1
|
Ma J, Ji Q, Wang S, Qiu J, Liu Q. Identification and evaluation of a panel of strong constitutive promoters in Listeria monocytogenes for improving the expression of foreign antigens. Appl Microbiol Biotechnol 2021; 105:5135-5145. [PMID: 34086117 PMCID: PMC8175932 DOI: 10.1007/s00253-021-11374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Attenuated Listeria monocytogenes could be a potential vaccine vector for the immunotherapy of tumors or pathogens. However, the lack of reliable promoters has limited its ability to express foreign antigens. In the present study, 21 promoters were identified from Listeria monocytogenes through RNA-seq analysis under two pH conditions of pH 7.4 and pH 5.5. Based on the constructed fluorescence report system, 7 constitutive promoters exhibited higher strength than Phelp (1.8-fold to 5.4-fold), a previously reported strong promoter. Furthermore, the selected 5 constitutive promoters exhibited higher UreB production activity than Phelp (1.1-fold to 8.3-fold). Notably, a well-characterized constitutive promoter P18 was found with the highest activity of fluorescence intensity and UreB production. In summary, the study provides a panel of strong constitutive promoters for Listeria monocytogenes and offers a theoretical basis for mining constitutive promoters in other organisms. KEY POINTS: • Twenty-one promoters were identified from L. monocytogenes through RNA-seq. • Fluorescent tracer of L. monocytogenes (P18) was performed in vitro and in vivo. • A well-characterized constitutive promoter P18 could improve the expression level of a foreign antigen UreB in L. monocytogenes.
Collapse
Affiliation(s)
- Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qianyu Ji
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
2
|
Ma L, Chen S, Wang Z, Guo S, Zhao J, Yi D, Li Q, Liu Z, Guo F, Li X, Jia P, Ding J, Liang C, Cen S. The CREB Regulated Transcription Coactivator 2 Suppresses HIV-1 Transcription by Preventing RNA Pol II from Binding to HIV-1 LTR. Virol Sin 2021; 36:796-809. [PMID: 33723808 DOI: 10.1007/s12250-021-00363-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 10/21/2022] Open
Abstract
The CREB-regulated transcriptional co-activators (CRTCs), including CRTC1, CRTC2 and CRTC3, enhance transcription of CREB-targeted genes. In addition to regulating host gene expression in response to cAMP, CRTCs also increase the infection of several viruses. While human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter harbors a cAMP response element and activation of the cAMP pathway promotes HIV-1 transcription, it remains unknown whether CRTCs have any effect on HIV-1 transcription and HIV-1 infection. Here, we reported that CRTC2 expression was induced by HIV-1 infection, but CRTC2 suppressed HIV-1 infection and diminished viral RNA expression. Mechanistic studies revealed that CRTC2 inhibited transcription from HIV-1 LTR and diminished RNA Pol II occupancy at the LTR independent of its association with CREB. Importantly, CRTC2 inhibits the activation of latent HIV-1. Together, these data suggest that in response to HIV-1 infection, cells increase the expression of CRTC2 which inhibits HIV-1 gene expression and may play a role in driving HIV-1 into latency.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Shumin Chen
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100176, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Pingping Jia
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China. .,Beijing Friendship Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
3
|
de Castro CP, Drumond MM, Batista VL, Nunes A, Mancha-Agresti P, Azevedo V. Vector Development Timeline for Mucosal Vaccination and Treatment of Disease Using Lactococcus lactis and Design Approaches of Next Generation Food Grade Plasmids. Front Microbiol 2018; 9:1805. [PMID: 30154762 PMCID: PMC6102412 DOI: 10.3389/fmicb.2018.01805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Lactococcus lactis has been used historically in fermentation and food preservation processes as it is considered safe for human consumption (GRAS—Generally Recognized As Safe). Nowadays, in addition to its wide use in the food industry, L. lactis has been used as a bioreactor for the production of molecules of medical interest, as well as vectors for DNA delivery. These applications are possible due to the development of promising genetic tools over the past few decades, such as gene expression, protein targeting systems, and vaccine plasmids. Thus, this review presents some of these genetic tools and their evolution, which allow us to envision new biotechnological and therapeutic uses of L. lactis. Constitutive and inductive expression systems will be discussed, many of which have been used successfully for heterologous production of different proteins, tested on animal models. In addition, advances in the construction of new plasmids to be used as potential DNA vaccines, delivered by this microorganism, will also be viewed. Finally, we will focus on the scene of gene expression systems known as “food-grade systems” based on inducing compounds and safe selection markers, which eliminate the need for the use of compounds harmful to humans or animal health and potential future prospects for their applications.
