1
|
Patel A, Rajgopal B, Jaiswal M. Various strategies to induce beta cell neogenesis: a comprehensive review for unravelling the potential future therapy for curing diabetes. Growth Factors 2025:1-28. [PMID: 40400239 DOI: 10.1080/08977194.2025.2508723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Pancreatic endocrine cells are categorized in to 5 types (alpha, beta, delta, pancreatic polypeptide cells and epsilon), which expresses glucagon, insulin, somatostatin, pancreatic polypeptide, and ghrelin, respectively. Several studies including lineage tracing in Ins2Akita diabetic mice have been done to investigate the identities of pancreatic endocrine cells which concludes, alpha cells have enormous plasticity, which enables them to be reprogrammed by specific transcription factors into insulin secreting beta like cells. Gene therapy has provided the beneficial outcome. Pdx1, MaFA and PAX4 (the transcription factors) in alpha cells can be over expressed which results in reprogramming the targeted alpha cells into beta cells. This trans-differentiation may be induced by infusing an adeno-associated virus (AAV) loaded with distinct transcription factors in the duct of pancreas. Several researches have demonstrated the successful restoration of enhanced insulin secretion in diabetes induced mice. Additionally ductal neurogenin3 (Ngn3), Sglt2 inhibitors, Igfbp1, GLP1 and several clinical and non-clinical agents has been postulated as a basis of beta cell neogenesis. Alpha cell owing to its high plasticity, on prolonged exposure to GABA reprogrammed into beta-like cell due to downregulation of Arx expression by GABA. The various approaches for beta cell neogenesis open a new window towards the establishment of novel gene therapy accession to treat diabetes. However, broad studies are still needed to improve and optimize this treatment methodology. The potentiality of endogenous pancreatic alpha cell to beta cell conversion methods and its outcomes are invigorating. This accomplishment is presently being under trial in non-human primates.
Collapse
Affiliation(s)
- Anjali Patel
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, India
| | - B Rajgopal
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, India
| | - Manisha Jaiswal
- Rungta Institute of Pharmaceutical Education and Research, Bhilai, India
| |
Collapse
|
2
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
3
|
Wong A, Alejandro EU. Post translational modification regulation of transcription factors governing pancreatic β-cell identity and functional mass. Front Endocrinol (Lausanne) 2025; 16:1562646. [PMID: 40134803 PMCID: PMC11932907 DOI: 10.3389/fendo.2025.1562646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Dysfunction of the insulin-secreting β-cells is a key hallmark of Type 2 diabetes (T2D). In the natural history of the progression of T2D, factors such as genetics, early life exposures, lifestyle, and obesity dictate an individual's susceptibility risk to disease. Obesity is associated with insulin resistance and increased demand for insulin to maintain glucose homeostasis. Studies in both mouse and human islets have implicated the β-cell's ability to compensate through proliferation and survival (increasing functional β-cell mass) as a tipping point toward the development of disease. A growing body of evidence suggests the reduction of β-cell mass in T2D is driven majorly by loss of β-cell identity, rather than by apoptosis alone. The development and maintenance of pancreatic β-cell identity, function, and adaptation to stress is governed, in part, by the spatiotemporal expression of transcription factors (TFs), whose activity is regulated by signal-dependent post-translational modifications (PTM). In this review, we examine the role of these TFs in the developing pancreas and in the mature β-cell. We discuss functional implications of post-translational modifications on these transcription factors' activities and how an understanding of the pathways they regulate can inform therapies to promoteβ-cell regeneration, proliferation, and survival in diabetes.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
4
|
Al-Adsani AM, Al-Qattan KK, Barhoush SA, Abbood MS, Al-Bustan SA. Garlic Extract Promotes Pancreatic Islet Neogenesis Through α-to-β-Cell Transdifferentiation and Normalizes Glucose Homeostasis in Diabetic Rats. Mol Nutr Food Res 2024; 68:e2400362. [PMID: 39205537 DOI: 10.1002/mnfr.202400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Indexed: 09/04/2024]
Abstract
SCOPE Garlic extract (GE) has been shown to ameliorate hyperglycemia in diabetic rats (DRs) by increasing insulin production. However, the mechanism through which it exerts its effects remains unclear. Here, it investigates the molecular process and the origin of regenerating β-cell in rats with streptozotocin (STZ)-induced diabetes in response to GE. METHODS AND RESULTS In this study, quantitative RT-PCR (qRT-PCR), western blotting, and immunohistochemical analysis are carried out after pancreas isolation. These findings show that 1 week of GE treatment increases the expression of the endocrine progenitor cell markers Neurogenin3 (Neurog3), pancreatic and duodenal homeobox 1 (Pdx1), neurogenic differentiation factor 1 (Neurod1), paired box proteins (Pax)4, V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb), and NK homeobox factors (Nkx)6-1 in STZ-induced DRs. Continuation with GE treatment for 8 weeks causes the expression of the mature β-cell markers insulin(Ins)2, urocortin3 (Ucn3), and glucose transporter 2 (Glut2) to peak. Comprehensive examination of the islet through immunohistochemical analysis reveals the presence of a heterogeneous cell population including INS+/GLUT2- and INS+/GLUT2+ β-cell subpopulations with few bihormonal INS+/GCG+ cells after 4 weeks. By week 8, islet architecture is reestablished, and glucose-stimulated insulin secretion was restored through the upregulation of Ucn3. CONCLUSION GE induces β-cell neogenesis in DRs and restores islet architecture. The newly formed mature β-like cells could have originated through the differentiation of endocrine progenitor cells as well as α- to β-cell transdifferentiation.
Collapse
Affiliation(s)
- Amani M Al-Adsani
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Khaled K Al-Qattan
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Sahar A Barhoush
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Manal S Abbood
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Suzanne A Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| |
Collapse
|
5
|
Ko J, Fonseca VA, Wu H. Pax4 in Health and Diabetes. Int J Mol Sci 2023; 24:8283. [PMID: 37175989 PMCID: PMC10179455 DOI: 10.3390/ijms24098283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Paired box 4 (Pax4) is a key transcription factor involved in the embryonic development of the pancreatic islets of Langerhans. Consisting of a conserved paired box domain and a homeodomain, this transcription factor plays an essential role in early endocrine progenitor cells, where it is necessary for cell-fate commitment towards the insulin-secreting β cell lineage. Knockout of Pax4 in animal models leads to the absence of β cells, which is accompanied by a significant increase in glucagon-producing α cells, and typically results in lethality within days after birth. Mutations in Pax4 that cause an impaired Pax4 function are associated with diabetes pathogenesis in humans. In adulthood, Pax4 expression is limited to a distinct subset of β cells that possess the ability to proliferate in response to heightened metabolic needs. Upregulation of Pax4 expression is known to promote β cell survival and proliferation. Additionally, ectopic expression of Pax4 in pancreatic islet α cells or δ cells has been found to generate functional β-like cells that can improve blood glucose regulation in experimental diabetes models. Therefore, Pax4 represents a promising therapeutic target for the protection and regeneration of β cells in the treatment of diabetes. The purpose of this review is to provide a thorough and up-to-date overview of the role of Pax4 in pancreatic β cells and its potential as a therapeutic target for diabetes.
Collapse
Affiliation(s)
| | | | - Hongju Wu
- Section of Endocrinology, Department of Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA; (J.K.); (V.A.F.)
| |
Collapse
|
6
|
Fontcuberta-PiSunyer M, García-Alamán A, Prades È, Téllez N, Alves-Figueiredo H, Ramos-Rodríguez M, Enrich C, Fernandez-Ruiz R, Cervantes S, Clua L, Ramón-Azcón J, Broca C, Wojtusciszyn A, Montserrat N, Pasquali L, Novials A, Servitja JM, Vidal J, Gomis R, Gasa R. Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors. Commun Biol 2023; 6:256. [PMID: 36964318 PMCID: PMC10039074 DOI: 10.1038/s42003-023-04627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing β cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create β-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into β-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a β-cell fate. Reprogrammed cells exhibit β-cell features including β-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.
