1
|
Li Y, Anand-Srivastava MB. Role of Gi proteins in the regulation of blood pressure and vascular remodeling. Biochem Pharmacol 2023; 208:115384. [PMID: 36549460 DOI: 10.1016/j.bcp.2022.115384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Heterotrimeric guanine nucleotide regulatory proteins (G-proteins) through the activation of several signaling mechanisms including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidyl inositol (PI) turnover. regulate a variety of cellular functions, including vascular reactivity, proliferation and hypertrophy of VSMC. Activity of adenylyl cyclase is regulated by two G proteins, stimulatory (Gsα) and inhibitory (Giα). Gsα stimulates adenylyl cyclase activity and increases the levels of cAMP, whereas Giα inhibits the activity of adenylyl cyclase and results in the reduction of cAMP levels. Abnormalities in Giα protein expression and associated adenylyl cyclase\cAMP levels result in the impaired cellular functions and contribute to various pathological states including hypertension. The expression of Giα proteins is enhanced in various tissues including heart, kidney, aorta and vascular smooth muscle cells (VSMC) from genetic (spontaneously hypertensive rats (SHR)) and experimentally - induced hypertensive rats and contribute to the pathogenesis of hypertension. In addition, the enhanced expression of Giα proteins exhibited by VSMC from SHR is also implicated in the hyperproliferation and hypertrophy, the two key players contributing to vascular remodelling in hypertension. The enhanced levels of endogenous vasoactive peptides including angiotensin II (Ang II), endothelin-1 (ET-1) and growth factors contribute to the overexpression of Giα proteins in VSMC from SHR. In addition, enhanced oxidative stress, activation of c-Src, growth factor receptor transactivation and MAP kinase/PI3kinase signaling also contribute to the augmented expression of Giα proteins in VSMC from SHR. This review summarizes the role of Giα proteins, and the underlying molecular mechanisms implicated in the regulation of high blood pressure and vascular remodelling.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
2
|
Hossain E, Li Y, Anand-Srivastava MB. Angiotensin II-induced overexpression of sirtuin 1 contributes to enhanced expression of Giα proteins and hyperproliferation of vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2021; 321:H496-H508. [PMID: 34270373 DOI: 10.1152/ajpheart.00898.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) plays an important role in the regulation of various physiological functions including proliferation, hypertrophy of vascular smooth muscle cells (VSMCs) through the overexpression of Giα proteins. Sirtuin 1 (Sirt1), a class III histone deacetylase and epigenetic regulator is implicated in a wide range of cellular functions, including migration and growth of VSMCs and in ANG II-induced hypertension. The present study was undertaken to examine the role of Sirt1 in ANG II-induced overexpression of Giα proteins and hyperproliferation of aortic VSMCs. We show that ANG II treatment of VSMCs increased the expression of Sirt1, which was attenuated by AT1 and AT2 receptor antagonists, losartan, and PD123319, respectively. In addition, the knockdown of Sirt1 by siRNA attenuated ANG II-induced overexpression of Giα-2 and Giα-3 proteins, hyperproliferation of VSMCs and the overexpression of cell cycle proteins, cyclin D1, Cdk4, and phosphorylated retinoblastoma proteins. Furthermore, ANG II-induced increased levels of superoxide anion (O2-) and NADPH oxidase activity and increased phosphorylation of ERK1/2 and Akt that are implicated in enhanced expression of Giα proteins and hyperproliferation of VSMCs were also attenuated to control levels by silencing of Sirt1. In addition, depletion of Sirt1 by siRNA also attenuated ANG II-induced enhanced phosphorylation of platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR), and insulin-like growth factor receptor (IGFR) in VSMCs. In summary, our results demonstrate that ANG II increased the expression of Sirt1, which through oxidative stress, growth factor receptor-mediated mitogen-activated protein (MAP) kinase/Akt signaling pathway enhances the expression of Giα proteins and cell cycle proteins and results in the hyperproliferation of VSMCs.NEW & NOTEWORTHY ANG II regulates various physiological functions including proliferation of VSMCs through the overexpression of Giα proteins. Sirt1, a class III histone deacetylase, is implicated in several cellular functions, including VSMC growth and ANG II-induced hypertension. We showed for the first time that ANG II increased the expression of Sirt1, which through oxidative stress, growth factor receptor-mediated MAP kinase/Akt signaling pathway enhances the levels of Giα and cell cycle proteins resulting in the hyperproliferation of VSMCs.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| |
Collapse
|
3
|
Hossain E, Li Y, Anand-Srivastava MB. Role of the JAK2/STAT3 pathway in angiotensin II-induced enhanced expression of Giα proteins and hyperproliferation of aortic vascular smooth muscle cells. Can J Physiol Pharmacol 2021; 99:237-246. [PMID: 33002365 DOI: 10.1139/cjpp-2020-0415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We earlier showed that angiotensin (Ang) II-induced overexpression of Giα proteins contributes to the hyperproliferation of vascular smooth muscle cells (VSMC). In addition, the implication of the JAK2/STAT3 pathway in Ang II-induced hyperproliferation of VSMC has also been reported. However, the role of the JAK2/STAT3 pathway in Ang II-induced overexpression of Giα proteins and hyperproliferation of VSMC remains unexplored. In the present study, we show that inhibition or knockdown of the JAK2/STAT3 pathway by a specific inhibitor "cucurbitacin I" (CuI) or siRNAs attenuated Ang II-induced overexpression of Giα proteins and hyperproliferation of VSMC. In addition, the enhanced expression of cell cycle proteins induced by Ang II was also attenuated by CuI. Furthermore, Ang II-induced enhanced production of the superoxide anion (O2 -), H2O2, and NADPH oxidase activity, as well as the enhanced expression of NADPH oxidase subunits implicated in enhanced expression of Giα proteins and hyperproliferation, were also attenuated by inhibition of the JAK2/STAT3 pathway. On the other hand, Ang II-induced inhibition and augmentation of the levels of nitric oxide and peroxynitrite, respectively, in VSMC were restored to control levels by CuI. In summary, our results demonstrate that Ang II through the JAK2/STAT3 pathway increases nitroxidative stress, which contributes to the overexpression of Giα proteins and cell cycle proteins and the hyperproliferation of VSMC.
Collapse
MESH Headings
- Animals
- Rats
- Angiotensin II/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/cytology
- Cell Proliferation/drug effects
- Cells, Cultured
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Janus Kinase 2/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- NADPH Oxidases/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- Male
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
4
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
5
|
Ruzycky AL. Down-Regulation of the Mitogen-Activated Protein Kinase Cascade Immediately Before Parturition in the Rat Myometrium. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769800500605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Andre L. Ruzycky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Natriuretic peptide receptor-C agonist attenuates the expression of cell cycle proteins and proliferation of vascular smooth muscle cells from spontaneously hypertensive rats: role of Gi proteins and MAPkinase/PI3kinase signaling. PLoS One 2013; 8:e76183. [PMID: 24155894 PMCID: PMC3796523 DOI: 10.1371/journal.pone.0076183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit hyperproliferation and overexpression of cell cycle proteins. We earlier showed that small peptide fragments of cytoplasmic domain of natriuretic receptor-C (NPR-C) attenuate vasoactive peptide-induced hyperproliferation of VSMC. The present study investigated if C-ANP4–23, a specific agonist of NPR-C, could attanuate the hyperproliferation of VSMC from SHR by inhibiting the overexpression of cell cycle proteins and examine the underlying signaling pathways contributing to this inhibition. The proliferation of VSMC was determined by [3H] thymidine incorporation and the expression of proteins was determined by Western blotting. The hyperproliferation of VSMC from SHR and overexpression of cyclin D1,cyclin A, cyclin E, cyclin-dependent kinase 2 (cdk2), phosphorylated retinoblastoma protein (pRb), Giα proteins and enhanced phosphorylation of ERK1/2 and AKT exhibited by VSMC from SHR were attenuated by C-ANP4–23 to control levels. In addition, in vivo treatment of SHR with C-ANP4–23 also attenuated the enhanced proliferation of VSMC. Furthemore, PD98059, wortmannin and pertussis toxin, the inhibitors of MAP kinase, PI3kinase and Giα proteins respectively, also attenuated the hyperproliferation of VSMC from SHR and overexpression of cell cycle proteins to control levels. These results indicate that NPR-C activation by C-ANP4–23 attenuates the enhanced levels of cell cycle proteins through the inhibition of enhanced expression of Giα proteins and enhanced activation of MAPkinase/PI3kinase and results in the attenuation of hyperproliferation of VSMC from SHR. It may be suggested that C-ANP4–23 could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension, atherosclerosis and restenosis.
Collapse
|
7
|
Gagliardini E, Perico N, Rizzo P, Buelli S, Longaretti L, Perico L, Tomasoni S, Zoja C, Macconi D, Morigi M, Remuzzi G, Benigni A. Angiotensin II contributes to diabetic renal dysfunction in rodents and humans via Notch1/Snail pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:119-30. [PMID: 23707238 DOI: 10.1016/j.ajpath.2013.03.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 02/26/2013] [Accepted: 03/19/2013] [Indexed: 01/13/2023]
Abstract
In nondiabetic rat models of renal disease, angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. Herein, we wanted to explore the role of Ang II in diabetic nephropathy by a translational approach spanning from in vitro to in vivo rat and human studies, and to dissect the intracellular pathways involved. In isolated perfused rat kidneys and in cultured human podocytes, Ang II down-regulated nephrin expression via Notch1 activation and nuclear translocation of Snail. Hairy enhancer of split-1 was a Notch1-downstream gene effector that activated Snail in cultured podocytes. In vitro changes of the Snail/nephrin axis were similar to those in renal biopsy specimens of Zucker diabetic fatty rats and patients with advanced diabetic nephropathy, and were normalized by pharmacological inhibition of the renin-angiotensin system. Collectively, the present studies provide evidence that Ang II plays a relevant role in perpetuating glomerular injury in experimental and human diabetic nephropathy via persistent activation of Notch1 and Snail signaling in podocytes, eventually resulting in down-regulation of nephrin expression, the integrity of which is crucial for the glomerular filtration barrier.