Collapse
Affiliation(s)
- Camila Prosperi de Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Kroton Educacional, Faculdade Pitágoras, Contagem, Brazil
| | - Mariana M Drumond
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Nunes
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Colluru VT, McNeel DG. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget 2018; 7:67901-67918. [PMID: 27661128 PMCID: PMC5356528 DOI: 10.18632/oncotarget.12178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/16/2016] [Indexed: 01/21/2023] Open
Abstract
In spite of remarkable preclinical efficacy, DNA vaccination has demonstrated low immunogenicity in humans. While efforts have focused on increasing cross-presentation of DNA-encoded antigens, efforts to increase DNA vaccine immunogenicity by targeting direct presentation have remained mostly unexplored. In these studies, we compared the ability of different APCs to present antigen to T cells after simple co-culture with plasmid DNA. We found that human primary peripheral B lymphocytes, and not monocytes or in vitro derived dendritic cells (DCs), were able to efficiently encode antigen mRNA and expand cognate tumor antigen-specific CD8 T cells ex vivo. Similarly, murine B lymphocytes co-cultured with plasmid DNA, and not DCs, were able to prime antigen-specific T cells in vivo. Moreover, B lymphocyte-mediated presentation of plasmid antigen led to greater Th1-biased immunity and was sufficient to elicit an anti-tumor effect in vivo. Surprisingly, increasing plasmid presentation by B cells, and not cross presentation of peptides by DCs, further augmented traditional plasmid vaccination. Together, these data suggest that targeting plasmid DNA to B lymphocytes, for example through transfer of ex vivo plasmidloaded B cells, may be novel means to achieve greater T cell immunity from DNA vaccines.
Collapse
Affiliation(s)
- Viswa Teja Colluru
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017. [PMID: 28604157 DOI: 10.1080/21645515.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
6
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017; 13:2837-2848. [PMID: 28604157 PMCID: PMC5718814 DOI: 10.1080/21645515.2017.1330236] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
7
|
Maity HK, Dey S, Mohan CM, Khulape SA, Pathak DC, Vakharia VN. Protective efficacy of a DNA vaccine construct encoding the VP2 gene of infectious bursal disease and a truncated HSP70 of Mycobacterium tuberculosis in chickens. Vaccine 2015; 33:1033-9. [PMID: 25596458 DOI: 10.1016/j.vaccine.2015.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 12/04/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
Abstract
Infectious bursal disease (IBD) is an acute, infectious, immunosuppressive disease affecting young chicken worldwide. The etiological agent IBD virus (IBDV) is a double stranded RNA virus with outer capsid protein VP2 of IBDV is the major antigenic determinant capable of inducing neutralizing antibody. DNA vaccines encoding VP2 has been extensively studied achieving only partial protection. However, the efficacy of DNA vaccines against IBDV can be augmented by choosing a potential molecular adjuvant. The goal of the present study is to evaluate the immune response and protective efficacy of a DNA vaccine encoding the C-terminal domain of the heat shock protein 70 (cHSP70) of Mycobacterium tuberculosis gene genetically fused with the full length VP2 gene of IBDV (pCIVP2-cHSP70) in comparison to a 'DNA prime-protein boost' approach and a DNA vaccine encoding the VP2 gene (pCIVP2) alone. The results indicate that both pCIVP2-cHSP70 and 'DNA prime-protein boost' elicited humoral as well as cellular immune responses. Chickens in the pCIVP2-cHSP70 and 'DNA prime-protein boost' groups developed significantly higher levels of ELISA titer to IBDV antigen compared to the group immunized with pCIVP2 alone (p<0.01). However, significantly higher levels of lymphocyte proliferative response, IL-12 and IFN-γ production were found in the pCIVP2-cHSP70 group compared to 'DNA prime-protein boost' group. Additionally, chickens immunized with pCIVP2-cHSP70 and 'DNA prime-protein boost' vaccines were completely protected against the vvIBDV whereas pCIVP2 DNA vaccine alone was able to protect only 70%. These findings suggest that the truncated C-terminal HSP70 mediated DNA vaccine genetically fused with the VP2 gene construct stimulated both humoral and cell mediated immune responses and conferred complete protection against IBDV. This novel strategy is perhaps a seminal concept in utilizing HSP70 as an adjuvant molecule to elicit an immune response against IBD affecting chickens.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Sohini Dey
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India.
