1
|
Cavaleri F, Chattopadhyay S, Palsule V, Kar PK, Chatterjee R. Study of Drug Targets Associated With Oncogenesis and Cancer Cell Survival and the Therapeutic Activity of Engineered Ashwagandha Extract Having Differential Withanolide Constitutions. Integr Cancer Ther 2024; 23:15347354231223499. [PMID: 38281118 PMCID: PMC10823841 DOI: 10.1177/15347354231223499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 01/29/2024] Open
Abstract
Ashwagandha (Withania somnifera) has gained worldwide popularity for a multitude of health benefits inclusive of cancer-preventive and curative effects. Despite numerous research data supporting the benefits of this wonder herb, the actual use of ashwagandha for cancer treatment in clinics is limited. The primary reason for this is the inconsistent therapeutic outcome due to highly variable composition and constitution of active ingredients in the plant extract impacting ashwagandha's pharmacology. We investigate here an engineered yield: an ashwagandha extract (Oncowithanib) that has a unique and fixed portion of active ingredients to achieve consistent and effective therapeutic activity. Using the MCF7 cell line, Oncowithanib was studied for its anti-neoplastic efficacy and drug targets associated with cell cycle regulation, translation machinery, and cell survival and apoptosis. Results demonstrate a dose-dependent decline in Oncowithanib-treated MCF7 cell viability and reduced colony-forming ability. Treated cells showed increased cell death as evidenced by enhancement of Caspase 3 enzyme activity and decreased expressions of cell proliferation markers such as Ki67 and Aurora Kinase A. Oncowithanib treatment was also found to be associated with expressional suppression of key cellular kinases such as RSK1, Akt1, and mTOR in MCF7 cells. Our findings indicate that Oncowithanib decreases MCF7 cell survival and propagation, and sheds light on common drug targets that might be good candidates for the development of cancer therapeutics. Further in-depth investigations are required to fully explore the potency and pharmacology of this novel extract. This study also highlights the importance of the standardization of herbal extracts to get consistent therapeutic activity for the disease indication.
Collapse
Affiliation(s)
- Franco Cavaleri
- Biologic Pharmamedical Research, Surrey, BC, Canada
- Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | | | | | - Pradip Kumar Kar
- Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Ritam Chatterjee
- Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| |
Collapse
|
2
|
Liu Z, Jin C, Zhang Y, Jiang Y, Wang J, Zheng L. Identification of BRAF, CCND1, and MYC mutations in a patient with multiple primary malignant tumors: a case report and review of the literature. World J Surg Oncol 2023; 21:158. [PMID: 37221610 DOI: 10.1186/s12957-023-03036-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Multiple primary malignant tumors (MPMTs), usually associated with worse malignant behavior and prognosis comparing to a single primary tumor, and have recently been found to have an increasing incidence globally. However, the pathogenesis of MPMTs remains to be clarified. Here, we report a unique case of the coexistence of malignant melanoma (MM), papillary thyroid carcinoma (PTC), and clear-cell renal cell carcinoma (ccRCC) along with our perceptions on its pathogenesis. CASE PRESENTATION The case reported is of a 59-year-old male patient with unilateral nasal obstruction as well as a renal occupying lesion. Positron emission tomography-computed tomography (PET-CT) revealed a palpable mass of 32 × 30 mm on the posterior and left walls of the nasopharynx. In addition, an isodense nodule was observed in the right superior renal pole, approximately 25 mm in diameter, as well as a slightly hypodense shadow in the right leaf of the thyroid, approximately 13 mm in diameter. Nasal endoscopy and magnetic resonance imaging (MRI) confirmed the existence of a nasopharyngeal neoplasm. Afterward, biopsies of the nasopharyngeal neoplasm, thyroid gland and kidney were performed, and the patient was diagnosed with MM, PTC, and ccRCC according to the pathological and immunohistochemical results. Moreover, mutation of BRAFV600E was detected in bilateral thyroid tissues, and amplification of both CCND1 and MYC oncogenes were detected in the nasopharyngeal melanoma. After chemotherapy, the patient is now in good overall condition. CONCLUSIONS This is the first reported case of a patient with the co-existence of MM, PTC and ccRCC undergoing chemotherapy with a favorable prognosis. Herein, we suggest that such a combination may be non-random, as for mutation of BRAFV600E might account for the co-occurrence of PTC and MM, while mutations of CCND1 and MYC cause the coexistence of MM and ccRCC. This finding may provide valuable guidance on the diagnosis and treatment of such disease, as well as the prevention of developing a second or third tumor for patients with a single primary.
Collapse
Affiliation(s)
- Zheyu Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Cheng Jin
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yi Zhang
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yongquan Jiang
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jingshuo Wang
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Luying Zheng
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
3
|
Extracting phylogenetic dimensions of coevolution reveals hidden functional signals. Sci Rep 2022; 12:820. [PMID: 35039514 PMCID: PMC8764114 DOI: 10.1038/s41598-021-04260-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
Despite the structural and functional information contained in the statistical coupling between pairs of residues in a protein, coevolution associated with function is often obscured by artifactual signals such as genetic drift, which shapes a protein's phylogenetic history and gives rise to concurrent variation between protein sequences that is not driven by selection for function. Here, we introduce a background model for phylogenetic contributions of statistical coupling that separates the coevolution signal due to inter-clade and intra-clade sequence comparisons and demonstrate that coevolution can be measured on multiple phylogenetic timescales within a single protein. Our method, nested coevolution (NC), can be applied as an extension to any coevolution metric. We use NC to demonstrate that poorly conserved residues can nonetheless have important roles in protein function. Moreover, NC improved the structural-contact predictions of several coevolution-based methods, particularly in subsampled alignments with fewer sequences. NC also lowered the noise in detecting functional sectors of collectively coevolving residues. Sectors of coevolving residues identified after application of NC were more spatially compact and phylogenetically distinct from the rest of the protein, and strongly enriched for mutations that disrupt protein activity. Thus, our conceptualization of the phylogenetic separation of coevolution provides the potential to further elucidate relationships among protein evolution, function, and genetic diseases.
Collapse
|
4
|
Iqbal A, Suryawanshi R, Yadavalli T, Volety I, Shukla D. BX795 demonstrates potent antiviral benefits against herpes simplex Virus-1 infection of human cell lines. Antiviral Res 2020; 180:104814. [PMID: 32380150 DOI: 10.1016/j.antiviral.2020.104814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus-1 (HSV-1) infection is known to cause skin blisters, keratitis as well as deadly cases of encephalitis in some situations. Only a few therapeutic modalities are available for this globally prevalent infection. Very recently, a small molecule BX795 was identified as an inhibitor of HSV-1 protein synthesis in an ocular model of infection. In order to demonstrate its broader antiviral benefits, this study was aimed at evaluating the antiviral efficacy, mode-of-action, and toxicity of BX795 against HSV-1 infection of three human cell lines: HeLa, HEK, and HCE. Several different assays, including cell survival analysis, imaging, plaque analysis, Immunoblotting, and qRT-PCR, were performed. In all cases, BX795 demonstrated low toxicity at therapeutic concentration and showed strong antiviral benefits. Quite interestingly, cell line-dependent differences in the mechanism of antiviral action and cytokine response to infection were seen upon BX795 treatment. Taken together, our results suggest that BX795 may exert its antiviral benefits via cell-line specific mechanisms.
Collapse
Affiliation(s)
- Aqsa Iqbal
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Ipsita Volety
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA.
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA.
| |
Collapse
|
5
|
RACK1/TRAF2 regulation of modulator of apoptosis-1 (MOAP-1). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:684-694. [DOI: 10.1016/j.bbamcr.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 01/23/2023]
|
6
|
De Wit R, Boonstra J, Verkleij AJ, Post JA. Large Scale Screening Assay for the Phosphorylation of Mitogen-Activated Protein Kinase in Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/108705719800300406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that are activated by phosphorylation and are involved in the cellular response to various physiologic stimuli and stress conditions. Because MAP kinases play an important role in cellular functioning, a screening assay to determine the phosphorylation of MAP kinase upon various conditions was desirable. Therefore, we have developed a cellular enzyme-linked immunosorbent assay (Cell-ELISA), in which the phosphorylated forms of p42MAPK and p44MAPK are detected. We show that in this Cell-ELISA, MAP kinase becomes phosphorylated in a dose- and time-dependent manner under proliferative or stress conditions. This dose- and time-dependent phosphorylation agrees with observations using classical gel-electrophoresis and Western blotting techniques. Furthermore, we show that our assay is applicable to different cell types and that serum-starvation is not required for detection of an increase in MAP kinase phosphorylation. From these experiments, it is concluded that the Cell-ELISA is a reliable and fast method for quantitative detection of the phosphorylation, and thus the activation, of MAP kinase. This assay is applicable for a large-scale screening of the effectivity of biological or chemical compounds that modulate the cellular response to physiologic stimuli or stress through phosphorylation and activation of MAP kinase.
