1
|
Lin X, Li H. Diverse processes in rotavirus vaccine development. Hum Vaccin Immunother 2025; 21:2475609. [PMID: 40126359 PMCID: PMC11934161 DOI: 10.1080/21645515.2025.2475609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Rotavirus is a major cause of severe diarrhea and mortality in children under five years of age, leading to approximately 128,500 deaths annually.1-3 Vaccination is the most effective strategy for preventing rotavirus infection. While two widely used vaccines, Rotarix and RotaTeq, have shown good efficacy in high-income countries, their effectiveness is lower in low- and middle-income countries due to factors such as malnutrition and poor sanitation.4-6 These challenges include complex vaccination schedules and high production costs. Researchers are working on novel vaccines, including inactivated virus and viral protein-based options, as well as virus-like particles and recombinant proteins.7-9 Improving vaccine stability and applicability is crucial for resource-limited settings, and global vaccination strategies are expected to significantly reduce infection burdens, improve child health, and contribute to the achievement of global health goals.10-14.
Collapse
Affiliation(s)
- Xiaochen Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Provincial Key Laboratory of Vaccine R&D for Major Infectious Diseases, Kunming, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Provincial Key Laboratory of Vaccine R&D for Major Infectious Diseases, Kunming, China
| |
Collapse
|
2
|
Anzà D, Esposito M, Bertolazzi G, Fallucca A, Genovese C, Maniscalco G, Praticò AD, Scarpaci T, Vitale E, Restivo V. Determinants of Rotavirus Vaccine Acceptance in an Area of Southern Italy with Low Vaccination Coverage: A Case-Control Study by the Health Belief Model Questionnaire. Vaccines (Basel) 2025; 13:63. [PMID: 39852842 PMCID: PMC11769460 DOI: 10.3390/vaccines13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Rotavirus (RV) is the primary cause of gastroenteritis in children worldwide, contributing significantly to morbidity and mortality, particularly among children under five years of age. The introduction of Rotavirus vaccines (RVV) has markedly reduced RV-related childhood deaths, especially in Europe, where substantial reductions in hospitalizations and disease prevalence have been observed. Despite these advances, RVV uptake in Italy remains below the desired targets, with notable regional disparities. In Sicily, vaccination rates have fluctuated, with current coverage failing to meet national goals. Safety concerns and insufficient parental awareness are major barriers to RVV acceptance. METHODS This case-control study was conducted in Southern Italy to identify factors influencing parental acceptance of RVV. Data were collected from parents using a structured questionnaire that assessed socio-demographic factors, vaccine knowledge, and attitudes based on the Health Belief Model (HBM). RESULTS Overall, 226 parents were enrolled. Higher perceived benefit of RVV was significantly associated with increased vaccine adherence (Odds Ratio = 13.65; 95% Confidence Interval = 6.88-27.09; p < 0.001). CONCLUSIONS These results highlight the need for targeted interventions to improve vaccine coverage and address regional and socio-economic barriers to RVV acceptance. Furthermore, tailored educational campaigns and univocal information from healthcare providers could play pivotal roles in achieving higher vaccine uptake.
Collapse
Affiliation(s)
- Davide Anzà
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (D.A.); (M.E.); (G.B.); (C.G.); (A.D.P.); (E.V.)
| | - Massimiliano Esposito
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (D.A.); (M.E.); (G.B.); (C.G.); (A.D.P.); (E.V.)
| | - Giorgio Bertolazzi
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (D.A.); (M.E.); (G.B.); (C.G.); (A.D.P.); (E.V.)
| | - Alessandra Fallucca
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (A.F.); (G.M.); (T.S.)
| | - Carlo Genovese
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (D.A.); (M.E.); (G.B.); (C.G.); (A.D.P.); (E.V.)
| | - Gabriele Maniscalco
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (A.F.); (G.M.); (T.S.)
| | - Andrea D. Praticò
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (D.A.); (M.E.); (G.B.); (C.G.); (A.D.P.); (E.V.)
| | - Tiziana Scarpaci
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (A.F.); (G.M.); (T.S.)
| | - Ermanno Vitale
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (D.A.); (M.E.); (G.B.); (C.G.); (A.D.P.); (E.V.)
| | - Vincenzo Restivo
- Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy; (D.A.); (M.E.); (G.B.); (C.G.); (A.D.P.); (E.V.)
| |
Collapse
|
3
|
Standaert B, Raes M, Ethgen O, Benninghoff B, Toumi M. Measuring the Vaccine Success Index: A Framework for Long-Term Economic Evaluation and Monitoring in the Case of Rotavirus Vaccination. Vaccines (Basel) 2024; 12:1265. [PMID: 39591168 PMCID: PMC11598573 DOI: 10.3390/vaccines12111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
New vaccination programs measure economic success through cost-effectiveness analysis (CEA) based on an outcome evaluated over a certain time frame. The reimbursement price of the newly approved vaccine is then often reliant on a simulated ideal effect projection because of limited long-term data availability. This optimal cost-effectiveness result is later rarely adjusted to the observed effect measurements, barring instances of market competition-induced price erosion through the tender process. However, comprehensive and systematic monitoring of the vaccine effect (VE) for the evaluation of the real long-term economic success of vaccination is critical. It informs expectations about vaccine performance with success timelines for the investment. Here, an example is provided by a 15-year assessment of the rotavirus vaccination program in Belgium (RotaBIS study spanning 2005 to 2019 across 11 hospitals). The vaccination program started in late 2006 and yielded sub-optimal outcomes. Long-term VE surveillance data provided insights into the infection dynamics, disease progression, and vaccine performance. The presented analysis introduces novel conceptual frameworks and methodologies about the long-term economic success of vaccination programs. The CEA evaluates the initial target vaccination population, considering vaccine effectiveness compared with a historical unvaccinated group. Cost-impact analysis (CIA) covers a longer period and considers the whole vaccinated and unvaccinated population in which the vaccine has direct and indirect effects. The economic success index ratio of CIA over CEA outcomes evaluates long-term vaccination performance. Good performance is close to the optimal result, with an index value ≤1, combined with a low CEA. This measurement is a valuable aid for new vaccine introductions. It supports the establishment of robust monitoring protocols over time.
Collapse
Affiliation(s)
- Baudouin Standaert
- Department of Care & Ethics, Faculty of Medicine & Life Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Marc Raes
- Department of Immunology & Infection, Faculty of Medicine & Life Sciences, University of Hasselt, 3590 Diepenbeek, Belgium;
| | - Olivier Ethgen
- Department of Public Health Sciences, Faculty of Medicine, University of Liège, 4000 Liège, Belgium;
| | | | - Mondher Toumi
- Public Health, University of Aix-Marseille, 13002 Marseille, France;
| |
Collapse
|
4
|
Abavisani M, Ansari B, Ebadpour N, Sahebkar A. How does geographical diversity shape vaccine efficacy? Clin Exp Vaccine Res 2024; 13:271-300. [PMID: 39525670 PMCID: PMC11543789 DOI: 10.7774/cevr.2024.13.4.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccination is a cornerstone of public health, saving millions of lives each year by preventing a variety of infectious diseases. Yet, despite global vaccination efforts, emerging research highlights significant geographical disparities in vaccine efficacy and immunogenicity. These variations underscore the critical interplay between immunological factors and environmental, genetic, and nutritional elements across different populations. Our review article aimed to explore the multifactorial reasons behind geographical variations in vaccine efficacy. Also, this study has shown how important host factors like age, obesity, gender, and genetic diversity, especially within the major histocompatibility complex, are in determining how well a vaccine works. Nutritional status, namely deficiencies in micronutrients such as vitamins and zinc, and lifestyle factors including stress, sleep, alcohol consumption, and physical activity are also shown to have profound effects on vaccine-induced immunity. Importantly, our paper also brought to light the influence of microbial and ecological factors, such as the gut microbiome and environmental pollutants, on the immune system's response to vaccination. The findings emphasize the importance of tailoring vaccination strategies to accommodate the unique immunological landscapes shaped by geographical and societal factors. This tailored approach could enhance vaccine efficacy, reduce disparities in vaccine response, and ultimately contribute to the global fight against infectious diseases.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Ansari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wu JY, Zhang W, Pu J, Liu Y, Huang LL, Zhou Y, Gao JM, Tan JB, Liu XL, Yang J, Lin XC, Feng GW, Yin N, Chen R, Hu XQ, Yi S, Ye J, Kuang XJ, Wang Y, Zhang GM, Sun MS, Wang YX, Hu ZY, Yang JS, Li HJ. A randomized, double-blind, placebo-controlled phase I clinical trial of rotavirus inactivated vaccine (Vero cell) in a healthy adult population aged 18-49 years to assess safety and preliminary observation of immunogenicity. Vaccine 2024; 42:4030-4039. [PMID: 38796326 DOI: 10.1016/j.vaccine.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).
Collapse
Affiliation(s)
- Jin-Yuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Wei Zhang
- Henan Provincial Center for Disease Control and Prevention, China
| | - Jing Pu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Yan Liu
- National Institutes for Food and Drug Control, China
| | - Li-Li Huang
- Henan Provincial Center for Disease Control and Prevention, China
| | - Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Jia-Mei Gao
- National Institutes for Food and Drug Control, China
| | - Jie-Bing Tan
- Henan Provincial Center for Disease Control and Prevention, China
| | - Xin-Ling Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Jing Yang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Xiao-Chen Lin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Guang-Wei Feng
- Henan Provincial Center for Disease Control and Prevention, China
| | - Na Yin
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Rong Chen
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Xiao-Qing Hu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Shan Yi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Jun Ye
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Xiang-Jing Kuang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Yan Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Guang-Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Mao-Sheng Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China
| | - Yan-Xia Wang
- Henan Provincial Center for Disease Control and Prevention, China.
| | - Zhong-Yu Hu
- National Institutes for Food and Drug Control, China.
| | - Jing-Si Yang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China.
| | - Hong-Jun Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on severe Infectious Disease, China.
| |
Collapse
|
6
|
Heston SM, Hurst JH, Kelly MS. Understanding the influence of the microbiome on childhood infections. Expert Rev Anti Infect Ther 2024; 22:529-545. [PMID: 38605646 PMCID: PMC11464204 DOI: 10.1080/14787210.2024.2340664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION The microbiome is known to have a substantial impact on human health and disease. However, the impacts of the microbiome on immune system development, susceptibility to infectious diseases, and vaccine-elicited immune responses are emerging areas of interest. AREAS COVERED In this review, we provide an overview of development of the microbiome during childhood. We highlight available data suggesting that the microbiome is critical to maturation of the immune system and modifies susceptibility to a variety of infections during childhood and adolescence, including respiratory tract infections, Clostridioides difficile infection, and sexually transmitted infections. We discuss currently available and investigational therapeutics that have the potential to modify the microbiome to prevent or treat infections among children. Finally, we review the accumulating evidence that the gut microbiome influences vaccine-elicited immune responses among children. EXPERT OPINION Recent advances in sequencing technologies have led to an explosion of studies associating the human microbiome with the risk and severity of infectious diseases. As our knowledge of the extent to which the microbiome influences childhood infections continues to grow, microbiome-based diagnostics and therapeutics will increasingly be incorporated into clinical practice to improve the prevention, diagnosis, and treatment of infectious diseases among children.