| | - C Madhan Mohan
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Sagar A Khulape
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Dinesh C Pathak
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Vikram N Vakharia
- Department of Marine Biotechnology, University of Maryland, Baltimore County, 701, East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
8
|
Njongmeta LM, Bray J, Davies CJ, Davis WC, Howard CJ, Hope JC, Palmer GH, Brown WC, Mwangi W. CD205 antigen targeting combined with dendritic cell recruitment factors and antigen-linked CD40L activation primes and expands significant antigen-specific antibody and CD4+ T cell responses following DNA vaccination of outbred animals. Vaccine 2012; 30:1624-35. [DOI: 10.1016/j.vaccine.2011.12.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 01/16/2023]
|
9
|
Protection of pigs against Chlamydia trachomatis challenge by administration of a MOMP-based DNA vaccine in the vaginal mucosa. Vaccine 2011; 29:1399-407. [DOI: 10.1016/j.vaccine.2010.12.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/30/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
|
10
|
Sun J, Yang X, Xu QA, Bian Z, Chen Z, Fan M. Protective efficacy of two new anti-caries DNA vaccines. Vaccine 2009; 27:7459-66. [DOI: 10.1016/j.vaccine.2009.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/30/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
|
11
|
Laddy DJ, Weiner DB. From Plasmids to Protection: A Review of DNA Vaccines Against Infectious Diseases. Int Rev Immunol 2009; 25:99-123. [PMID: 16818367 DOI: 10.1080/08830180600785827] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The field of DNA vaccine development began over 16 years ago with the observation that plasmid DNA could be injected into and expressed in vivo and drive adaptive immune responses. Since then, there has been great interest in developing this technology to create a new generation of vaccines with the ability to elicit both humoral and cellular immune responses from an inherently innocuous injection. However, DNA vaccines have yet to proceed past phase I/II clinical trials in humans--primarily due to a desire to induce more potent immune responses. This review will examine how DNA vaccines function to induce an immune response and how this information might be useful in future vaccine design.
Collapse
Affiliation(s)
- Dominick J Laddy
- Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
12
|
Niu Y, Sun J, Fan M, Xu QA, Guo J, Jia R, Li Y. Construction of a New Fusion Anti-caries DNA Vaccine. J Dent Res 2009; 88:455-60. [PMID: 19493890 DOI: 10.1177/0022034509336727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutans streptococci (MS) are generally considered to be the principal etiological agent of dental caries. MS have two important virulence factors: cell- surface protein PAc and glucosyltransferases (GTFs). GTFs have two functional domains: an N-terminal catalytic sucrose-binding domain (CAT) and a C-terminal glucan-binding domain (GLU). A fusion anti-caries DNA vaccine, pGJA-P/VAX, encoding two important antigenic domains, PAc and GLU, of S. mutans, was successful in reducing the levels of dental caries caused by S. mutans in gnotobiotic animals. However, its protective effect against S. sobrinus infection proved to be weak. Does the DNA vaccine need an antigen of S. sobrinus to enhance its ability to inhibit infection? To answer this question, in this study, we cloned the catalytic ( cat) fragment of S. sobrinus gtf-I, which demonstrated its ability to inhibit water-insoluble glucan synthesis by S. sobrinus, into pGJA-P/VAX to produce a new anti-caries DNA vaccine.
Collapse
Affiliation(s)
- Y. Niu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - J. Sun
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - M. Fan
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - Q.-A. Xu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - J. Guo
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - R. Jia
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| | - Y. Li
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, Hubei, China
| |
Collapse
|
13
|
Sparger EE, Dubie RA, Shacklett BL, Cole KS, Chang WL, Luciw PA. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine. Virology 2008; 374:261-72. [PMID: 18261756 DOI: 10.1016/j.virol.2008.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/12/2007] [Accepted: 01/15/2008] [Indexed: 12/22/2022]
Abstract
Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-gamma enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.