Collapse
Affiliation(s)
- Elena Gagliardini
- Mario Negri Institute of Pharmacology Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li Y, Anand-Srivastava MB. Implication of multiple signaling pathways in the regulation of angiotensin II induced enhanced expression of Giα proteins in vascular smooth muscle cells. Can J Physiol Pharmacol 2012; 90:1105-16. [PMID: 22784310 DOI: 10.1139/y2012-042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that A10 vascular smooth muscle cells (VSMC) exposed to angiotensin II (Ang II) exhibited overexpression of Giα proteins. In the present study, we examined the involvement of different signaling pathways in regulating Ang II induced enhanced expression of Giα proteins in VSMC by using pharmacological inhibitors. Ang II induced increased expression of Giα proteins in A10 VSMC was markedly attenuated by actinomycin D, losartan (an AT(1) receptor antagonist), dibutyryl cAMP, phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitors staurosporine and GP109203X, but not by PD123319 (an AT(2) receptor antagonist). In addition, BAPTA-AM and TMB-8 (chelators of intracellular Ca(2+)); and nifedipine (a blocker of L-type Ca(2+) channels) significantly inhibited Ang II induced enhanced expression of Giα proteins. On the other hand, extracellular Ca(2+) chelation using EGTA did not affect the Ang II evoked enhanced levels of Giα proteins. Furthermore, pretreatment of A10 VSMC with calmidazolium (an inhibitor of calmodulin), or KN93 (an inhibitor of CaM kinase), or genistein (an inhibitor of protein tyrosine kinase, PTK), also attenuated the increased levels of Giα proteins induced by Ang II. These results suggest that Ang II induced enhanced expression of Giα proteins may be regulated by different signaling pathways through AT(1) receptors in A10 VSMC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Physiology, Faculty of Medicine, University of Montreal, QC, Canada
| | | |
Collapse
|
9
|
Emond ZM, Kibbe MR. Clinical science review article: understanding the implications of diabetes on the vascular system. Vasc Endovascular Surg 2011; 45:481-9. [PMID: 21571777 DOI: 10.1177/1538574411408354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Patients with diabetes comprise an extremely complex subset of patients for the vascular surgeon. Often, they have numerous comorbidities that can further complicate matters. The diabetic environment is highly complex and the interplay of various diseases makes this an extremely challenging condition to manage. Knowing the mechanisms by which diabetes inflicts adverse microscopic changes in the vasculature allows the clinician to anticipate problems and minimize the heightened risks observed in diabetic patients undergoing surgery. In this review, we will illustrate how diabetes affects the vasculature and how the molecular and cellular derangements that occur in diabetic environments lead to these pathophysiologic consequences.
Collapse
Affiliation(s)
- Zachary M Emond
- Department of Surgery, University of Illinois at Chicago, IL, USA
| | | |
Collapse
|
10
|
Sevoflurane inhibits angiotensin II-induced Rho kinase-mediated contraction of vascular smooth muscle from spontaneously hypertensive rat. J Anesth 2011; 25:398-404. [DOI: 10.1007/s00540-011-1121-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
11
|
|
12
|
Marrero MB, Schieffer B, Bernstein KE, Ling BN. SYMPOSIUM: Experimental Biology 1995 Role of Mesangial Cell Ion Transport in Glomerular Physiology and Disease: ANGIOTENSIN II-INDUCED TYROSINE PHOSPHORYLATION IN MESANGIAL AND VASCULAR SMOOTH MUSCLE CELLS. Clin Exp Pharmacol Physiol 2010. [DOI: 10.1111/j.1440-1681.1996.tb03067.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Allen CL, Bayraktutan U. Differential mechanisms of angiotensin II and PDGF-BB on migration and proliferation of coronary artery smooth muscle cells. J Mol Cell Cardiol 2008; 45:198-208. [DOI: 10.1016/j.yjmcc.2008.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/12/2008] [Accepted: 05/29/2008] [Indexed: 11/28/2022]
|
14
|
Angiotensin II Signaling in Vascular Physiology and Pathophysiology. SIGNAL TRANSDUCTION IN THE CARDIOVASCULAR SYSTEM IN HEALTH AND DISEASE 2008. [PMCID: PMC7121295 DOI: 10.1007/978-0-387-09552-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Initially recognized as a physiologic regulator of blood pressure and body fluid homeostasis, angiotensin (Ang) II has now been shown in innumerable experiments and clinical studies to contribute to the development and maintenance of cardiovascular disease. Dissection of its signaling mechanisms over the past decades has led to the discovery of several novel concepts, such as tissue-specific metabolism of Ang peptides. Identification and cloning of the various receptors through which Ang II acts on almost all tissues has led to the development of specific pharmacologic inhibitors with proven clinical benefit in patients with cardiovascular disorders. Work on the G-protein-coupled Ang II Type 1 receptor has demonstrated that different receptors interact through oligomerization, compartmentalization, and transactivation, and may explain how Ang II can activate G-protein-independent pathways. Unraveling the downstream effects of Ang II in specific cell types corroborates the importance of the cellular redox state on certain signaling pathways. Finally, the effects of Ang II on cell function and phenotype, such as the expression of inflammatory cytokines and receptors promoting the recruitment of inflammatory cells into vascular tissues, have indicated its role in local inflammation as a general pathogenetic basis of cardiovascular disease. The recognition of Ang II as a contributor to such fundamental pathophysiologic mechanisms, which are believed to be a common pathway for diverse cardiovascular risk factors like hypertension and diabetes, has greatly advanced our knowledge of pathologic signaling in vascular tissues and may help to eventually define novel targets for pharmacologic interventions.
Collapse
|
15
|
Ishikawa A, Ogawa K, Tokinaga Y, Uematsu N, Mizumoto K, Hatano Y. The Mechanism Behind the Inhibitory Effect of Isoflurane on Angiotensin II-Induced Vascular Contraction Is Different from That of Sevoflurane. Anesth Analg 2007; 105:97-102. [PMID: 17578963 DOI: 10.1213/01.ane.0000265851.37923.ec] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Angiotensin II (Ang II)-induced vascular contraction is mediated both by a Ca(2+)-mediated signaling pathway and a Ca(2+) sensitization mechanism. We recently demonstrated that sevoflurane inhibits the contractile response to Ang II, mainly by inhibiting protein kinase C (PKC) phosphorylation that regulates myofilament Ca(2+) sensitivity, without significant alteration of intracellular Ca(2+) concentration ([Ca(2+)](i)) in rat aortic smooth muscle. The current study was designed to determine the mechanisms by which isoflurane inhibits Ang II-induced contraction of rat aortic smooth muscle. METHODS The effects of isoflurane on vasoconstriction, increase in [Ca(2+)](i), and phosphorylation of PKC in response to Ang II (10(-7) M) were investigated, using an isometric force transducer, a fluorometer, and Western blotting, respectively. RESULTS Ang II elicited a transient contraction of rat aortic smooth muscle that was associated with an increase in [Ca(2+)](i) and PKC phosphorylation. Isoflurane (1.2%-3.5%) inhibited Ang II-induced contraction of rat aortic smooth muscle in a concentration-dependent manner (P < 0.05 at 1.2%, P < 0.01 at 2.3% and 3.5% isoflurane, n = 6). Isoflurane also inhibited elevation of [Ca(2+)](i) in response to Ang II (P < 0.01 at 2.3% and 3.5% isoflurane, n = 6), but failed to affect Ang II-induced phosphorylation of PKC at concentrations up to 3.5% (n = 7). CONCLUSION These results suggest that, unlike sevoflurane, the inhibitory effect of isoflurane on Ang II-induced contraction is mainly mediated by attenuation of the Ca(2+)-mediated signaling pathway.
Collapse
Affiliation(s)
- Ai Ishikawa
- Department of Anesthesiology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Koga M, Kai H, Yasukawa H, Kato S, Yamamoto T, Kawai Y, Kusaba K, Seki Y, Kai M, Egashira K, Kataoka Y, Imaizumi T. Postnatal blocking of interferon-gamma function prevented atherosclerotic plaque formation in apolipoprotein E-knockout mice. Hypertens Res 2007; 30:259-67. [PMID: 17510508 DOI: 10.1291/hypres.30.259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is unknown whether interferon-gamma has a positive or negative impact on atherosclerotic plaque formation. Thus, we examined the effects of postnatal interferon-gamma function blocking on plaque formation in apolipoprotein E-knockout (apoEKO) mice by overexpressing a soluble mutant of interferon-gamma receptor (sIFNgammaR), an interferon-gamma inhibitory protein. Mice were fed a Western-type diet from 8 weeks of age. sIFNgammaR or mock plasmid (control) was injected into the thigh muscle at 8 and 10 weeks' age, because serum sIFNgammaR protein was transiently increased with a peak at 2 days after a single sIFNgammaR gene transfer and remained elevated for 2 weeks. At 12 weeks' age, control apoEKO mice showed marked atherosclerotic plaques from the ascending aorta to the aortic arch. The plaques in the aortic root had massive lipid cores and macrophage infiltration with thin fibrous cap and few smooth muscle cells, demonstrating low plaque stability. In contrast, the luminal plaque area was remarkably reduced in sIFNgammaR-treated apoEKO mice. sIFNgammaR treatment not only reduced lipid core areas and macrophage infiltration but also increased smooth muscle cell count and fibrotic area, suggesting improved plaque stability. In controls, interleukin-1beta, monocyte chemoattractant protein-1, and vascular cell adhesion molecules-1 were remarkably upregulated in the aortic wall. These changes were significantly reversed by sIFNgammaR. sIFNgammaR treatment had no effects on serum cholesterol levels. In conclusion, sIFNgammaR treatment prevented plaque formation in apoEKO mice by inhibiting inflammatory changes in the arterial wall. The present study provides insight into a new strategy for preventing atherosclerosis.