Collapse
Affiliation(s)
- Sarah M Heston
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Jillian H Hurst
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| | - Matthew S Kelly
- Pediatrics, Duke University School of Medicine, Durham, NC, UK
| |
Collapse
|
7
|
Moreno-Muñoz JA, Ojeda JD, López JJ. A Probiotic Bacterium with Activity against the Most Frequent Bacteria and Viruses Causing Pediatric Diarrhea: Bifidobacterium longum subsp. infantis CECT 7210 ( B. infantis IM1 ®). Microorganisms 2024; 12:1183. [PMID: 38930565 PMCID: PMC11206103 DOI: 10.3390/microorganisms12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The second leading cause of death in children under five years old is diarrheal disease. Probiotics, specifically bifidobacteria, have been associated with a reduction in the number of diarrhea episodes and their severity in babies. In this paper, we summarize the preclinical and clinical evidence of the efficacy of B. longum subsp. infantis IM1® against various gastrointestinal pathogens using in vitro models, animal models, and clinical studies carried out in our laboratory. The preclinical data demonstrate that IM1® effectively inhibits rotavirus replication (by up to 36.05%) in MA-104 and HT-29 cells and from infection (up to 48.50%) through the production of an 11-amino-acid peptide. IM1® displays the capability to displace pathogens from enterocytes, particularly Cronobacter sakazakii and Salmonella enterica, and to reduce the adhesion to the HT29 cells of C. sakazakii and Shigella sonnei. In animal models, the IM1® strain exhibits in vivo protection against rotavirus and improves the clinical symptomatology of bacterial gastroenteritis. A clinical study involving infants under 3 months of age revealed that IM1® reduced episodes of diarrhea, proving to be safe, well tolerated, and associated with a lower prevalence of constipation. B. infantis IM1® emerges as an effective probiotic, diminishing episodes of diarrhea caused by gastrointestinal pathogens.
Collapse
Affiliation(s)
- José Antonio Moreno-Muñoz
- Laboratorios Ordesa S.L., Parc Científic de Barcelona, C/Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.D.O.); (J.J.L.)
| | | | | |
Collapse
|
8
|
Kocabiyik O, Amlashi P, Vo AL, Suh H, Rodriguez-Aponte SA, Dalvie NC, Love JC, Andrabi R, Irvine DJ. Vaccine targeting to mucosal lymphoid tissues promotes humoral immunity in the gastrointestinal tract. SCIENCE ADVANCES 2024; 10:eadn7786. [PMID: 38809992 PMCID: PMC11135404 DOI: 10.1126/sciadv.adn7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Viruses, bacteria, and parasites frequently cause infections in the gastrointestinal tract, but traditional vaccination strategies typically elicit little or no mucosal antibody responses. Here, we report a strategy to effectively concentrate immunogens and adjuvants in gut-draining lymph nodes (LNs) to induce gut-associated mucosal immunity. We prepared nanoemulsions (NEs) based on biodegradable oils commonly used as vaccine adjuvants, which encapsulated a potent Toll-like receptor agonist and displayed antigen conjugated to their surface. Following intraperitoneal administration, these NEs accumulated in gut-draining mesenteric LNs, priming strong germinal center responses and promoting B cell class switching to immunoglobulin A (IgA). Optimized NEs elicited 10- to 1000-fold higher antigen-specific IgG and IgA titers in the serum and feces, respectively, compared to free antigen mixed with NE, and strong neutralizing antibody titers against severe acute respiratory syndrome coronavirus 2. Thus, robust gut humoral immunity can be elicited by exploiting the unique lymphatic collection pathways of the gut with a lymph-targeting vaccine formulation.
Collapse
Affiliation(s)
- Ozgun Kocabiyik
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. Lina Vo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergio A. Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
9
|
Ma B, Tao M, Li Z, Zheng Q, Wu H, Chen P. Mucosal vaccines for viral diseases: Status and prospects. Virology 2024; 593:110026. [PMID: 38373360 DOI: 10.1016/j.virol.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Virus-associated infectious diseases are highly detrimental to human health and animal husbandry. Among all countermeasures against infectious diseases, prophylactic vaccines, which developed through traditional or novel approaches, offer potential benefits. More recently, mucosal vaccines attract attention for their extraordinary characteristics compared to conventional parenteral vaccines, particularly for mucosal-related pathogens. Representatively, coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further accelerated the research and development efforts for mucosal vaccines by thoroughly investigating existing strategies or involving novel techniques. While several vaccine candidates achieved positive progresses, thus far, part of the current COVID-19 mucosal vaccines have shown poor performance, which underline the need for next-generation mucosal vaccines and corresponding platforms. In this review, we summarized the typical mucosal vaccines approved for humans or animals and sought to elucidate the underlying mechanisms of these successful cases. In addition, mucosal vaccines against COVID-19 that are in human clinical trials were reviewed in detail since this public health event mobilized all advanced technologies for possible solutions. Finally, the gaps in developing mucosal vaccines, potential solutions and prospects were discussed. Overall, rational application of mucosal vaccines would facilitate the establishing of mucosal immunity and block the transmission of viral diseases.
Collapse
Affiliation(s)
- Bingjie Ma
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Mengxiao Tao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Quanfang Zheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China.
| |
Collapse
|
10
|
Vetter J, Lee M, Eichwald C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024; 16:668. [PMID: 38793550 PMCID: PMC11125917 DOI: 10.3390/v16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rotavirus (RV) replicates within viroplasms, membraneless electron-dense globular cytosolic inclusions with liquid-liquid phase properties. In these structures occur the virus transcription, replication, and packaging of the virus genome in newly assembled double-layered particles. The viroplasms are composed of virus proteins (NSP2, NSP5, NSP4, VP1, VP2, VP3, and VP6), single- and double-stranded virus RNAs, and host components such as microtubules, perilipin-1, and chaperonins. The formation, coalescence, maintenance, and perinuclear localization of viroplasms rely on their association with the cytoskeleton. A stabilized microtubule network involving microtubules and kinesin Eg5 and dynein molecular motors is associated with NSP5, NSP2, and VP2, facilitating dynamic processes such as viroplasm coalescence and perinuclear localization. Key post-translation modifications, particularly phosphorylation events of RV proteins NSP5 and NSP2, play pivotal roles in orchestrating these interactions. Actin filaments also contribute, triggering the formation of the viroplasms through the association of soluble cytosolic VP4 with actin and the molecular motor myosin. This review explores the evolving understanding of RV replication, emphasizing the host requirements essential for viroplasm formation and highlighting their dynamic interplay within the host cell.
Collapse
Affiliation(s)
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.L.)
| |
Collapse
|
11
|
Li Y, Wang S, Liang F, Teng S, Wang F. Prevalence and genetic diversity of rotavirus among children under 5 years of age in China: a meta-analysis. Front Immunol 2024; 15:1364429. [PMID: 38690265 PMCID: PMC11058642 DOI: 10.3389/fimmu.2024.1364429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Background This meta-analysis was performed to assess the prevalence and circulating strains of rotavirus (RV) among Chinese children under 5 years of age after the implantation of the RV vaccine. Material and methods Studies published between 2019 and 2023, focused on RV-based diarrhea among children less than 5 years were systematically reviewed using PubMed, Embase, Web of Science, CNKI, Wanfang and SinoMed Data. We synthesized their findings to examine prevalence and genetic diversity of RV after the RV vaccine implementation using a fixed-effects or random-effects model. Results Seventeen studies met the inclusion criteria for this meta-analysis. The overall prevalence of RV was found to be 19.00%. The highest infection rate was noted in children aged 12-23months (25.79%), followed by those aged 24-35 months (23.91%), and 6-11 months (22.08%). The serotype G9 emerged as the most predominant RV genotype, accounting for 85.48% of infections, followed by G2 (7.70%), G8 (5.74%), G1 (4.86%), and G3 (3.21%). The most common P type was P[8], representing 64.02% of RV cases. Among G-P combinations, G9P[8] was the most frequent, responsible for 78.46% of RV infections, succeeded by G8P[8] (31.22%) and G3P[8] (8.11%). Conclusion Despite the variation of serotypes observed in China, the G1, G2, G3, G8 and G9 serotypes accounted for most RV strains. The genetic diversity analysis highlights the dynamic nature of RV genotypes, necessitating ongoing surveillance to monitor changes in strain distribution and inform future vaccine strategies.
Collapse
Affiliation(s)
- Yue Li
- Department of Immunization Program, Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Sijie Wang
- Shanghai Institute of Major Infectious Disease and Biosafety, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of MoE&MoH, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Liang
- Department of Immunization Program, Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Sashuang Teng
- Department of Immunization Program, Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Fei Wang
- Central Administrative Office, Hongkou District Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
12
|
van Dorst MMAR, Pyuza JJ, Nkurunungi G, Kullaya VI, Smits HH, Hogendoorn PCW, Wammes LJ, Everts B, Elliott AM, Jochems SP, Yazdanbakhsh M. Immunological factors linked to geographical variation in vaccine responses. Nat Rev Immunol 2024; 24:250-263. [PMID: 37770632 DOI: 10.1038/s41577-023-00941-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Vaccination is one of medicine's greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20-50% protection. This trend is also observed for other vaccines, such as bacillus Calmette-Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.
Collapse
Affiliation(s)
- Marloes M A R van Dorst
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jeremia J Pyuza
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Linda J Wammes
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Simon P Jochems
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
13
|
Batool R, Qamar ZH, Salam RA, Yousafzai MT, Ashorn P, Qamar FN. Efficacy of typhoid vaccines against culture-confirmed Salmonella Typhi in typhoid endemic countries: a systematic review and meta-analysis. Lancet Glob Health 2024; 12:e589-e598. [PMID: 38485426 DOI: 10.1016/s2214-109x(23)00606-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND Typhoid is a serious public health threat in many low-income and middle-income countries. Several vaccines for typhoid have been recommended by WHO for typhoid prevention in endemic countries. This study aimed to review the efficacy of typhoid vaccines against culture-confirmed Salmonella enterica serovar Typhi. METHODS We searched the Cochrane Central Register of Controlled Trials, MEDLINE, and Embase for studies published in English between Jan 1, 1986 and Nov 2, 2023. We included randomised controlled trials (RCTs) comparing typhoid vaccines with a placebo or another vaccine. This meta-analysis evaluated the efficacy and safety of several typhoid vaccines, including live attenuated oral Ty21a vaccine, Vi capsular polysaccharide (Vi-PS), Vi polysaccharide conjugated to recombinant Pseudomonas aeruginosa exotoxin A vaccine (Vi-rEPA), and Vi-tetanus toxoid conjugate vaccine (TCV). The certainty of evidence for key outcomes was evaluated using Grading of Recommendations, Assessment, Development, and Evaluations methodology. The outcome of interest was typhoid fever confirmed by the isolation of Salmonella enterica serovar Typhi in blood and adverse events following immunisation. This study is registered with PROSPERO (CRD42021241043). FINDINGS We included 14 RCTs assessing four different vaccines (Ty21a: four trials; Vi-PS: five trials; Vi-rEPA: one trial; TCV: four trials) involving 585 253 participants. All trials were conducted in typhoid endemic countries and the age of participants ranged from 6 months to 50 years. The pooled efficacy against typhoid fever was 45% (95% CI 33-55%; four trials; 247 649 participants; I2 59%; moderate certainty) for Ty21a and 58% (44-69%; five trials; 214 456 participants; I2 34%; moderate certainty) for polysaccharide Vi-PS. The cumulative efficacy of two doses of Vi-rEPA vaccine at 2 years was 91% (88-96%; one trial; 12 008 participants; moderate certainty). The pooled efficacy of a single shot of TCV at 2 years post-immunisation was 83% (77-87%; four trials; 111 130 participants; I2 0%; moderate certainty). All vaccines were safe, with no serious adverse effects reported in the trials. INTERPRETATION The existing data from included trials provide promising results regarding the efficacy and safety of the four recommended typhoid vaccines. TCV and Vi-rEPA were found to have the highest efficacy at 2 years post-immunisation. However, follow-up data for Vi-rEPA are scarce and only TCV is pre-qualified by WHO. Therefore, roll-out of TCV into routine immunisation programmes in typhoid endemic settings is highly recommended. FUNDING There was no funding source for this study.