Collapse
Affiliation(s)
- Renate De Wit
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Johannes Boonstra
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Arie J. Verkleij
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| | - Jan Andries Post
- Institute of Biomembranes, Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
CYP2E1- and TNFalpha/LPS-Induced Oxidative Stress and MAPK Signaling Pathways in Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0092-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Welsh DJ, Peacock AJ. Cellular responses to hypoxia in the pulmonary circulation. High Alt Med Biol 2014; 14:111-6. [PMID: 23795730 DOI: 10.1089/ham.2013.1016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hypoxia can be defined as a reduction in available oxygen, whether in a whole organism or in a tissue or cell. It is a real life cause of pulmonary hypertension in humans both in terms of patients with chronic hypoxic lung disease and people living at high altitude. The effect of hypoxia on the pulmonary vasculature can be described in two ways; Hypoxic pulmonary vasoconstriction (HPV) (resulting from smooth muscle cell contraction) and pulmonary vascular remodelling (PVR) (resulting from pulmonary vascular cell proliferation). The pulmonary artery is made up of three resident cell types, the endothelial (intima), smooth muscle (media) and fibroblast (adventitia) cells. This review will examine the effects of hypoxia on the cells of the pulmonary vasculature and give an insight into the possible underlying mechanisms.
Collapse
Affiliation(s)
- David J Welsh
- Scottish Pulmonary Vascular Unit, Regional Heart and Lung Center, Glasgow, United Kingdom
| | | |
Collapse
|
9
|
Masnadi-Shirazi M, Maurya MR, Subramaniam S. Time-varying causal inference from phosphoproteomic measurements in macrophage cells. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2014; 8:74-86. [PMID: 24681921 PMCID: PMC4631079 DOI: 10.1109/tbcas.2013.2288035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellular signaling circuitry in eukaryotes can be studied by analyzing the regulation of protein phosphorylation and its impact on downstream mechanisms leading to a phenotype. A primary role of phosphorylation is to act as a switch to turn "on" or "off" a protein activity or a cellular pathway. Specifically, protein phosphorylation is a major leit motif for transducing molecular signals inside the cell. Errors in transferring cellular information can alter the normal function and may lead to diseases such as cancer; an accurate reconstruction of the "true" signaling network is essential for understanding the molecular machinery involved in normal and pathological function. In this study, we have developed a novel framework for time-dependent reconstruction of signaling networks involved in the activation of macrophage cells leading to an inflammatory response. Several signaling pathways have been identified in macrophage cells, but the time-varying causal relationship that can produce a dynamic directed graph of these molecules has not been explored in detail. Here, we use the notion of Granger causality, and apply a vector autoregressive model to phosphoprotein time-course data in RAW 264.7 macrophage cells. Through the reconstruction of the phosphoprotein network, we were able to estimate the directionality and the dynamics of information flow. Significant interactions were selected through statistical hypothesis testing ( t-test) of the coefficients of a linear model and were used to reconstruct the phosphoprotein signaling network. Our approach results in a three-stage phosphoprotein network that represents the evolution of the causal interactions in the intracellular signaling pathways.
Collapse
Affiliation(s)
- Maryam Masnadi-Shirazi
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Mano Ram Maurya
- San Diego Supercomputer Center and the Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Shankar Subramaniam
- Department of Bioengineering, Departments of Chemistry and Biochemistry, Cellular and Molecular Medicine and the Graduate Program in Bioinformatics, University of California, San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
10
|
Dostal DE, Feng H, Nizamutdinov D, Golden HB, Afroze SH, Dostal JD, Jacob JC, Foster DM, Tong C, Glaser S, Gerilechaogetu F. Mechanosensing and Regulation of Cardiac Function. ACTA ACUST UNITED AC 2014; 5:314. [PMID: 25485172 PMCID: PMC4255974 DOI: 10.4172/2155-9880.1000314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of mechanical force as an important regulator of structure and function of mammalian cells, tissues, and organs has recently been recognized. However, mechanical overload is a pathogenesis or comorbidity existing in a variety of heart diseases, such as hypertension, aortic regurgitation and myocardial infarction. Physical stimuli sensed by cells are transmitted through intracellular signal transduction pathways resulting in altered physiological responses or pathological conditions. Emerging evidence from experimental studies indicate that β1-integrin and the angiotensin II type I (AT1) receptor play critical roles as mechanosensors in the regulation of heart contraction, growth and leading to heart failure. Integrin link the extracellular matrix and the intracellular cytoskeleton to initiate the mechanical signalling, whereas, the AT1 receptor could be activated by mechanical stress through an angiotensin-II-independent mechanism. Recent studies show that both Integrin and AT1 receptor and their downstream signalling factors including MAPKs, AKT, FAK, ILK and GTPase regulate heart function in cardiac myocytes. In this review we describe the role of mechanical sensors residing within the plasma membrane, mechanical sensor induced downstream signalling factors and its potential roles in cardiac contraction and growth.
Collapse
Affiliation(s)
- David E Dostal
- Central Texas Veterans Health Care System, Temple, Texas, USA ; Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Hao Feng
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Damir Nizamutdinov
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Honey B Golden
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Syeda H Afroze
- Scott & White Healthcare - Digestive Disease Research Centre, Temple, Texas, USA
| | - Joseph D Dostal
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - John C Jacob
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Donald M Foster
- Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Carl Tong
- Systems Biology and Translational Medicine, the Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| | - Shannon Glaser
- Central Texas Veterans Health Care System, Temple, Texas, USA ; Scott & White Healthcare - Digestive Disease Research Centre, Temple, Texas, USA
| | - Fnu Gerilechaogetu
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M University Health Science Centre, College of Medicine, Temple, Texas, USA
| |
Collapse
|
11
|
Park K, Kwak IS. Gene expression of ribosomal protein mRNA in Chironomus riparius: effects of endocrine disruptor chemicals and antibiotics. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:113-20. [PMID: 22609975 DOI: 10.1016/j.cbpc.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/30/2022]
Abstract
Ribosomal protein genes are essential for cellular development. To examine the effects of ribosomal protein genes under various cellular stress conditions in chironomids, ribosomal protein S3 (RpS3) and S6 (RpS6) cDNA from Chironomus riparius were characterized and their expression was analyzed during development. A comparative and phylogenetic study among different orders of insects was carried out by analysis of sequence databases. C. riparius RpS3 was highly conserved at the protein level and shared over 85% amino acid identity with homologous sequences from other insects. RpS6 also showed approximately 80% amino acid identity. The RpS3 and S6 transcripts were present during different developmental stages but were most abundant during the embryonic stage. Furthermore, expression of the previously reported ribosomal proteins RpL11, L13, and L15, as well as RpS3 and S6 was analyzed following exposure to various concentrations of three endocrine disruptor chemicals (EDCs), di(2-ethylhexyl) phthalate, bisphenol A, and 4-nonylphenol (4NP), and the veterinary antibiotics (VAs) fenbendazole, sulfathiazole, and lincomycin. Only RpS3 gene expression was up-regulated significantly in response to EDCs and fenbendazole. However, the C. riparius ribosomal proteins showed a limited response to cellular stress, following exposure to EDCs and VAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Benzhydryl Compounds
- Chironomidae/drug effects
- Chironomidae/genetics
- Chironomidae/metabolism
- Consensus Sequence
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Diethylhexyl Phthalate/toxicity
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Endocrine Disruptors/toxicity
- Environmental Monitoring/methods
- Fenbendazole/toxicity
- Gene Expression Regulation
- Genes, rRNA
- Life Cycle Stages/drug effects
- Lincomycin/toxicity
- Phenols/toxicity
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Protein S6/genetics
- Ribosomal Protein S6/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Stress, Physiological
- Sulfathiazole
- Sulfathiazoles/toxicity
- Toxicity Tests, Acute/methods
- Transcription, Genetic
Collapse
Affiliation(s)
- Kiyun Park
- Department of Fisheries and Ocean Science, Chonnam National University, Dundeok-dong, Yeosu, Jeonnam, Republic of Korea
| | | |
Collapse
|
12
|
Cederbaum AI, Yang L, Wang X, Wu D. CYP2E1 Sensitizes the Liver to LPS- and TNF α-Induced Toxicity via Elevated Oxidative and Nitrosative Stress and Activation of ASK-1 and JNK Mitogen-Activated Kinases. Int J Hepatol 2011; 2012:582790. [PMID: 22028977 PMCID: PMC3199085 DOI: 10.1155/2012/582790] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 01/04/2023] Open
Abstract
The mechanisms by which alcohol causes cell injury are not clear. A major mechanism is the role of lipid peroxidation and oxidative stress in alcohol toxicity. Many pathways have been suggested to play a role in how alcohol induces oxidative stress. Considerable attention has been given to alcohol elevated production of lipopolysaccharide (LPS) and TNFα and to alcohol induction of CYP2E1. These two pathways are not exclusive of each other; however, interactions between them, have not been extensively evaluated. Increased oxidative stress from induction of CYP2E1 sensitizes hepatocytes to LPS and TNFα toxicity and oxidants, activation of inducible nitric oxide synthase and p38 and JNK MAP kinases, and mitochondrial dysfunction are downstream mediators of this CYP2E1-LPS/TNFα-potentiated hepatotoxicity. This paper will summarize studies showing potentiated interactions between these two risk factors in promoting liver injury and the mechanisms involved including activation of the mitogen-activated kinase kinase kinase ASK-1. Decreasing either cytosolic or mitochondrial thioredoxin in HepG2 cells expressing CYP2E1 causes loss of cell viability and elevated oxidative stress via an ASK-1/JNK-dependent mechanism. We hypothesize that similar interactions occur as a result of ethanol induction of CYP2E1 and TNFα.