Collapse
Affiliation(s)
- Mitsuhisa Koga
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhou CH, Qian ZY, Xiang M, He SY. Involvement of Ca2+ in the inhibition by crocetin of angiotensin II-induced ERK1/2 activation in vascular smooth muscle cells. Eur J Pharmacol 2007; 554:85-91. [PMID: 17109849 DOI: 10.1016/j.ejphar.2006.09.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/23/2006] [Accepted: 09/27/2006] [Indexed: 11/15/2022]
Abstract
Crocetin, a carotenoid compound, was isolated from Gardenia jasminoids Ellis. Our recent study shows that crocetin inhibits angiotensin II-induced extracellular signal-regulated kinases 1/2 (ERK1/2) activation and subsequent proliferation in vascular smooth muscle cells (VSMCs). To further explore the mechanism involved, in the present study, we investigated the effect of Ca(2+) in the activation of ERK1/2 and whether Ca(2+) is involved in the suppression by crocetin of angiotensin II-induced ERK1/2 activation. Our findings showed that crocetin pretreatment partially attenuated both the intracellular Ca(2+) mobilization and the extracellular Ca(2+) influx induced by angiotensin II. Moreover, angiotensin II-induced ERK1/2 activation was completely abolished by acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N ',N'-tetraacetic acid (BAPTA-AM), an intracellular Ca(2+) chelator, and partially inhibited by EGTA, an extracellular Ca(2+) chelator, or verapamil, an L-type Ca(2+) channel blocker. These findings suggest that Ca(2+) may play an important role in angiotensin II-induced ERK1/2 activation in VSMCs, and Ca(2+)-dependent pathway may be involved in the inhibitory effect by crocetin of angiotensin II-induced ERK1/2 activation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Animals, Newborn
- Calcium/metabolism
- Calcium/pharmacokinetics
- Calcium/physiology
- Calcium Channel Blockers/pharmacology
- Carotenoids/pharmacology
- Cattle
- Cells, Cultured
- Chelating Agents/pharmacology
- Dose-Response Relationship, Drug
- Egtazic Acid/pharmacology
- Enzyme Activation/drug effects
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Time Factors
- Verapamil/pharmacology
- Vitamin A/analogs & derivatives
Collapse
Affiliation(s)
- Cheng-Hua Zhou
- Department of Pharmacology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing 210009, PR China
| | | | | | | |
Collapse
|
18
|
Li Y, Lappas G, Anand-Srivastava MB. Role of oxidative stress in angiotensin II-induced enhanced expression of Gi(alpha) proteins and adenylyl cyclase signaling in A10 vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2006; 292:H1922-30. [PMID: 17158644 DOI: 10.1152/ajpheart.01166.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that angiotensin II (ANG II) treatment of A10 vascular smooth muscle cells (VSMCs) increased inhibitory G proteins (G(i) protein) expression and associated adenylyl cyclase signaling which was attributed to the enhanced MAP kinase activity. Since ANG II has been shown to increase oxidative stress, we investigated the role of oxidative stress in ANG II-induced enhanced expression of G(i)alpha proteins and examined the effects of antioxidants on ANG II-induced enhanced expression of G(i)alpha proteins and associated adenylyl cyclase signaling in A10 VSMCs. ANG II treatment of A10 VSMCs enhanced the production of O(2)(-) and the expression of Nox4 and P47(phox), different subunits of NADPH oxidase, which were attenuated toward control levels by diphenyleneiodonium (DPI). In addition, ANG II augmented the expression of G(i)alpha-2 and G(i)alpha-3 proteins in a concentration- and time-dependent manner; the maximal increase in the expression of G(i)alpha was observed at 1 to 2 h and at 0.1-1.0 microM. The enhanced expression of G(i)alpha-2 and G(i)alpha-3 proteins was restored to control levels by antioxidants such as N-acetyl-L-cysteine, alpha-tocopherol, DPI, and apocynin. In addition, ANG II also enhanced the ERK1/2 phosphorylation that was restored to control levels by DPI. Furthermore, the inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of 5'-O-(3-triotriphosphate) (receptor-independent G(i) functions) and ANG II-, des(Glu(18),Ser(19),Glu(20),Leu(21),Gly(22))atrial natriuretic peptide(4-23)-NH(2) (natriuretic peptide receptor-C agonist), and oxotremorine-mediated inhibitions of adenylyl cyclase (receptor-dependent functions) that were augmented in ANG II-treated VSMCs was also restored to control levels by antioxidant treatments. In addition, G(s)alpha-mediated diminished stimulation of adenylyl cyclase by stimulatory hormones in ANG II-treated cells was also restored to control levels by DPI. These results suggest that ANG II-induced enhanced levels of G(i)alpha proteins and associated functions in VSMCs may be attributed to the ANG II-induced enhanced oxidative stress, which exerts its effects through mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Yuan Li
- Department of Physiology and Groupe de recherche sur le système nerveux autonome, Faculty of Medicine, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
19
|
Cetin A, Ozturk OH, Tokay A, Akçit F, Cağlar S, Yeşilkaya A. Angiotensin II-Induced MAPK Phosphorylation Mediated by Ras and/or Phospholipase C-Dependent Phosphorylations but Not by Protein Kinase C Phosphorylation in Cultured Rat Vascular Smooth Muscle Cells. Pharmacology 2006; 79:27-33. [PMID: 17135774 DOI: 10.1159/000097539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 09/20/2006] [Indexed: 11/19/2022]
Abstract
Angiotensin II (Ang II) induces a rapid increase in mitogen-activated protein kinase (MAPK) activity through the Ang II type 1 receptor in cultured rat vascular smooth muscle cells (VSMCs). In the present study, we examined the effects of the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor GF109203X, and the Ras inhibitor farnesylthiosalicylic acid (FTS) on Ang II-induced activation of p42/p44 MAPKs in cultured VSMCs. Phosphorylation was shown using the Western blot technique with specific phospho-antibodies against MAPK proteins. The PLC inhibitor U73122 abolished the Ang II-induced MAPK activity, while the PKC inhibitor GF109203X only decreased it. There was also an inhibition observed with the Ras inhibitor, FTS on Ang II-induced MAPK activity. These data suggest that Ang II-induced MAPK phosphorylation through the Ang II type 1 receptor could be mediated by Ras and/or PLC-dependent phosphorylations but not by PKC phosphorylation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Blotting, Western
- Cells, Cultured
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- Farnesol/analogs & derivatives
- Farnesol/pharmacology
- Indoles/pharmacology
- Losartan/pharmacology
- Male
- Maleimides/pharmacology
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation/drug effects
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Pyrrolidinones/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/physiology
- Salicylates/pharmacology
- Time Factors
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
- ras Proteins/antagonists & inhibitors
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Arzu Cetin
- Department of Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
20
|
Barman SA, Marrero MB. Mechanism of Endothelin-1 Activation of Map Kinases in Neonatal Pulmonary Vascular Smooth Muscle. Lung 2005; 183:425-39. [PMID: 16465602 DOI: 10.1007/s00408-005-2554-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2005] [Indexed: 12/01/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) belong to the group of serine-threonine kinases that are rapidly activated in response to growth factor stimulation. In adult mammalian cells, the MAPK family includes extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2 or p44(mapk) and p42(mapk)), which translocate to the nucleus and integrate signals from second messengers leading to cellular proliferation or differentiation, but the specific role of MAPKs in neonatal pulmonary vascular smooth muscle is not well understood. Expression of p44(mapk) and p42(mapk) in primary cultured pulmonary vascular smooth muscle cells from neonatal (1-2 day old) rats was identified by Western immunoblot analysis and treatment with 10 nM endothelin-1 (ET-1), a potent vasoconstrictor with vascular mitogenic properties, induced cell proliferation, and phosphorylation of both p44(mapk) and p42(mapk). The protein kinase C (PKC) isozyme inhibitor (alpha, beta, gamma, delta, zeta) Go 6983, the ET(A) receptor antagonist BQ 123, and the MAPK kinase inhibitor PD98059 blocked the cell proliferation response to ET-1. Also, BQ 123, Go 6983, and PKC inhibitor 20-28 (Myr-N-FARKGAL-RQ-NH2-PKCalpha antagonist) inhibited ET-1-induced phosphorylation of both p44(mapk) and p42(mapk). In contrast, the reactive oxygen species (ROS) inhibitor diphenylene iodonium (DPI), the PKCdelta inhibitor rottlerin, and the ET(B) receptor antagonist BQ 788 did not block ET-1-induced phosphorylation of MAPKs. Collectively, these data demonstrate the expression and phosphorylation of MAPKs by ET-1 and suggests that MAPK activation and cell proliferation by ET-1 occurs via ET(A) receptor stimulation and specific PKC isozyme activation in rat neonatal pulmonary vascular smooth muscle.
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
21
|
Barman SA. Effect of Nitric Oxide on Mitogen-Activated Protein Kinases in Neonatal Pulmonary Vascular Smooth Muscle. Lung 2005; 183:325-35. [PMID: 16389725 DOI: 10.1007/s00408-005-2545-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) belong to the group of serine/threonine kinases that are rapidly activated in response to growth factor stimulation. In adult mammalian cells, the MAPK family includes extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2 or p44mapk and p42mapk), which translocate to the nucleus and integrate signals from second messengers leading to cellular proliferation or differentiation. However, the specific role of MAPKs in neonatal pulmonary vascular smooth muscle is not well understood. Expression of p44mapk and p42mapk in primary cultured pulmonary vascular smooth muscle cells from neonatal (1-2 day old) rats was identified by Western immunoblot analysis. Treatment with 10 nM endothelin-1 (ET-1), a potent vasoconstrictor with vascular mitogenic properties, induced phosphorylation of both p44mapk and p42mapk, but treatment with the exogenous nitric oxide (NO) donor sodium nitroprusside inhibited both p44mapk and p42mapk phosphorylation by ET-1. The specific cGMP-dependent protein kinase (PKG) inhibitor KT5823, the nonspecific nitric oxide synthase (NOS) inhibitor L-NAME, and the specific NOS 1 blocker NPLA all significantly enhanced both p44mapk and p42mapk phosphorylation by ET-1. Collectively, these data demonstrate the expression and phosphorylation of specific MAPKs in rat neonatal pulmonary vascular smooth muscle and suggests that the NO signaling pathway modulates MAPK activation by ET-1.
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta 30912, USA.
| |
Collapse
|
22
|
Yu J, Mizumoto K, Tokinaga Y, Ogawa K, Hatano Y. The Inhibitory Effects of Sevoflurane on Angiotensin II- Induced, p44/42 Mitogen-Activated Protein Kinase-Mediated Contraction of Rat Aortic Smooth Muscle. Anesth Analg 2005; 101:315-321. [PMID: 16037134 DOI: 10.1213/01.ane.0000173210.12435.67] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Sevoflurane dilates blood vessels and reduces arterial blood pressure in a dose-dependent manner. Angiotensin II (Ang II) is one of the primary regulators of vascular tension and arterial blood pressure, and the p44/42 mitogen-activated protein kinases (p44/42 MAPK) are involved in Ang II-mediated vascular smooth muscle contraction. We designed this study to examine the effects of sevoflurane on Ang II-induced, p44/42 MAPK-mediated contraction of rat aortic smooth muscle. The effects of the p44/42 MAPK kinase (MEK1/2) inhibitor, PD 098059 (10(-5) molar [M], 5 x 10(-5) M and 10(-4) M), and sevoflurane (1.7%, 3.4%, and 5.1%) on Ang II-induced contraction and p44/42 MAPK phosphorylation were tested in rat aortic smooth muscle, using isometric force measurement and Western blot analysis, respectively. Ang II induced both a transient contractile response and phosphorylation of p44/42 MAPK, which were significantly attenuated by PD 098059 (P < 0.05-0.01). Sevoflurane inhibited Ang II-induced contractile response in a dose-dependent manner (P < 0.05 and 0.01 in response to 3.4% and 5.1% sevoflurane, respectively). Sevoflurane also dose-dependently depressed Ang II-elicited p44/42 MAPK phosphorylation (P < 0.01 in response to 3.4% and 5.1% sevoflurane). These results suggest that the inhibitory effect of sevoflurane on Ang II-induced vasoconstriction is, at least in part, caused by the inhibition of the p44/42 MAPK-mediated signaling pathway. IMPLICATIONS The present study demonstrates that sevoflurane can dose-dependently inhibit both angiotensin II (Ang II)-induced contraction and p44/42 MAPK phosphorylation of rat aortic smooth muscle. These data suggest that sevoflurane-produced inhibition of Ang II-induced vasoconstriction is, at least in part, caused by depression of the p44/42 MAPK-mediated signaling pathway.