Collapse
Affiliation(s)
| | - Ainhoa García-Alamán
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Èlia Prades
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noèlia Téllez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine of University of Vic, Central University of Catalonia (UVic-UCC), Vic, Spain
- Institute of Health Research and Innovation at Central Catalonia (IRIS-CC), Vic, Spain
| | - Hugo Alves-Figueiredo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L., México
| | | | - Carlos Enrich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Fernandez-Ruiz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Cervantes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Clua
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christophe Broca
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
| | - Anne Wojtusciszyn
- CHU Montpellier, Laboratory of Cell Therapy for Diabetes (LTCD), Hospital St-Eloi, Montpellier, France
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorenzo Pasquali
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Novials
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan-Marc Servitja
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Vidal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ramon Gomis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rosa Gasa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
8
|
Garrido-Utrilla A, Ayachi C, Friano ME, Atlija J, Balaji S, Napolitano T, Silvano S, Druelle N, Collombat P. Conversion of Gastrointestinal Somatostatin-Expressing D Cells Into Insulin-Producing Beta-Like Cells Upon Pax4 Misexpression. Front Endocrinol (Lausanne) 2022; 13:861922. [PMID: 35573999 PMCID: PMC9103212 DOI: 10.3389/fendo.2022.861922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes results from the autoimmune-mediated loss of insulin-producing beta-cells. Accordingly, important research efforts aim at regenerating these lost beta-cells by converting pre-existing endogenous cells. Following up on previous results demonstrating the conversion of pancreatic somatostatin delta-cells into beta-like cells upon Pax4 misexpression and acknowledging that somatostatin-expressing cells are highly represented in the gastrointestinal tract, one could wonder whether this Pax4-mediated conversion could also occur in the GI tract. We made use of transgenic mice misexpressing Pax4 in somatostatin cells (SSTCrePOE) to evaluate a putative Pax4-mediated D-to-beta-like cell conversion. Additionally, we implemented an ex vivo approach based on mice-derived gut organoids to assess the functionality of these neo-generated beta-like cells. Our results outlined the presence of insulin+ cells expressing several beta-cell markers in gastrointestinal tissues of SSTCrePOE animals. Further, using lineage tracing, we established that these cells arose from D cells. Lastly, functional tests on mice-derived gut organoids established the ability of neo-generated beta-like cells to release insulin upon stimulation. From this study, we conclude that the misexpression of Pax4 in D cells appears sufficient to convert these into functional beta-like cells, thus opening new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Anna Garrido-Utrilla
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Chaïma Ayachi
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Marika Elsa Friano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Josipa Atlija
- Department of Cryopreservation, Distribution, Typing and Animal Archiving, Centre National de la Recherche Scientifique-Unité d'Appui à la Recherche (CNRS-UAR) 44 Typage et Archivage d’Animaux Modèles (TAAM), Orléans, France
| | - Shruti Balaji
- PlantaCorp Gesellschaft mit beschränkter Haftung (GmbH), Hamburg, Germany
| | - Tiziana Napolitano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Serena Silvano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Noémie Druelle
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY, United States
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| | - Patrick Collombat
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| |
Collapse
|
9
|
Gao D, Dai P, Fan Z, Wang J, Zhang Y. The Roles of Different Multigene Combinations of Pdx1, Ngn3, Sox9, Pax4, and Nkx2.2 in the Reprogramming of Canine ADSCs Into IPCs. Cell Transplant 2022; 31:9636897221081483. [PMID: 35236160 PMCID: PMC8902191 DOI: 10.1177/09636897221081483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are ideal sources for the treatment of diabetes, and the differentiation of ADSCs into insulin-producing cells (IPCs) through transfection of exogenous regulatory genes in vitro has been studied in depth. The differentiation of ADSCs is strictly regulated by a variety of transcription factors such as Pdx1, Ngn3, Pax4, Nkx2.2, and Sox9. However, whether these genes can coordinately regulate the differentiation of ADSCs into IPCs is still unknown. In this study, five multigene coexpressing adenovirus vectors (pAdTrack-Pdx1-Ngn3-AdEasy, pAdTrack-Pdx1-Ngn3-Sox9-AdEasy, pAdTrack-Pdx1-Ngn3-Pax4-Sox9-AdEasy, pAdTrack-Pdx1-Ngn3-Nkx2.2-Sox9-AdEasy, and pAdTrack-Pdx1-Ngn3-Nkx2.2-Pax4-AdEasy) were constructed, and then the stocks of the packaged adenoviruses were used to infect the canine ADSCs (cADSCs). Based on results of morphological observation, dithizone staining, sugar-stimulated insulin secretion test, cellular insulin immunofluorescence assays, and the detection of pancreatic β-cell development-related genes in the induced cells, the best induction combination (pAdTrack-Pdx1-Ngn3-Nkx2.2-Pax4-AdEasy) was identified after comparative screening. This study provides a theoretical reference and an experimental basis for further research on stem cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Dengke Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Pengxiu Dai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Zhixin Fan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jinglu Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
10
|
Iida R, Ueki M, Yasuda T. Deficiency of M-LP/Mpv17L leads to development of β-cell hyperplasia and improved glucose tolerance via activation of the Wnt and TGF-β pathways. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166318. [PMID: 34883249 DOI: 10.1016/j.bbadis.2021.166318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
M-LP/Mpv17L is a protein that was initially identified during screening of age-dependently expressed genes in mice. We have recently demonstrated that M-LP/Mpv17L-knockout (M-LP/Mpv17L-KO) in human hepatoma cells leads to a reduction of cellular cyclic nucleotide phosphodiesterase (PDE) activity, and that in vitro-synthesized M-LP/Mpv17L possesses PDE activity. These findings suggest that M-LP/Mpv17L functions as an atypical PDE, even though it has none of the well-conserved catalytic region or other structural motifs characteristic of the PDE family. In this study, we found that M-LP/Mpv17L-KO mice developed β-cell hyperplasia and improved glucose tolerance. Deficiency of M-LP/Mpv17L in islets from KO mice at early postnatal stages or siRNA-mediated suppression of M-LP/Mpv17L in rat insulinoma cells led to marked upregulation of lymphoid enhancer binding factor 1 (Lef1) and transcription factor 7 (Tcf7), key nuclear effectors in the Wnt signaling pathway, and some of the factors essential for the development and maintenance of β-cells. Moreover, at the protein level, increases in the levels of phosphorylated β-catenin and glycogen synthase kinase-3β (GSK-3β) were observed, indicating activation of the Wnt and TGF-β signaling pathways. Taken together, these findings suggest that protein kinase A (PKA)-dependent phosphorylations of β-catenin and GSK-3β, the key mediators of the Wnt and/or TGF-β signaling pathways, are the most upstream events triggering β-cell hyperplasia and improved glucose tolerance caused by M-LP/Mpv17L deficiency.
Collapse
Affiliation(s)
- Reiko Iida
- Life Science Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan.
| | - Misuzu Ueki
- Molecular Neuroscience Unit, School of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshihiro Yasuda
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
11
|
Maturity-Onset Diabetes of the Young (MODY): Genetic Causes, Clinical Characteristics, Considerations for Testing, and Treatment Options. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) encompasses a group of rare monogenic forms of diabetes distinct in etiology and clinical presentation from the more common forms of Type 1 (autoimmune) and Type 2 diabetes. Since its initial description as a clinical entity nearly 50 years ago, the underlying genetic basis for the various forms of MODY has been increasingly better elucidated. Clinically, the diagnosis may be made in childhood or young adulthood and can present as overt hyperglycemia requiring insulin therapy or as a subtle form of slowly progressive glucose impairment. Due to the heterogeneity of clinical symptoms, patients with MODY may be misdiagnosed as possessing another form of diabetes, resulting in potentially inappropriate treatment and delays in screening of affected family members and associated comorbidities. In this review, we highlight the various known genetic mutations associated with MODY, clinical presentation, indications for testing, and the treatment options available.