Collapse
Affiliation(s)
- Arthur I. Cederbaum
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, P.O. Box 1603, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lili Yang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, P.O. Box 1603, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiaodong Wang
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, P.O. Box 1603, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Defeng Wu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, P.O. Box 1603, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
13
|
Li T, Li WY, Bai HL, Ma HB, Zhang H, Zhu JM, Li XH, Huang HY, Ma YF, Ji XY. The genetic profiling of preferentially expressed genes in murine splenic CD8α+ dendritic cells. Immunol Res 2011; 51:80-96. [PMID: 21814860 DOI: 10.1007/s12026-011-8237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the murine splenocytes, CD8α+ dendritic cells (abbreviated as 8+DC) and CD8α- dendritic cells (abbreviated as 8-DC) are identified with some vague features for each of them. 8+DCs but not 8-DCs cross-prime cytotoxic T cells in vivo. We aim to distinguish the two subtypes of DC based on gene expression profiling. Suppressive subtractive hybridization was undertaken to get differentially expressed genes from such subtracted cDNA library specific to 8+DC. A total of 114 sequences from the subtracted cDNA library specific to 8+DC library were analyzed. Most of them are known proteins, but some of them were novel, either totally novel genes or homologs to known genes, but with novel exon. About 55 probably novel exons were discovered, and 11 exons had longer length than those in gene bank. The clones 12, 44, 79, and 110 have no match with known sequences in gene bank. Then, semi-quantitative PCR was done to compare the expression of the enriched sequences between 8+DC and 8-DC. About 14 genes are differentially expressed in 8+DC. Therefore, SSH is an effective method to clone differentially expressed genes for 8+DC compared to 8-DC.
Collapse
Affiliation(s)
- Tao Li
- Henan Provincial Key Laboratory for Cellular and Molecular Immunology, School of Medicine, Henan University, 1000 Jinming-Dadao Ave, Kai-Feng, Henan 475004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Buchholz B, Klanke B, Schley G, Bollag G, Tsai J, Kroening S, Yoshihara D, Wallace DP, Kraenzlin B, Gretz N, Hirth P, Eckardt KU, Bernhardt WM. The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrol Dial Transplant 2011; 26:3458-65. [PMID: 21804086 DOI: 10.1093/ndt/gfr432] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of renal failure. Aberrant epithelial cell proliferation is a major cause of progressive cyst enlargement in ADPKD. Since activation of the Ras/Raf signaling system has been detected in cyst-lining epithelia, inhibition of Raf kinase has been proposed as an approach to retard the progression of ADPKD. Methods and results. PLX5568, a novel selective small molecule inhibitor of Raf kinases, attenuated proliferation of human ADPKD cyst epithelial cells. It reduced in vitro cyst growth of Madin-Darby Canine Kidney cells and of human ADPKD cells within a collagen gel. In male cy/+ rats with polycystic kidneys, PLX5568 inhibited renal cyst growth along with a significant reduction in the number of proliferating cell nuclear antigen- and phosphorylated extracellular signal-regulated kinase-positive cyst-lining epithelial cells. Furthermore, treated animals showed increased capacity to concentrate urine. However, PLX5568 did not lead to a consistent improvement of renal function. Moreover, although relative cyst volume was decreased, total kidney-to-body weight ratio was not significantly reduced by PLX5568. Further analyses revealed a 2-fold increase of renal and hepatic fibrosis in animals treated with PLX5568. CONCLUSIONS PLX5568 attenuated cyst enlargement in vitro and in a rat model of ADPKD without improving kidney function, presumably due to increased renal fibrosis. These data suggest that effective therapies for the treatment of ADPKD will need to target fibrosis as well as the growth of cysts.
Collapse
Affiliation(s)
- Bjoern Buchholz
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gupta S, Maurya MR, Subramaniam S. Identification of crosstalk between phosphoprotein signaling pathways in RAW 264.7 macrophage cells. PLoS Comput Biol 2010; 6:e1000654. [PMID: 20126526 PMCID: PMC2813256 DOI: 10.1371/journal.pcbi.1000654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/21/2009] [Indexed: 11/25/2022] Open
Abstract
Signaling pathways mediate the effect of external stimuli on gene expression in cells. The signaling proteins in these pathways interact with each other and their phosphorylation levels often serve as indicators for the activity of signaling pathways. Several signaling pathways have been identified in mammalian cells but the crosstalk between them is not well understood. Alliance for Cellular Signaling (AfCS) has measured time-course data in RAW 264.7 macrophage cells on important phosphoproteins, such as the mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STATs), in single- and double-ligand stimulation experiments for 22 ligands. In the present work, we have used a data-driven approach to analyze the AfCS data to decipher the interactions and crosstalk between signaling pathways in stimulated macrophage cells. We have used dynamic mapping to develop a predictive model using a partial least squares approach. Significant interactions were selected through statistical hypothesis testing and were used to reconstruct the phosphoprotein signaling network. The proposed data-driven approach is able to identify most of the known signaling interactions such as protein kinase B (Akt) --> glycogen synthase kinase 3alpha/beta (GSKalpha/beta) etc., and predicts potential novel interactions such as P38 --> RSK and GSK --> ezrin/radixin/moesin. We have also shown that the model has good predictive power for extrapolation. Our novel approach captures the temporal causality and directionality in intracellular signaling pathways. Further, case specific analysis of the phosphoproteins in the network has led us to propose hypothesis about inhibition (phosphorylation) of GSKalpha/beta via P38.
Collapse
Affiliation(s)
- Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Mano Ram Maurya
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Chemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
- Graduate Program in Bioinformatics, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
16
|
Matsunaga-Udagawa R, Fujita Y, Yoshiki S, Terai K, Kamioka Y, Kiyokawa E, Yugi K, Aoki K, Matsuda M. The scaffold protein Shoc2/SUR-8 accelerates the interaction of Ras and Raf. J Biol Chem 2010; 285:7818-26. [PMID: 20051520 DOI: 10.1074/jbc.m109.053975] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epidermal growth factor-stimulated HeLa cells, RNA-mediated Shoc2 knockdown reduced the phosphorylation of MEK and ERK with half-maximal inhibition, but not the activation of Ras. For the live monitoring of Ras binding to Raf, we utilized a FRET biosensor wherein Ras and the Ras-binding domain of Raf were connected tandemly and sandwiched with acceptor and donor fluorescent proteins for the FRET measurement. With this biosensor, we found that Shoc2 was required for the rapid interaction of Ras with Raf upon epidermal growth factor stimulation. To decipher the molecular mechanisms underlying the kinetics, we developed two computational models that might account for the action of Shoc2 in the Ras-ERK signaling. One of these models, the Shoc2 accelerator model, provided a reasonable explanation of the experimental observations. In this Shoc2 accelerator model, Shoc2 accelerated both the association and dissociation of Ras-Raf interaction. We propose that Shoc2 regulates the spatio-temporal patterns of the Ras-ERK signaling pathway primarily by accelerating the Ras-Raf interaction.
Collapse
Affiliation(s)
- Rie Matsunaga-Udagawa
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Teraishi T, Miura K. Toward anin situphospho-protein atlas: phospho- and site-specific antibody-based spatio-temporally systematized detection of phosphorylated proteinsin vivo. Bioessays 2009; 31:831-42. [DOI: 10.1002/bies.200900006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Imayasu M, Shimada S. Phosphorylation of MAP kinase in corneal epithelial cells during wound healing. Curr Eye Res 2009; 27:133-41. [PMID: 14562178 DOI: 10.1076/ceyr.27.3.133.16055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To investigate the role of mitogen-activated protein kinase (MAPK), such as p44/42 MAPK, p38 MAPK and stress-activated protein kinase (SAPK), in corneal epithelial cells during the wound healing process. METHODS A single non-penetrating incision was produced on rat cornea. Then the corneal wound healing process was observed with an immunocytochemical technique using specific antibodies reacting only with phosphorylated p44/42 MAPK, p38 MAPK or SAPK. Cell lysates of corneal epithelial cells in rabbits stimulated with keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF) were processed for Western blot using antibodies to phosphorylated p44/42 MAPK. RESULTS Maximum activation of p44/42 MAPK was observed in wing and basal cells at wounded regions in rat cornea at 1 hour after the incision. Activation of p44/42 MAPK was still detected in all basal and wing cells at wounded regions at up to 24 hours when the incisions were completely closed, and then receded to normal intensity after 7 days. Neither p38 MAPK nor SAPK were activated during the wound healing process. Western blot analysis of cultured corneal epithelial cells in rabbits showed phosphorylation of p44/42 MAPK after 30 minutes in response to KGF and HGF, whereas non-activated p44/42 MAPK was ordinarily detected even at the absence of KGF or HGF. CONCLUSIONS These results demonstrate that p44/42 MAPK is activated during the corneal wound healing process and suggest that KGF and HGF play an important role in initiation of cell migration and proliferation in the initial wound healing process by activating p44/42 MAPK.