Collapse
Affiliation(s)
- Jingui Yu
- *Department of Anesthesiology and †Surgical Operating Center, Wakayama Medical University, Wakayama City, Japan
| | | | | | | | | |
Collapse
|
23
|
Yu J, Mizumoto K, Kakutani T, Hasegawa A, Ogawa K, Hatano Y. Comparison of the effects of isoflurane and sevoflurane on protein tyrosine phosphorylation-mediated vascular contraction. Acta Anaesthesiol Scand 2005; 49:852-8. [PMID: 15954971 DOI: 10.1111/j.1399-6576.2005.00699.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Isoflurane induces greater effects on vasodilation and decreasing blood pressure than sevoflurane. Tyrosine kinase-catalyzed protein tyrosine phosphorylation plays an important role in regulating vascular smooth muscle contraction. The aim of the present study was to compare the effects of isoflurane and sevoflurane on tyrosine phosphorylation-mediated vascular constriction, by assessing the degree of sodium orthovanadate (Na(3)VO(4), tyrosine phosphatase inhibitor)-induced contraction and protein tyrosine phosphorylation of rat aortic smooth muscle. METHODS Na(3)VO(4)-induced contraction and protein tyrosine phosphorylation of rat aortic smooth muscle were measured in the presence of genistein, a tyrosine kinase inhibitor, and different concentrations of isoflurane and sevoflurane, using isometric force measurement and Western blot, respectively. RESULTS Na(3)VO(4) (10(-4) M) induced sustained contraction and tyrosine phosphorylation of substrates that were both markedly attenuated in the presence of genistein (5 x 10(-5) M). Isoflurane and sevoflurane dose-dependently (1, 2, 3 MAC) attenuated the Na(3)VO(4)-induced contraction (P < 0.05-0.005, n = 8), with a greater degree of inhibition by isoflurane than sevoflurane at 2 MAC (P < 0.01) and 3 MAC (P < 0.05). Both anesthetics also attenuated the total band density of the Na(3)VO(4)-induced, tyrosine-phosphorylated substrates in a concentration-dependent manner (P < 0.05-0.005, n = 4), with much greater attenuation by isoflurane than sevoflurane at 1 and 2 MAC (P < 0.05), respectively. CONCLUSION The results of the present study demonstrate that isoflurane exhibits a greater degree of inhibition on the Na(3)VO(4)-stimulated contraction and protein tyrosine phosphorylation of rat aortic smooth muscle compared with sevoflurane. These findings suggest that isoflurane depresses the protein tyrosine phosphorylation-mediated contraction of vascular smooth muscle to a greater degree than sevoflurane.
Collapse
Affiliation(s)
- J Yu
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Chu L, Zhang JX, Norota I, Endoh M. Differential action of a protein tyrosine kinase inhibitor, genistein, on the positive inotropic effect of endothelin-1 and norepinephrine in canine ventricular myocardium. Br J Pharmacol 2005; 144:430-42. [PMID: 15655501 PMCID: PMC1576021 DOI: 10.1038/sj.bjp.0706097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Experiments were carried out in isolated canine ventricular trabeculae and acetoxymethylester of indo-1-loaded single myocytes to elucidate the role of protein tyrosine kinase (PTK) in the inotropic effect of endothelin-1 (ET-1) induced by crosstalk with norepinephrine (NE). The PTK inhibitor genistein was used as a pharmacological tool. Genistein but not daidzein inhibited the positive inotropic effect and the increase in Ca(2+) transients induced by ET-1 by crosstalk with NE at low concentrations. Genistein and daidzein antagonized the negative inotropic effect and the decrease in Ca(2+) transients induced by ET-1 by crosstalk with NE at high concentrations, but genistein did not affect the antiadrenergic effect of carbachol. Genistein but not daidzein enhanced the positive inotropic effect and the increase in Ca(2+) transients induced by NE via beta-adrenoceptors, while the enhancing effect of genistein was abolished by the protein tyrosine phosphatase inhibitor vanadate. These findings indicate that genistein (1) induces a positive inotropic effect in association with an increase in Ca(2+) transients, (2) inhibits the positive inotropic effect of ET-1 induced by crosstalk with NE, and (3) enhances the positive inotropic effect of NE induced via beta-adrenoceptors by inhibition of PTK. In addition, genistein inhibits the negative inotropic effect of ET-1 induced by crosstalk with NE through a PTK-unrelated mechanism. PTK may play a crucial role in the receptor-mediated regulation of cardiac contractile function in canine ventricular myocardium.
Collapse
Affiliation(s)
- Li Chu
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Jian-Xin Zhang
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Ikuo Norota
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Masao Endoh
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Author for correspondence:
| |
Collapse
|
25
|
Guo S, Lopez-Ilasaca M, Dzau VJ. Identification of calcium-modulating cyclophilin ligand (CAML) as transducer of angiotensin II-mediated nuclear factor of activated T cells (NFAT) activation. J Biol Chem 2005; 280:12536-41. [PMID: 15668245 DOI: 10.1074/jbc.m500296200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (Ang II) plays a central role in cardiovascular physiology and disease. Ang II type I receptor (AT1) is thought to mediate most actions of Ang II. A novel AT1 receptor intracellular partner called AT1 receptor-associated protein (ATRAP) was identified, but its exact function has not been elucidated. A yeast two-hybrid screen using ATRAP as bait identified calcium-modulating cyclophilin ligand (CAML) as an ATRAP partner. Yeast two-hybrid and coimmunoprecipitation analysis demonstrated that the N-terminal hydrophilic domain of CAML (amino acids (aa) 1-189) mediates a specific interaction between ATRAP and CAML. Our analysis also showed that aa 40-82 of ATRAP contribute to this interaction. Bioluminescence resonance energy transfer and intracellular colocalization analysis by immunofluorescence in HEK293 cells verified this association within endoplasmic reticulum vesicular structures. Functionally, transcriptional reporter assays and RNA interference ATRAP experiments demonstrated that ATRAP knockdown increased nuclear factor of activated T cells (NFAT) activity. Overexpression of ATRAP decreased Ang II- or CAML-induced NFAT transcriptional activation, whereas an ATRAP-interacting domain of CAML (aa 1-189) sensitized NFAT activation in response to Ang II. These results indicate that CAML is an important signal transducer for the actions of Ang II in regulating the calcineurin-NFAT pathway and suggest that the interaction of CAML with ATRAP may mediate the Ang II actions in vascular physiology.
Collapse
Affiliation(s)
- Shaodong Guo
- Cardiovascular Research Laboratories, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
26
|
Crawford SE, Mavroudis C, Backer CL, Huang X, Mu Y, Volpert OV, Stellmach V, Pahl E, Huang L. Captopril suppresses Post-transplantation angiogenic activity in rat allograft coronary vessels. J Heart Lung Transplant 2004; 23:666-73. [PMID: 15366425 DOI: 10.1016/j.healun.2003.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND The development of transplant coronary artery disease is associated with neovascularization in the thickened neointima. We previously reported that captopril inhibits neointimal proliferation in a rat allograft model. We postulated that angiogenic inducers are upregulated post-transplantation and captopril ameliorates transplant coronary artery disease by suppressing the angiogenic activity of coronaries. METHODS Animals received no treatment or captopril (50 mg/kg/day). Allograft hearts were analyzed at post-transplantation Days 0, 14, and 21 and angiogenic inducer, plasma platelet-activating factor, determined. The conditioned media from coronaries and myocardium were tested for vascular endothelial growth factor, thrombospondin-1 and angiogenic activity using an endothelial migration assay and rat corneal neovascularization assay. RESULTS The captopril-treated group had reduced plasma platelet-activating factor and coronary media revealed earlier upregulation of thrombospondin-1 secretion, diminished vascular endothelial growth factor and no angiogenic activity. At Day 0, the coronary and myocardial conditioned medium had inhibitory activity due to thrombospondin-1, and circulating levels of platelet-activating factor were negligible. By 21 days post-transplantation, plasma platelet-activating factor was elevated and the conditioned medium from untreated coronaries had significantly higher angiogenic activity due to increased vascular endothelial growth factor whereas the myocardium remained non-angiogenic. CONCLUSIONS After transplantation, coronary vessels switch to an angiogenic phenotype and vascular endothelial growth factor contributes to the high angiogenic activity, possibly exacerbated by high circulating levels of platelet-activating factor. The ability of captopril to modulate angiogenic mediators and maintain the allograft coronary to its normal anti-angiogenic phenotype may be one mechanism by which it suppresses transplant coronary artery disease.
Collapse
Affiliation(s)
- Susan E Crawford
- Department of Pathology, Children's Memorial Hospital and Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zahradka P, Litchie B, Storie B, Helwer G. Transactivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin II type 1 receptor to phosphatidylinositol 3-kinase. Endocrinology 2004; 145:2978-87. [PMID: 14976148 DOI: 10.1210/en.2004-0029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (AngII) activates phosphatidylinositol 3-kinase (PI3-kinase), a known effector of receptor tyrosine kinases. Treatment of smooth muscle cells with AngII has also been shown to promote phosphorylation of various tyrosine kinase receptors. We therefore investigated the relationship between AngII and IGF-I receptor activation in smooth muscle cells with a phosphorylation-specific antibody. Our experiments showed that IGF-I receptor phosphorylation was maximally stimulated within 10 min by AngII. Inclusion of an IGF-I-neutralizing antibody in the culture media did not prevent IGF-I receptor phosphorylation after AngII treatment, which argues that a paracrine/autocrine loop is not required. Furthermore, this process was blocked by losartan and 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP-1), indicating stimulation of IGF-I receptor phosphorylation occurs via AngII type 1 receptor-dependent activation of Src kinase. The functional significance of IGF-I receptor transactivation was examined with selective inhibitors of the IGF-I receptor kinase (AG1024, AG538). When AngII-treated cells were incubated with AG1024 or AG538, phosphorylation of the regulatory p85 subunit of PI3-kinase was blocked. Furthermore, phosphorylation of the downstream factor p70(S6K) did not occur. In contrast, AG1024 did not prevent MAPK or Src kinase activation by AngII. AG1024 also did not inhibit AngII-dependent cell migration, although this process was blocked by inhibitors of the epidermal growth factor and platelet-derived growth factor receptors. Transactivation of the IGF-I receptor is therefore a critical mediator of PI3-kinase activation by AngII but is not required for stimulation of the MAPK cascade.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, Molecular Physiology Laboratory, St. Boniface Research Centre, 351 Tache Avenue, Winnipeg, Maniotoba, Canada R2H 2A6.
| | | | | | | |
Collapse
|
28
|
Suárez C, Díaz-Torga G, Gonzalez-Iglesias A, Vela J, Mladovan A, Baldi A, Becu-Villalobos D. Angiotensin II phosphorylation of extracellular signal-regulated kinases in rat anterior pituitary cells. Am J Physiol Endocrinol Metab 2003; 285:E645-53. [PMID: 12759218 DOI: 10.1152/ajpendo.00015.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effects of ANG II on extracellular signal-regulated kinase (ERK)1/2 phosphorylation in rat pituitary cells. ANG II increased ERK phosphorylation in a time- and concentration-dependent way. Maximum effect was obtained at 5 min at a concentration of 10-100 nM. The effect of 100 nM ANG II was blocked by the AT1 antagonist DUP-753, by the phospholipase C (PLC) inhibitor U-73122, and by the MAPK kinase (MEK) antagonist PD-98059. The ANG II-induced increase in phosphorylated (p)ERK was insensitive to pertussis toxin blockade and PKC depletion or inhibition. The effect was also abrogated by chelating intracellular calcium with BAPTA-AM or TMB-8 by depleting intracellular calcium stores with a 30-min pretreatment with EGTA and by pretreatment with herbimycin A and PP1, two c-Src tyrosine kinase inhibitors. It was attenuated by AG-1478, an inhibitor of epidermal growth factor receptor (EGFR) activation. Therefore, in the rat pituitary, the increase of pERK is a Gq- and PLC-dependent process, which involves an increase in intracellular calcium and activation of a c-Src tyrosine kinase, transactivation of the EGFR, and the activation of MEK. Finally, the response of ERK activation by ANG II is altered in hyperplastic pituitary cells, in which calcium mobilization evoked by ANG II is also modified.