Collapse
|
12
|
Sadeghimahalli F, Karbaschi R, Salimi M, Khodagholi F, Zardooz H. Pancreatic HB9 protein level is affected by early life stress in young adult rats: possible involvement of TNF-α and corticosterone. Arch Physiol Biochem 2021; 127:406-413. [PMID: 31368362 DOI: 10.1080/13813455.2019.1645699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 01/06/2023]
Abstract
This study examined foot shock stress effects, during weaning, on pancreatic HB9 protein expression in young adult male rats in the presence or absence of adulthood stress. The pups were divided into Control, Early life stress, Young adult stress, and Early + young adult stress groups. Plasma corticosterone, insulin, glucose, and TNF-α concentrations, and pancreatic HB9 protein expression were assessed. At 2 weeks of age, stress increased plasma corticosterone level. During young adulthood, plasma TNF-α and glucose concentrations increased, whereas plasma insulin and pancreatic HB9 protein levels decreased in Early life stress group. Whereas, Early + young adulthood stress group showed no change in the study parameters, except for plasma corticosterone and insulin concentrations. Overall, early life stress reduced pancreatic HB9 protein expression possibly by elevating plasma corticosterone and TNF-α levels in early life and adulthood, respectively. However, combined with adulthood stress, HB9 protein expression increased to the level of Control.
Collapse
Affiliation(s)
- Forouzan Sadeghimahalli
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Education Development Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roxana Karbaschi
- Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Liang X, Duan H, Mao Y, Koestner U, Wei Y, Deng F, Zhuang J, Li H, Wang C, Hernandez-Miranda LR, Tao W, Jia S. The SNAG Domain of Insm1 Regulates Pancreatic Endocrine Cell Differentiation and Represses β- to δ-Cell Transdifferentiation. Diabetes 2021; 70:1084-1097. [PMID: 33547047 DOI: 10.2337/db20-0883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022]
Abstract
The allocation and specification of pancreatic endocrine lineages are tightly regulated by transcription factors. Disturbances in differentiation of these lineages contribute to the development of various metabolic diseases, including diabetes. The insulinoma-associated protein 1 (Insm1), which encodes a protein containing one SNAG domain and five zinc fingers, plays essential roles in pancreatic endocrine cell differentiation and in mature β-cell function. In the current study, we compared the differentiation of pancreatic endocrine cells between Insm1 null and Insm1 SNAG domain mutants (Insm1delSNAG) to explore the specific function of the SNAG domain of Insm1. We show that the δ-cell number is increased in Insm1delSNAG but not in Insm1 null mutants as compared with the control mice. We also show a less severe reduction of the β-cell number in Insm1delSNAG as that in Insm1 null mutants. In addition, similar deficits are observed in α-, PP, and ε-cells in Insm1delSNAG and Insm1 null mutants. We further identified that the increased δ-cell number is due to β- to δ-cell transdifferentiation. Mechanistically, the SNAG domain of Insm1 interacts with Lsd1, the demethylase of H3K4me1/2. Mutation in the SNAG domain of Insm1 results in impaired recruitment of Lsd1 and increased H3K4me1/2 levels at hematopoietically expressed homeobox (Hhex) loci that are bound by Insm1, thereby promoting the transcriptional activity of the δ-cell-specific gene Hhex Our study has identified a novel function of the SNAG domain of Insm1 in the regulation of pancreatic endocrine cell differentiation, particularly in the repression of β- to δ-cell transdifferentiation.
Collapse
Affiliation(s)
- Xuehua Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hualin Duan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yahui Mao
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ulrich Koestner
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Berlin, Germany
| | - Yiqiu Wei
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Deng
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingshen Zhuang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huimin Li
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cunchuan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Luis R Hernandez-Miranda
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Weihua Tao
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- The Institute of Clinical Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Lorenzo PI, Cobo-Vuilleumier N, Martín-Vázquez E, López-Noriega L, Gauthier BR. Harnessing the Endogenous Plasticity of Pancreatic Islets: A Feasible Regenerative Medicine Therapy for Diabetes? Int J Mol Sci 2021; 22:4239. [PMID: 33921851 PMCID: PMC8073058 DOI: 10.3390/ijms22084239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic metabolic disease caused by an absolute or relative deficiency in functional pancreatic β-cells that leads to defective control of blood glucose. Current treatments for diabetes, despite their great beneficial effects on clinical symptoms, are not curative treatments, leading to a chronic dependence on insulin throughout life that does not prevent the secondary complications associated with diabetes. The overwhelming increase in DM incidence has led to a search for novel antidiabetic therapies aiming at the regeneration of the lost functional β-cells to allow the re-establishment of the endogenous glucose homeostasis. Here we review several aspects that must be considered for the development of novel and successful regenerative therapies for diabetes: first, the need to maintain the heterogeneity of islet β-cells with several subpopulations of β-cells characterized by different transcriptomic profiles correlating with differences in functionality and in resistance/behavior under stress conditions; second, the existence of an intrinsic islet plasticity that allows stimulus-mediated transcriptome alterations that trigger the transdifferentiation of islet non-β-cells into β-cells; and finally, the possibility of using agents that promote a fully functional/mature β-cell phenotype to reduce and reverse the process of dedifferentiation of β-cells during diabetes.
Collapse
Affiliation(s)
- Petra I. Lorenzo
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
| | - Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
| | - Eugenia Martín-Vázquez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
| | - Livia López-Noriega
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
| | - Benoit R. Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 028029 Madrid, Spain
| |
Collapse
|
15
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
16
|
Effects of anti-CD20 monoclonal antibody and IL-10 on pancreatic β cell regeneration in nonobese diabetic mice. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-020-00899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
18
|
Wang H, Wei X, Shi W, He J, Luo L. Key Developmental Regulators Suggest Multiple Origins of Pancreatic Beta Cell Regeneration. Zebrafish 2020; 17:187-195. [PMID: 32460659 DOI: 10.1089/zeb.2019.1777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extensive efforts have been done to try to restore the lost β cell mass for the cure of diabetes. Animal models have been established to provide evidences of cellular origins and contextual regulators of β cell regeneration. Here, we used a zebrafish β cell ablation and regeneration model to investigate β cell neogenesis in the first few days after a near-total β cell loss. Regeneration of β cells first occurred within 7 h post-treatment. Developmental regulators such as neurod, pdx1, mnx1, and nkx2.2a were active in the regenerating β cells, while at the same time suggesting different subpopulations of regenerative cellular origins. Using Cre/loxP-based lineage tracing, we showed that intrapancreatic ductal cells resisted to give rise to regenerating β cells. Given that transdifferentiation of α cell and δ cell can regenerate β cell, here we have provided further molecular evidence highly suggesting that the regenerating β cells originate from multiple cellular origins.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Xiangyong Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Wenchao Shi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
19
|
Wang J, Yuan R, Zhu X, Ao P. Adaptive Landscape Shaped by Core Endogenous Network Coordinates Complex Early Progenitor Fate Commitments in Embryonic Pancreas. Sci Rep 2020; 10:1112. [PMID: 31980678 PMCID: PMC6981170 DOI: 10.1038/s41598-020-57903-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
The classical development hierarchy of pancreatic cell fate commitments describes that multipotent progenitors (MPs) first bifurcate into tip cells and trunk cells, and then these cells give rise to acinar cells and endocrine/ductal cells separately. However, lineage tracings reveal that pancreatic progenitors are highly heterogeneous in tip and trunk domains in embryonic pancreas. The progenitor fate commitments from multipotency to unipotency during early pancreas development is insufficiently characterized. In pursuing a mechanistic understanding of the complexity in progenitor fate commitments, we construct a core endogenous network for pancreatic lineage decisions based on genetic regulations and quantified its intrinsic dynamic properties using dynamic modeling. The dynamics reveal a developmental landscape with high complexity that has not been clarified. Not only well-characterized pancreatic cells are reproduced, but also previously unrecognized progenitors-tip progenitor (TiP), trunk progenitor (TrP), later endocrine progenitor (LEP), and acinar progenitors (AciP/AciP2) are predicted. Further analyses show that TrP and LEP mediate endocrine lineage maturation, while TiP, AciP, AciP2 and TrP mediate acinar and ductal lineage maturation. The predicted cell fate commitments are validated by analyzing single-cell RNA sequencing (scRNA-seq) data. Significantly, this is the first time that a redefined hierarchy with detailed early pancreatic progenitor fate commitment is obtained.