Collapse
Affiliation(s)
- Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Jiang Y, Yu K, Zhang H, Zhang P, Li C, Tian G, Li Y, Wang X, Ge J, Bu Z, Chen H. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral Res 2007; 75:234-41. [PMID: 17451817 DOI: 10.1016/j.antiviral.2007.03.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/24/2007] [Accepted: 03/16/2007] [Indexed: 11/29/2022]
Abstract
H5N1 influenza viruses have caused significant disease and deaths in various parts of the world in several species, including humans. Vaccination combined with culling can provide an attractive method for outbreak containment. Using synthesized oligos and overlapping extension PCR techniques, we constructed an H5 HA gene, optiHA, containing chicken biased codons based on the HA amino acid sequence of the highly pathogenic H5N1 virus A/goose/Guangdong/1/96 (GS/GD/96). The optiHA and wild-type HA genes were inserted into plasmids pCI or pCAGGS, and designated as pCIoptiHA, pCAGGoptiHA, pCIHA and pCAGGHA, respectively. To evaluate vaccine efficacy, groups of 3-week-old specific pathogen free (SPF) chickens were intramuscularly injected with the four plasmids. Sera were collected on a weekly basis post-vaccination (p.v.) for hemagglutination inhibition (HI) assays and neutralization (NT) antibody detection. All chickens receiving pCAGGoptiHA and pCAGGHA developed high levels of HI and NT antibodies at 3 weeks p.v., and were completely protected from lethal H5 virus challenge, while only partial protection was induced by inoculation with the other two plasmids. A second experiment was conducted to evaluate if a lower dose of the pCAGGoptiHA vaccine could be effective, results indicated that two doses of 10 microg of pCAGGoptiHA could induce complete protection in chickens against H5 lethal virus challenge. Based on our results, we conclude that construction optimization could dramatically increase the H5 HA gene DNA vaccine efficacy in chickens, and therefore, greatly decrease the dose necessary for inducing complete protection in chickens.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Chickens/immunology
- Chickens/virology
- Genetic Vectors
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Neutralization Tests
- Plasmids
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Virus Shedding
Collapse
Affiliation(s)
- Yongping Jiang
- Animal Influenza Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brown VA, Wilkins PA. Advanced Techniques in the Diagnosis and Management of Infectious Pulmonary Diseases in Horses. Vet Clin North Am Equine Pract 2006; 22:633-51, xi. [PMID: 16882489 DOI: 10.1016/j.cveq.2006.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Techniques for novel approaches to the diagnosis and management of equine pulmonary disease continue to be developed and used in clinical practice. Diagnostic techniques involving immunoassays and nucleic acid-based tests not only decrease the time in which results become available but increase the sensitivity and specificity of test results. These assays do not substitute for careful clinical evaluation but can shorten the time to a confirmed accurate diagnosis, and thus allow for early initiation of therapeutic strategies and prevention protocols. With further understanding of the molecular biology and immunology of equine pulmonary disease, diagnostic and management techniques should become further refined.
Collapse
Affiliation(s)
- Valerie A Brown
- New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Road, Kennett Square, PA 19348, USA.
| | | |
Collapse
|
16
|
Garmory HS, Perkins SD, Phillpotts RJ, Titball RW. DNA vaccines for biodefence. Adv Drug Deliv Rev 2005; 57:1343-61. [PMID: 15935877 DOI: 10.1016/j.addr.2005.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 01/25/2005] [Indexed: 11/30/2022]
Abstract
The advantages associated with DNA vaccines include the speed with which they may be constructed and produced at large-scale, the ability to produce a broad spectrum of immune responses, and the ability for delivery using non-invasive means. In addition, DNA vaccines may be manipulated to express multiple antigens and may be tailored for the induction of appropriate immune responses. These advantages make DNA vaccination a promising approach for the development of vaccines for biodefence. In this review, the potential of DNA vaccines for biodefence is discussed.
Collapse
Affiliation(s)
- Helen S Garmory
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | | | | | | |
Collapse
|
17
|
Lowe DB, Shearer MH, Tarbox JA, Kang HS, Jumper CA, Bright RK, Kennedy RC. In vitro simian virus 40 large tumor antigen expression correlates with differential immune responses following DNA immunization. Virology 2005; 332:28-37. [PMID: 15661138 DOI: 10.1016/j.virol.2004.08.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Revised: 12/31/2002] [Accepted: 08/06/2004] [Indexed: 01/01/2023]
Abstract
Simian virus 40 (SV40) contains an essential protein, large tumor antigen (Tag), which assists in viral replication and causes cell transformation and immortalization. Our laboratory has examined plasmid DNA, expressing SV40 Tag under two different promoters, for use in potential cancer vaccination strategies. One plasmid, pSV3-neo, failed to induce SV40 Tag antibody, produced a weak cell-mediated response, and only partial protection in murine experimental tumor challenge systems. The second plasmid, pCMV-Tag, induced antibodies to SV40 Tag, produced a robust cell-mediated response, and invoked complete tumor immunity in vivo. The induction of CD4+ and CD8+ T cell responses following plasmid DNA immunization and tumor cell challenge reflected a type 1 cytokine secretion profile. Our hypothesis for this differential immune response is that pCMV-Tag exhibits a higher level of transgene expression due to a more efficient promoter. We determined that pCMV-Tag levels of SV40 Tag mRNA and protein expression were higher when compared to pSV3-neo. A threshold amount of SV40 Tag may be required to stimulate antibody production and provide complete systemic tumor immunity.