Collapse
Affiliation(s)
- Cecilia Suárez
- Instituto de Biología y Medicina Experimental-CONICET, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol 2003; 35:881-900. [PMID: 12676174 DOI: 10.1016/s1357-2725(02)00271-6] [Citation(s) in RCA: 505] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin II (AngII), the major effector peptide of renin-angiotensin system (RAS), is now recognized as a growth factor that regulates cell growth and fibrosis, besides being a physiological mediator restoring circulatory integrity. In the last few years, a large number of experimental studies has further demonstrated that AngII is involved in key events of the inflammatory process. Here, we summarize the wide variety of AngII functions and discuss them in relation with the inflammatory cascade. AngII increases vascular permeability (via the release of prostaglandins and vascular endothelial cell growth factor or rearrangement of cytoskeletal proteins) that initiates the inflammatory process. AngII could contribute to the recruitment of inflammatory cells into the tissue through the regulation of adhesion molecules and chemokines by resident cells. Moreover, AngII could directly activate infiltrating immunocompetent cells, including chemotaxis, differentiation and proliferation. Recent data also suggest that RAS activation could play a certain role even in immunologically-induced inflammation. Transcriptional regulation, predominantly via nuclear factor-kappaB (NF-kappaB) and AP-1 activation, and second mediator systems, such as endothelin-1, the small G protein (Rho) and redox-pathways are shown to be involved in the molecular mechanism by which AngII exerts those functions. Finally, AngII participates in tissue repair and remodeling, through the regulation of cell growth and matrix synthesis. In summary, recent data support the hypothesis that RAS is key mediator of inflammation. Further understanding of the role of the RAS in this process may provide important opportunities for clinical research and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Renal and Vascular Research Laboratory, Fundación Jiménez Díaz, Autonoma University, Avda Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Takahashi H, Suzuki K, Namiki H. Phenylarsine oxide and H2O2 plus vanadate induce reverse translocation of phorbol-ester-activated PKCbetaII. Cell Struct Funct 2003; 28:123-30. [PMID: 12808232 DOI: 10.1247/csf.28.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The intracellular localization of protein kinase C (PKC) is important for the regulation of its biological activity. Recently, it was reported that, whereas phorbol esters such as PMA induce prolonged translocation of PKC to the plasma membrane, with physiological stimuli, the translocation of PKC is transient and followed by rapid return to the cytoplasm. In addition, this membrane dissociation of PKC was shown to require both the kinase activity of PKC and the phosphorylation of its carboxyl terminus autophosphorylation sites. However, the detailed molecular mechanism of PKC reverse translocation remains obscure. We demonstrated that in porcine polymorphonuclear leucocytes (PMNs), phenylarsine oxide (PAO), a putative protein tyrosine phosphatase (PTPase) inhibitor, induced reverse translocation of PMA-stimulated PKCbetaII. Hydrogen peroxide (H(2)O(2)) in combination with vanadate, both of which are PTPase inhibitors, also induced reverse translocation of PKCbetaII. H(2)O(2) or vanadate alone had little effect on PMA-induced PKCbetaII translocation. Furthermore, genistein and ethanol, which are inhibitors of tyrosine kinase and phospholipase D, respectively, prevented the PKCbetaII reverse translocation induced by the PTPase inhibitors. These results indicate, for the first time, that the tyrosine phosphorylation/phospholipase D pathway may be involved in the process of membrane dissociation of PKC.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Biology, School of Education, Waseda University, Tokyo 169-0051, Japan
| | | | | |
Collapse
|
31
|
Yang CM, Chien CS, Ma YH, Hsiao LD, Lin CH, Wu CB. Bradykinin B2 receptor-mediated proliferation via activation of the Ras/Raf/MEK/MAPK pathway in rat vascular smooth muscle cells. J Biomed Sci 2003; 10:208-18. [PMID: 12595757 DOI: 10.1007/bf02256056] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 11/20/2002] [Indexed: 11/28/2022] Open
Abstract
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology/Pharmacology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
32
|
Anand-Srivastava MB, Palaparti A. Angiotensin-II-induced enhanced expression of Gi proteins is attenuated by losartan in A10 vascular smooth muscle cells: role of AT1 receptors. Can J Physiol Pharmacol 2003; 81:150-8. [PMID: 12710529 DOI: 10.1139/y02-156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that treatment of A10 vascular smooth muscle cells (VSMCs) with angiotensin II (Ang II) enhanced the expression of inhibitory guanine nucleotide regulatory proteins (Gi alpha2 and Gi alpha3). In the present studies, we have investigated the role of type 1 angiotensin receptors (AT1) in the Ang-II-induced enhanced expression of Gi alpha proteins and their functions in A10 SMCs. Ang II enhanced the levels of Gi alpha2 and Gi alpha3 proteins and their mRNA, as determined by Western and Northern blot analysis, respectively; losartan treatment attenuated the enhanced expression of Gi alpha2 and Gi alpha3 proteins and their mRNA in a concentration-dependent manner. In addition, the inhibition of adenylyl cyclase induced by Ang II and des(Glu18,Ser19,Glu20,Leu21,Gly22)ANP(4-23)-NH2 (C-ANP(4-23)), which was attenuated by Ang-II treatment, was partially restored by losartan treatment. Similarly, losartan was also able to restore the Ang-II-induced stimulatory responses of isoproterenol and N-ethylcarboxamide adenosine (NECA) on adenylyl cyclase activity. These results suggest a role for AT1 receptors in Ang-II-evoked increases in Gi alpha protein expression and Gs-mediated stimulation in VSMCs.
Collapse
MESH Headings
- Adenylyl Cyclases/chemistry
- Angiotensin II/drug effects
- Angiotensin II/genetics
- Animals
- Blotting, Northern
- Cells, Cultured
- GTP-Binding Protein alpha Subunits, Gi-Go/drug effects
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Immunoblotting
- Losartan/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Mutation
- RNA/isolation & purification
- Rats
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
Collapse
Affiliation(s)
- Madhu B Anand-Srivastava
- Department of Physiology and Groupe de recherche sur le système nerveux autonome, Faculty of Medicine, University of Montreal, C.P. 6128, Succ. centre-ville, Montréal, QC H3C 317, Canada.
| | | |
Collapse
|
33
|
Hosokawa H, Aiuchi S, Kambe T, Hagiwara Y, Kubo T. Mechanical stretch-induced mitogen-activated protein kinase activation is mediated via angiotensin and endothelin systems in vascular smooth muscle cells. Biol Pharm Bull 2002; 25:1588-92. [PMID: 12499645 DOI: 10.1248/bpb.25.1588] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We previously reported that pressure loading of the vascular wall can activate mitogen-activated protein kinases (MAPKs), enzymes believed to be involved in the pathway for cell proliferation, partly via the vascular angiotensin system in isolated perfused rat aorta. In this study, we examined whether cyclic stretching of vascular smooth muscle cells (VSMC) also produces activation of p42 and p44 MAPKs in cultured rat VSMC and whether stretch-induced MAPK activation is mediated via angiotensin and endothelin systems in VSMC. Cyclic stretching of VSMC produced an elongation-dependent and frequency-dependent increase in p42 and p44 MAPK activity. The stretch-induced p42 and p44 MAPK activation was inhibited by the angiotensin receptor antagonist losartan and by the angiotensin-converting enzyme inhibitor, captopril. The MAPK activation was also inhibited by the endothelin receptor antagonist cyclo(D-alpha-aspartyl-L-prolyl-D-valyl-L-leucyl-D-tryptophyl) (BQ123) and by the endothelin-converting enzyme inhibitor phosphoramidon. Replacement of medium with culture medium of stretched cells caused MAPK activation, which was inhibited by losartan and BQ123. The results of the present study suggest that cyclic stretching of VSMC can activate p42 and p44 MAPKs and that the MAPK activation is mediated via angiotensin and endothelin systems in VSMC.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Japan
| | | | | | | | | |
Collapse
|
34
|
Gouni-Berthold I, Sachinidis A. Does the coronary risk factor low density lipoprotein alter growth and signaling in vascular smooth muscle cells? FASEB J 2002; 16:1477-87. [PMID: 12374770 DOI: 10.1096/fj.02-0260rev] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is increasing evidence that hypertension promotes low density lipoprotein (LDL) transportation into the subendothelial space of the vascular wall. Vascular smooth muscle cell (VSMC) proliferation plays an important role in the development and progression of cardiovascular diseases. Recently, several studies have demonstrated that LDL acts as a classic growth factor promoting VSMC growth via mitogenic signals normally elicited by classic growth factors. The present work summarizes current nontraditional concepts regarding possible cellular mechanisms through which hypertension and LDL may promote the development of atherosclerosis. Especially addressed are the possible effects of an elevated blood pressure in combination with LDL on VSMC growth. The new research concept concerning LDL as a growth factor and carrier for biological active phospholipids such as sphingosine-1-phosphate and sphingosylphosphorylcholine may contribute to an understanding of the pathogenesis of atherosclerosis by elevated high blood pressure.
Collapse
|
35
|
Puri RN, Fan YP, Rattan S. Role of pp60(c-src) and p(44/42) MAPK in ANG II-induced contraction of rat tonic gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol 2002; 283:G390-9. [PMID: 12121887 DOI: 10.1152/ajpgi.00025.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.