Collapse
Affiliation(s)
- Rabab Batool
- Department of Epidemiology and Biostatistics, Aga Khan University Hospital, Karachi, Pakistan; Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan; Centre for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Zoya Haq Qamar
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | | | - Mohammad Tahir Yousafzai
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan; The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Per Ashorn
- Centre for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
14
|
Latifi T, Kachooei A, Jalilvand S, Zafarian S, Roohvand F, Shoja Z. Correlates of immune protection against human rotaviruses: natural infection and vaccination. Arch Virol 2024; 169:72. [PMID: 38459213 DOI: 10.1007/s00705-024-05975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Integrating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our knowledge in this area are discussed.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Zafarian
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
15
|
Flynn TG, Olortegui MP, Kosek MN. Viral gastroenteritis. Lancet 2024; 403:862-876. [PMID: 38340741 DOI: 10.1016/s0140-6736(23)02037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024]
Abstract
Since the discovery of norovirus in 1972 as a cause of what was contemporarily known as acute infectious non-bacterial gastroenteritis, scientific understanding of the viral gastroenteritides has continued to evolve. It is now recognised that a small number of viruses are the predominant cause of acute gastroenteritis worldwide, in both high-income and low-income settings. Although treatment is still largely restricted to the replacement of fluid and electrolytes, improved diagnostics have allowed attribution of illness, enabling both targeted treatment of individual patients and prioritisation of interventions for populations worldwide. Questions remain regarding specific genetic and immunological factors underlying host susceptibility, and the optimal clinical management of patients who are susceptible to severe or prolonged manifestations of disease. Meanwhile, the worldwide implementation of rotavirus vaccines has led to substantial reductions in morbidity and mortality, and spurred interest in vaccine development to diminish the impact of the most prevalent viruses that are implicated in this syndrome.
Collapse
Affiliation(s)
- Thomas G Flynn
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Bose T, Borrow R, Arkwright PD. Impact of rotavirus vaccination on diarrheal disease burden of children in South America. Expert Rev Vaccines 2024; 23:606-618. [PMID: 38813689 DOI: 10.1080/14760584.2024.2360212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Rotavirus is a leading cause of severe diarrheal disease and death in children under five years of age worldwide. Vaccination is one of the most important public health interventions to reduce this significant burden. AREAS COVERED This literature review examined vaccination coverage, hospitalization rate, mortality, genotypic distribution, immunogenicity, cost-effectiveness, and risk versus benefit of rotavirus vaccination in children in South America. Nine out of twelve countries in South America currently include a rotavirus vaccine in their national immunization program with coverage rates in 2022 above 90%. EXPERT OPINION Introduction of the rotavirus vaccination has led to a marked reduction in hospitalizations and deaths from diarrheal diseases in children under 5 years, particularly infants under 1 year, in several South American countries. In Brazil, hospitalizations decreased by 59% and deaths by 21% (30-38% in infants). In Peru, hospitalizations in infants fell by 46% and deaths by 37% (56% in infants). Overall, data suggest that rotavirus vaccination has reduced rotavirus deaths by 15-50% in various South American countries. There is some evidence that immunity wanes after the age of 1-year old. Ongoing surveillance of vaccine coverage and changes in morbidity and mortality is important to maximize protection against this disease.
Collapse
Affiliation(s)
- Tanmoy Bose
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ray Borrow
- Vaccine Evaluation Unit, UK Health Security Agency, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, UK
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Chavda VP, Vuppu S, Mishra T, Kamaraj S, Sharma N, Punetha S, Sairam A, Vaghela D, Dargahi N, Apostolopoulos V. Combatting infectious diarrhea: innovations in treatment and vaccination strategies. Expert Rev Vaccines 2024; 23:246-265. [PMID: 38372023 DOI: 10.1080/14760584.2023.2295015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The escalating prevalence of infectious diseases is an important cause of concern in society. Particularly in several developing countries, infectious diarrhea poses a major problem, with a high fatality rate, especially among young children. The condition is divided into four classes, namely, acute diarrhea, invasive diarrhea, acute bloody diarrhea, and chronic diarrhea. Various pathogenic agents, such as bacteria, viruses, protozoans, and helminths, contribute to the onset of this condition. AREAS COVERED The review discusses the scenario of infectious diarrhea, the prevalent types, as well as approaches to management including preventive, therapeutic, and vaccination strategies. The vaccination techniques are extensively discussed including the available vaccines, their advantages as well as limitations. EXPERT OPINION There are several approaches available to develop new-improved vaccines. In addition, route of immunization is important and aerosols/nasal sprays, oral route, skin patches, powders, and liquid jets to minimize needles can be used. Plant-based vaccines, such as rice, might save packing and refrigeration costs by being long-lasting, non-refrigerable, and immunogenic. Future research should utilize predetermined PCR testing intervals and symptom monitoring to identify persistent pathogens after therapy and symptom remission.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sathvika Kamaraj
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Swati Punetha
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Sairam
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dixa Vaghela
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Sunshine Hospital Campus, Saint Albans, Victoria, Australia
| |
Collapse
|
18
|
Ponziani FR, Coppola G, Rio P, Caldarelli M, Borriello R, Gambassi G, Gasbarrini A, Cianci R. Factors Influencing Microbiota in Modulating Vaccine Immune Response: A Long Way to Go. Vaccines (Basel) 2023; 11:1609. [PMID: 37897011 PMCID: PMC10611107 DOI: 10.3390/vaccines11101609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Vaccine immunogenicity still represents an unmet need in specific populations, such as people from developing countries and "edge populations". Both intrinsic and extrinsic factors, such as the environment, age, and dietary habits, influence cellular and humoral immune responses. The human microbiota represents a potential key to understanding how these factors impact the immune response to vaccination, with its modulation being a potential step to address vaccine immunogenicity. The aim of this narrative review is to explore the intricate interactions between the microbiota and the immune system in response to vaccines, highlighting the state of the art in gut microbiota modulation as a novel therapeutic approach to enhancing vaccine immunogenicity and laying the foundation for future, more solid data for its translation to the clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy (G.C.); (P.R.); (M.C.); (R.B.); (G.G.); (A.G.)
| |
Collapse
|
19
|
Standaert B. The Economic Value of Rotavirus Vaccination When Optimally Implemented in a High-Income Country. Vaccines (Basel) 2023; 11:vaccines11050917. [PMID: 37243021 DOI: 10.3390/vaccines11050917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Rotavirus vaccination was introduced in high-income countries starting in 2006, with no recommendation for optimal implementation. Economic evaluations were presented before launch projecting potential impacts. Few economic reassessments have been reported following reimbursement. This study compares the short- to long-term economic value of rotavirus vaccination between pre-launch predictions and real-world evidence collected over 15 years, proposing recommendations for optimal vaccine launch. A cost-impact analysis compared rotavirus hospitalisation data after the introduction of vaccination between pre-launch modelled projections and observed data collected in the RotaBIS study in Belgium. A best model fit of the observed data was used to simulate launch scenarios to identify the optimal strategy. Data from other countries in Europe were used to confirm the potential optimal launch assessment. The Belgian analysis in the short term (first 8 years) indicated a more favourable impact for the observed data than predicted pre-launch model results. The long-term assessment (15 years) showed bigger economic disparities in favour of the model-predicted scenario. A simulated optimal vaccine launch, initiating the vaccination at least 6 months prior the next seasonal disease peak with an immediate very high vaccine coverage, indicated important additional potential gains, which would make vaccination very cost impactful. Finland and the UK are on such a route leading to long-term vaccination success, whereas Spain and Belgium have difficulties in achieving optimum vaccine benefits. An optimal launch of rotavirus vaccination may generate substantial economic gains over time. For high-income countries that are considering implementing rotavirus vaccination, achieving an optimal launch is a critical factor for long-term economic success.
Collapse
Affiliation(s)
- Baudouin Standaert
- Department Care and Ethics, Faculty of Medicine and Life Sciences, University Hasselt, 3590 Diepenbeek, Belgium
- HEBO bv, 2020 Antwerpen, Belgium
| |
Collapse
|
20
|
Gbebangi-Manzemu D, Kampunzu VM, Vanzwa HM, Mumbere M, Bukaka GM, Likele BB, Kasai ET, Mukinayi BM, Tonen-Wolyec S, Dauly NN, Alworong'a Opara JP. Clinical profile of children under 5 years of age with rotavirus diarrhoea in a hospital setting in Kisangani, DRC, after the introduction of the rotavirus vaccine, a cross-sectional study. BMC Pediatr 2023; 23:193. [PMID: 37095482 PMCID: PMC10123467 DOI: 10.1186/s12887-023-04022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The Democratic Republic of the Congo (DRC) is one of the countries with the highest rotavirus mortality rate in the world. The aim of this study was to describe the clinical features of rotavirus infection after the introduction of rotavirus vaccination of children in the city of Kisangani, DRC. METHODS We conducted a cross-sectional study of acute diarrhoea in children under 5 years of age admitted to 4 hospitals in Kisangani, DRC. Rotavirus was detected in children's stools by an immuno-chromatographic antigenic rapid diagnostic test. RESULTS A total of 165 children under 5 years of age were included in the study. We obtained 59 cases of rotavirus infection, or 36% CI95 [27, 45]. The majority of children with rotavirus infection were unvaccinated (36 cases) and had watery diarrhoea (47 cases), of high frequency per day/per admission 9.6 ± 3.4 and accompanied by severe dehydration (30 cases). A statistically significant difference in mean Vesikari score was observed between unvaccinated and vaccinated children (12.7 vs 10.7 p-value 0.024). CONCLUSION Rotavirus infection in hospitalized children under 5 years of age is characterized by a severe clinical manifestation. Epidemiological surveillance is needed to identify risk factors associated with the infection.