Collapse
Affiliation(s)
- Devin B Lowe
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX 79430-9562, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Guo JH, Jia R, Fan MW, Bian Z, Chen Z, Peng B. Construction and immunogenic characterization of a fusion anti-caries DNA vaccine against PAc and glucosyltransferase I of Streptococcus mutans. J Dent Res 2004; 83:266-70. [PMID: 14981132 DOI: 10.1177/154405910408300316] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glucosyltransferases (GTFs) and A cell-surface protein (PAc) are two important virulence factors of the cariogenic organism Streptococcus mutans. They may mediate sucrose-independent or sucrose-dependent attachment of Streptococcus mutans to tooth surfaces, respectively. Thus, inhibiting both virulence factors is predicted to provide better protection against caries than inhibiting a single factor. To develop a highly efficient vaccine against caries, we constructed a fusion DNA vaccine, pGLUA-P, by cloning the GLU region of GTF into a DNA vaccine, pCIA-P, which encodes two highly conservative regions of PAc. In this report, we provide evidence that fewer caries lesions were observed in rats following subcutaneous injection of pGLUA-P, compared with pCIA-P, near the submandibular gland. Our findings suggest that a multigenic DNA vaccine may be more caries-preventive than a single-gene DNA vaccine.
Collapse
Affiliation(s)
- J H Guo
- Key Lab. for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Sasaki S, Takeshita F, Oikawa T, Kojima Y, Xin KQ, Okuda K, Ishii N. Improvement of DNA vaccine immunogenicity by a dual antigen expression system. Biochem Biophys Res Commun 2004; 315:38-43. [PMID: 15013422 DOI: 10.1016/j.bbrc.2003.12.204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Indexed: 10/26/2022]
Abstract
This study examined whether increased antigen expression resulted in enhanced antigen-specific immune responses in the context of DNA vaccines. To increase antigen expression, two copies of antigen expression cassettes were arranged in a plasmid pDX. BALB/c mice were intramuscularly immunized with various constructs that express influenza antigens and analysed for DNA-raised immunity. The plasmid pDX that expresses two copies of the antigen gene induced stronger antigen-specific immune responses than the plasmid pGA which expresses single antigen gene. To explore the in vivo transgene expression by pDX and pGA, luciferase activity was measured in the muscles transduced with luciferase expression plasmids. The pDX expressing two copies of luciferase induced the highest luciferase activity, which corresponded to the results from vaccination. We concluded that increasing the number of antigen expression cassettes in a vaccine construct improved antigen expression in the transduced tissue, which induced stronger DNA-raised immune responses.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Female
- Gene Expression
- Genes, Reporter/genetics
- Genetic Vectors
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Injections, Intramuscular
- Interferon-gamma/immunology
- Interleukin-4/immunology
- Luciferases/metabolism
- Mice
- Mice, Inbred BALB C
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Orthomyxoviridae/genetics
- Plasmids/genetics
- Promoter Regions, Genetic
- Transduction, Genetic
- Transgenes/genetics
- Vaccination
- Vaccines, DNA/biosynthesis
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Shin Sasaki
- Department of Bioregulation, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Garmory HS, Freeman D, Brown KA, Titball RW. Protection against plague afforded by immunisation with DNA vaccines optimised for expression of the Yersinia pestis V antigen. Vaccine 2004; 22:947-57. [PMID: 15161071 DOI: 10.1016/j.vaccine.2003.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 09/15/2003] [Indexed: 10/27/2022]
Abstract
DNA vaccine vectors were produced which were optimised for expression of the Yersinia pestis V antigen in the BALB/c mouse model. Six different eukaryotic promoters were compared, resulting in the selection of the CMV promoter with an additional translational enhancer downstream. Surprisingly, alteration of the codon usage of the lcrV gene encoding V antigen for expression in murine cells was not found to improve the antibody responses generated against V antigen. The DNA vaccine was subsequently evaluated in its delivery via intramuscular injection compared to gene-gun administration. Gene-gun delivery was found to induce significantly higher V antigen-specific antibody responses and also afforded the highest level of protection against Y. pestis challenge. In addition, the protection achieved could be increased by using a 'prime and boost' strategy, administering the DNA vaccine followed by recombinant V antigen. These results show promise for a DNA vaccine against plague.