Collapse
Affiliation(s)
- Masaki Imayasu
- Department of Anatomy, Nagoya City University Medical School, Nagoya, Japan.
| | | |
Collapse
|
19
|
Terasawa K, Ichimura A, Sato F, Shimizu K, Tsujimoto G. Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J 2009; 276:3269-76. [PMID: 19438724 DOI: 10.1111/j.1742-4658.2009.07041.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by inhibiting translation and/or inducing degradation of target mRNAs, and they play important roles in a wide variety of biological functions including cell differentiation, tumorigenesis, apoptosis and metabolism. However, there is a paucity of information concerning the regulatory mechanism of miRNA expression. Here we report identification of growth factor-regulated miRNAs using the PC12 cell line, an established model of neuronal growth and differentiation. We found that expression of miR-221 and miR-222 expression were induced by nerve growth factor (NGF) stimulation in PC12 cells, and that this induction was dependent on sustained activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway. Using a target prediction program, we also identified a pro-apototic factor, the BH3-only protein Bim, as a potential target of miR-221/222. Overexpression of miR-221 or miR-222 suppressed the activity of a luciferase reporter activity fused to the 3' UTR of Bim mRNA. Furthermore, overexpression of miR-221/222 decreased endogenous Bim mRNA expression. These results reveal that the ERK signal regulates miR-221/222 expression, and that these miRNAs might contribute to NGF-dependent cell survival in PC12 cells.
Collapse
Affiliation(s)
- Kazuya Terasawa
- Department of Pharmcogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Japan
| | | | | | | | | |
Collapse
|
20
|
Xiao C, Zhang L, Cheng QP, Zhang LC. The activation of extracellular signal-regulated protein kinase 5 in spinal cord and dorsal root ganglia contributes to inflammatory pain. Brain Res 2008; 1215:76-86. [PMID: 18486117 DOI: 10.1016/j.brainres.2008.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/11/2008] [Accepted: 03/27/2008] [Indexed: 12/19/2022]
Abstract
Activation of mitogen-activated protein kinases (MAPKs) in dorsal root ganglia (DRG) and the spinal dorsal horn contributes to inflammatory pain by transcription-dependent and -independent means. In this study, we investigated extracellular signal-regulated protein kinase 5 (ERK5) activation by peripheral inflammation in the spinal cord and DRG of rats and whether this activation contributes to a heat and mechanical hyperalgesia response. Injection of complete Freund's adjuvant (CFA) into a hindpaw produced persistent inflammation and sustained ERK5 activation in DRG and the spinal dorsal horn. Knockdown of the ERK5 by antisense oligonucleotides suppressed the heat and mechanical hyperalgesia. In addition, the antisense knockdown of ERK5 reduced CFA-induced phosphorylation of cAMP response-element binding protein (CREB), a downstream substrate of the ERK5 pathway, and expression of Fos, a marker for neuronal activation in the central nervous system. Our study suggests that activation of the ERK5 signaling pathway contributes to persistent hyperalgesia induced by peripheral inflammation.
Collapse
Affiliation(s)
- Chun Xiao
- Research Institute of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai West Road, Xuzhou 221002, PR China
| | | | | | | |
Collapse
|
21
|
Wilson SE, Aston R. Biologicals and Immunologicals Overview: Recent developments in macrolide immunosuppressants. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.4.12.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Abstract
The 90 kDa heat shock proteins (Hsp90), which are integrally involved in cell signaling, proliferation, and survival, are ubiquitously expressed in cells. Many proteins in tumor cells are dependent upon the Hsp90 protein folding machinery for their stability, refolding, and maturation. Inhibition of Hsp90 uniquely targets client proteins associated with all six hallmarks of cancer. Thus, Hsp90 has emerged as a promising target for the treatment of cancer. Hsp90 exists as a homodimer, which contains three domains. The N-terminal domain contains an ATP-binding site that binds the natural products geldanamycin and radicicol. The middle domain is highly charged and has high affinity for co-chaperones and client proteins. Initial studies by Csermely and co-workers suggested a second ATP-binding site in the C-terminus of Hsp90. This C-terminal nucleotide binding pocket has been shown to not only bind ATP, but cisplatin, novobiocin, epilgallocatechin-3-gallate (EGCG) and taxol. The coumarin antibiotics novobiocin, clorobiocin, and coumermycin A1 were isolated from several streptomyces strains and exhibit potent activity against Gram-positive bacteria. These compounds bind type II topoisomerases, including DNA gyrase, and inhibit the enzyme-catalyzed hydrolysis of ATP. As a result, novobiocin analogues have garnered the attention of numerous researchers as an attractive agent for the treatment of bacterial infection. Novobiocin was reported to bind weakly to the newly discovered Hsp90 C-terminal ATP binding site ( approximately 700 M in SkBr3 cells) and induce degradation of Hsp90 client proteins. Structural modification of this compound has led to an increase of 1000-fold in activity in anti-proliferative assays. Recent studies of structure-activity relationship (SAR) by Renoir and co-workers highlighted the crucial role of the C-4 and/or C-7 positions of the coumarin and removal of the noviose moiety, which appeared to be essential for degradation of Hsp90 client proteins. Unlike the N-terminal ATP binding site, there is no reported co-crystal structure of Hsp90 C-terminus bound to any inhibitor. The Hsp90 C-terminal domain, however, is known to contain a conserved pentapeptide sequence (MEEVD) which is recognized by co-chaperones. Cisplatin is a platinum-containing chemotherapeutic used to treat various types of cancers, including testicular, ovarian, bladder, and small cell lung cancer. Most notably, cisplatin coordinates to DNA bases, resulting in cross-linked DNA, which prohibits rapidly dividing cells from duplicating DNA for mitosis. Itoh and co-workers reported that cisplatin decreases the chaperone activity of Hsp90. This group applied bovine brain cytosol to a cisplatin affinity column, eluted with cisplatin and detected Hsp90 in the eluent. Subsequent experiments indicated that cisplatin exhibits high affinity for Hsp90. Moreover Csermely and co-workers determined that the cisplatin binding site is located proximal to the C-terminal ATP binding site. EGCG is one of the active ingredients found in green tea. EGCG is known to inhibit the activity of many Hsp90-dependent client proteins, including telomerase, several kinases, and the aryl hydrocarbon receptor (AhR). Recently Gasiewicz and co-workers reported that EGCG manifests its antagonistic activity against AhR through binding Hsp90. Similar to novobiocin, EGCG was shown to bind the C-terminus of Hsp90. Unlike previously identified N-terminal Hsp90 inhibitors, EGCG does not appear to prevent Hsp90 from forming multiprotein complexes. Studies are currently underway to determine whether EGCG competes with novobiocin or cisplatin binding. Taxol, a well-known drug for the treatment of cancer, is responsible for the stabilization of microtubules and the inhibition of mitosis. Previous studies have shown that taxol induces the activation of kinases and transcription factors, and mimics the effect of bacterial lipopolysaccharide (LPS), an attribute unrelated to its tubulin-binding properties. Rosen and co-workers prepared a biotinylated taxol derivative and performed affinity chromatography experiments with lysates from both mouse brain and macrophage cell lines. These studies led to identification of two chaperones, Hsp70 and Hsp90, by mass spectrometry. In contrast to typical Hsp90-binding drugs, taxol exhibits a stimulatory response. Recently it was reported that the geldanamycin derivative 17-AAG behaves synergistically with taxol-induced apoptosis. This review describes the different C-terminal inhibitors of Hsp90, with specific emphasis on structure-activity relationship studies of novobiocin and their effects on anti-proliferative activity.
Collapse
Affiliation(s)
- Alison Donnelly
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas 66045-7563, USA
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, Kansas 66045-7563, USA
| |
Collapse
|
23
|
Morimoto H, Kondoh K, Nishimoto S, Terasawa K, Nishida E. Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation. J Biol Chem 2007; 282:35449-56. [PMID: 17928297 DOI: 10.1074/jbc.m704079200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK5 plays a crucial role in many biological processes by regulating transcription. ERK5 has a large C-terminal-half that contains a transcriptional activation domain. However, it has remained unclear how its transcriptional activation activity is regulated. Here, we show that the activated kinase activity of ERK5 is required for the C-terminal-half to enhance the AP-1 activity, and that the activated ERK5 undergoes autophosphorylation on its most C-terminal region. Changing these phosphorylatable threonine and serine residues to unphosphorylatable alanines significantly reduces the transcriptional activation activity of ERK5. Moreover, phosphomimetic mutants of the C-terminal-half of ERK5 without an N-terminal kinase domain are shown to be able to enhance the AP-1 activity in fibroblastic cells. These results reveal the role of the stimulus-induced ERK5 autophosphorylation in regulation of gene expression.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
24
|
Kondoh K, Nishida E. Regulation of MAP kinases by MAP kinase phosphatases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1227-37. [PMID: 17208316 DOI: 10.1016/j.bbamcr.2006.12.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 11/24/2022]
Abstract
MAP kinase phosphatases (MKPs) catalyze dephosphorylation of activated MAP kinase (MAPK) molecules and deactivate them. Therefore, MKPs play an important role in determining the magnitude and duration of MAPK activities. MKPs constitute a structurally distinct family of dual-specificity phosphatases. The MKP family members share the sequence homology and the preference for MAPK molecules, but they are different in substrate specificity among MAPK molecules, tissue distribution, subcellular localization and inducibility by extracellular stimuli. Our understanding of their protein structure, substrate recognition mechanisms, and regulatory mechanisms of the enzymatic activity has greatly increased over the past few years. Furthermore, although there are a number of MKPs, that have similar substrate specificities, non-redundant roles of MKPs have begun to be identified. Here we focus on recent findings regarding regulation and function of the MKP family members as physiological regulators of MAPK signaling.