Collapse
Affiliation(s)
- Didier Gbebangi-Manzemu
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo.
| | - Véronique Muyobela Kampunzu
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Hortense Malikidogo Vanzwa
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Mupenzi Mumbere
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
- Department of Paediatrics, Faculty of Medicine, Catholic University of Graben, Butembo, Democratic Republic of the Congo
| | - Gaspard Mande Bukaka
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Bibi Batoko Likele
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Emmanuel Tebandite Kasai
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Benoit Mbiya Mukinayi
- Department of Paediatrics, Faculty of Medicine, University of Mbujimayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Serge Tonen-Wolyec
- Department of Internal Medicine, Faculty of Medicine, University of Bunia, Bunia, Democratic Republic of the Congo
| | - Nestor Ngbonda Dauly
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jean Pierre Alworong'a Opara
- Department of Paediatrics, Faculty of Medicine and Pharmacy, University of Kisangani, Kisangani, Democratic Republic of the Congo
| |
Collapse
|
21
|
Murphy A, Kirby A, De Blasio F. The economic impact of the introduction of universal rotavirus vaccination on rotavirus gastroenteritis related hospitalisations in children in Ireland. Vaccine 2023; 41:2656-2663. [PMID: 36948981 DOI: 10.1016/j.vaccine.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Rotavirus gastroenteritis (RVGE), a vaccine preventable disease, remains a common cause of severe gastroenteritis in children globally. Ireland introduced the universal rotavirus vaccination to the national immunisation programme in 2016. In this paper the economic impact on RVGE related hospitalisations amongst children under 5 years is examined. METHODS Using national data from all Irish public hospitals, an Interrupted Times Series Analysis (ITSA) compares RVGE hospitalisations amongst children under 5 years, pre- and post-vaccine introduction. Costs are estimated and ITSA results are compared to the counterfactual to estimate the economic impact of the vaccine. A probit model examines patient characteristics pre- and post-vaccine introduction. RESULTS Vaccine introduction coincided with lowered RVGE related hospitalisations. While this effect was delayed (1 year) there is evidence of a sustained impact. RVGE patients' post-vaccine introduction were likely to be over 2 years (p = 0.001) and length of stay was lower on average (p = 0.095). The counterfactual analysis revealed 492 RVGE hospitalisations were avoided on average annually since the introduction of the vaccine. This has an estimated economic value of €0.92 million per annum. CONCLUSIONS Following the introduction of the rotavirus vaccine in Ireland, hospitalisations for RVGE decreased significantly and those hospitalised were older and with a reduced length of stay on average. This has the potential for significant cost savings for the Irish healthcare system.
Collapse
Affiliation(s)
- Aileen Murphy
- Department of Economics, Cork University Business School, University College Cork, Ireland
| | - Ann Kirby
- Department of Economics, Cork University Business School, University College Cork, Ireland.
| | - Federica De Blasio
- Department of Economics, Cork University Business School, University College Cork, Ireland
| |
Collapse
|
22
|
St Jean DT, Edwards JK, Rogawski McQuade ET, Thompson P, Thomas JC, Becker-Dreps S. Transporting monovalent rotavirus vaccine efficacy estimates to an external target population: a secondary analysis of data from a randomised controlled trial in Malawi. Epidemiol Infect 2023; 151:e49. [PMID: 36843494 PMCID: PMC10052556 DOI: 10.1017/s0950268823000286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/28/2023] Open
Abstract
Oral rotavirus vaccine efficacy estimates from randomised controlled trials are highly variable across settings. Although the randomised study design increases the likelihood of internal validity of findings, results from trials may not always apply outside the context of the study due to differences between trial participants and the target population. Here, we used a weight-based method to transport results from a monovalent rotavirus vaccine clinical trial conducted in Malawi between 2005 and 2008 to a target population of all trial-eligible children in Malawi, represented by data from the 2015-2016 Malawi Demographic and Health Survey (DHS). We reweighted trial participants to reflect the population characteristics described by the Malawi DHS. Vaccine efficacy was estimated for 1008 trial participants after applying these weights such that they represented trial-eligible children in Malawi. We also conducted subgroup analyses to examine the heterogeneous treatment effects by stunting and tuberculosis vaccination status at enrolment. In the original trial, the estimates of one-year vaccine efficacy against severe rotavirus gastroenteritis and any-severity rotavirus gastroenteritis in Malawi were 49.2% (95% CI 15.6%-70.3%) and 32.1% (95% CI 2.5%-53.1%), respectively. After weighting trial participants to represent all trial-eligible children in Malawi, vaccine efficacy increased to 62.2% (95% CI 35.5%-79.0%) against severe rotavirus gastroenteritis and 38.9% (95% CI 11.4%-58.5%) against any-severity rotavirus gastroenteritis. Rotavirus vaccine efficacy may differ between trial participants and target populations when these two populations differ. Differences in tuberculosis vaccination status between the trial sample and DHS population contributed to varying trial and target population vaccine efficacy estimates.
Collapse
Affiliation(s)
- Denise T. St Jean
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessie K. Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Peyton Thompson
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James C. Thomas
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sylvia Becker-Dreps
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Vaccine evaluation and genotype characterization in children infected with rotavirus in Qatar. Pediatr Res 2023:10.1038/s41390-023-02468-7. [PMID: 36658331 PMCID: PMC10382313 DOI: 10.1038/s41390-023-02468-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to used rotavirus vaccines. METHODS Rotavirus-positive samples (n = 231) were collected and analyzed. The VP7 and VP4 genes were sequenced and analyzed against the rotavirus vaccine strains. Antigenic variations were illustrated on the three-dimensional models of surface proteins. RESULTS In all, 59.7% of the hospitalized children were vaccinated, of which only 57.2% received two doses. There were no significant differences between the vaccinated and non-vaccinated groups in terms of clinical outcome. The G3 was the dominant genotype (40%) regardless of vaccination status. Several amino acid changes were identified in the VP7 and VP4 antigenic epitopes compared to the licensed vaccines. The highest variability was seen in the G3 (6 substitutions) and P[4] (11 substitutions) genotypes in comparison to RotaTeq®. In comparison to Rotarix®, G1 strains possessed three amino acid changes in 7-1a and 7-2 epitopes while P[8] strains possessed five amino acid changes in 8-1 and 8-3 epitopes. CONCLUSIONS The current use of Rotarix® vaccine might not be effective in preventing the infection due to the higher numbers of G3-associated cases. The wide range of mutations in the antigenic epitopes compared to vaccine strains may compromise the vaccine's effectiveness. IMPACT The reduced rotavirus vaccine effectiveness necessitate regular evaluation of the vaccine content to ensure optimal protection. We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to the Rotarix vaccine strain that is used in Qatar. The study highlight the importance for regular monitoring of emerging rotavirus variants and their impact on vaccine effectiveness in young children.
Collapse
|
24
|
Middleton BF, Danchin M, Fathima P, Bines JE, Macartney K, Snelling TL. Review of the health impact of the oral rotavirus vaccine program in children under 5 years in Australia: 2006 - 2021. Vaccine 2023; 41:636-648. [PMID: 36529591 DOI: 10.1016/j.vaccine.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Oral rotavirus vaccines were incorporated into the National Immunisation Program (NIP) for all Australian infants in July 2007. Initially each of the eight jurisdictions implemented Rotarix or RotaTeq rotavirus vaccine, however from July 2017 all states and territories have administered Rotarix only. This review evaluates the health impact of the oral rotavirus vaccine program for Australian children less than 5 years old over the first 15 years of the rotavirus vaccine program, observing long-term changes in rotavirus-related health care attendances, public health notifications, and vaccine effectiveness and safety data for both Rotarix and RotaTeq rotavirus vaccines. We searched Medline for studies published between January 2006 and May 2022 using the search terms 'rotavirus', 'rotavirus vaccine' and 'Australia'. Of 491 items identified, 76 items - 36 peer-reviewed articles and 40 reports - were included in the review. We found evidence that the introduction of the oral rotavirus vaccine program in Australia was associated with a prompt reduction in rotavirus-coded and all-cause gastroenteritis hospitalisations of vaccine-eligible children. In the context of less complete coverage, reduced vaccine timeliness and lower vaccine effectiveness, a less substantial and inconsistent reduction in severe rotavirus disease was observed among Aboriginal and Torres Strait Islander children, particularly those living in rural and remote northern Australia. Additional studies report no evidence for the emergence of non-vaccine serotypes and/ or replacement serotypes in Australia during the vaccine era. While the health impact for young children and consequent cost-savings of the oral rotavirus vaccine program have been high, it is important to find strategies to improve rotavirus vaccine impact for Aboriginal and Torres Strait Islander populations to ensure health benefits for all Australian children.
Collapse
Affiliation(s)
- Bianca F Middleton
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Margie Danchin
- Vaccine Uptake Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Department of General Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Parveen Fathima
- Health and Clinical Analytics, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Julie E Bines
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Gastroenterology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Kristine Macartney
- Department of Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia; National Centre for Immunisation Research and Surveillance (NCIRS), Sydney, New South Wales, Australia
| | - Thomas L Snelling
- Health and Clinical Analytics, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Tate JE, Cortese MM, Offit PA, Parashar UD. Rotavirus Vaccines. PLOTKIN'S VACCINES 2023:1005-1024.e11. [DOI: 10.1016/b978-0-323-79058-1.00053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Kozawa K, Higashimoto Y, Kawamura Y, Miura H, Negishi T, Hattori F, Ihira M, Komoto S, Taniguchi K, Yoshikawa T. Rotavirus genotypes and clinical outcome of natural infection based on vaccination status in the post-vaccine era. Hum Vaccin Immunother 2022; 18:2037983. [PMID: 35240934 PMCID: PMC9009920 DOI: 10.1080/21645515.2022.2037983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Rotavirus (RV) is a leading cause of gastroenteritis in children. In Japan, Rotarix (RV1; GlaxoSmithKline), which is a monovalent vaccine derived from human RV (G1P[8]), has been introduced since November 2011, and RotaTeq (RV5; MSD) which is an pentavalent, human-bovine mono-reassortant vaccine (G1, G2, G3, G4, and P1A[8]), has been introduced since July 2012. Long-term follow-up on vaccine efficacy and RV genotypical change should be carried out in order to control RV infection. The RV gastroenteritis (RVGE) outbreak occurred during the 2018/2019 season in Aichi prefecture, Japan. Therefore, the molecular epidemiology of RV among three different groups of RVGE, which were outpatients who received RV1, those who received RV5, and those without vaccination, was explored. Clinical features of RVGE patients were compared among the three patient groups. Children less than 15 years of age with gastroenteritis who visited any of seven pediatric practices between January and June 2019 were enrolled in the study. G, P, and E genotypes were determined by direct sequencing of reverse transcription-polymerase chain reaction products amplified from stool samples. Among 110 patients, there were 27, 28, and 55 in the RV1-vaccinated, RV5-vaccinated, and unvaccinated groups, respectively. The most frequent genotype was G8P[8] (92/110 patients, 83.6%). Genotype distributions did not significantly differ among the three patient groups (P = .125). Mean Vesikari score was significantly lower among RV1-vaccinated (7.1) and RV5-vaccinated patients (6.4) than among unvaccinated patients (10.2) (P < .001). Even in RVGE patients treated in an outpatient clinic, RV vaccine reduced the severity of the disease in this cohort.