Collapse
Affiliation(s)
- Helen S Garmory
- Dstl Chemical and Biological Sciences, Porton Down, Salisbury SP4 0JQ, UK.
| | | | | | | |
Collapse
|
21
|
Abstract
Vaccine approaches against AIDS have focused on inducing cellular immune responses, since many studies revealed the role of T cell responses in the control of human immunodeficiency virus or simian immunodeficiency virus (SIV) infections. The experimental infection of rhesus macaques with SIV or chimeric SHIV is routinely used as a model for AIDS. In such models, DNA immunization is a tool to elicit specific T cell responses and to study their protective efficacy. DNA immunogenicity in primates depends on parameters such as level of antigen expression, choice of the antigen among SIV proteins, use of fusion proteins, route of immunization, and addition of adjuvants. Recent results suggest that priming with DNA and boosting with attenuated recombinant viral vectors, each expressing corresponding SIV antigens, leads to improved specific immunity and, in some cases, affords protection against pathogenic challenge. After preclinical evaluations, DNA has entered clinical trials for a therapeutic or prophylactic gene-based AIDS vaccine.
Collapse
Affiliation(s)
- Anne-Laure Puaux
- Departement des Retrovirus, Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Docteur Roux, 15 75724, Paris cedex, France
| | | |
Collapse
|
22
|
Nukuzuma C, Ajiro N, Wheeler CJ, Konishi E. Enhancing effect of vaxfectin on the ability of a Japanese encephalitis DNA vaccine to induce neutralizing antibody in mice. Viral Immunol 2003; 16:183-9. [PMID: 12828869 DOI: 10.1089/088282403322017910] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vaxfectin, a recently developed adjuvant, was evaluated for its enhancing effect on immunogenicity of a Japanese encephalitis (JE) DNA vaccine plasmid encoding the JE virus premembrane (prM) and envelope (E) genes (designated pcJEME), using BALB/c and ICR mice. Formulation of pcJEME with Vaxfectin provided > or =8-fold higher neutralizing antibody titers than those induced by pcJEME alone and reduced the amount of pcJEME to one-tenth to induce comparable levels of neutralizing antibody. Use of Vaxfectin did not alter a Th1 type IgG isotype immune response (IgG1 < IgG2a) induced by pcJEME in mice. These results indicate that Vaxfectin has an ability to enhance immunogenicity of pcJEME and is considered as a useful adjuvant for DNA vaccines in murine experimental models.
Collapse
Affiliation(s)
- Chiyoko Nukuzuma
- Department of Health Sciences, Kobe University School of Medicine, Kobe, Japan
| | | | | | | |
Collapse
|
23
|
Garmory HS, Brown KA, Titball RW. DNA vaccines: improving expression of antigens. GENETIC VACCINES AND THERAPY 2003; 1:2. [PMID: 14606963 PMCID: PMC244903 DOI: 10.1186/1479-0556-1-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 09/16/2003] [Indexed: 12/17/2022]
Abstract
DNA vaccination is a relatively recent development in vaccine methodology. It is now possible to undertake a rational step-by-step approach to DNA vaccine design. Strategies may include the incorporation of immunostimulatory sequences in the backbone of the plasmid, co-expression of stimulatory molecules, utilisation of localisation/secretory signals, and utilisation of the appropriate delivery system, for example. However, another important consideration is the utilisation of methods designed to optimise transgene expression. In this review we discuss the importance of regulatory elements, kozak sequences and codon optimisation in transgene expression.
