodeficient mice engrafted with functional human cells and tissues, termed 'humanized' mice, represent a critical pre-clinical bridge for in vivo studies of human pathogens. Recent advances in the development of humanized mice have allowed in vivo studies of multiple human infectious agents providing novel insights into their pathogenesis that was otherwise not possible.
Collapse
Affiliation(s)
- Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | | | | | | |
Collapse
|
50
|
Stanberry LR. Genital and Perinatal Herpes Simplex Virus Infections. Sex Transm Dis 2013. [DOI: 10.1016/b978-0-12-391059-2.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|