Collapse
Affiliation(s)
- Kei Kozawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuki Higashimoto
- Faculty of Medical Technology, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takumi Negishi
- Department of Clinical Laboratory, Fujita Health University Hospital, Toyoake, Japan
| | - Fumihiko Hattori
- Department of Pediatrics, Kariya Toyota General Hospital, Kariya, Japan
| | - Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
27
|
Crossover Dynamics of Rotavirus Disease under Fractional Piecewise Derivative with Vaccination Effects: Simulations with Real Data from Thailand, West Africa, and the US. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many diseases are caused by viruses of different symmetrical shapes. Rotavirus particles are approximately 75 nm in diameter. They have icosahedral symmetry and particles that possess two concentric protein shells, or capsids. In this research, using a piecewise derivative framework with singular and non-singular kernels, we investigate the evolution of rotavirus with regard to the effect of vaccination. For the considered model, the existence of a solution of the piecewise rotavirus model is investigated via fixed-point results. The Adam–Bashforth numerical method along with the Newton polynomial is implemented to deduce the numerical solution of the considered model. Various versions of the stability of the solution of the piecewise rotavirus model are presented using the Ulam–Hyres concept and nonlinear analysis. We use MATLAB to perform the numerical simulation for a few fractional orders to study the crossover dynamics and evolution and effect of vaccination on rotavirus disease. To check the validity of the proposed approach, we compared our simulated results with real data from various countries.
Collapse
|
28
|
Elbashir I, Aldoos NF, Mathew S, Al Thani AA, Emara MM, Yassine HM. Molecular epidemiology, genetic diversity, and vaccine availability of viral acute gastroenteritis in the middle East and North Africa (MENA) region. J Infect Public Health 2022; 15:1193-1211. [PMID: 36240530 DOI: 10.1016/j.jiph.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Acute gastroenteritis is the cause of considerable mortality and morbidity worldwide, particularly among children under five years in underdeveloped countries. Most acute gastroenteritis (AGE) cases are attributed to viral etiologies, including rotavirus, norovirus, adenovirus, astrovirus, and sapovirus. This paper aimed to determine the prevalence rate of different viral etiologies of AGE in the Middle East and North Africa (MENA) region. Moreover, this paper explored rotavirus phylogenetic relatedness, compared VP7 and VP4 antigenic regions of rotavirus with vaccine strains, and explored the availability of vaccines in the MENA region. The literature search identified 160 studies from 18 countries from 1980 to 2019. The overall prevalence of rotavirus, norovirus, adenovirus, astrovirus, and sapovirus were 29.8 %, 13.9 %, 6.3 %, 3.5 %, and 3.2 % of tested samples, respectively. The most common rotavirus genotype combinations in the MENA region were G1P[8], G9P[9], and G2P[4], whereas GII.4 was the predominant norovirus genotype all of which were reported in almost all the studies with genotyping data. The comparison of VP7 and VP4 between circulating rotavirus in the MENA region and vaccine strains has revealed discrete divergent regions, including the neutralizing epitopes. Rotavirus vaccine was introduced to most of the countries of the MENA region; however, only a few studies have assessed the effectiveness of vaccine introduction. This paper provides a comprehensive update on the prevalence of the different viral agents of AGE in the MENA region.
Collapse
Affiliation(s)
- Israa Elbashir
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| | - Noor F Aldoos
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.
| | - Shilu Mathew
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed M Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| |
Collapse
|
29
|
Du Y, Chen C, Zhang X, Yan D, Jiang D, Liu X, Yang M, Ding C, Lan L, Hecht R, Zhu C, Yang S. Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: an observational trend study. Virol J 2022; 19:166. [PMID: 36266651 PMCID: PMC9585833 DOI: 10.1186/s12985-022-01898-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background Rotavirus is the leading global pathogen of diarrhea-associated mortality and poses a great threat to public health in all age groups. This study aimed to explore the global burden and 30-year change patterns of rotavirus infection-associated deaths. Methods Based on the Global Burden of Disease 2019 Study (GBD 2019), we analyzed the age-standardized death rate (ASDR) of rotavirus infection by sex, geographical region, and sociodemographic index (SDI) from 1990 to 2019. A Joinpoint regression model was used to analyze the global trends in rotavirus infection over the 30 years, SaTScan software was used to detect the spatial and temporal aggregations, and a generalized linear model to explore the relationship between sociodemographic factors and death rates of rotavirus infection. Results Globally, rotavirus infection was the leading cause of diarrheal deaths, accounting for 19.11% of deaths from diarrhea in 2019. Rotavirus caused a higher death burden in African, Oceanian, and South Asian countries in the past three decades. The ASDR of rotavirus declined from 11.39 (95% uncertainty interval [95% UI] 5.46–19.48) per 100,000 people in 1990 to 3.41 (95% UI 1.60–6.01) per 100,000 people in 2019, with an average annual percentage change (AAPC) (− 4.07%, P < 0.05). However, a significant uptrend was found in high-income North America (AAPC = 1.79%, P < 0.05). The death rate was the highest among children under 5 years worldwide. However, the death rates of elderly individuals over 70 years were higher than those of children under 5 years in 2019 among high, high-middle, middle, and low-middle SDI regions. Current health expenditure, gross domestic product per capita, and the number of physicians per 1000 people were significantly negatively correlated with death rates of rotavirus. Conclusions Although the global trends in the rotavirus burden have decreased substantially over the past three decades, the burden of rotavirus remained high in Africa, Oceania, and South Asia. Children under 5 years and elderly individuals over 70 years were the populations most at risk for rotavirus infection-associated deaths, especially elderly individuals over 70 years in relatively high SDI regions. More attention should be paid to these areas and populations, and effective public health policies should be implemented in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01898-9.
Collapse
Affiliation(s)
- Yuxia Du
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Can Chen
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Xiaobao Zhang
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Danying Yan
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Daixi Jiang
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Xiaoxiao Liu
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Mengya Yang
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Cheng Ding
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Lei Lan
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China
| | - Robert Hecht
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Changtai Zhu
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shigui Yang
- Department of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, China.
| |
Collapse
|
30
|
Sanni FO, Bartholomew OB, Conteh I, Gwa Z, Oyewande AA, Ajani OF, Dada MO, Abiodun PO, Yashim AN, Tomori MO, Laide A, Okwose I, Bello A. Prevalence of rotavirus infection
among children under five years
at a tertiary institution in Nigeria. IMC JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.55010/imcjms.16.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background and objectives: Rotavirus is a significant cause of nonbacterial diarrhea, especially in infants and young children worldwide. This study evaluated the pattern of rotavirus infection in children under five years presenting with acute diarrhea in Abuja Teaching Hospital, Gwagwalada, Nigeria.
Methodology: It was a cross-sectional descriptive study to describe the prevalence of rotavirus infection among children. The study enrolled children 1 to 59 months old with acute diarrhea attending General Paediatric Outpatient clinic and hospitalized in the Emergency Paediatric Unit of University of Abuja Teaching Hospital (UATH), Gwagwalada, Nigeria. Rotavirus antigen was detected in the stool by qualitative enzyme-linked immunosorbent assay (ELISA). Data were analyzed using IBM-SPSS version 25.0.
Results: The study comprised of 414 diarrhoeal children aged 1–59 months, of which 226 (54.6%) were male and the mean age was 12.1 months. The overall rate of rotavirus infection was 43.0% (178/ 414). The rotavirus infection was slightly higher among females than in males (46.8% vs 39.8%; p=0.153). Children from upper and middle social classes were at 1.95 [CI=1.17–3.26] and 3.08[CI=1.77–5.34] times higher risks of rotavirus induced diarrhea than the children from the lower social class (p<0.005). Children whose mothers had post-secondary education were three times more at risk of rotavirus diarrhea [OR=3.70; CI=1.46–9.36] than those with primary or no formal education (p<0.05). Children who had never been vaccinated against rotavirus were four times more likely to suffer rotavirus infection than those who had been vaccinated [OR=3.96; 95%CI=1.13–13.89, p=0.032].
Conclusion: This study found that rotavirus was an important causative agent of diarrhea in children in Gwagwalada, Abuja. Due to low rotavirus vaccination status in children, rotavirus screening tests are necessary for children with acute diarrheal disease.
J Med Sci. 2022; 16(2): 010. DOI: https://doi.org/10.55010/imcjms.16.020
*Correspondence: Felix Olaniyi Sanni, Department of Public Health, Fescosof Data Solutions, Ogun, Nigeria. Email: fescosofanalysis@gmail.com
Collapse
Affiliation(s)
| | | | | | - Zachary Gwa
- Management Department, Akesis, Abuja, Nigeria
| | | | | | - Michael Olugbamila Dada
- Family Health International (FHI360), Plot 1073-A1, GODAB Plaza, Area 3, Garki-Abuja, Nigeria
| | | | - Andrew Nuhu Yashim
- Haematology and Blood Transfusion Department, National Hospital, Abuja, Nigeria
| | | | | | - Innocent Okwose
- School of Business (OHS),, Loughborough University,United Kingdom
| | - Ahmed Bello
- Department of Public Health, World Health Organisation, Abuja, Nigeria
| |
Collapse
|
31
|
Xia M, Huang P, Tan M. A Pseudovirus Nanoparticle-Based Trivalent Rotavirus Vaccine Candidate Elicits High and Cross P Type Immune Response. Pharmaceutics 2022; 14:1597. [PMID: 36015223 PMCID: PMC9413348 DOI: 10.3390/pharmaceutics14081597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022] Open
Abstract
Rotavirus infection continues to cause significant morbidity and mortality globally. In this study, we further developed the S60-VP8* pseudovirus nanoparticles (PVNPs) displaying the glycan receptor binding VP8* domains of rotavirus spike proteins as a parenteral vaccine candidate. First, we established a scalable method for the large production of tag-free S60-VP8* PVNPs representing four rotavirus P types, P[8], P[4], P[6], and P[11]. The approach consists of two major steps: selective precipitation of the S-VP8* proteins from bacterial lysates using ammonium sulfate, followed by anion exchange chromatography to further purify the target proteins to a high purity. The purified soluble proteins self-assembled into S60-VP8* PVNPs. Importantly, after intramuscular injections, the trivalent vaccine consisting of three PVNPs covering VP8* antigens of P[8], P[4], and P[6] rotaviruses elicited high and broad immunogenicity in mice toward the three predominant P-type rotaviruses. Specifically, the trivalent vaccine-immunized mouse sera showed (1) high and balanced IgG and IgA antibody titers toward all three VP8* types, (2) high blocking titer against the VP8*-glycan receptor interaction, and (3) high and broad neutralizing titers against replications of all P[8], P[4], and P[6] rotaviruses. Therefore, trivalent S60-VP8* PVNPs are a promising non-replicating, parenteral vaccine candidate against the most prevalent rotaviruses worldwide.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.X.); (P.H.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
32
|
Rotavirus vaccination is not associated with incident celiac disease or autoimmune thyroid disease in a national cohort of privately insured children. Sci Rep 2022; 12:12941. [PMID: 35902684 PMCID: PMC9334581 DOI: 10.1038/s41598-022-17187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Rotavirus infection is a potential trigger for autoimmune diseases, and previous reports note associations between rotavirus vaccination and type 1 diabetes. In this report, we examine the association between rotavirus vaccination and autoimmune diseases associated with type 1 diabetes: celiac disease and autoimmune thyroiditis. We conducted a retrospective cohort study using de-identified claims data (Optum Clinformatics® Data Mart). Eligible infants were born between 2001 and 2018 and continuously enrolled from birth for at least 365 days (n = 2,109,225). Twenty-nine percent (n = 613,295) of infants were born prior to the introduction of rotavirus vaccine in 2006; 32% (n = 684,214) were eligible for the vaccine but were not vaccinated; 9.6% (n = 202,016) received partial vaccination, and 28.9% received full vaccination (n = 609,700). There were 1379 cases of celiac disease and 1000 cases of autoimmune thyroiditis. Children who were born prior to the introduction of rotavirus vaccine in 2006 had lower risk of celiac disease compared to unvaccinated children born after 2006 (hazard ratio [HR] 0.71, 95% confidence interval [CI] 0.59, 0.85). However, children who were partially vaccinated (HR 0.90, 95% CI 0.73, 1.11) or fully vaccinated (HR 1.03, 95% CI 0.88, 1.21) had similar risk to eligible, unvaccinated children. Risk of autoimmune thyroiditis was similar by vaccination status. We conclude that rotavirus vaccination is not associated with increased or decreased risk for celiac disease or autoimmune thyroiditis.