Collapse
Affiliation(s)
- Helen S Garmory
- Dstl Chemical and Biological Sciences, Porton Down, Salisbury, SP4 0JQ, UK
| | - Katherine A Brown
- Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Imperial College of London, London, SW7 2AZ, UK
| | - Richard W Titball
- Dstl Chemical and Biological Sciences, Porton Down, Salisbury, SP4 0JQ, UK
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
24
|
Zinckgraf JW, Silbart LK. Modulating gene expression using DNA vaccines with different 3'-UTRs influences antibody titer, seroconversion and cytokine profiles. Vaccine 2003; 21:1640-9. [PMID: 12639485 DOI: 10.1016/s0264-410x(02)00740-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine if modulating the amount of foreign antigen produced by a DNA vaccine can influence the overall intensity and cytokine polarization of the ensuing immune response, three different plasmids, each encoding the hepatitis B (HB) surface antigen, were constructed. In each construct, HBs gene expression was driven by the cytomegalovirus immediate early promoter, but differed in the 3'-untranslated regions (3'-UTR) containing the polyadenylation sequence. These 3'-UTR sequences were derived from either the hepatitis B virus (HBVpA), bovine growth hormone (BGHpA), or rabbit beta-globin (betapA). BALB/c mice were immunized intramuscularly with equimolar amounts of each plasmid and blood was collected bi-weekly. Following immunization, total IgG titers correlated with in vitro antigen production levels (from transfected CHO cells), as evidenced by the following response pattern: HBVpA>BGHpA>>betapA. All groups demonstrated a heavy bias toward a Th1 immune response, as evidenced by high serum IgG2a/IgG1 ratios and the predominance of IFN-gamma over IL-4 secretion from cultured splenocytes. In addition, the HBVpA construct resulted in a seroconversion rate of 100%, in comparison to 40-50% in the BGHpA, and 0% in the betapA group. Surprisingly, splenocytes isolated from mice immunized with the betapA construct secreted the highest levels of IFN-gamma. Taken together, these findings suggest that altering the level of gene expression not only affects the overall titer and seroconversion rates of vaccinated animals, but also may play a role in modulating cytokine profiles.
Collapse
Affiliation(s)
- John W Zinckgraf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
25
|
Locher CP, Witt SA, Ashlock BM, Levy JA. Enhancement of antibody responses to an HIV-2 DNA envelope vaccine using an expression vector containing a constitutive transport element. DNA Cell Biol 2002; 21:581-6. [PMID: 12215261 DOI: 10.1089/104454902320308951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because immune responses to DNA vaccines in humans remains suboptimal, strategies need to be devised to facilitate expression of the vaccine in vivo. One method to improve response to a DNA vaccine is to construct plasmid vectors with leader sequences and post-transcriptional elements that facilitate export of transcribed RNA. In this study, we sought to determine if a mammalian expression vector (pND-14) containing a tissue plasminogen activator (TPA) leader sequence and a constitutive transport element (CTE) from simian retrovirus was superior to other mammalian expression vectors containing a post-transcriptional regulatory element (PRE) from hepatitis B virus (pCMV-link) or a minimal mammalian expression vector (pVAX1). Toward this objective, we evaluated protein expression of the HIV-2 envelope gene (gp140) in vitro and immune responses in immunized mice. We found that pVAX1 produced three- to fourfold lower levels of gp140 in vitro (5 ng/ml) in contrast to the pCMV-link and pND-14 vectors. When we immunized groups of mice intradermally with two of the HIV-2 gp140 DNA vaccine constructs, we found that pND-14 induced higher levels of envelope-specific systemic and mucosal antibodies than pCMV-link. We conclude that expression vectors for DNA vaccines should contain TPA and CTE sequences to facilitate immune responses.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Biological Transport
- Cell Line
- Female
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Genetic Vectors
- HIV-2/immunology
- Immunity, Mucosal
- Mice
- Mice, Inbred BALB C
- Protein Precursors/genetics
- Protein Precursors/immunology
- Protein Precursors/metabolism
- Regulatory Sequences, Nucleic Acid
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Christopher P Locher
- Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, USA.