Collapse
Affiliation(s)
- Junqiang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruoshi Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ping Ao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Saghahazrati S, Ayatollahi SAM, Kobarfard F, Minaii Zang B. The Synergistic Effect of Glucagon-Like Peptide-1 and Chamomile Oil on Differentiation of Mesenchymal Stem Cells into Insulin-Producing Cells. CELL JOURNAL 2020; 21:371-378. [PMID: 31376318 PMCID: PMC6722451 DOI: 10.22074/cellj.2020.6325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) has attracted tremendous attention for treatment of diabetes. Likewise, it seems that active ingredients of chamomile oil might have anti-diabetic effects. This work was conducted to investigate the effects of the combination of GLP-1 and chamomile oil on differentiation of mesenchymal stem cells (MSCs) into functional insulin-producing cells (IPCs). MATERIALS AND METHODS In this experimental study, adipose MSCs derived from the adult male New Zealand white rabbits were assigned into four groups: control (without any treatment); GLP-1 (in which cells were treated with 10 nM GLP-1 every other day for 5 days); chamomile oil (in which cells were treated with 100 ug/ml Matricaria chamomilla L. flower oil every other day for 5 days); and GLP-1+ chamomile oil (in which cells were treated with 10 nM GLP-1 and 100 μg/ml M. chamomilla flower oil every other day for 5 days). Characterization of isolated MSCs was performed using flow cytometry, Alizarin red S staining and Oil red O staining. The expressions of genes specific for IPCs were measured using reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Measurement of insulin and the cleaved connecting peptide (C-peptide) in response to different concentrations of glucose, were performed using ELISA kits. RESULTS Our results demonstrated that isolated cells highly expressed MSC markers and were able to differentiate into osteocytes and adipocytes. Additionally, using GLP-1 in combination with chamomile oil exhibited higher levels of IPCs gene markers including NK homeobox gene 2.2 (NKX-2.2), paired box gene 4 (PAX4), insulin (INS) and pancreatic duodenal homeobox-1 (PDX1) as well as insulin and C-peptide secretion in response to different glucose concentrations compared to GLP-1 or chamomile oil alone (P<0.05). CONCLUSION Collectively, these findings establish a substantial foundation for using peptides in combination with natural products to obtain higher efficiency in regenerative medicine and peptide therapy.
Collapse
Affiliation(s)
- Saeid Saghahazrati
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abdul Majid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
- Department of Chemistry, Richardson College for The Environmental Science Complex, The University of Winnipeg, Winnipeg, Canada
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, Shahid Beheshti School of Pharmacy, Tehran, Iran
| | - Bagher Minaii Zang
- Department of Histology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.Electronic Address:
| |
Collapse
|
21
|
Zhang T, Wang H, Wang T, Wei C, Jiang H, Jiang S, Yang J, Shao J, Ma L. Pax4 synergistically acts with Pdx1, Ngn3 and MafA to induce HuMSCs to differentiate into functional pancreatic β-cells. Exp Ther Med 2019; 18:2592-2598. [PMID: 31572507 PMCID: PMC6755441 DOI: 10.3892/etm.2019.7854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
It has been indicated that the combination of pancreatic and duodenal homeobox 1 (Pdx1), MAF bZIP transcription factor A (MafA) and neurogenin 3 (Ngn3) was able to reprogram various cell types towards pancreatic β-like cells (pβLCs). Paired box 4 (Pax4), a transcription factor, has a key role in regulating the maturation of pancreatic β-cells (pβCs). In the present study, it was investigated whether Pax4 is able to synergistically act with Pdx1, Ngn3 and MafA to induce human umbilical cord mesenchymal stem cells (HuMSCs) to differentiate into functional pβCs in vitro. HuMSCs were isolated, cultured and separately transfected with adenovirus (Ad) expressing enhanced green fluorescence protein, Pax4 (Ad-Pax4), Pdx1+MafA+Ngn3 (Ad-3F) or Ad-Pxa4 + Ad-3F. The expression of C-peptide, insulin and glucagon was detected by immunofluorescence. The transcription of a panel of genes was determined by reverse transcription-quantitative PCR, including glucagon (GCG), insulin (INS), NK6 homeobox 1 (NKX6-1), solute carrier family 2 member 2 (SLC2A2), glucokinase (GCK), proprotein convertase subtilisin/kexin type 1 (PCSK1), neuronal differentiation 1 (NEUROD1), ISL LIM homeobox 1 (ISL 1), Pax6 and PCSK type 2 (PCSK2). Insulin secretion stimulated by glucose was determined using ELISA. The results suggested that, compared with Ad-3F alone, cells co-transfected with Ad-Pax4 and Ad-3F expressed higher levels of INS and C-peptide, as well as genes expressed in pancreatic β precursor cells, and secreted more insulin in response to high glucose. Furthermore, the expression of GCG in cells transfected with Ad-3F was depressed by Ad-Pax4. The present study demonstrated that Pax4 was able to synergistically act with the transcription factors Pdx1, Ngn3 and MafA to convert HuMSCs to functional pβLCs. HuMSCs may be potential seed cells for generating functional pβLCs in the therapy of diabetes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Tianyou Wang
- Hematological Tumor Center, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, P.R. China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P.R. China
| | - Hui Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Shayi Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingwei Yang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingbo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
- Correspondence to: Dr Jingbo Shao, Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Luding Road, Shanghai 200062, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, Guangdong 518038, P.R. China
- Dr Lian Ma, Department of Hematology and Oncology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, Guangdong 518038, P.R. China, E-mail:
| |
Collapse
|
22
|
Sakata N, Yoshimatsu G, Kodama S. Development and Characteristics of Pancreatic Epsilon Cells. Int J Mol Sci 2019; 20:ijms20081867. [PMID: 31014006 PMCID: PMC6514973 DOI: 10.3390/ijms20081867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pancreatic endocrine cells expressing the ghrelin gene and producing the ghrelin hormone were first identified in 2002. These cells, named ε cells, were recognized as the fifth type of endocrine cells. Differentiation of ε cells is induced by various transcription factors, including Nk2 homeobox 2, paired box proteins Pax-4 and Pax6, and the aristaless-related homeobox. Ghrelin is generally considered to be a "hunger hormone" that stimulates the appetite and is produced mainly by the stomach. Although the population of ε cells is small in adults, they play important roles in regulating other endocrine cells, especially β cells, by releasing ghrelin. However, the roles of ghrelin in β cells are complex. Ghrelin contributes to increased blood glucose levels by suppressing insulin release from β cells and is also involved in the growth and proliferation of β cells and the prevention of β cell apoptosis. Despite increasing evidence and clarification of the mechanisms of ε cells over the last 20 years, many questions remain to be answered. In this review, we present the current evidence for the participation of ε cells in differentiation and clarify their characteristics by focusing on the roles of ghrelin.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka 814-0180, Japan.
| |
Collapse
|
23
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Association of PAX4 gene R192H polymorphisms in Chinese Han type 2 diabetes. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Lewis PL, Su J, Yan M, Meng F, Glaser SS, Alpini GD, Green RM, Sosa-Pineda B, Shah RN. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci Rep 2018; 8:12220. [PMID: 30111800 PMCID: PMC6093899 DOI: 10.1038/s41598-018-30433-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.