Collapse
|
33
|
Ahmed S, Iqbal J, Sadiq K, Umrani F, Rizvi A, Kabir F, Jamil Z, Syed S, Ehsan L, Zulqarnain F, Sajid M, Hotwani A, Rahman N, Ma JZ, McNeal M, Ann Costa Clemens S, Talat Iqbal N, Moore SR, Ali A. Association of Anti-Rotavirus IgA Seroconversion with Growth, Environmental Enteric Dysfunction and Enteropathogens in Rural Pakistani Infants. Vaccine 2022; 40:3444-3451. [PMID: 35534310 PMCID: PMC9168439 DOI: 10.1016/j.vaccine.2022.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The underperformance of oral vaccines in children of low- and middle-income countries is partly attributable to underlying environmental enteric dysfunction (EED). METHODOLOGY We conducted a longitudinal, community-based study to evaluate the association of oral rotavirus vaccine (Rotarix®) seroconversion with growth anthropometrics, EED biomarkers and intestinal enteropathogens in Pakistani infants. Children were enrolled between three to six months of their age based on their nutritional status. We measured serum anti-rotavirus immunoglobulin A (IgA) at enrollment and nine months of age with EED biomarkers and intestinal enteropathogens. RESULTS A total of 391 infants received two doses of rotavirus (RV) vaccine. 331/391 provided paired blood samples. Of these 331 children, 45% seroconverted at 9 months of age, 35% did not seroconvert and 20% were seropositive at baseline. Non-seroconverted children were more likely to be stunted, wasted and underweight at enrollment. In univariate analysis, insulin-like growth factor (IGF) concentration at 6 months were higher in seroconverters, median (25th, 75th percentile): 26.3 (16.5, 43.5) ng/ml vs. 22.5 (13.6, 36.3) ng/ml for non-seroconverters, p-value = 0.024. At nine months, fecal myeloperoxidase (MPO) concentrations were significantly lower in seroconverters, 3050(1250, 7587) ng/ml vs. 4623.3 (2189, 11650) ng/ml in non-seroconverted children, p-value = 0.017. In multivariable logistic regression analysis, alpha-1 acid glycoprotein (AGP) and IGF-1 concentrations were positively associated with seroconversion at six months. The presence of sapovirus and rotavirus in fecal samples at the time of rotavirus administration, was associated with non-seroconversion and seroconversion, respectively. CONCLUSION We detected high baseline RV seropositivity and impaired RV vaccine immunogenicity in this high-risk group of children. Healthy growth, serum IGF-1 and AGP, and fecal shedding of rotavirus were positively associated with RV IgA seroconversion following immunization, whereas the presence of sapovirus was more common in non-seroconverters. TRIAL REGISTRATION Clinical Trials ID: NCT03588013.
Collapse
Affiliation(s)
- Sheraz Ahmed
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan; Institute for Global Health, University of Siena, Italy.
| | - Junaid Iqbal
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan; Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Kamran Sadiq
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Fayaz Umrani
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Arjumand Rizvi
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Furqan Kabir
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Zehra Jamil
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Sana Syed
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Lubaina Ehsan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Fatima Zulqarnain
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Muhammed Sajid
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Aneeta Hotwani
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Najeeb Rahman
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, USA.
| | - Monica McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA.
| | | | - Najeeha Talat Iqbal
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| | - Sean R Moore
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | - Asad Ali
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
34
|
Lockhart A, Mucida D, Parsa R. Immunity to enteric viruses. Immunity 2022; 55:800-818. [PMID: 35545029 PMCID: PMC9257994 DOI: 10.1016/j.immuni.2022.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Pathogenic enteric viruses are a major cause of morbidity and mortality, particularly among children in developing countries. The host response to enteric viruses occurs primarily within the mucosa, where the intestinal immune system must balance protection against pathogens with tissue protection and tolerance to harmless commensal bacteria and food. Here, we summarize current knowledge in natural immunity to enteric viruses, highlighting specialized features of the intestinal immune system. We further discuss how knowledge of intestinal anti-viral mechanisms can be translated into vaccine development with particular focus on immunization in the oral route. Research reveals that the intestine is a complex interface between enteric viruses and the host where environmental factors influence susceptibility and immunity to infection, while viral infections can have lasting implications for host health. A deeper mechanistic understanding of enteric anti-viral immunity with this broader context can ultimately lead to better vaccines for existing and emerging viruses.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Roham Parsa
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
35
|
Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses 2022; 14:875. [PMID: 35632617 PMCID: PMC9143449 DOI: 10.3390/v14050875] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Since their first recognition in human cases about four decades ago, rotaviruses have remained the leading cause of acute severe dehydrating diarrhea among infants and young children worldwide. The WHO prequalification of oral rotavirus vaccines (ORV) a decade ago and its introduction in many countries have yielded a significant decline in the global burden of the disease, although not without challenges to achieving global effectiveness. Poised by the unending malady of rotavirus diarrhea and the attributable death cases in developing countries, we provide detailed insights into rotavirus biology, exposure pathways, cellular receptors and pathogenesis, host immune response, epidemiology, and vaccination. Additionally, recent developments on the various host, viral and environmental associated factors impacting ORV performance in low-and middle-income countries (LMIC) are reviewed and their significance assessed. In addition, we review the advances in nonvaccine strategies (probiotics, candidate anti-rotaviral drugs, breastfeeding) to disease prevention and management.
Collapse
Affiliation(s)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
36
|
Latifi T, Eybpoosh S, Afchangi A, Jalilvand S, Shoja Z. Genetic characterization of P[8] rotavirus strains circulated in Iran between 2009 and 2017. J Med Virol 2022; 94:3561-3569. [PMID: 35393690 DOI: 10.1002/jmv.27766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022]
Abstract
Group A rotavirus (RVA) is the most common cause of acute gastroenteritis (AGE) worldwide, which is responsible for causing an estimated 120,000 deaths in children under 5 years of age, which mostly occur in the lower income countries of Asia and Africa. The G1P[8] is a common genotype of RVA that has spread throughout the world, including Iran and this genotype is present in two commonly used RVA vaccines, RotarixTM and RotaTeqTM . In this study, we investigated the genetic diversity, viral evolutionary, and differences between antigenic epitopes of Iran's P[8] strains and two licensed vaccines. The phylogenetic and evolutionary analysis was carried out, using MEGA vs 6.0 and BEAST respectively. Antigenic epitopes of VP8* were compared to determine the differences between strains from Iran and RotarixTM and RotaTeqTM . The P[8]-lineages III and IV was found as the predominant P genotype that circulating in Iran. The TMRCA of P[8]-lineages III and IV was estimated at 1987 and 2009 respectively. The P[8]-lineage III strains showed 12 amino acid changes compared to RotarixTM and 10 amino acid changes compared to RotaTeqTM . The P[8]-lineage IV strains showed 10 amino acid variations for both RotarixTM and RotaTeqTM strains. The results revealed that the P[8] strains circulating in Iran differs from RotarixTM and RotaTeqTM strains. To monitor the long-term effects of vaccines on the emergence of P[8] strains with different lineages, routine and successful monitoring of these strains will be crucial. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
37
|
Cates J, Tate JE, Parashar U. Rotavirus vaccines: progress and new developments. Expert Opin Biol Ther 2022; 22:423-432. [PMID: 34482790 PMCID: PMC10839819 DOI: 10.1080/14712598.2021.1977279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Rotavirus is the primary cause of severe acute gastroenteritis among children under the age of five globally, leading to 128,500 to 215,000 vaccine-preventable deaths annually. There are six licensed oral, live-attenuated rotavirus vaccines: four vaccines pre-qualified for global use by WHO, and two country-specific vaccines. Expansion of rotavirus vaccines into national immunization programs worldwide has led to a 59% decrease in rotavirus hospitalizations and 36% decrease in diarrhea deaths due to rotavirus in vaccine-introducing countries. AREAS COVERED This review describes the current rotavirus vaccines in use, global coverage, vaccine efficacy from clinical trials, and vaccine effectiveness and impact from post-licensure evaluations. Vaccine safety, particularly as it relates to the risk of intussusception, is also summarized. Additionally, an overview of candidate vaccines in the pipeline is provided. EXPERT OPINION Considerable evidence over the past decade has demonstrated high effectiveness (80-90%) of rotavirus vaccines at preventing severe rotavirus disease in high-income countries, although the effectiveness has been lower (40-70%) in low-to-middle-income countries. Surveillance and research should continue to explore modifiable factors that influence vaccine effectiveness, strengthen data to better evaluate newer rotavirus vaccines, and aid in the development of future vaccines that can overcome the limitations of current vaccines.
Collapse
Affiliation(s)
- Jordan Cates
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jacqueline E. Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Umesh Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
38
|
Standaert B, Benninghoff B. Defining the Recipe for an Optimal Rotavirus Vaccine Introduction in a High-Income Country in Europe. Viruses 2022; 14:425. [PMID: 35216018 PMCID: PMC8879258 DOI: 10.3390/v14020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Observational data over 15 years of rotavirus vaccine introduction in Belgium have indicated that rotavirus hospitalisations in children aged <5 years plateaued at a higher level than expected, and was followed by biennial disease peaks. The research objective was to identify factors influencing these real-world vaccine impact data. We constructed mathematical models simulating rotavirus-related hospitalisations by age group and year for those children. Two periods were defined using different model constructs. First, the vaccine uptake period encompassed the years required to cover the whole at-risk population. Second, the post-uptake period covered the years in which a new infection/disease equilibrium was reached. The models were fitted to the observational data using optimisation programmes with regression and differential equations. Modifying parameter values identified factors affecting the pattern of hospitalisations. Results indicated that starting vaccination well before the peak disease season in the first year and rapidly achieving high coverage was critical in maximising early herd effect and minimising secondary sources of infection. This, in turn, would maximise the reduction in hospitalisations and minimise the size and frequency of subsequent disease peaks. The analysis and results identified key elements to consider for countries initiating an optimal rotavirus vaccine launch programme.