Collapse
Affiliation(s)
- Rajinder N Puri
- Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
36
|
Endemann D, Touyz RM, Yao G, Schiffrin EL. Tyrosine kinase inhibition attenuates vasopressin-induced contraction of mesenteric resistance arteries: alterations in spontaneously hypertensive rats. J Cardiovasc Pharmacol 2002; 40:123-32. [PMID: 12072585 DOI: 10.1097/00005344-200207000-00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study examined the role of tyrosine kinase-dependent signaling pathways in arginine vasopressin (AVP)-induced contractile responses in resistance arteries from spontaneously hypertensive rats (SHR). Systolic blood pressure was measured in conscious 6- and 21-week old SHR and Wistar Kyoto rats (WKY) by tail cuff measurements. Segments of third-order mesenteric arteries (about 200 microm in diameter, 2mm in length) were mounted in a pressurized chamber with the intraluminal pressure maintained at 45 mmHg. Contractile effects of AVP (10-12 to 10-7 mol/l) were determined in the absence and presence of the selective tyrosine kinase inhibitor tyrphostin A23 (10-5 mol/l) and the inactive analogue, tyrphostin A1 (10-5 mol/l). Systolic blood pressure was significantly higher in SHR compared with age-matched WKY (p < 0.01). AVP increased contraction in a dose-dependent manner with significantly greater responses in adult SHR (pD2 = 10.3 +/- 0.06) than age-matched WKY (pD2 = 9.4 +/- 0.04). Tyrphostin A23 shifted the AVP dose response curve to the right in 6- and 21-week WKY and 6-week SHR, but had little effect on AVP-induced responses in 21-week-old SHR. Tyrphostin A1 did not influence contraction in any groups. Protein tyrosine phosphorylation in VSMCs and mesenteric arteries was increased 2-3 fold in 21-week SHR compared with WKY counterparts. AVP significantly increased tyrosine phosphorylation in VSMCs, with enhanced effects in SHR compared with WKY (p < 0.05). These effects were inhibited by tyrphostin A23. Our findings demonstrate that protein tyrosine kinases contribute to AVP-induced contraction of resistance arteries from WKY and SHR during the phase of developing hypertension. These processes do not seem to play an important role in AVP-induced hypercontractility in SHR with established hypertension.
Collapse
Affiliation(s)
- Dierk Endemann
- Multidisciplinary Research Group on hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
37
|
Ishihata A, Tasaki K, Katano Y. Involvement of p44/42 mitogen-activated protein kinases in regulating angiotensin II- and endothelin-1-induced contraction of rat thoracic aorta. Eur J Pharmacol 2002; 445:247-56. [PMID: 12079690 DOI: 10.1016/s0014-2999(02)01790-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In order to elucidate the signal transduction pathway of vascular smooth muscle contraction induced by the activation of receptors for angiotensin II and endothelin-1, we examined whether tyrosine kinases and mitogen-activated protein (MAP) kinases are involved in the development of force of contraction in the rat aorta. Isolated aortic smooth muscles without endothelium were incubated in a modified Krebs-Henseleit solution and stimulated with angiotensin II (100 nM) or endothelin-1 (10 nM). A tyrosine kinase inhibitor genistein (10 microM) reduced the angiotensin II- and endothelin-1-induced aortic contraction, while 10 microM of daidzein (an inactive analogue of genistein) did not. The K(+) depolarization-induced contraction was not attenuated by 10 microM of genistein. Selective inhibitors of MAP kinase/extracellular signal-regulated kinase (Erk) kinase (MEK) such as PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] and U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] inhibited the angiotensin II- and endothelin-1-induced vasocontraction. The p44/42 MAP kinases were phosphorylated in cultured aortic smooth muscle cells and in physiologically contracted aortic vessels stimulated with angiotensin II and endothelin-1 for 5 min. The angiotensin II- and endothelin-1-induced phosphorylations of p44/42 MAP kinases were inhibited by PD98059 as well as U0126 in the intact aorta. These results suggest that the activation of genistein-sensitive tyrosine kinases and p44/42 MAP kinases is involved in the angiotensin II- and endothelin-1-induced rat aortic contraction.
Collapse
Affiliation(s)
- Akira Ishihata
- Department of Physiology I, Yamagata University School of Medicine, 2-2-2, Iida-Nishi, Japan.
| | | | | |
Collapse
|
38
|
Funakoshi Y, Ichiki T, Takeda K, Tokuno T, Iino N, Takeshita A. Critical role of cAMP-response element-binding protein for angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem 2002; 277:18710-7. [PMID: 11907026 DOI: 10.1074/jbc.m110430200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously an important role of cyclic AMP-response element (CRE) for the induction of interleukin-6 gene expression by angiotensin II (AngII). We examined signaling pathways that are responsible for AngII-induced phosphorylation of CRE-binding protein (CREB) at serine 133 that is a critical marker for the activation in rat vascular smooth muscle cells (VSMC). AngII time dependently induced phosphorylation of CREB with a peak at 5 min. The AngII-induced phosphorylation of CREB was blocked by CV11974, an AngII type I receptor antagonist, suggesting that AngII type I receptor may mediate the phosphorylation of CREB. Inhibition of extracellular signal-regulated protein kinase (ERK) by PD98059 or inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580 partially inhibited AngII-induced CREB phosphorylation. A protein kinase A inhibitor, H89, also partially suppressed AngII-induced CREB phosphorylation. Inhibition of epidermal growth factor-receptor by AG1478 suppressed the AngII-induced CREB phosphorylation as well as activation of ERK and p38MAPK. Overexpression of the dominant negative form of CREB by an adenovirus vector suppressed AngII-induced c-fos expression and incorporation of [(3)H]leucine to VSMC. These findings suggest that AngII may activate multiple signaling pathways involving two MAPK pathways and protein kinase A, all of which contribute to the activation of CREB. Transactivation of epidermal growth factor-receptor is also critical for AngII-induced CREB phosphorylation. Activation of CREB may be important for the regulation of gene expression and hypertrophy of VSMC induced by AngII.
Collapse
Affiliation(s)
- Yuko Funakoshi
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 812-8582 Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Weng YI, Shukla SD. Angiotensin II activation of focal adhesion kinase and pp60c-Src in relation to mitogen-activated protein kinases in hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:285-97. [PMID: 12031795 DOI: 10.1016/s0167-4889(02)00189-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated signaling pathways leading to angiotensin II (Ang II) activation of mitogen-activated protein kinase (MAPK) in hepatocytes. MAPK activation by Ang II was abolished by the Ang II type 1 (AT1) receptor antagonist losartan, but not by the Ang II type 2 (AT2) receptor antagonist PD123319. Ang II (100 nM) induced a rapid phosphorylation of Src (peak approximately 2 min) and focal adhesion kinase (FAK, peak approximately 5 min) followed by a decrease to basal levels in 30 min. An increased association between FAK and Src in response to Ang II was detected after 1 min, which declined to basal levels after 30 min. Treatment with the Src kinase inhibitor PP-1 inhibited FAK phosphorylation. Downregulation of PKC, intracellular Ca2+ chelator BAPTA or inhibitors of PKC, Src kinase, MAPK kinase (MEK), Ca2+/calmodulin dependent protein kinase, phosphatidylinositol 3-kinase all blocked Ang II-induced MAPK phosphorylation. In contrast to other cells, there was no evidence for the role of EGF receptor transactivation in the activation of MAPK by Ang II. However, PDGF receptor phosphorylation is involved in the Ang II stimulated MAPK activation. Furthermore, Src/FAK and Ca/CaM kinase activation serve as potential links between the Ang II receptor and MAPK activation. These studies offer insight into the signaling network upstream of MAPK activation by AT1 receptor in hepatocytes.
Collapse
Affiliation(s)
- Yu-I Weng
- Department of Pharmacology, School of Medicine, University of Missouri-Columbia, One Hospital Drive, Rm. M517B Med. Sci. Bldg., 65212, USA
| | | |
Collapse
|
40
|
Abstract
The renin-angiotensin system is one of the major cardiovascular systems that controls blood volume, peripheral vascular tone, and blood pressure. Recent studies indicate important roles for angiotensin II in inflammation, atherosclerosis, and congestive heart failure as well. It is gradually becoming clear that angiotensin II exerts effects on the cardiovascular system through several unique mechanisms, including the availability of two different angiotensin II receptors, recruitment of protein tyrosine kinase activity, and receptor tyrosine kinase transactivation. This review discusses the diverse mechanisms of angiotensin II-mediated signal transduction pathways and the various effects of angiotensin II on the cardiovascular system.
Collapse
Affiliation(s)
- Yuji Saito
- Center for Cardiovascular Research, University of Rochester, 601 Elmwood Avenue, Box 679, Rochester, NY 14642, USA
| | | |
Collapse
|
41
|
Ghalayini AJ, Desai N, Smith KR, Holbrook RM, Elliott MH, Kawakatsu H. Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo. J Biol Chem 2002; 277:1469-76. [PMID: 11705988 DOI: 10.1074/jbc.m011432200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo light exposure results in tyrosine phosphorylation of several rod outer segment (ROS) proteins (Ghalayini, A. J., Guo, X. X., Koutz, C. A, and Anderson, R. E. (1998) Exp. Eye Res. 66, 817-821). We now report the presence of Src in ROS and its increased association with bleached ROS membranes. Immunoprecipitation with anti-phosphotyrosine revealed that tyrosine kinase activity recovered from light-adapted ROS membranes was twice that recovered from dark-adapted ROS. Other experiments revealed the presence of both bleached rhodopsin and arrestin in immunoprecipitates of LROS, suggesting the formation of a multimeric complex containing Src, arrestin, and bleached rhodopsin. Additionally, when immobilized Src homology domains 2 and 3 (SH2 and SH3, respectively) were used to study the association of Src with ROS membranes, only bleached opsin and arrestin were found to associate with the SH2 domain of Src. These data strongly suggest that Src through its SH2 domain interacts with bleached rhodopsin and arrestin either directly or indirectly. Similar results were also obtained when dark-adapted and light-adapted retinas were used instead of ROS membranes. Our data strongly suggest that light exposure in vivo activates Src and promotes its association through its SH2 domain with a complex containing bleached rhodopsin and arrestin. A hypothesis for the functional significance of this phenomenon is presented.