Collapse
Affiliation(s)
- Phillip L. Lewis
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Jimmy Su
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Ming Yan
- 0000 0001 2299 3507grid.16753.36Biomedical Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Fanyin Meng
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| | - Shannon S. Glaser
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Gianfranco D. Alpini
- 0000 0004 0420 5847grid.413775.3Research Central Texas Veterans Health Care System, Temple, TX, USA ,grid.486749.0Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA ,0000 0004 4687 2082grid.264756.4Medical Physiology, Texas A&M University College of Medicine, Temple, TX, USA
| | - Richard M. Green
- 0000 0001 2299 3507grid.16753.36Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Beatriz Sosa-Pineda
- 0000 0001 2299 3507grid.16753.36Nephrology, Northwestern University, Chicago, IL, USA
| | - Ramille N. Shah
- 0000 0001 2299 3507grid.16753.36Simpson Querrey Institute, Northwestern University, Chicago, IL, USA ,0000 0001 2299 3507grid.16753.36Materials Science and Engineering, Northwestern University, Evanston, IL, USA ,0000 0001 2299 3507grid.16753.36Surgery (Transplant Division), Northwestern University, Chicago, IL, USA
| |
Collapse
|
26
|
Yang MX, Coates RF, Ambaye A, Cortright V, Mitchell JM, Buskey AM, Zubarik R, Liu JG, Ades S, Barry MM. NKX2.2, PDX-1 and CDX-2 as potential biomarkers to differentiate well-differentiated neuroendocrine tumors. Biomark Res 2018; 6:15. [PMID: 29713473 PMCID: PMC5907358 DOI: 10.1186/s40364-018-0129-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Well-differentiated neuroendocrine tumors (NET) most frequently arise from the gastrointestinal tract (GI), pancreas, and lung. Patients often present as metastasis with an unknown primary, and the clinical management and outcome depend on multiple factors, including the accurate diagnosis with the tumor primary site. Determining the site of the NET with unknown primary remains challenging. Many biomarkers have been investigated in primary NETs and metastatic NETs, with heterogeneous sensitivity and specificity observed. Methods We used high-throughput tissue microarray (TMA) and immunohistochemistry (IHC) with antibodies against a panel of transcriptional factors including NKX2.2, PDX-1, PTF1A, and CDX-2 on archived formalin-fixed paraffin-embedded NETs, and investigated the protein expression pattern of these transcription factors in 109 primary GI (N = 81), pancreatic (N = 17), and lung (N = 11) NETs. Results Differential expression pattern of these markers was observed. In the GI and pancreatic NETs (N = 98), NKX2.2, PDX-1, and CDX-2 were immunoreactive in 82 (84%), 14 (14%), and 52 (52%) cases, respectively. PDX-1 was expressed mainly in the small intestinal and appendiceal NETs, occasionally in the pancreatic NETs, and not in the colorectal NETs. All three biomarkers including NKX2.2, PDX-1, and CDX-2 were completely negative in lung NETs. PTF1A was expressed in all normal and neuroendocrine tumor cells. Conclusions Our findings suggest that NKX2.2 was a sensitive and specific biomarker for the GI and pancreatic neuroendocrine tumors. We proposed that a panel of immunostains including NKX2.2, PDX-1, and CDX-2 may show diagnostic utility for the most common NETs.
Collapse
Affiliation(s)
- Michelle X Yang
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Ryan F Coates
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Abiy Ambaye
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Valerie Cortright
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Jeannette M Mitchell
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Alexa M Buskey
- 1Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, 111 Colchester Avenue, Burlington, VT 05401 USA
| | - Richard Zubarik
- 2Gastroenterology, University of Vermont Medical Center, Burlington, VT USA
| | - James G Liu
- Applied Pathology Systems, Worcester, MA USA
| | - Steven Ades
- 4Medical Oncology, University of Vermont Medical Center, Burlington, VT USA
| | - Maura M Barry
- 4Medical Oncology, University of Vermont Medical Center, Burlington, VT USA
| |
Collapse
|
27
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Zubkova NA, Gioeva OA, Petrov VM, Vasiliev EV, Timofeev AV, Abrukova AV, Tiulpakov AN. Monogenic diabetes associated with PAX4 gene mutations (MODY9): first description in Russia. DIABETES MELLITUS 2017. [DOI: 10.14341/dm9322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a heterogeneous group of disorders characterised by autosomal dominant type of inheritance and caused by genetic defects leading to dysfunction of pancreatic beta-cells. To date, at least 13 subtypes of MODY have been described in the literature, the most frequent of which are MODY types 13. MODY2 and MODY3 are the most prevalent subtypes, and were previously described in our country, Russia. Several cases of rare MODY subtypes were subsequently described in the Russian literature. The current report is the first in the Russian literature to present clinical and molecular genetic characteristics of two cases of another rare MODY subtypeMODY9. This type of MODY is associated with mutations in the PAX4 gene, which encodes transcription factor PAX4, one of the factors essential for pancreatic beta-cell differentiation. Molecular genetic analysis was performed using next-generation sequencing, a new method recently applied to verify monogenic diseases and, in particular, MODY. This study reports a novel mutation in the PAX4 gene in MODY patients.
Collapse
|
29
|
Jeffery N, Richardson S, Beall C, Harries LW. The species origin of the cellular microenvironment influences markers of beta cell fate and function in EndoC-βH1 cells. Exp Cell Res 2017; 361:284-291. [PMID: 29107069 DOI: 10.1016/j.yexcr.2017.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Interaction between islet cell subtypes and the extracellular matrix influences beta-cell function in mammals. The tissue architecture of rodent islets is very different to that of human islets; cell-to-cell communication and interaction with the extracellular matrix may vary between species. In this work, we have compared the responses of the human EndoC-βH1 cell line to non-human and human-derived growth matrices in terms of growth morphology, gene expression and glucose-stimulated insulin secretion (GSIS). EndoC-βH1 cells demonstrated a greater tendency to form cell clusters when cultured in a human microenvironment and exhibited reduced alpha cell markers at the mRNA level; mean expression difference - 0.23 and - 0.51; p = 0.009 and 0.002 for the Aristaless-related homeobox (ARX) and Glucagon (GCG) genes respectively. No differences were noted in the protein expression of mature beta cell markers such as Pdx1 and NeuroD1 were noted in EndoC-βH1 cells grown in a human microenvironment but cells were however more sensitive to glucose (4.3-fold increase in insulin secretion following glucose challenge compared with a 1.9-fold increase in cells grown in a non-human microenvironment; p = 0.0003). Our data suggests that the tissue origin of the cellular microenvironment has effects on the function of EndoC-βH1 cells in vitro, and the use of a more human-like culture microenvironment may bring benefits in terms of increased physiological relevance.