Collapse
Affiliation(s)
- Kunio Kondoh
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
25
|
Maekawa M, Yamamoto T, Kohno M, Takeichi M, Nishida E. Requirement for ERK MAP kinase in mouse preimplantation development. Development 2007; 134:2751-9. [PMID: 17611221 DOI: 10.1242/dev.003756] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Preimplantation development is a crucial step for successful implantation and pregnancy. Although both compaction and blastocyst formation have been extensively studied, mechanisms regulating the early cell division stages before compaction have remained unclear. Here, we show that extracellular signal regulated kinase (ERK) mitogen-activated protein (MAP) kinase function is required for early embryonic cell division before compaction. Our analysis demonstrates that inhibition of ERK activation in late two-cell-stage embryos leads to a reversible arrest in the G2 phase at the four-cell stage. The G2-arrested four-cell-stage embryos showed weakened cell-cell adhesion as compared with control embryos. Remarkably, microarray analyses showed that most of the programmed changes of upregulated and downregulated gene expression during the four- to eight-cell stages proceeded normally in four-cell-stage-arrested embryos that were subsequently released to resume development; however, the expression profiles of a proportion of genes in these embryos closely paralleled the stages of embryonic rather than normal development. These parallel genes included the genes encoding intercellular adhesion molecules, whose expression appeared to be positively regulated by the ERK pathway. We also show that, whereas ERK inactivation in eight-cell-stage embryos did not lead to cell division arrest, it did cause this arrest when cadherin-mediated cell-cell adhesion was disrupted. These results demonstrate an essential role of ERK function in two-cell to eight-cell-stage embryos, and suggest a loose parallelism between the gene expression programs and the developmental stages before compaction.
Collapse
Affiliation(s)
- Momoko Maekawa
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
26
|
Muto A, Fitzgerald TN, Pimiento JM, Maloney S, Teso D, Paszkowiak JJ, Westvik TS, Kudo FA, Nishibe T, Dardik A. Smooth muscle cell signal transduction: implications of vascular biology for vascular surgeons. J Vasc Surg 2007; 45 Suppl A:A15-24. [PMID: 17544020 PMCID: PMC1939976 DOI: 10.1016/j.jvs.2007.02.061] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/17/2007] [Indexed: 12/31/2022]
Abstract
Vascular smooth muscle cells exhibit varied responses after vessel injury and surgical interventions, including phenotypic switching, migration, proliferation, protein synthesis, and apoptosis. Although the source of the smooth muscle cells that accumulate in the vascular wall is controversial, possibly reflecting migration from the adventitia, from the circulating blood, or in situ differentiation, the intracellular signal transduction pathways that control these processes are being defined. Some of these pathways include the Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, Rho, death receptor-caspase, and nitric oxide pathways. Signal transduction pathways provide amplification, redundancy, and control points within the cell and culminate in biologic responses. We review some of the signaling pathways activated within smooth muscle cells that contribute to smooth muscle cell heterogeneity and development of pathology such as restenosis and neointimal hyperplasia.
Collapse
MESH Headings
- Animals
- Apoptosis
- Bone Marrow Cells/metabolism
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Constriction, Pathologic/metabolism
- Constriction, Pathologic/pathology
- Extracellular Matrix/metabolism
- Humans
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Muscle, Smooth, Vascular/surgery
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Protein Kinases/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Vascular Surgical Procedures/adverse effects
Collapse
Affiliation(s)
- Akihito Muto
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | - Tamara N Fitzgerald
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | - Jose M Pimiento
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
- Saint Mary’s Hospital, Waterbury, CT, USA
| | - Stephen Maloney
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
- Saint Mary’s Hospital, Waterbury, CT, USA
| | - Desarom Teso
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Saint Mary’s Hospital, Waterbury, CT, USA
| | - Jacek J Paszkowiak
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Saint Mary’s Hospital, Waterbury, CT, USA
| | - Tormod S Westvik
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | - Fabio A Kudo
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alan Dardik
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
27
|
Abstract
Cardiac hypertrophy and heart failure are major causes of morbidity and mortality in Western societies. Many factors have been implicated in cardiac remodeling, including alterations in gene expression in myocytes, cardiomyocytes apoptosis, cytokines and growth factors that influence cardiac dynamics, and deficits in energy metabolism as well as alterations in cardiac extracellular matrix composition. Many therapeutic means have been shown to prevent or reverse cardiac hypertrophy. New concepts for characterizing the pathophysiology of cardiac hypertrophy have been drawn from various aspects, including medical therapy and gene therapy, or use of stem cells for tissue regeneration. In this review, we focus on various types of cardiac hypertrophy, defining the causes of hypertrophy, describing available animal models of hypertrophy, discussing the mechanisms for development of hypertrophy and its transition to heart failure, and presenting the potential use of novel promising therapeutic strategies derived from new advances in basic scientific research.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
28
|
Hernandez VP, Fallon AM. Histone H1-like, lysine-rich low complexity amino acid extensions in mosquito ribosomal proteins RpL23a and RpS6 have evolved independently. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 64:100-10. [PMID: 17212354 DOI: 10.1002/arch.20163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Histone H1-like amino acid extensions have been described at the amino terminus of Drosophila RpL22 and RpL23a, and at the carboxyl terminus of mosquito ribosomal protein RpS6. An in silico search suggested that RpL23a, but not RpL22, in Anopheles gambiae has an amino-terminal extension. Because low complexity amino acid extensions are not common on eukaryotic ribosomal proteins, and their functions are unknown, we cloned cDNAs encoding RpL23a from Aedes albopictus and Anopheles stephensi mosquito cell lines. RpL23a proteins in Aedes and Anopheles mosquitoes are rich in lysine (approximately 25%), alanine (approximately 21%), and proline (approximately 8%), have a mass of approximately 40 kDa, a pI of 11.4 to 11.5, and contain an N-terminal extension of approximately 260 amino acid residues. The N-terminal extension in mosquito RpL23a is about 100 amino acids longer than that in the Drosophila RpL23a homolog, and contains several repeated amino acid motifs. Analysis of exon-intron organization in the An. gambiae and in D. melanogaster genes suggests that a short first exon encodes a series of 11 amino acid residues conserved in RpL23a proteins from Drosophila, mosquitoes, and the moth, Bombyx mori. The histone H1-like sequence in RpL23a is encoded entirely within the second exon. The C-terminal 126 amino acid residues of the RpL23a protein, encoded by exon 3 in Drosophila, and by exons 3 and 4 in Anopheles gambiae, are well conserved, and correspond to Escherichia coli RpL23 with the addition of the eukaryotic N-terminal nuclear localization sequence. Sequence comparisons indicate that the histone H1-like extensions on mosquito RpS6 and RpL23a have evolved independently of each other, and of histone H1 proteins.
Collapse
Affiliation(s)
- Vida P Hernandez
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
29
|
Kondoh K, Sunadome K, Nishida E. Notch signaling suppresses p38 MAPK activity via induction of MKP-1 in myogenesis. J Biol Chem 2006; 282:3058-65. [PMID: 17158101 DOI: 10.1074/jbc.m607630200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cross-talks among intracellular signaling pathways are important for the regulation of cell fate decisions and cellular responses to extracellular signals. Both the Notch pathway and the MAPK pathways play important roles in many biological processes, and the Notch pathway has been shown to interact with the ERK-type MAPK pathway. However, its interaction with the other MAPK pathways is unknown. Here we show that Notch signaling activation in C2C12 cells suppresses the activity of p38 MAPK to inhibit myogenesis. Our results show that Notch specifically induces expression of MKP-1, a member of the dual-specificity MAPK phosphatase, which directly inactivates p38 to negatively regulate C2C12 myogenesis. The Notch-induced expression of MKP-1 is shown to depend on RBP-J. Moreover, inhibition of MKP-1 expression by short interfering RNA suppresses p38 inactivation and partially rescues the negative regulation of myogenesis. These results reveal a novel cross-talk between the Notch pathway and the p38 MAPK pathway that is mediated by Notch induction of MKP-1.
Collapse
Affiliation(s)
- Kunio Kondoh
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
30
|
Nishimoto S, Nishida E. MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 2006; 7:782-6. [PMID: 16880823 PMCID: PMC1525153 DOI: 10.1038/sj.embor.7400755] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/19/2006] [Indexed: 12/16/2022] Open
Abstract
Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and, similar to ERK1/2, has the Thr-Glu-Tyr (TEY) activation motif. Both ERK5 and ERK1/2 are activated by growth factors and have an important role in the regulation of cell proliferation and cell differentiation. Moreover, both the ERK5 and the ERK1/2 pathways are sensitive to PD98059 and U0126, which are two well-known inhibitors of the ERK pathway. Despite these similarities, recent studies have revealed distinctive features of the ERK5 pathway: ERK5 has a key role in cardiovascular development and neural differentiation; ERK5 nuclear translocation is controlled by its own nuclear localizing and nuclear export activities; and the carboxy-terminal half of ERK5, which follows its kinase catalytic domain, has a unique function.