Collapse
Affiliation(s)
- Baudouin Standaert
- HEBO bv, 2020 Antwerpen, Belgium
- Research Group Care and Ethics, Faculty of Medicine and Life Sciences, University of Hasselt, 3500 Hasselt, Belgium
| | | |
Collapse
|
39
|
Standaert B, Strens D, Raes M, Benninghoff B. Explaining the formation of a plateau in rotavirus vaccine impact on rotavirus hospitalisations in Belgium. Vaccine 2022; 40:1948-1957. [PMID: 35190208 DOI: 10.1016/j.vaccine.2022.02.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Observational data on the reduction in hospitalisations after rotavirus vaccine introduction in Belgium suggest that vaccine impact plateaued at an unexpectedly high residual hospitalisation rate. The objective of this analysis was to identify factors that influence real-world vaccine impact. METHODS Data were collected on hospitalisations in children aged ≤ 5 years with rotavirus disease from 11 hospitals since 2005 (the RotaBIS study). The universal rotavirus vaccination campaign started late in 2006. A mathematical model simulated rotavirus hospitalisations in different age groups using vaccine efficacy and herd effect, influenced by vaccine coverage, vaccine waning, and secondary infection sources. The model used optimisation analysis to fit the simulated curve to the observed data, applying Solver add-in software. It also simulated an 'ideal' vaccine introduction maximising hospitalisation reduction (maximum coverage, maximum herd effect, no waning), and compared this with the best-fit simulated curve. Modifying model input values identified factors with the largest impact on hospitalisations. RESULTS Compared with the 'ideal' simulation, observed data showed a slower decline in hospitalisations and levelled off after three years at a higher residual hospitalisation rate. The slower initial decline was explained by the herd effect in unvaccinated children. The higher residual hospitalisation rate was explained by starting the vaccine programme in November, near the rotavirus seasonal peak. This resulted in low accumulated vaccine coverage during the first rotavirus disease peak season, with the consequential appearance of secondary infection sources. This in turn reduced the herd effect, resulting in a diminished net impact. CONCLUSIONS Our results indicate that countries wishing to maximise the impact of rotavirus vaccination should start vaccinating well ahead of the rotavirus seasonal disease peak. This maximises herd effect during the first year leading to rapid and high reduction in hospitalisations. Secondary infection sources explain the observed data in Belgium better than vaccine waning.
Collapse
|
40
|
Safety and reactogenicity of a liquid formulation of human rotavirus vaccine (porcine circovirus-free): A phase III, observer-blind, randomized, multi-country study. Vaccine 2022; 40:2184-2190. [DOI: 10.1016/j.vaccine.2022.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
|
41
|
Manjate F, João ED, Chirinda P, Garrine M, Vubil D, Nobela N, Kotloff K, Nataro JP, Nhampossa T, Acácio S, Tate JE, Parashar U, Mwenda JM, Alonso PL, Nyaga M, Cunha C, Mandomando I. Molecular Epidemiology of Rotavirus Strains in Symptomatic and Asymptomatic Children in Manhiça District, Southern Mozambique 2008-2019. Viruses 2022; 14:v14010134. [PMID: 35062336 PMCID: PMC8781303 DOI: 10.3390/v14010134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Group A rotaviruses remain the leading cause of diarrhoea in children aged <5 years. Mozambique introduced rotavirus vaccine (Rotarix®) in September 2015. We report rotavirus genotypes circulating among symptomatic and asymptomatic children in Manhiça District, Mozambique, pre- and post-vaccine introduction. Stool was collected from enrolled children and screened for rotavirus by enzyme-immuno-sorbent assay. Positive specimens were genotyped for VP7 (G genotypes) and VP4 (P genotypes) by the conventional reverse transcriptase polymerase chain reaction. The combination G12P[8] was more frequently observed in pre-vaccine than in post-vaccine introduction, in moderate to severe diarrhoea (34%, 61/177 vs. 0, p < 0.0001) and controls (23%, 26/113 vs. 0, p = 0.0013) and mixed genotypes (36%, 24/67 vs. 7% 4/58, p = 0.0003) in less severe diarrhoea. We observed changes in post-vaccine compared to pre-vaccine introduction, where G3P[4] and G3P[8] were prevalent in moderate to severe diarrhoea (10%, 5/49 vs. 0, p = 0.0002; and 14%, 7/49 vs. 1%, 1/177, p < 0.0001; respectively), and in less severe diarrhoea (21%, 12/58 vs. 0, p = 0.003; and 24%, 14/58 vs. 0, p < 0.0001; respectively). Our surveillance demonstrated the circulation of similar genotypes contemporaneously among cases and controls, as well as switching from pre- to post-vaccine introduction. Continuous surveillance is needed to evaluate the dynamics of the changes in genotypes following vaccine introduction.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal;
- Correspondence: (F.M.); (I.M.)
| | - Eva D. João
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal;
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
| | - Karen Kotloff
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene 1120, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene 1120, Mozambique
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.E.T.); (U.P.)
| | - Umesh Parashar
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (J.E.T.); (U.P.)
| | - Jason M. Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 2465, Congo;
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- Global Malaria Program, World Health Organization, 1211 Geneva, Switzerland
| | - Martin Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa;
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal;
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça, Maputo 1929, Mozambique; (E.D.J.); (P.C.); (M.G.); (D.V.); (N.N.); (T.N.); (S.A.); (P.L.A.)
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene 1120, Mozambique
- Correspondence: (F.M.); (I.M.)
| |
Collapse
|
42
|
Esona MD, Gautam R, Chhabra P, Vinjé J, Bowen MD, Burke RM. Gastrointestinal Tract Infections: Viruses. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:82-106. [DOI: 10.1016/b978-0-12-818731-9.00217-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Parker EPK, Bronowski C, Sindhu KNC, Babji S, Benny B, Carmona-Vicente N, Chasweka N, Chinyama E, Cunliffe NA, Dube Q, Giri S, Grassly NC, Gunasekaran A, Howarth D, Immanuel S, Jere KC, Kampmann B, Lowe J, Mandolo J, Praharaj I, Rani BS, Silas S, Srinivasan VK, Turner M, Venugopal S, Verghese VP, Darby AC, Kang G, Iturriza-Gómara M. Impact of maternal antibodies and microbiota development on the immunogenicity of oral rotavirus vaccine in African, Indian, and European infants. Nat Commun 2021; 12:7288. [PMID: 34911947 PMCID: PMC8674366 DOI: 10.1038/s41467-021-27074-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Identifying risk factors for impaired oral rotavirus vaccine (ORV) efficacy in low-income countries may lead to improvements in vaccine design and delivery. In this prospective cohort study, we measure maternal rotavirus antibodies, environmental enteric dysfunction (EED), and bacterial gut microbiota development among infants receiving two doses of Rotarix in India (n = 307), Malawi (n = 119), and the UK (n = 60), using standardised methods across cohorts. We observe ORV shedding and seroconversion rates to be significantly lower in Malawi and India than the UK. Maternal rotavirus-specific antibodies in serum and breastmilk are negatively correlated with ORV response in India and Malawi, mediated partly by a reduction in ORV shedding. In the UK, ORV shedding is not inhibited despite comparable maternal antibody levels to the other cohorts. In both India and Malawi, increased microbiota diversity is negatively correlated with ORV immunogenicity, suggesting that high early-life microbial exposure may contribute to impaired vaccine efficacy.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Female
- Gastrointestinal Microbiome
- Humans
- Immunity, Maternally-Acquired
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- India
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/blood
- Infant, Newborn, Diseases/microbiology
- Infant, Newborn, Diseases/prevention & control
- Infant, Newborn, Diseases/virology
- Malawi
- Male
- Milk, Human/chemistry
- Milk, Human/immunology
- Pregnancy
- Prospective Studies
- Rotavirus/genetics
- Rotavirus/immunology
- Rotavirus/physiology
- Rotavirus Infections/blood
- Rotavirus Infections/microbiology
- Rotavirus Infections/prevention & control
- Rotavirus Infections/virology
- Rotavirus Vaccines/administration & dosage
- Rotavirus Vaccines/immunology
- United Kingdom
- Vaccine Efficacy
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Virus Shedding
Collapse
Affiliation(s)
- Edward P K Parker
- The Vaccine Centre, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Christina Bronowski
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | | | - Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Blossom Benny
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Noelia Carmona-Vicente
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Nedson Chasweka
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - End Chinyama
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Queen Dube
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Annai Gunasekaran
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Deborah Howarth
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sushil Immanuel
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Khuzwayo C Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
- Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre, 3, Malawi
| | - Beate Kampmann
- The Vaccine Centre, Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jenna Lowe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jonathan Mandolo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre, PO Box, 30096, Malawi
| | - Ira Praharaj
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Sophia Silas
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Vivek Kumar Srinivasan
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Mark Turner
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L8 7SS, UK
| | - Srinivasan Venugopal
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Valsan Philip Verghese
- Department of Child Health, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Miren Iturriza-Gómara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK.
- Centre for Vaccine Innovation and Access, PATH, Geneva, Switzerland.
| |
Collapse
|
44
|
Yin N, Wu J, Kuang X, Lin X, Zhou Y, Yi S, Hu X, Chen R, Liu Y, Ye J, He Z, Sun M, Li H. Vaccination of pregnant rhesus monkeys with inactivated rotavirus as a model for achieving protection from rotavirus SA11 infection in the offspring. Hum Vaccin Immunother 2021; 17:5656-5665. [PMID: 35213949 PMCID: PMC8903932 DOI: 10.1080/21645515.2021.2011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Live-attenuated rotavirus vaccine has shown low protection in underdeveloped or developing countries. However, the inactivated rotavirus vaccine may have the potential to overcome some of these challenges. In the present study, the immunogenicity and protective efficacy of a bivalent inactivated rotavirus vaccine by parenteral administration were elevated in a neonatal rhesus monkey model. A bivalent inactivated rotavirus vaccine containing G1P[8] (ZTR-68 strain) and G9P[8] (ZTR-18 strain) was administered to pregnant rhesus monkeys twice at an interval of 14 days. Neutralizing antibodies against RV strains ZTR-68, ZTR-18, SA11, WA, UK, and Gottfried emerged in pregnant rhesus monkeys and were transplacentally transmitted to the offspring. In the vaccine group, clinical symptoms of diarrhea, viral load in the gut tissue and histopathological changes were significantly reduced in the neonatal rhesus monkeys following oral challenge with the SA11 strain.