Collapse
Affiliation(s)
- N Jeffery
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon EX2 5DW, UK
| | - S Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon EX2 5DW, UK
| | - C Beall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon EX2 5DW, UK
| | - L W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon EX2 5DW, UK.
| |
Collapse
|
30
|
Xu T, Shi Y, Liu J, Liu Y, Zhu A, Xie C, Zhang Y, Chen Y, Ren L. The rs10229583 polymorphism near paired box gene 4 is associated with gestational diabetes mellitus in Chinese women. J Int Med Res 2017; 46:115-121. [PMID: 28730907 PMCID: PMC6011326 DOI: 10.1177/0300060517714934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective The rs10229583 polymorphism near paired box gene 4 (PAX4) is associated with insulin resistance and type 2 diabetes. Mutations in the PAX4 gene may be associated with impaired differentiation/development of pancreatic islet beta cells during fetal development and, consequently, a compromised insulin response to high blood glucose. To ascertain whether this polymorphism plays a role in gestational diabetes mellitus (GDM), we investigated the genotypic and allele frequency differences between GDM and normal pregnancies. Methods A total of 310 GDM and 440 normal pregnancies were evaluated. Allele and genotype frequencies of rs10229583 were determined for all participants with Sanger sequencing and SNaPshot. Association of the allele and genotypes of the single nucleotide polymorphism with the disease was analyzed using Pearson’s χ2 test and OR (odds ratio). Results The G allele was more frequent in patients with GDM compared with controls (OR = 1.47, 95% confidence interval (CI): 1.12–1.939). The GG genotype frequency of rs10229583 was significantly different between subjects with GDM and normal controls (OR = 1.411, 95% CI: 1.032–1.928). The OR of the GA + GG genotype was 3.182 (95% CI: 1.294–7.826) for patients with GDM compared with controls. Conclusion The present study suggests that rs10229583 is associated with GDM.
Collapse
Affiliation(s)
- Tianyi Xu
- 1 Department of Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Shi
- 1 Department of Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangbo Liu
- 2 Department of Dermatology, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Yun Liu
- 3 Department of Gynaecology and Obstetrics, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Ailin Zhu
- 1 Department of Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Xie
- 3 Department of Gynaecology and Obstetrics, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Yan Zhang
- 3 Department of Gynaecology and Obstetrics, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Yan Chen
- 1 Department of Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lirong Ren
- 3 Department of Gynaecology and Obstetrics, Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
31
|
Molecular Ghrelin System in the Pancreatic Acinar Cells: The Role of the Polypeptide, Caerulein and Sensory Nerves. Int J Mol Sci 2017; 18:ijms18050929. [PMID: 28468316 PMCID: PMC5454842 DOI: 10.3390/ijms18050929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/09/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022] Open
Abstract
Ghrelin (GHRL) is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Experimental studies showed that GHRL protects the stomach and pancreas against acute damage, but the effect of GHRL on pancreatic acinar cells was still undetermined. Aim: To investigate the effect of GHRL and caerulein on the functional ghrelin system in pancreatic acinar cells taking into account the role of sensory nerves (SN). Methods: Experiments were carried out on isolated pancreatic acinar cells and AR42J cells. Before acinar cells isolation, GHRL was administered intraperitoneally at a dose of 50 µg/kg to rats with intact SN or with capsaicin deactivation of SN (CDSN). After isolation, pancreatic acinar cells were incubated in caerulein-free or caerulein containing solution. AR42J cells were incubated under basal conditions and stimulated with caerulein, GHRL or a combination of the above. Results: Incubation of isolated acinar cells with caerulein inhibited GHS-R and GHRL expression at the level of mRNA and protein in those cells. Either in rats with intact SN or with CDSN, administration of GHRL before isolation of acinar cells increased expression of GHRL and GHS-R in those cells and reversed the caerulein-induced reduction in expression of those parameters. Similar upregulation of GHS-R and GHRL was observed after administration of GHRL in AR42J cells. Conclusions: GHRL stimulates its own expression and expression of its receptor in isolated pancreatic acinar cells and AR42J cells on the positive feedback pathway. This mechanism seems to participate in the pancreatoprotective effect of GHRL in the course of acute pancreatitis.
Collapse
|
32
|
Lorenzo PI, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier BR. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes (Basel) 2017; 8:genes8030101. [PMID: 28282933 PMCID: PMC5368705 DOI: 10.3390/genes8030101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Paired box 4 (PAX4) is a key factor in the generation of insulin producing β-cells during embryonic development. In adult islets, PAX4 expression is sequestered to a subset of β-cells that are prone to proliferation and more resistant to stress-induced apoptosis. The importance of this transcription factor for adequate pancreatic islets functionality has been manifested by the association of mutations in PAX4 with the development of diabetes, independently of its etiology. Overexpression of this factor in adult islets stimulates β-cell proliferation and increases their resistance to apoptosis. Additionally, in an experimental model of autoimmune diabetes, a novel immunomodulatory function for this factor has been suggested. Altogether these data pinpoint at PAX4 as an important target for novel regenerative therapies for diabetes treatment, aiming at the preservation of the remaining β-cells in parallel to the stimulation of their proliferation to replenish the β-cell mass lost during the progression of the disease. However, the adequate development of such therapies requires the knowledge of the molecular mechanisms controlling the expression of PAX4 as well as the downstream effectors that could account for PAX4 action.
Collapse
Affiliation(s)
- Petra I Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Francisco Juárez-Vicente
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Mario García-Domínguez
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| |
Collapse
|
33
|
Luo Y, Lin Y, Han X. Original article. Transcription factors regulate Forkhead box O1 gene promoter activity in pancreatic β-cells. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0504.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background: Transcription factors of the Forkhead box O (Fox O) family have important roles in cellular proliferation, apoptosis, differentiation, and stress resistance. In pancreatic β-cells, FoxO1 protein plays an important role in β-cells development. The molecular mechanism of transcriptional regulation of basal FoxO1 gene expression in pancreatic β-cells is not fully understood.
Objectives: Explore the potential transcription factors regulating FoxO1 promoter activity using pancreatic β-cell line (RINm5F cells)
Methods: Promoter screening method, luciferase reporter gene analysis, transient expression assay system, and deletion analysis of a -974/-18 bp 5’ upstream region of the mouse FoxO1 gene were used in this study.
Results: An inhibition domain (-974/-321) and an activation domain (-321/-18) was identified through deletion analysis of a -974/-18 bp 5’ upstream region of the mouse FoxO1 gene. Using the promoter screening method, several transcription factors were selected. Luciferase reporter studies showed that these factors could regulate FoxO1 promoter activity in RINm5F cells. Among these factors, cAMP response-element binding protein (CREB) could positively regulate FoxO1 promoter activity. Signal transducer and activator of transcription 1 (STAT1) played a negative role on FoxO1 promoter. In addition, ETS oncogene family member Elk-1 did not affect the FoxO1 promoter activity.
Conclusion: Two transcription factors (CREB and STAT1) could effectively regulate the mouse FoxO1 gene promoter activity.
Collapse
Affiliation(s)
- Ying Luo
- Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| | - Yan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
34
|
Jeffery N, Harries LW. β-cell differentiation status in type 2 diabetes. Diabetes Obes Metab 2016; 18:1167-1175. [PMID: 27550203 DOI: 10.1111/dom.12778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) affects 415 million people worldwide and is characterized by chronic hyperglycaemia and insulin resistance, progressing to insufficient insulin production, as a result of β-cell failure. Over time, chronic hyperglycaemia can ultimately lead to loss of β-cell function, leaving patients insulin-dependent. Until recently the loss of β-cell mass seen in T2D was considered to be the result of increased rates of apoptosis; however, it has been proposed that apoptosis alone cannot account for the extent of β-cell mass loss seen in the disease, and that a loss of function may also occur as a result of changes in β-cell differentiation status. In the present review, we consider current knowledge of determinants of β-cell fate in the context of understanding its relevance to disease process in T2D, and also the impact of a diabetogenic environment (hyperglycaemia, hypoxia, inflammation and dyslipidaemia) on the expression of genes involved in maintenance of β-cell identity. We describe current knowledge of the impact of the diabetic microenvironment on gene regulatory processes such alternative splicing, the expression of disallowed genes and epigenetic modifications. Elucidating the molecular mechanisms that underpin changes to β-cell differentiation status and the concomitant β-cell failure offers potential treatment targets for the future management of patients with T2D.