Collapse
Affiliation(s)
- Satoko Nishimoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
31
|
Guttman JA, Samji FN, Li Y, Vogl AW, Finlay BB. Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infect Immun 2006; 74:6075-84. [PMID: 16954399 PMCID: PMC1695516 DOI: 10.1128/iai.00721-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is widely accepted that tight junctions are altered during infections by attaching and effacing (A/E) pathogens. These disruptions have been demonstrated both in vitro and more recently in vivo. For in vivo experiments, the murine model of A/E infection with Citrobacter rodentium is the animal model of choice. In addition to effects on tight junctions, these bacteria also colonize the colon at high levels, efface colonocyte microvilli, and cause hyperplasia and inflammation. Although we have recently demonstrated that tight junctions are disrupted by C. rodentium, the issue of direct effects of bacteria on epithelial cell junctions versus the indirect effects of inflammation still remains to be clarified. Here, we demonstrate that during the C. rodentium infections, inflammation plays no discernible role in the alteration of tight junctions. The distribution of the tight junction proteins, claudin-1, -3, and -5, are unaffected in inflamed colon, and junctions appear morphologically unaltered when viewed by electron microscopy. Additionally, tracer molecules are not capable of penetrating the inflamed colonic epithelium of infected mice that have cleared the bacteria. Finally, infected colonocytes from mice exposed to C. rodentium for 14 days, which have high levels of bacterial attachment to colonocytes as well as inflammation, have characteristic, altered claudin localization whereas cells adjacent to infected colonocytes retain their normal claudin distribution. We conclude that inflammation plays no discernible role in tight junction alteration during A/E pathogenesis and that tight junction disruption in vivo appears dependent only on the direct intimate attachment of the pathogenic bacteria to the cells.
Collapse
Affiliation(s)
- Julian A Guttman
- The University of British Columbia, Michael Smith Laboratories, and Department of Cellular and Physiological Sciences, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
32
|
Abstract
The extracellular-signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling pathway plays an important role in various cellular responses, including cell proliferation, cell differentiation and cell survival. Recent studies have identified a number of Ras/ERK signaling-related proteins, such as scaffold proteins and inhibitors. These proteins modulate ERK signaling and thereby could give variations in ERK signaling outputs that regulate cell fate decisions. Here we focus on the role of ERK signaling in cell cycle progression from G0/G1 to S phase and cancer.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
33
|
Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E. Continuous ERK Activation Downregulates Antiproliferative Genes throughout G1 Phase to Allow Cell-Cycle Progression. Curr Biol 2006; 16:1171-82. [PMID: 16782007 DOI: 10.1016/j.cub.2006.04.044] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The ERK family of MAP kinase plays a critical role in growth factor-stimulated cell-cycle progression from G0/G1 to S phase. It has been suggested that sustained activation, but not transient activation, of ERK is necessary for inducing S phase entry. Although the essential role of ERK MAP kinase in growth factor-stimulated gene expression, especially expression of immediate-early genes, is well established, it has remained unclear how ERK activity duration affects the promotion of G1 phase progression to S phase. RESULTS We have found that inhibition of ERK activation by the MEK inhibitor or dominant-negative MEK1 even immediately before the onset of S phase leads to the cessation of S phase entry. Our analyses reveal that there are ERK-dependent downregulated genes, whose expression levels return to their original levels rapidly after ERK inactivation, and that their downregulation mostly requires AP-1 activity. Remarkably, microinjection experiments demonstrate that many of the downregulated genes act as antiproliferative genes during G1 phase and that their forced expression to the levels before growth factor stimulation even in late G1 phase blocks S phase entry. CONCLUSIONS Thus, continuous ERK activation downregulates antiproliferative genes until the onset of S phase to allow successful G1 phase progression. This mechanism may also work as a fail-safe mechanism, which prevents inappropriate stimuli that induce transient ERK activation from causing S phase entry.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Kondoh K, Terasawa K, Morimoto H, Nishida E. Regulation of nuclear translocation of extracellular signal-regulated kinase 5 by active nuclear import and export mechanisms. Mol Cell Biol 2006; 26:1679-90. [PMID: 16478989 PMCID: PMC1430242 DOI: 10.1128/mcb.26.5.1679-1690.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/09/2005] [Accepted: 12/05/2005] [Indexed: 11/20/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase family, plays an important role in growth factor signaling to the nucleus. However, molecular mechanisms regulating subcellular localization of ERK5 have remained unclear. Here, we show that nucleocytoplasmic shuttling of ERK5 is regulated by a bipartite nuclear localization signal-dependent nuclear import mechanism and a CRM1-dependent nuclear export mechanism. Our results show that the N-terminal half of ERK5 binds to the C-terminal half and that this binding is necessary for nuclear export of ERK5. They further show that the activating phosphorylation of ERK5 by MEK5 results in the dissociation of the binding between the N- and C-terminal halves and thus inhibits nuclear export of ERK5, causing its nuclear import. These results reveal the mechanism by which the activating phosphorylation of ERK5 induces its nuclear import and suggest a novel example of a phosphorylation-dependent control mechanism for nucleocytoplasmic shuttling of proteins.
Collapse
Affiliation(s)
- Kunio Kondoh
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
35
|
Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, Matsuda M. Dynamics of the Ras/ERK MAPK Cascade as Monitored by Fluorescent Probes. J Biol Chem 2006; 281:8917-26. [PMID: 16418172 DOI: 10.1074/jbc.m509344200] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To comprehend the Ras/ERK MAPK cascade, which comprises Ras, Raf, MEK, and ERK, several kinetic simulation models have been developed. However, a large number of parameters that are essential for the development of these models are still missing and need to be set arbitrarily. Here, we aimed at collecting these missing parameters using fluorescent probes. First, the levels of the signaling molecules were quantitated. Second, to monitor both the activation and nuclear translocation of ERK, we developed probes based on the principle of fluorescence resonance energy transfer. Third, the dissociation constants of Ras.Raf, Raf.MEK, and MEK.ERK complexes were estimated using a fluorescent tag that can be highlighted very rapidly. Finally, the same fluorescent tag was used to measure the nucleocytoplasmic shuttling rates of ERK and MEK. Using these parameters, we developed a kinetic simulation model consisting of the minimum essential members of the Ras/ERK MAPK cascade. This simple model reproduced essential features of the observed activation and nuclear translocation of ERK. In this model, the concentration of Raf significantly affected the levels of phospho-MEK and phospho-ERK upon stimulation. This prediction was confirmed experimentally by decreasing the level of Raf using the small interfering RNA technique. This observation verified the usefulness of the parameters collected in this study.
Collapse
Affiliation(s)
- Aki Fujioka
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ebisuya M, Kondoh K, Nishida E. The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 2006; 118:2997-3002. [PMID: 16014377 DOI: 10.1242/jcs.02505] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ERK MAP kinase signaling plays a pivotal role in diverse cellular functions, including cell proliferation, differentiation, migration and survival. One of the central questions concerning this signaling is how activation of the same protein kinase, ERK, elicits distinct cellular outcomes. Recent progress has demonstrated that differences in the duration, magnitude and subcellular compartmentalization of ERK activity generate variations in signaling output that regulate cell fate decisions. Furthermore, several molecules have been identified as spatial, temporal or strength-controlling regulators of ERK activity. Signaling by various extracellular stimuli thus could be modulated by these regulators to give qualitative and quantitative differences in ERK activity, which are then interpreted by the cells as determinants for appropriate responses.
Collapse
Affiliation(s)
- Miki Ebisuya
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
37
|
Hayashi H, Matsuzaki O, Muramatsu S, Tsuchiya Y, Harada T, Suzuki Y, Sugano S, Matsuda A, Nishida E. Centaurin-alpha1 is a phosphatidylinositol 3-kinase-dependent activator of ERK1/2 mitogen-activated protein kinases. J Biol Chem 2005; 281:1332-7. [PMID: 16287813 DOI: 10.1074/jbc.m505905200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Centaurin-alpha1 is known to be a phosphatidylinositol 3,4,5-triphosphate (PIP3)-binding protein that has two pleckstrin homology domains and a putative ADP ribosylation factor GTPase-activating protein domain. However, the physiological function of centaurin-alpha1 is still not understood. Here we have shown that transient expression of centaurin-alpha1 in COS-7 cells results in specific activation of ERK, and the activation is inhibited by co-expression of a dominant negative form of Ras. We have also found that a mutant form of centaurin-alpha1 that is unable to bind PIP3 fails to induce ERK activation and that a phosphatidylinositol 3-kinase inhibitor LY294002 inhibits centaurin-alpha1-dependent ERK activation. Furthermore, transient knockdown of centaurin-alpha1 by small interfering RNAs results in reduced ERK activation after epidermal growth factor stimulation in T-REx 293 cells. These results suggest that centaurin-alpha1 contributes to ERK activation in growth factor signaling, linking the PI3K pathway to the ERK mitogen-activated protein kinase pathway through its ability to interact with PIP3.