Collapse
Affiliation(s)
- Abboud J Ghalayini
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Wang W, Huang Y, Zhou Z, Tang R, Zhao W, Zeng L, Xu M, Cheng C, Gu S, Ying K, Xie Y, Mao Y. Identification and characterization of AGTRAP, a human homolog of murine Angiotensin II Receptor-Associated Protein (Agtrap). Int J Biochem Cell Biol 2002; 34:93-102. [PMID: 11733189 DOI: 10.1016/s1357-2725(01)00094-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several classes of cytoplasmic proteins have been found to interact specifically with the carboxyl-terminal cytoplasmic region of the angiotensin II type 1 (AT(1)) receptor to regulate different aspects of AT(1) receptor physiology. The murine Angiotensin II Receptor-Associated Protein (Agtrap) is a new member of them. We have recently cloned a new human gene cDNA that codes for a homolog of the murine Agtrap protein from a human fetal brain cDNA library. The deduced polypeptide product of the cDNA is 22 kDa in size, and its DNA and amino acid sequences are 85 and 77% identical to those of the mouse Agtrap gene, respectively. Hence we have named it the human Angiotensin II Receptor-Associated Protein (AGTRAP) gene. The mRNA of AGTRAP was most abundantly expressed in kidney, heart, pancreas and thyroid. Using the yeast two-hybrid screening of a human fetal brain cDNA library, we have identified a new interaction partner of the human AGTRAP protein, RACK1 (Receptor of Activated Protein C Kinase). The AGTRAP-RACK1 interaction was confirmed by GST fusion protein pull-down assays, co-immunoprecipitation and surface plasmon resonance. We suggest that the AGTRAP-RACK1 interaction may help to recruit signaling complex to the AT(1) receptor to affect AT(1) receptor signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- Female
- Humans
- In Vitro Techniques
- Mice
- Molecular Sequence Data
- Peptides/metabolism
- Pregnancy
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1
- Receptors for Activated C Kinase
- Receptors, Angiotensin/chemistry
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Species Specificity
- Tissue Distribution
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Watanabe T, Pakala R, Katagiri T, Benedict CR. Serotonin potentiates angiotensin II--induced vascular smooth muscle cell proliferation. Atherosclerosis 2001; 159:269-79. [PMID: 11730806 DOI: 10.1016/s0021-9150(01)00505-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a key feature in the development of atherosclerosis and restenosis after angioplasty, which can occur in response to many different humoral and mechanical stimuli. We investigated the growth promoting activities of two potent vasoactive substances, angiotensin II (Ang II) and serotonin (5-HT), on cultured rabbit VSMCs. Growth-arrested VSMCs were incubated with serum-free medium containing different concentrations of Ang II in the presence or absence of 5-HT. [3H]thymidine incorporation into VSMC DNA was measured as an index of cell proliferation. Ang II and 5-HT stimulated DNA synthesis in a dose-dependent manner with a maximal effect at 1.75 microM for Ang II (202%) and 50 microM for 5-HT (205%). When added together, low concentrations of Ang II (1 microM) and 5-HT (5 microM) synergistically induced DNA synthesis (363%). Candesartan (1 microM), an AT(1) receptor antagonist, but not PD 123319 (1 microM), an AT(2) receptor antagonist, inhibited the mitogenic effect on Ang II and its interaction with 5-HT. Sarpogrelate (10 microM), a 5-HT(2A) receptor antagonist, and pertussis toxin (10 ng/ml) inhibited the mitogenic effect of 5-HT and its interaction with Ang II. The protein kinase C inhibitor Ro 31-8220 (0.1 microM), the Raf-1 inhibitor radicicol (10 microM), and the MAPK kinase inhibitor PD 098059 (10 microM) abolished mitogenic effects of Ang II and 5-HT, and also their synergistic interaction. The JAK2 inhibitor AG 490 (10 microM) had only a minimal inhibitory effect of Ang II-induced DNA synthesis but significantly inhibited the interaction of Ang II with 5-HT. The synergistic effect on Ang II (1 microM) with 5-HT (5 microM) on DNA synthesis was completely reversed by the combined use of both candesartan (1 microM) and sarpogrelate (10 microM). Our results suggest that Ang II and 5-HT exert a synergistic interaction on VSMC proliferation via AT(1) and 5-HT(2A) receptors. The activation of MAPK and JAK/STAT pathways may explain the synergistic interaction between Ang II and 5-HT.
Collapse
Affiliation(s)
- T Watanabe
- Department of Internal Medicine, Division of Cardiology, University of Texas-Houston Health Science Center, 6431 Fannin, MSB 6.039, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG. Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 2001; 281:H2337-65. [PMID: 11709400 DOI: 10.1152/ajpheart.2001.281.6.h2337] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) is a pleiotropic vasoactive peptide that binds to two distinct receptors: the ANG II type 1 (AT(1)) and type 2 (AT(2)) receptors. Activation of the renin-angiotensin system (RAS) results in vascular hypertrophy, vasoconstriction, salt and water retention, and hypertension. These effects are mediated predominantly by AT(1) receptors. Paradoxically, other ANG II-mediated effects, including cell death, vasodilation, and natriuresis, are mediated by AT(2) receptor activation. Our understanding of ANG II signaling mechanisms remains incomplete. AT(1) receptor activation triggers a variety of intracellular systems, including tyrosine kinase-induced protein phosphorylation, production of arachidonic acid metabolites, alteration of reactive oxidant species activities, and fluxes in intracellular Ca(2+) concentrations. AT(2) receptor activation leads to stimulation of bradykinin, nitric oxide production, and prostaglandin metabolism, which are, in large part, opposite to the effects of the AT(1) receptor. The signaling pathways of ANG II receptor activation are a focus of intense investigative effort. We critically appraise the literature on the signaling mechanisms whereby AT(1) and AT(2) receptors elicit their respective actions. We also consider the recently reported interaction between ANG II and ceramide, a lipid second messenger that mediates cytokine receptor activation. Finally, we discuss the potential physiological cross talk that may be operative between the angiotensin receptor subtypes in relation to health and cardiovascular disease. This may be clinically relevant, inasmuch as inhibitors of the RAS are increasingly used in treatment of hypertension and coronary heart disease, where activation of the RAS is recognized.
Collapse
Affiliation(s)
- C Berry
- Department of Medicine and Therapeutics, Western Infirmary, University of Glasgow, G11 6NT Glasgow, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Shimizu H, Shiota M, Yamada N, Miyazaki K, Ishida N, Kim S, Miyazaki H. Low M(r) protein tyrosine phosphatase inhibits growth and migration of vascular smooth muscle cells induced by platelet-derived growth factor. Biochem Biophys Res Commun 2001; 289:602-7. [PMID: 11716518 DOI: 10.1006/bbrc.2001.6007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular smooth muscle cell (VSMC) migration and growth are positively regulated by protein tyrosine phosphorylation. Therefore, a dephosphorylation process controlled by protein tyrosine phosphatases (PTPs) must also be critical. The present study identified six cytoplasmic PTPs expressed in VSMCs: low M(r) protein tyrosine phosphatase (LMW-PTP), SHP-2, PTP36, PTP2, PTP1B, and FAP1. We further examined the functions of LMW-PTP in VSMCs using the adenovirus-mediated gene transfer of recombinant LMW-PTP. PDGF-induced activation of p38, but not of ERK MAP kinase, was blocked by LMW-PTP. LMW-PTP as well as the p38 inhibitor SB203580 inhibited DNA synthesis and cell migration upon PDGF stimulation. LMW-PTP dephosphorylated activated PDGF receptors in NIH3T3 cells, but not in VSMCs. Thus, LMW-PTP negatively regulates PDGF functions by inhibiting the p38 pathway in VSMCs although its substrate is unclear. These findings strongly demonstrate that PTPs are important as negative regulators for VSMC growth and migration, processes that are closely related to the progression of atherosclerosis.
Collapse
MESH Headings
- 3T3 Cells
- Adenoviridae/metabolism
- Animals
- Cell Division
- Cell Movement
- Cells, Cultured
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- Enzyme Inhibitors/pharmacology
- Imidazoles/pharmacology
- MAP Kinase Signaling System
- Mice
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation
- Platelet-Derived Growth Factor/metabolism
- Protein Binding
- Protein Tyrosine Phosphatases/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Platelet-Derived Growth Factor/metabolism
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Tyrosine/metabolism
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- H Shimizu
- Gene Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Petrescu G, Costuleanu M, Slatineanu SM, Costuleanu N, Foia L, Costuleanu A. Contractile effects of angiotensin peptides in rat aorta are differentially dependent on tyrosine kinase activity. J Renin Angiotensin Aldosterone Syst 2001; 2:180-7. [PMID: 11881120 DOI: 10.3317/jraas.2001.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It has been suggested that tyrosine kinase activity participates in the regulation of signal transduction associated with angiotensin II (Ang II)-induced pharmaco-mechanical coupling in rat aortic smooth muscle. We further tested the effects of genistein, a tyrosine-kinase inhibitor, and its inactive analogue, daidzein, on angiotensin I (Ang I), angiotensin III (Ang III) and angiotensin IV (Ang IV) contractions, as compared with those on Ang II. Genistein partially inhibited Ang II- and Ang I-induced contractions. The genistein-induced inhibition was more evident on Ang III and especially important on Ang IV contractile effects. Thus, Ang IV- and Ang III-induced contractions seem to be more dependent on tyrosine kinase activity than those evoked by Ang II or Ang I. Daidzein did not significantly affect the contractile effects of any of angiotensin peptides tested. These results clearly suggest that the inhibition of the action of angiotensin peptides actions by genistein is mediated by inhibition of endogenous tyrosine kinase activity. Furthermore, our data show that the type and/or intensity of tyrosine kinase activity is differentially associated with the contractile effects of different angiotensin peptides in rat aorta. Nifedipine, a blocker of membrane L-type Ca2+ channels, strongly inhibited Ang IV-induced contractions. At the same time, it significantly inhibited Ang III contractile effects as compared with Ang II and Ang I contractions. Meanwhile, we observed a close relationship between calcium influx and tyrosine kinase phosphorylation activity under the stimulatory effects of angiotensin peptides. Furthermore, genistein did not significantly influence the phasic contractions induced by angiotensin peptides in Ca2+-free Krebs-Henseleit solution. Thus, it appears that Ca2+ influx, rather than the release of Ca2+ from IP3-sensitive stores, may play a major role in the contractile effects of angiotensin peptides in rat aorta via tyrosine kinase activation. One argument against a direct action of genistein on the Ca2+ channel itself is that it did not markedly affect the K+-induced contraction (depolarisation) in rat aorta. At the same time, a potential role for tyrosine kinase activity in the process of calcium entry is suggested. An elevation of intracellular calcium via tyrosine kinase-mediated processes may mediate the actions of G-protein coupled receptor agonists in smooth muscle, including angiotensin peptides.