Collapse
Affiliation(s)
- Nicola Jeffery
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Lorna W Harries
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| |
Collapse
|
35
|
Arregi I, Climent M, Iliev D, Strasser J, Gouignard N, Johansson JK, Singh T, Mazur M, Semb H, Artner I, Minichiello L, Pera EM. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling. Endocrinology 2016; 157:4615-4631. [PMID: 27740873 DOI: 10.1210/en.2016-1745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon+ and insulin+ cells. During the secondary transition, the reduction of Neurogenin3+ endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.
Collapse
Affiliation(s)
- Igor Arregi
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Maria Climent
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Dobromir Iliev
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jürgen Strasser
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Nadège Gouignard
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jenny K Johansson
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Tania Singh
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Magdalena Mazur
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Henrik Semb
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Isabella Artner
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Liliana Minichiello
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Edgar M Pera
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| |
Collapse
|
36
|
Martin-Montalvo A, Lorenzo PI, López-Noriega L, Gauthier BR. Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors. Expert Opin Ther Targets 2016; 21:77-89. [PMID: 27841034 DOI: 10.1080/14728222.2017.1257000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Four members of the PAX family, PAX2, PAX4, PAX6 and PAX8 are known to be expressed in the pancreas. Accumulated evidences indicate that several pancreatic expressed PAX genes play a significant role in pancreatic development/functionality and alterations in these genes are involved in the pathogenesis of pancreatic diseases. Areas covered: In this review, we summarize the ongoing research related to pancreatic PAX genes in diabetes mellitus and pancreatic neuroendocrine tumors. We dissect the current knowledge at different levels; from mechanistic studies in cell lines performed to understand the molecular processes controlled by pancreatic PAX genes, to in vivo studies using rodent models that over-express or lack specific PAX genes. Finally, we describe human studies associating variants on pancreatic-expressed PAX genes with pancreatic diseases. Expert opinion: Based on the current literature, we propose that future interventions to treat pancreatic neuroendocrine tumors and diabetes mellitus could be developed via the modulation of PAX4 and/or PAX6 regulated pathways.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Petra I Lorenzo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Livia López-Noriega
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Benoit R Gauthier
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| |
Collapse
|
37
|
Koblas T, Leontovyc I, Loukotova S, Kosinova L, Saudek F. Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e320. [PMID: 27187823 PMCID: PMC5014516 DOI: 10.1038/mtna.2016.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/02/2016] [Indexed: 12/23/2022]
Abstract
Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation-Pdx1, Neurogenin3, and MafA-efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2'-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2'-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy.
Collapse
Affiliation(s)
- Tomas Koblas
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivan Leontovyc
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Sarka Loukotova
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lucie Kosinova
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Frantisek Saudek
- Department of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
38
|
Pan FC, Brissova M, Powers AC, Pfaff S, Wright CVE. Inactivating the permanent neonatal diabetes gene Mnx1 switches insulin-producing β-cells to a δ-like fate and reveals a facultative proliferative capacity in aged β-cells. Development 2016; 142:3637-48. [PMID: 26534984 DOI: 10.1242/dev.126011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Homozygous Mnx1 mutation causes permanent neonatal diabetes in humans, but via unknown mechanisms. Our systematic and longitudinal analysis of Mnx1 function during murine pancreas organogenesis and into the adult uncovered novel stage-specific roles for Mnx1 in endocrine lineage allocation and β-cell fate maintenance. Inactivation in the endocrine-progenitor stage shows that Mnx1 promotes β-cell while suppressing δ-cell differentiation programs, and is crucial for postnatal β-cell fate maintenance. Inactivating Mnx1 in embryonic β-cells (Mnx1(Δbeta)) caused β-to-δ-like cell transdifferentiation, which was delayed until postnatal stages. In the latter context, β-cells escaping Mnx1 inactivation unexpectedly upregulated Mnx1 expression and underwent an age-independent persistent proliferation. Escaper β-cells restored, but then eventually surpassed, the normal pancreatic β-cell mass, leading to islet hyperplasia in aged mice. In vitro analysis of islets isolated from Mnx1(Δbeta) mice showed higher insulin secretory activity and greater insulin mRNA content than in wild-type islets. Mnx1(Δbeta) mice also showed a much faster return to euglycemia after β-cell ablation, suggesting that the new β-cells derived from the escaper population are functional. Our findings identify Mnx1 as an important factor in β-cell differentiation and proliferation, with the potential for targeting to increase the number of endogenous β-cells for diabetes therapy.
Collapse
Affiliation(s)
- Fong Cheng Pan
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Samuel Pfaff
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
39
|
Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas. Sci Rep 2016; 6:19223. [PMID: 26771085 PMCID: PMC4725895 DOI: 10.1038/srep19223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs.
Collapse
|
40
|
Kofent J, Spagnoli FM. Xenopus as a model system for studying pancreatic development and diabetes. Semin Cell Dev Biol 2016; 51:106-16. [PMID: 26806634 DOI: 10.1016/j.semcdb.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023]
Abstract
Diabetes is a chronic disease caused by the loss or dysfunction of the insulin-producing β-cells in the pancreas. To date, much of our knowledge about β-cells in humans comes from studying rare monogenic forms of diabetes. Importantly, the majority of mutations so far associated to monogenic diabetes are in genes that exert a regulatory role in pancreatic development and/or β-cell function. Thus, the identification and study of novel mutations open an unprecedented window into human pancreatic development. In this review, we summarize major advances in the genetic dissection of different types of monogenic diabetes and the insights gained from a developmental perspective. We highlight future challenges to bridge the gap between the fast accumulation of genetic data through next-generation sequencing and the need of functional insights into disease mechanisms. Lastly, we discuss the relevance and advantages of studying candidate gene variants in vivo using the Xenopus as model system.
Collapse
Affiliation(s)
- Julia Kofent
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Francesca M Spagnoli
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany.
| |
Collapse
|
41
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
42
|
Abdelalim EM, Emara MM. Pluripotent Stem Cell-Derived Pancreatic β Cells: From In Vitro Maturation to Clinical Application. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Ahmad Z, Rafeeq M, Collombat P, Mansouri A. Pax6 Inactivation in the Adult Pancreas Reveals Ghrelin as Endocrine Cell Maturation Marker. PLoS One 2015; 10:e0144597. [PMID: 26658466 PMCID: PMC4676685 DOI: 10.1371/journal.pone.0144597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Pax6 is an important regulator of development and cell differentiation in various organs. Thus, Pax6 was shown to promote neural development in the cerebral cortex and spinal cord, and to control pancreatic endocrine cell genesis. However, the role of Pax6 in distinct endocrine cells of the adult pancreas has not been addressed. We report the conditional inactivation of Pax6 in insulin and glucagon producing cells of the adult mouse pancreas. In the absence of Pax6, beta- and alpha-cells lose their molecular maturation characteristics. Our findings provide strong evidence that Pax6 is responsible for the maturation of beta-, and alpha-cells, but not of delta-, and PP-cells. Moreover, lineage-tracing experiments demonstrate that Pax6-deficient beta- and alpha-cells are shunted towards ghrelin marked cells, sustaining the idea that ghrelin may represent a marker for endocrine cell maturation.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
- * E-mail: (AM); (ZA)
| | - Maria Rafeeq
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
| | - Patrick Collombat
- Université de Nice Sophia Antipolis, Nice, France
- Inserm U1091, IBV, Diabetes Genetics Team, Nice, France
- JDRF, New York, NY, United States of America
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey
| | - Ahmed Mansouri
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
- JDRF, New York, NY, United States of America
- University of Goettingen, Department of Clinical Neurophysiology, Goettingen, Germany
- * E-mail: (AM); (ZA)
| |
Collapse
|
44
|
Pax4 acts as a key player in pancreas development and plasticity. Semin Cell Dev Biol 2015; 44:107-14. [DOI: 10.1016/j.semcdb.2015.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/05/2015] [Accepted: 08/22/2015] [Indexed: 11/19/2022]
|
45
|
Jamaluddin JL, Huri HZ, Vethakkan SR, Mustafa N. Pancreatic gene variants potentially associated with dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes. Pharmacogenomics 2015; 15:235-49. [PMID: 24444412 DOI: 10.2217/pgs.13.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the adult pancreas, the expression of the genes PAX4, KCNQ1, TCF7L2, KCNJ11, ABCC8, MTNR1B and WFS1 are mainly restricted to β cells to maintain glucose homeostasis. We have identified these genes as the main regulators of incretin-mediated actions, and therefore they may potentially influence the response of DPP-4 inhibitors. This review represents the first detailed exploration of pancreatic β-cell genes and their variant mechanisms, which could potentially affect the response of DPP-4 inhibitors in Type 2 diabetes. We have focused on the signaling pathways of these genes to understand their roles in gastrointestinal incretin-mediated effects; and finally, we sought to associate gene mechanisms with their Type 2 diabetes risk variants to predict the responses of DPP-4 inhibitors for this disease.