Collapse
Affiliation(s)
- Hideko Hayashi
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nishimoto S, Kusakabe M, Nishida E. Requirement of the MEK5-ERK5 pathway for neural differentiation in Xenopus embryonic development. EMBO Rep 2005; 6:1064-9. [PMID: 16179948 PMCID: PMC1371025 DOI: 10.1038/sj.embor.7400515] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 07/08/2005] [Accepted: 07/29/2005] [Indexed: 01/25/2023] Open
Abstract
Although previous studies have identified several key transcription factors in the generation process of the vertebrate nervous system, the intracellular signalling pathways that function in this process have remained unclear. Here we identify the evolutionarily conserved mitogen-activated protein kinase kinase 5 (MEK5)-extracellular signal-regulated kinase 5 (ERK5) pathway as an essential regulator in neural differentiation. Knockdown of Xenopus ERK5 or Xenopus MEK5 with antisense morpholino oligonucleotides results in the reduced head structure and inhibition of neural differentiation. Moreover, forced activation of the MEK5-ERK5 module on its own induces neural differentiation. In addition, we show that the MEK5-ERK5 pathway is necessary for the neuralizing activity of SoxD, a regulator of neural differentiation, and is sufficient for the expression of Xngnr1, a proneural gene. These results show that the MEK5-ERK5 pathway has an essential role in the regulation of neural differentiation downstream of SoxD and upstream of Xngnr1.
Collapse
Affiliation(s)
- Satoko Nishimoto
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Morioh Kusakabe
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Tel: +81 75 753 4230; Fax: +81 75 753 4235; E-mail:
| |
Collapse
|
39
|
Kondoh K, Torii S, Nishida E. Control of MAP kinase signaling to the nucleus. Chromosoma 2005; 114:86-91. [PMID: 15902482 DOI: 10.1007/s00412-005-0341-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 12/01/2022]
Abstract
MAP kinase (MAPK) signaling is among central signaling pathways that regulate cell proliferation, cell differentiation and apoptosis. As MAPK should transmit extracellular signals to proper regions or compartments in cells, controlling subcellular localization of MAPK is important for regulating fidelity and specificity of MAPK signaling. The ERK1/2-type of MAPK is the best characterized member of the MAPK family. In response to extracellular stimulus, ERK1/2 translocates from the cytoplasm to the nucleus by passing through the nuclear pore by several independent mechanisms. Sef (similar expression to fgf genes), a transmembrane protein, has been shown to be a regulator of subcellular distribution of ERK1/2. Sef binds to activated MEK1/2, the specific activator of ERK1/2, and tethers the activated MEK1/2/activated ERK1/2 complex to the Golgi apparatus and the plasma membrane. Thus, Sef blocks ERK1/2 signaling to the nucleus and allows signaling to the cytoplasm. Here we review recent findings on spatial regulation of MAPK, especially on nucleocytoplasmic trafficking of ERK1/2.
Collapse
Affiliation(s)
- Kunio Kondoh
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
40
|
Maekawa M, Yamamoto T, Tanoue T, Yuasa Y, Chisaka O, Nishida E. Requirement of the MAP kinase signaling pathways for mouse preimplantation development. Development 2005; 132:1773-83. [PMID: 15772134 DOI: 10.1242/dev.01729] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian preimplantation development involves several crucial events, such as compaction and blastocyst formation, but little is known about essential genes that regulate this developmental process. Here, we have focused on MAP kinase signaling pathways as potential regulatory pathways for the process. Our results show that inhibition of the JNK pathway or of the p38 MAP kinase pathway, but not of the ERK pathway, results in inhibition of cavity formation, and that JNK and p38 are active during mouse preimplantation development. Our subsequent microarray analyses show that, of about 39,000 transcripts analyzed, the number of those genes whose expression level is sensitive to the inhibition of the JNK or the p38 pathway, but insensitive to the inhibition of the ERK pathway, is only 156. Moreover, of the 156 genes, expression of 10 genes (two genes upregulated and eight genes downregulated) is sensitive to either inhibition of the JNK or p38 pathways. These 10 genes include several genes known for their function in axis and pattern formation. Downregulation of some of the 10 genes simultaneously using siRNA leads to abnormality in cavity formation. Thus, this study has successfully narrowed down candidate genes of interest, detailed analysis of which will probably lead to elucidation of the molecular mechanism of preimplantation development.
Collapse
Affiliation(s)
- Momoko Maekawa
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Zhai Y, Fallon AM. PCR cloning of a histone H1 gene from Anopheles stephensi mosquito cells: comparison of the protein sequence with histone H1-like, C-terminal extensions on mosquito ribosomal protein S6. BMC Genomics 2005; 6:8. [PMID: 15667661 PMCID: PMC548281 DOI: 10.1186/1471-2164-6-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 01/24/2005] [Indexed: 11/11/2022] Open
Abstract
Background In Aedes and Anopheles mosquitoes, ribosomal protein RPS6 has an unusual C-terminal extension that resembles histone H1 proteins. To explore homology between a mosquito H1 histone and the RPS6 tail, we took advantage of the Anopheles gambiae genome database to clone a histone H1 gene from an Anopheles stephensi mosquito cell line. Results We designed specific primers based on RPS6 and histone H1 alignments to recover an Anopheles stephensi histone H1 corresponding to a conceptual An. gambiae protein, with 92% identity. Southern blots suggested that Anopheles stephensi histone H1 gene has multiple variants, as is also the case for histone H1 proteins in Chironomid flies. Conclusions Histone H1 proteins from Anopheles stephensi and Anopheles gambiae mosquitoes share 92% identity to each other, but only 50% identity to a Drosophila homolog. In a phylogenetic analysis, Anopheles, Chironomus and Drosophila histone H1 proteins cluster separately from the histone H1-like, C-terminal tails on RPS6 in Aedes and Anopheles mosquitoes. These observations suggest that the resemblance between histone H1 and the C-terminal extensions on mosquito RPS6 has been maintained by convergent evolution.
Collapse
Affiliation(s)
- Yongjiao Zhai
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN, 55108 USA
| | - Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN, 55108 USA
| |
Collapse
|
42
|
Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E. Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 2004; 7:33-44. [PMID: 15239952 DOI: 10.1016/j.devcel.2004.05.019] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 05/06/2004] [Accepted: 05/11/2004] [Indexed: 01/27/2023]
Abstract
Spatiotemporal control of the Ras/ERK MAP kinase signaling pathway is among the key mechanisms for regulating a wide variety of cellular processes. In this study, we report that human Sef (hSef), a recently identified inhibitor whose action mechanism has not been fully defined, acts as a molecular switch for ERK signaling by specifically blocking ERK nuclear translocation without inhibiting its activity in the cytoplasm. Thus, hSef binds to activated forms of MEK, inhibits the dissociation of the MEK-ERK complex, and blocks nuclear translocation of activated ERK. Consequently, hSef inhibits phosphorylation and activation of the nuclear ERK substrate Elk-1, while it does not affect phosphorylation of the cytoplasmic ERK substrate RSK2. Downregulation of endogenous hSef by hSef siRNA enhances the stimulus-induced ERK nuclear translocation and the activity of Elk-1. These results thus demonstrate that hSef acts as a spatial regulator for ERK signaling by targeting ERK to the cytoplasm.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
43
|
Ueda K, Kosako H, Fukui Y, Hattori S. Proteomic identification of Bcl2-associated athanogene 2 as a novel MAPK-activated protein kinase 2 substrate. J Biol Chem 2004; 279:41815-21. [PMID: 15271996 DOI: 10.1074/jbc.m406049200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p38 MAPK cascade is activated by various stresses or cytokines. Downstream of p38 MAPKs, there are diversification and extensive branching of signaling pathways. Fluorescent two-dimensional difference gel electrophoresis of phosphoprotein-enriched samples from HeLa cells in which p38 MAPK activity was either suppressed or activated enabled us to detect approximately 90 candidate spots for factors involved in p38-dependent pathways. Among these candidates, here we identified four proteins including Bcl-2-associated athanogene 2 (BAG2) by peptide mass fingerprintings. BAG family proteins are highly conserved throughout eukaryotes and regulate Hsc/Hsp70-mediated molecular chaperone activities and apoptosis. The results of two-dimensional immunoblots suggested that the phosphorylation of BAG2 was specifically controlled in a p38 MAPK-dependent manner. Furthermore, BAG2 was directly phosphorylated at serine 20 in vitro by MAPK-activated protein kinase 2 (MAPKAP kinase 2), which is known as a primary substrate of p38 MAPK and mediates several p38 MAPK-dependent processes. We confirmed that MAPKAP kinase 2 is also required for phosphorylation of BAG2 in vivo. Thus, p38 MAPK-MAPKAP kinase 2-BAG2 phosphorylation cascade may be a novel signaling pathway for response to extracellular stresses.