Collapse
Affiliation(s)
- G Petrescu
- Department of Physiology, University of Medicine and Pharmacy GR. T. Popa, Iasi, Romania.
| | | | | | | | | | | |
Collapse
|
47
|
Madamanchi NR, Li S, Patterson C, Runge MS. Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem 2001; 276:18915-24. [PMID: 11278437 DOI: 10.1074/jbc.m008802200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The growth-stimulating effects of thrombin are mediated primarily via activation of a G protein-coupled receptor, PAR-1. Because PAR-1 has no intrinsic tyrosine kinase activity, yet requires tyrosine phosphorylation events to induce mitogenesis, we investigated the role of the Janus tyrosine kinases (JAKs) in thrombin-mediated signaling. JAK2 was activated rapidly in rat vascular smooth muscle cells (VSMC) treated with thrombin, and signal transducers and activators of transcription (STAT1 and STAT3) were phosphorylated and translocated to the nucleus in a JAK2-dependent manner. AG-490, a JAK2-specific inhibitor, and a dominant negative JAK2 mutant inhibited thrombin-induced ERK2 activity and VSMC proliferation suggesting that JAK2 is upstream of the Ras/Raf/MEK/ERK pathway. To elucidate the functional significance of JAK-STAT activation, we studied the effect of thrombin on heat shock protein (Hsp) expression, based upon the following: 1) reports that thrombin stimulates reactive oxygen species production in VSMC; 2) the putative role of Hsps in modulating cellular responses to reactive oxygen species; and 3) the presence of functional STAT1/3-binding sites in Hsp70 and Hsp90beta promoters. Indeed, thrombin up-regulated Hsp70 and Hsp90 protein expression via enhanced binding of STATs to cognate binding sites in the Hsp70 and Hsp90 promoters. Together, these results suggest that JAK-STAT pathway activation is necessary for thrombin-induced VSMC growth and Hsp gene expression.
Collapse
Affiliation(s)
- N R Madamanchi
- Program in Molecular Cardiology, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | | | | | | |
Collapse
|
48
|
Watanabe T, Pakala R, Katagiri T, Benedict CR. Mildly oxidized low-density lipoprotein acts synergistically with angiotensin II in inducing vascular smooth muscle cell proliferation. J Hypertens 2001; 19:1065-73. [PMID: 11403355 DOI: 10.1097/00004872-200106000-00011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Considerable attention has been focused on both mildly oxidized low-density lipoprotein (mox-LDL) and highly oxidized LDL (ox-LDL) as important risk factors for cardiovascular disease. Further, angiotensin II (Ang II) appears to play a crucial role in the development of hypertension and atherosclerosis. We assessed the effect of oxidatively modified LDL and its major oxidative components, i.e., hydrogen peroxide (H2O2), lysophosphatidylcholine (LPC), and 4-hydroxy-2-nonenal (HNE) and their interaction with Ang II on vascular smooth muscle cell (VSMC) DNA synthesis. METHODS Growth-arrested rabbit VSMCs were incubated in serum-free medium with different concentrations of native LDL, mox-LDL, ox-LDL, H2O2, LPC, or HNE with or without Ang II. DNA synthesis in VSMCs was measured by [3H]thymidine incorporation. RESULTS Ang II stimulated DNA synthesis in a dose-dependent manner with a maximal effect at a concentration of 1 micromol/l (173%). Ang II (0.5 micromol/l) amplified the effect of native LDL at 500 ng/ml, ox-LDL at 100 ng/ml, and mox-LDL at 50 ng/ml on DNA synthesis (108 to 234%, 124 to 399%, 129 to 433%, respectively). H2O2 had a maximal effect at a concentration of 5 micromol/l (177%), LPC at 15 micromol/l (156%), and HNE at 0.5 micromol/l (137%). Low concentrations of H2O2 (1 micromol/l), LPC (5 micromol/l), or HNE (0.1 micromol/l) also acted synergisitically with Ang II (0.5 micromol/l) in inducing DNA synthesis to 308, 304, or 238%, respectively. Synergistic interactions of Ang II (0.5 micromol/l) with mox-LDL, ox-LDL (both 50 ng/ml), H2O2 (1 micromol/l), LPC (5 micromol/l), or HNE (0.1 micromol/l) on DNA synthesis were completely reversed by the combined use of probucol (10 micromol/l), a potent antioxidant and candesartan (0.1 micromol/l), an AT1 receptor antagonist. CONCLUSIONS Our results suggest that mox-LDL, ox-LDL, and their major components H2O2, LPC, and HNE act synergistically with Ang II in inducing VSMC DNA synthesis. A combination of antioxidants with AT1 receptor blockade may be effective in the treatment of VSMC proliferative disorders associated with hypertension and atherosclerosis.
Collapse
MESH Headings
- Acetylcysteine/administration & dosage
- Aldehydes/administration & dosage
- Angiotensin II/administration & dosage
- Angiotensin Receptor Antagonists
- Animals
- Antioxidants/administration & dosage
- Benzimidazoles/administration & dosage
- Biphenyl Compounds
- Cardiovascular Diseases/drug therapy
- Cell Division/drug effects
- Cells, Cultured
- DNA/biosynthesis
- Drug Synergism
- Flavonoids/administration & dosage
- Humans
- Hydrogen Peroxide/administration & dosage
- Lipoproteins, LDL/administration & dosage
- Lysophosphatidylcholines/administration & dosage
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Probucol/administration & dosage
- Rabbits
- Receptor, Angiotensin, Type 1
- Tetrazoles/administration & dosage
- Tyrphostins/administration & dosage
Collapse
Affiliation(s)
- T Watanabe
- Department of Internal Medicine, University of Texas-Houston Health Science Center, 77030, USA
| | | | | | | |
Collapse
|
49
|
Monno R, Grandaliano G, Faccio R, Ranieri E, Martino C, Gesualdo L, Schena FP. Activated coagulation factor X: a novel mitogenic stimulus for human mesangial cells. J Am Soc Nephrol 2001; 12:891-899. [PMID: 11316847 DOI: 10.1681/asn.v125891] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Intraglomerular activation of the coagulation cascade is a common feature of mesangioproliferative glomerulonephritis. Besides thrombin, very little is known about the cellular effects of other components of the coagulation system. This study investigated the effect of activated factor X (FXa) on cultured human mesangial cells. This serine protease induced a significant and dose-dependent increase in DNA synthesis. In addition to its mitogenic effect, FXa caused a striking upregulation of platelet-derived growth factor (PDGF) A and B chain gene expression. Next, the intracellular mitogenic signaling pathways activated by FXa were investigated. FXa induced a rapid spike in cytosolic calcium concentration followed by a sustained plateau. This response was not influenced by the downregulation of thrombin receptors. In addition, FXa stimulated a significant upregulation of different tyrosine-phosphorylated proteins. One of these phosphorylated cellular proteins was represented by the c-jun N-terminal kinase, a member of the mitogen-activated protein kinase family. To evaluate the role of FXa enzymatic activity and of PDGF autocrine secretion, FXa-induced DNA synthesis was studied in the presence of leupeptin, a specific serine protease inhibitor, and neutralizing anti-PDGF antibody. To investigate the role of tyrosine kinase (TK) activation on FXa mitogenic effect, FXa-stimulated thymidine uptake was evaluated in the presence of genistein and herbimycin A, two powerful and specific TK inhibitors. FXa-elicited DNA synthesis was also examined after protein kinase C (PKC) downregulation by prolonged incubation with phorbol-12-myristate-13-acetate to study the influence of the phospholipase C-PKC axis. The proliferative effect of FXa required its proteolytic activity, and the activation of TK was only partially dependent on PKC activation while it was PDGF independent. Finally, it was shown by reverse transcription-PCR that mesangial cells do not express the signaling splicing variant of the putative FXa receptor, effector protease receptor-1. In conclusion, the present study demonstrated that FXa is a powerful mitogenic factor for human mesangial cells, and it induces its cellular effect not through effector protease receptor-1, but most likely by binding a protease-activated receptor and activating phospholipase C-PKC and TK signaling pathways.
Collapse
Affiliation(s)
- Raffaella Monno
- Division of Nephrology, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Grandaliano
- Division of Nephrology, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Roberta Faccio
- Institute of Human Anatomy, University of Bari, Bari, Italy
| | - Elena Ranieri
- Division of Nephrology, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Carmela Martino
- Division of Nephrology, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| | - Francesco P Schena
- Division of Nephrology, Department of Emergency and Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
50
|
Yang CM, Chien CS, Hsiao LD, Pan SL, Wang CC, Chiu CT, Lin CC. Mitogenic effect of oxidized low-density lipoprotein on vascular smooth muscle cells mediated by activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol 2001; 132:1531-41. [PMID: 11264247 PMCID: PMC1572708 DOI: 10.1038/sj.bjp.0703976] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. It has been demonstrated that oxidized low-density lipoprotein (OX-LDL) is a risk factor in atherosclerosis by stimulating vascular smooth muscle cell (VSMC) proliferation. However, the mechanisms of OX-LDL-induced cell proliferation are not completely understood. Therefore, we investigated the effect of OX-LDL on cell proliferation associated with mitogen-activated protein kinase (MAPK) activation in rat cultured VSMCs. 2. Both native-LDL (N-LDL) and OX-LDL induced a time- and concentration-dependent incorporation of [(3)H]-thymidine in VSMCs. 3. OX-LDL induced time- and concentration-dependent phosphorylation of p42/p44 MAPK. Pretreatment of these cells with pertussis toxin or U73122 attenuated the OX-LDL-induced responses. 4. Pretreatment with PMA for 24 h, preincubation with a PKC inhibitor staurosporine or the tyrosine kinase inhibitors, genistein and herbimycin A for 1 h, substantially reduced [(3)H]-thymidine incorporation and p42/p44 MAPK phosphorylation induced by OX-LDL. 5. Removal of Ca(2+) by BAPTA/AM or depletion of the internal Ca(2+) pool by thapsigargin significantly inhibited OX-LDL-induced [(3)H]-thymidine incorporation and p42/p44 MAPK phosphorylation. 6. OX-LDL-induced [(3)H]-thymidine incorporation and p42/p44 MAPK phosphorylation was inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK) in a concentration-dependent manner. 7. Overexpression of dominant negative mutants of Ras (H-Ras-15A) and Raf (Raf-N4) significantly suppressed MEK1/2 and p42/p44 MAPK activation induced by OX-LDL and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. 8. These results suggest that the mitogenic effect of OX-LDL is mediated through a PTX-sensitive G protein-coupled receptor that involves the activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB in rat cultured VSMCs.
Collapse
MESH Headings
- Animals
- Benzoquinones
- Calcium/pharmacology
- DNA/biosynthesis
- DNA/drug effects
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- Flavonoids/pharmacology
- Genistein/pharmacology
- Humans
- Lactams, Macrocyclic
- Lipoproteins, LDL/pharmacology
- MAP Kinase Signaling System/drug effects
- Mitogen-Activated Protein Kinase 1/drug effects
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/drug effects
- Mitogen-Activated Protein Kinases/metabolism
- Mitogens/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pertussis Toxin
- Phosphorylation/drug effects
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-raf/metabolism
- Pyrrolidinones/pharmacology
- Quinones/pharmacology
- Rats
- Rats, Sprague-Dawley
- Rifabutin/analogs & derivatives
- Staurosporine/pharmacology
- Virulence Factors, Bordetella/pharmacology
- ras Proteins/metabolism
Collapse
Affiliation(s)
- C M Yang
- Cellular and Molecular Pharmacology Laboratory, Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|