Collapse
Affiliation(s)
- Na Yin
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China,CONTACT Hongjun Li Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming650118, China
| | - Jinyuan Wu
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiangjing Kuang
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaochen Lin
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yan Zhou
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Shan Yi
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaoqing Hu
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Rong Chen
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yaling Liu
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jun Ye
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zhanlong He
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Maosheng Sun
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hongjun Li
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
45
|
Bergman H, Henschke N, Hungerford D, Pitan F, Ndwandwe D, Cunliffe N, Soares-Weiser K. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2021; 11:CD008521. [PMID: 34788488 PMCID: PMC8597890 DOI: 10.1002/14651858.cd008521.pub6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Rotavirus is a common cause of diarrhoea, diarrhoea-related hospital admissions, and diarrhoea-related deaths worldwide. Rotavirus vaccines prequalified by the World Health Organization (WHO) include Rotarix (GlaxoSmithKline), RotaTeq (Merck), and, more recently, Rotasiil (Serum Institute of India Ltd.), and Rotavac (Bharat Biotech Ltd.). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO for their efficacy and safety in children. SEARCH METHODS On 30 November 2020, we searched PubMed, the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, Science Citation Index Expanded, Social Sciences Citation Index, Conference Proceedings Citation Index-Science, Conference Proceedings Citation Index-Social Science & Humanities. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies, and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) conducted in children that compared rotavirus vaccines prequalified for use by the WHO with either placebo or no intervention. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility and assessed risk of bias. One author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analyses by under-five country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Sixty trials met the inclusion criteria and enrolled a total of 228,233 participants. Thirty-six trials (119,114 participants) assessed Rotarix, 15 trials RotaTeq (88,934 participants), five trials Rotasiil (11,753 participants), and four trials Rotavac (8432 participants). Rotarix Infants vaccinated and followed up for the first year of life In low-mortality countries, Rotarix prevented 93% of severe rotavirus diarrhoea cases (14,976 participants, 4 trials; high-certainty evidence), and 52% of severe all-cause diarrhoea cases (3874 participants, 1 trial; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 79% of severe rotavirus diarrhoea cases (31,671 participants, 4 trials; high-certainty evidence), and 36% of severe all-cause diarrhoea cases (26,479 participants, 2 trials; high-certainty evidence). In high-mortality countries, Rotarix prevented 58% of severe rotavirus diarrhoea cases (15,882 participants, 4 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, Rotarix prevented 90% of severe rotavirus diarrhoea cases (18,145 participants, 6 trials; high-certainty evidence), and 51% of severe all-cause diarrhoea episodes (6269 participants, 2 trials; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 77% of severe rotavirus diarrhoea cases (28,834 participants, 3 trials; high-certainty evidence), and 26% of severe all-cause diarrhoea cases (23,317 participants, 2 trials; moderate-certainty evidence). In high-mortality countries, Rotarix prevented 35% of severe rotavirus diarrhoea cases (13,768 participants, 2 trials; moderate-certainty evidence), and 17% of severe all-cause diarrhoea cases (2764 participants, 1 trial; high-certainty evidence). RotaTeq Infants vaccinated and followed up for the first year of life In low-mortality countries, RotaTeq prevented 97% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 57% of severe rotavirus diarrhoea cases (6775 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RotaTeq prevented 96% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 44% of severe rotavirus diarrhoea cases (6744 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (5977 participants, 2 trials; high-certainty evidence). We did not identify RotaTeq studies reporting on severe all-cause diarrhoea in low- or medium-mortality countries. Rotasiil Rotasiil has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotasiil prevented 48% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotasiil prevented 44% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Rotavac Rotavac has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotavac prevented 57% of severe rotavirus diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotavac prevented 54% of severe rotavirus diarrhoea cases (6541 participants, 1 trial; moderate-certainty evidence); no Rotavac studies have reported on severe all-cause diarrhoea at two-years follow-up. Safety No increased risk of serious adverse events (SAEs) was detected with Rotarix (103,714 participants, 31 trials; high-certainty evidence), RotaTeq (82,502 participants, 14 trials; moderate to high-certainty evidence), Rotasiil (11,646 participants, 3 trials; high-certainty evidence), or Rotavac (8210 participants, 3 trials; moderate-certainty evidence). Deaths were infrequent and the analysis had insufficient evidence to show an effect on all-cause mortality. Intussusception was rare. AUTHORS' CONCLUSIONS: Rotarix, RotaTeq, Rotasiil, and Rotavac prevent episodes of rotavirus diarrhoea. The relative effect estimate is smaller in high-mortality than in low-mortality countries, but more episodes are prevented in high-mortality settings as the baseline risk is higher. In high-mortality countries some results suggest lower efficacy in the second year. We found no increased risk of serious adverse events, including intussusception, from any of the prequalified rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Daniel Hungerford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council , Cape Town, South Africa
| | - Nigel Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
46
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
47
|
Diller JR, Carter MH, Kanai Y, Sanchez SV, Kobayashi T, Ogden KM. Monoreassortant rotaviruses of multiple G types are differentially neutralized by sera from infants vaccinated with ROTARIX® and RotaTeq®. J Infect Dis 2021; 224:1720-1729. [PMID: 34628500 DOI: 10.1093/infdis/jiab479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Rotavirus is a leading cause of pediatric diarrheal mortality. The rotavirus outer capsid consists of VP7 and VP4 proteins, which respectively determine viral G and P type and are primary targets of neutralizing antibodies. To elucidate VP7-specific neutralizing antibody responses, we engineered monoreassortant rotaviruses each containing a human VP7 segment from a sequenced clinical specimen or a vaccine strain in an identical genetic background. We quantified replication and neutralization of engineered viruses using sera from infants vaccinated with monovalent ROTARIX® or multivalent RotaTeq® vaccines. Immunization with RotaTeq® induced broader neutralizing antibody responses than ROTARIX®. Inclusion of a single dose of RotaTeq® in the schedule enhanced G-type neutralization breadth of vaccinated infant sera. Cell type-specific differences in infectivity, replication, and neutralization were detected for some monoreassortant viruses. These findings suggest that rotavirus VP7, independent of VP4, can contribute to cell tropism and the breadth of vaccine-elicited neutralizing antibody responses.
Collapse
Affiliation(s)
- Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maximilian H Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuta Kanai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shania V Sanchez
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Takeshi Kobayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
48
|
Jansen KU, Gruber WC, Simon R, Wassil J, Anderson AS. The impact of human vaccines on bacterial antimicrobial resistance. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4031-4062. [PMID: 34602924 PMCID: PMC8479502 DOI: 10.1007/s10311-021-01274-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 05/07/2023]
Abstract
At present, the dramatic rise in antimicrobial resistance (AMR) among important human bacterial pathogens is reaching a state of global crisis threatening a return to the pre-antibiotic era. AMR, already a significant burden on public health and economies, is anticipated to grow even more severe in the coming decades. Several licensed vaccines, targeting both bacterial (Haemophilus influenzae type b, Streptococcus pneumoniae, Salmonella enterica serovar Typhi) and viral (influenza virus, rotavirus) human pathogens, have already proven their anti-AMR benefits by reducing unwarranted antibiotic consumption and antibiotic-resistant bacterial strains and by promoting herd immunity. A number of new investigational vaccines, with a potential to reduce the spread of multidrug-resistant bacterial pathogens, are also in various stages of clinical development. Nevertheless, vaccines as a tool to combat AMR remain underappreciated and unfortunately underutilized. Global mobilization of public health and industry resources is key to maximizing the use of licensed vaccines, and the development of new prophylactic vaccines could have a profound impact on reducing AMR.
Collapse
Affiliation(s)
| | | | - Raphael Simon
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| | - James Wassil
- Pfizer Patient and Health Impact, Collegeville, PA USA
- Present Address: Vaxcyte, 353 Hatch Drive, Foster City, CA 94404 USA
| | | |
Collapse
|
49
|
Saha D, Ota MOC, Pereira P, Buchy P, Badur S. Rotavirus vaccines performance: dynamic interdependence of host, pathogen and environment. Expert Rev Vaccines 2021; 20:945-957. [PMID: 34224290 DOI: 10.1080/14760584.2021.1951247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As of January 2021, rotavirus vaccination programs have been implemented in 109 countries and their use has resulted in a positive impact on rotavirus-related diarrheal hospitalizations and mortality in children below 5 years of age. Despite these successes, several countries in Africa and Asia where disease burden is high have not yet implemented rotavirus vaccination at all or at a scale sufficient enough to demonstrate impact. This could be, among other reasons, due to poor vaccine coverage and the modest levels of efficacy and effectiveness of the vaccines in these resource-limited settings. AREAS COVERED We review various factors related to the human host (malnutrition, maternally derived antibodies and breastfeeding, genetic factors, blood group, and co-administration with oral polio vaccine), rotavirus pathogen (force of infection, strain diversity and coinfections), and the environment (related to the human microbiome) which reflect complex and interconnected processes leading to diminished vaccine performance in resource-limited settings. EXPERT OPINION Addressing the limiting factors for vaccine efficacy is needed but likely to take a long time to be resolved. An immediate solution is to increase the immunization coverage to higher values generating an overall effect of adequate proportion of protected population to reduce the prevalence of rotavirus disease.
Collapse
|
50
|
Sun ZW, Fu Y, Lu HL, Yang RX, Goyal H, Jiang Y, Xu HG. Association of Rotavirus Vaccines With Reduction in Rotavirus Gastroenteritis in Children Younger Than 5 Years: A Systematic Review and Meta-analysis of Randomized Clinical Trials and Observational Studies. JAMA Pediatr 2021; 175:e210347. [PMID: 33970192 PMCID: PMC8111566 DOI: 10.1001/jamapediatrics.2021.0347] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE Rotavirus vaccines have been introduced worldwide, and the clinical association of different rotavirus vaccines with reduction in rotavirus gastroenteritis (RVGE) after introduction are noteworthy. OBJECTIVE To evaluate the comparative benefit, risk, and immunogenicity of different rotavirus vaccines by synthesizing randomized clinical trials (RCTs) and observational studies. DATA SOURCES Relevant studies published in 4 databases: Embase, PubMed, the Cochrane Library, and Web of Science were searched until July 1, 2020, using search terms including "rotavirus" and "vaccin*." STUDY SELECTION Randomized clinical trials and cohort and case-control studies involving more than 100 children younger than 5 years that reported the effectiveness, safety, or immunogenicity of rotavirus vaccines were included. DATA EXTRACTION AND SYNTHESIS A random-effects model was used to calculate relative risks (RRs), odds ratios (ORs), risk differences, and 95% CIs. Adjusted indirect treatment comparison was performed to assess the differences in the protection of Rotarix and RotaTeq. MAIN OUTCOMES AND MEASURES The primary outcomes were RVGE, severe RVGE, and RVGE hospitalization. Safety-associated outcomes involved serious adverse events, intussusception, and mortality. RESULTS A meta-analysis of 20 RCTs and 38 case-control studies revealed that Rotarix (RV1) significantly reduced RVGE (RR, 0.316 [95% CI, 0.224-0.345]) and RVGE hospitalization risk (OR, 0.347 [95% CI, 0.279-0.432]) among children fully vaccinated; RotaTeq (RV5) had similar outcomes (RVGE: RR, 0.350 [95% CI, 0.275-0.445]; RVGE hospitalization risk: OR, 0.272 [95% CI, 0.197-0.376]). Rotavirus vaccines also demonstrated higher protection against severe RVGE. Additionally, no significant differences in the protection of RV1 and RV5 against rotavirus disease were noted in adjusted indirect comparisons. Moderate associations were found between reduced RVGE risk and Rotavac (RR, 0.664 [95% CI, 0.548-0.804]), Rotasiil (RR, 0.705 [95% CI, 0.605-0.821]), and Lanzhou lamb rotavirus vaccine (RR, 0.407 [95% CI, 0.332-0.499]). All rotavirus vaccines demonstrated no risk of serious adverse events. A positive correlation was also found between immunogenicity and vaccine protection (eg, association of RVGE with RV1: coefficient, -1.599; adjusted R2, 99.7%). CONCLUSIONS AND RELEVANCE The high protection and low risk of serious adverse events for rotavirus vaccines in children who were fully vaccinated emphasized the importance of worldwide introduction of rotavirus vaccination. Similar protection provided by Rotarix and RotaTeq relieves the pressure of vaccines selection for health care authorities.
Collapse
Affiliation(s)
- Zi-Wei Sun
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Fu
- Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Ling Lu
- Department of Laboratory Medicine, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Rui-Xia Yang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hemant Goyal
- The Wright Center of Graduate Medical Education, Scranton, Pennsylvania
| | - Ye Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|