Collapse
Affiliation(s)
- Koji Ueda
- Division of Cellular Proteomics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
44
|
Uchiba M, Okajima K, Oike Y, Ito Y, Fukudome K, Isobe H, Suda T. Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo. Circ Res 2004; 95:34-41. [PMID: 15166095 DOI: 10.1161/01.res.0000133680.87668.fa] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated protein C (APC), a natural anticoagulant, has recently been demonstrated to activate the mitogen-activated protein kinase (MAPK) pathway in endothelial cells in vitro. Because the MAPK pathway is implicated in endothelial cell proliferation, it is possible that APC induces endothelial cell proliferation, thereby causing angiogenesis. We examined this possibility in the present study. APC activated the MAPK pathway, increased DNA synthesis, and induced proliferation in cultured human umbilical vein endothelial cells dependent on its serine protease activity. Antibody against the endothelial protein C receptor (EPCR) inhibited these events. Early activation of the MAPK pathway was inhibited by an antibody against protease-activated receptor-1, whereas neither late and complete activation of the MAPK pathway nor endothelial cell proliferation were inhibited by this antibody. APC activated endothelial nitric oxide synthase (eNOS) via phosphatidylinositol 3-kinase-dependent phosphorylation, followed by activation of protein kinase G, suggesting that APC bound to EPCR might activate the endothelial MAPK pathway by a mechanism similar to that of VEGF. APC induced morphogenetic changes resembling tube-like structures of endothelial cells, whereas DIP-APC did not. When applied topically to the mouse cornea, APC clearly induced angiogenesis in wild-type mice, but not in eNOS knockout mice. These in vitro events induced by APC might at least partly explain the angiogenic activity in vivo. This angiogenic activity of APC might contribute to maintain proper microcirculation in addition to its antithrombotic activity.
Collapse
Affiliation(s)
- Mitsuhiro Uchiba
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Maekawa M, Yamamoto T, Nishida E. Regulation of subcellular localization of the antiproliferative protein Tob by its nuclear export signal and bipartite nuclear localization signal sequences. Exp Cell Res 2004; 295:59-65. [PMID: 15051490 DOI: 10.1016/j.yexcr.2003.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 12/08/2003] [Indexed: 11/16/2022]
Abstract
Tob, a member of the Tob and BTG antiproliferative protein family, plays an important role in many cellular processes including cell proliferation. In this study, we have addressed molecular mechanisms regulating subcellular localization of Tob. Treatment with leptomycin B, an inhibitor of nuclear export signal (NES) receptor, resulted in a change in subcellular distribution of Tob from its pan-cellular distribution to nuclear accumulation, indicating the existence of NES in Tob. Our results have then identified an N-terminal region (residues 2-14) of Tob as a functional NES. They have also shown that Tob has a functional, bipartite nuclear localization signal (NLS) in residues 18-40. Thus, Tob is shuttling between the nucleus and the cytoplasm by its NES and NLS. To examine a possible relationship between subcellular distribution of Tob and its function, we exogenously added a strong NLS sequence or a strong NES sequence or both to Tob. The obtained results have demonstrated that the strong NLS-added Tob has a much weaker activity to inhibit cell cycle progression from G0/G1 to S phase. These results suggest that cytoplasmic localization or nucleocytoplasmic shuttling is important for the antiproliferative function of Tob.
Collapse
Affiliation(s)
- Momoko Maekawa
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
46
|
Moien-Afshari F, McManus BM, Laher I. Immunosuppression and transplant vascular disease: benefits and adverse effects. Pharmacol Ther 2004; 100:141-56. [PMID: 14609717 DOI: 10.1016/j.pharmthera.2003.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiac allograft vasculopathy (CAV) occurs within 5 years of transplantation surgery and represents the main cause of death in long-term heart transplant survivors. The detailed pathogenesis of CAV is unknown, but there are strong indications that immunologic mechanisms, which are regulated by nonimmunologic factors, are the major cause of this phenomenon. Cyclosporine A (CsA) is a frequently used immunosuppressive agent in transplant medicine to prevent rejection. The mechanism of action of CsA involves initial binding to cyclophilin to form a complex that then inhibits calcineurin (CN), leading to reduced interleukin (IL)-2 production as part of the signal transduction pathway for the activation of B-lymphocytes and T-lymphocytes. Based on this proposed mechanism, it was expected that CsA should be an effective strategy in attenuating the host immune response against transplanted allograft tissue; however, CsA has not changed the outcome of CAV. Several mechanisms have been suggested for the ineffectiveness of CsA in long-term prevention of CAV. For example, routine therapeutic doses of CsA may block CN incompletely (50%), whereas complete blockade requires doses that are not clinically tolerable. Another explanation is the possible activation of T-cell receptors directly (CN independent) by the immune response, which induces protein kinase C theta (PKCtheta) and leads to IL-2 production and immune rejection. Moreover, there may be a role for nonimmunologic mechanisms, such as complement, which cannot be controlled by CsA, or CsA may cause hypercholesterolemia or induce overexpression of transforming growth factor-beta (TGF-beta). This review also compares the effect of CsA with other immunosuppressants in allograft artery preservation and their clinical efficacy.
Collapse
Affiliation(s)
- Farzad Moien-Afshari
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC Canada V6T 1Z3
| | | | | |
Collapse
|
47
|
Matsuda T, Suzuki Y, Tanioka Y, Toyama H, Kakinoki K, Hiraoka K, Fujino Y, Kuroda Y. Pancreas preservation by the 2-layer cold storage method before islet isolation protects isolated islets against apoptosis through the mitochondrial pathway. Surgery 2003; 134:437-445. [PMID: 14555931 DOI: 10.1067/s0039-6060(03)00165-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Apoptosis in isolated islets has been implicated in primary nonfunction or early graft failure after islet transplantation. Recently, pancreas preservation by the 2-layer method (TLM) before islet isolation has been proved to improve the islet yield, quality, and transplant results not only in experimental models, but also in clinical settings. We examined the influence of TLM on apoptosis of isolated islets. METHOD Rat islets freshly isolated and after pancreas preservation by TLM or conventional cold storage in University of Wisconsin solution (UW) were examined and compared. Islet apoptosis was assessed by TUNEL and annexin V assays. The apoptosis pathways involved were investigated by measurement of caspase 3, 8, and 9 activities and by immunoblotting for total and phosphorylated c-Jun NH2-terminal kinase (JNK) and p38. RESULTS Islet apoptosis in the UW group was significantly increased compared with the fresh and TLM groups. Both caspase 3 and 9 activities in the UW group were higher than in the fresh and TLM groups with an approximate increase of 2- to 3-fold. On the other hand, there was no significant difference in caspase 8 activity among these 3 groups. JNKs were strongly activated both in the TLM and UW groups; although they were not activated in the fresh group, p38 was activated to almost the same levels in these 3 groups. CONCLUSIONS Pancreas preservation by TLM before islet isolation protects isolated islets against apoptosis mainly through the mitochondrial pathway. Pancreas storage before islet isolation even with TLM triggers activation of JNKs in isolated islets.
Collapse
Affiliation(s)
- Takeru Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hornstein E, Tang H, Meyuhas O. Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:477-84. [PMID: 12762050 DOI: 10.1101/sqb.2001.66.477] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E Hornstein
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
49
|
Abstract
The mitogen-activated protein kinase (MAPK) cascades play a pivotal role in many aspects of cellular functions, and are evolutionarily conserved from yeast to mammals. In mammals, there are four subfamily members in the MAPKs. Each MAPK has its own activators, substrates and inactivators. In order to achieve normal cellular functions, the MAPK cascades should transduce signals with high efficiency and fidelity. However, the molecular basis for the mechanism underlying the specific reactions in the MAPK cascades has not been fully understood. The MAPKs form a globular structure without a distinct domain specific for protein-protein interactions. Recent studies revealed two mechanisms regulating the signalling, the docking interaction and the scaffolding. The docking interaction is achieved through the common docking domain (the CD domain) on MAPKs, and is different from a transient enzyme-substrate interaction through the active centre of the enzymes. Almost all the MAPK-interacting molecules have a conserved motif interacting with the CD domain. The scaffolding usually utilizes a third molecule to tether several components of the MAPK cascades. Both of them are thought to regulate the enzymatic specificity and efficiency.
Collapse
Affiliation(s)
- Takuji Tanoue
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | |
Collapse
|
50
|
Harada T, Matsuzaki O, Hayashi H, Sugano S, Matsuda A, Nishida E. AKRL1 and AKRL2 activate the JNK pathway. Genes Cells 2003; 8:493-500. [PMID: 12694537 DOI: 10.1046/j.1365-2443.2003.00650.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family, is activated by specific cytokines and various environmental stresses. MKK4 and MKK7 are shown to be direct activators of JNK. Although several upstream components of the JNK pathway, including members of the MAPKKK family have been described, the components lying between the receptors or sensors and JNK have not been fully characterized. RESULTS We have identified AKRL1 and AKRL2 (Akr1p-like 1 and 2) as novel activators of the JNK pathway. AKRL1 and AKRL2 proteins have a considerable sequence similarity to Akr1p, a protein essential for endocytosis in Saccharomyces cerevisiae. Expression of AKRL1 or AKRL2 activates JNK and its activators MKK4 and MKK7. This AKRL1/2-induced JNK activation is significantly suppressed by the expression of a kinase-negative mutant of TAK1, a member of the MAPKKK family. AKRL1 and AKRL2 localize to the Golgi. Both the N-terminal half and the C-terminal transmembrane domain of AKRL1/2 are required for the JNK activation. The C-terminal transmembrane domain of AKRL1/2 is required for localization to the Golgi. CONCLUSION AKRL1 and AKRL2 are localized to Golgi and the novel activators of the JNK pathway.
Collapse
Affiliation(s)
- Takeshi Harada
- Department of Biophysics, Graduate School of Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|