Collapse
Affiliation(s)
- Jazlina Liza Jamaluddin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
46
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Hang Y, Yamamoto T, Benninger RKP, Brissova M, Guo M, Bush W, Piston DW, Powers AC, Magnuson M, Thurmond DC, Stein R. The MafA transcription factor becomes essential to islet β-cells soon after birth. Diabetes 2014; 63:1994-2005. [PMID: 24520122 PMCID: PMC4030115 DOI: 10.2337/db13-1001] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The large Maf transcription factors, MafA and MafB, are expressed with distinct spatial-temporal patterns in rodent islet cells. Analysis of Mafa(-/-) and pancreas-specific Mafa(∆panc) deletion mutant mice demonstrated a primary role for MafA in adult β-cell activity, different from the embryonic importance of MafB. Our interests here were to precisely define when MafA became functionally significant to β-cells, to determine how this was affected by the brief period of postnatal MafB production, and to identify genes regulated by MafA during this period. We found that islet cell organization, β-cell mass, and β-cell function were influenced by 3 weeks of age in Mafa(Δpanc) mice and compromised earlier in Mafa(Δpanc);Mafb(+/-) mice. A combination of genome-wide microarray profiling, electron microscopy, and metabolic assays were used to reveal mechanisms of MafA control. For example, β-cell replication was produced by actions on cyclin D2 regulation, while effects on granule docking affected first-phase insulin secretion. Moreover, notable differences in the genes regulated by embryonic MafB and postnatal MafA gene expression were found. These results not only clearly define why MafA is an essential transcriptional regulator of islet β-cells, but also why cell maturation involves coordinated actions with MafB.
Collapse
Affiliation(s)
- Yan Hang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Tsunehiko Yamamoto
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Richard K P Benninger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Will Bush
- Department of Biomedical Informatics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN
| | - David W Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TNDivision of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TNVeterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Mark Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Debbie C Thurmond
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
48
|
Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application. BIOMED RESEARCH INTERNATIONAL 2014; 2014:926713. [PMID: 24864266 PMCID: PMC4016836 DOI: 10.1155/2014/926713] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/22/2014] [Indexed: 02/06/2023]
Abstract
With rapidly increasing prevalence, diabetes has become one of the major causes of mortality worldwide. According to the latest studies, genetic information makes substantial contributions towards the prediction of diabetes risk and individualized antidiabetic treatment. To date, approximately 70 susceptibility genes have been identified as being associated with type 2 diabetes (T2D) at a genome-wide significant level (P < 5 × 10−8). However, all the genetic loci identified so far account for only about 10% of the overall heritability of T2D. In addition, how these novel susceptibility loci correlate with the pathophysiology of the disease remains largely unknown. This review covers the major genetic studies on the risk of T2D based on ethnicity and briefly discusses the potential mechanisms and clinical utility of the genetic information underlying T2D.
Collapse
|
49
|
Seth A, Ye J, Yu N, Guez F, Bedford DC, Neale GA, Cordi S, Brindle PK, Lemaigre FP, Kaestner KH, Sosa-Pineda B. Prox1 ablation in hepatic progenitors causes defective hepatocyte specification and increases biliary cell commitment. Development 2014; 141:538-47. [PMID: 24449835 DOI: 10.1242/dev.099481] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The liver has multiple functions that preserve homeostasis. Liver diseases are debilitating, costly and often result in death. Elucidating the developmental mechanisms that establish the liver's architecture or generate the cellular diversity of this organ should help advance the prevention, diagnosis and treatment of hepatic diseases. We previously reported that migration of early hepatic precursors away from the gut epithelium requires the activity of the homeobox gene Prox1. Here, we show that Prox1 is a novel regulator of cell differentiation and morphogenesis during hepatogenesis. Prox1 ablation in bipotent hepatoblasts dramatically reduced the expression of multiple hepatocyte genes and led to very defective hepatocyte morphogenesis. As a result, abnormal epithelial structures expressing hepatocyte and cholangiocyte markers or resembling ectopic bile ducts developed in the Prox1-deficient liver parenchyma. By contrast, excessive commitment of hepatoblasts into cholangiocytes, premature intrahepatic bile duct morphogenesis, and biliary hyperplasia occurred in periportal areas of Prox1-deficient livers. Together, these abnormalities indicate that Prox1 activity is necessary to correctly allocate cell fates in liver precursors. These results increase our understanding of differentiation anomalies in pathological conditions and will contribute to improving stem cell protocols in which differentiation is directed towards hepatocytes and cholangiocytes.
Collapse
Affiliation(s)
- Asha Seth
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The islets of Langerhans are key regulators of glucose homeostasis and have been known as a structure for almost one and a half centuries. During the twentieth century several different cell types were described in the islets of different species and at different developmental stages. Six cell types with identified hormonal product have been described so far by the use of histochemical staining methods, transmission electron microscopy, and immunohistochemistry. Thus, glucagon-producing α-cells, insulin-producing β-cells, somatostatin-producing δ-cells, pancreatic polypeptide-producing PP-cells, serotonin-producing enterochromaffin-cells, and gastrin-producing G-cells have all been found in the mammalian pancreas at least at some developmental stage. Species differences are at hand and age-related differences are also to be considered. Eleven years ago a novel cell type, the ghrelin cell, was discovered in the human islets. Subsequent studies have shown the presence of islet ghrelin cells in several animals, including mouse, rat, gerbils, and fish. The developmental regulation of ghrelin cells in the islets of mice has gained a lot of interest and several studies have added important pieces to the puzzle of molecular mechanisms and the genetic regulation that lead to differentiation into mature ghrelin cells. A body of evidence has shown that ghrelin is an insulinostatic hormone, and the potential for blockade of ghrelin signalling as a therapeutic avenue for type 2 diabetes is intriguing. Furthermore, ghrelin-expressing pancreatic tumours have been reported and ghrelin needs to be taken into account when diagnosing pancreatic tumours. In this review article, we summarise the knowledge about islet ghrelin cells obtained so far.
Collapse
Affiliation(s)
- Nils Wierup
- Unit of Neuroendocrine Cell Biology, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströms gata 35, SE 205 02 Malmö, Sweden Imaging Team, Novo Nordisk A/S, Novo Nordisk Park, DK2760 Måløv, Denmark
| | | | | |
Collapse
|