| | | | | | | |
Collapse
|
26
|
Dunham SP, Flynn JN, Rigby MA, Macdonald J, Bruce J, Cannon C, Golder MC, Hanlon L, Harbour DA, Mackay NA, Spibey N, Jarrett O, Neil JC. Protection against feline immunodeficiency virus using replication defective proviral DNA vaccines with feline interleukin-12 and -18. Vaccine 2002; 20:1483-96. [PMID: 11858854 DOI: 10.1016/s0264-410x(01)00507-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A molecular clone of the Glasgow-8 isolate of FIV (FIVGL8) was rendered replication defective by an in-frame deletion in either reverse transcriptase (deltaRT) or integrase (deltaIN) genes for use as DNA vaccines. To test the ability of these multi-gene vaccines to protect against two feline immunodeficiency virus (FIV) isolates of differing virulence, cats were immunized using either DNA vaccine alone or co-administered with interleukin-12 (IL-12) and/or interleukin-18 (IL-18) cytokine DNA. Animals were challenged sequentially with FIV-Petaluma (FIVPET) an FIV isolate of relatively low virulence and subsequently with the more virulent FIVGL8. A proportion of vaccinates (5/18 deltaIN and 2/12 deltaRT) were protected against primary challenge with FIV(PET). Five of the vaccinated-protected cats were re-challenged with FIV(PET); four (all deltaIN) remained free of viraemia whilst all naive controls became viraemic. Following subsequent challenge with the more virulent FIVGL8 these four vaccinated-protected animals all became viraemic but showed lower proviral loads than naive cats. This study suggests that while our current DNA vaccines may not produce sterilizing immunity against more virulent isolates of FIV, they may nevertheless significantly reduce the impact of infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Base Sequence
- Cats
- DNA, Viral/genetics
- Defective Viruses/enzymology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Feline Acquired Immunodeficiency Syndrome/immunology
- Feline Acquired Immunodeficiency Syndrome/prevention & control
- Genes, Viral
- Immunodeficiency Virus, Feline/enzymology
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Integrases/genetics
- Interleukin-12/administration & dosage
- Interleukin-18/administration & dosage
- Molecular Sequence Data
- Proviruses/isolation & purification
- RNA-Directed DNA Polymerase/genetics
- Sequence Deletion
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/pharmacology
- Viral Vaccines/administration & dosage
- Viral Vaccines/pharmacology
- Virulence
- Virus Replication/genetics
Collapse
Affiliation(s)
- Stephen P Dunham
- Retrovirus Research Laboratory, Department of Veterinary Pathology, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kent SJ, Cameron PU, Reece JC, Thompson PR, Purcell DF. Attenuated and wild-type HIV-1 infections and long terminal repeat-mediated gene expression from plasmids delivered by gene gun to human skin ex vivo and macaques in vivo. Virology 2001; 287:71-8. [PMID: 11504543 DOI: 10.1006/viro.2001.1019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene expression from HIV-based gene therapy vectors or live-attenuated HIV-1 vaccines requires RNA transcription supported by the HIV-1 promoter, the long terminal repeat (LTR). Delivery of live-attenuated HIV-1 vaccines as plasmid DNA would overcome problems associated with production of attenuated HIV-1 strains. We investigated the expression of reporter plasmids and proviral HIV-1 constructs driven by either the HIV-1 LTR or LTRs with deletions in the U3 enhancer regions. LTR-driven plasmids were inoculated by gene gun into both human epidermis ex vivo and macaques in vivo. The HIV-1 LTR drove reporter gene expression in human and macaque skin, although with 15- to 20-fold less efficiency compared to the immediate-early cytomegalovirus promoter. A deleted LTR derived from a naturally attenuated HIV-1 strain infecting a member of the well-characterized Sydney Blood Bank Cohort of long-term nonprogressors was 5-fold less efficient in expression of the reporter gene compared to wild-type LTR. Delivery of proviral wild-type HIV-1 DNA constructs to human skin resulted in recovery of HIV-1 from cells emigrating from the epidermis, providing an ex vivo model of the infectivity of proviral HIV-1 DNA. However, delivery of proviral HIV-1 DNA containing deletions in either the LTR, Nef, or the secondary viral transcription activator,Vpr, significantly reduced HIV-1 replication in this model. The early coexpression of Tat from a second plasmid did not restore replication. Thus, although attenuated lentiviral vaccines might be deliverable as proviral DNA constructs in primate subjects, significant improvements are needed to enhance the efficiency of this method.
Collapse
Affiliation(s)
- S J Kent
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
28
|
Bachy M, Boudet F, Bureau M, Girerd-Chambaz Y, Wils P, Scherman D, Meric C. Electric pulses increase the immunogenicity of an influenza DNA vaccine injected intramuscularly in the mouse. Vaccine 2001; 19:1688-93. [PMID: 11166892 DOI: 10.1016/s0264-410x(00)00406-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vaccination by intramuscular injection of naked DNA is very efficient in the mouse, but immunogenicity of DNA vaccines needs to be improved in man. The aim of our study was to determine in BALB/c mice if suitable electric pulses delivered to the muscle after DNA injection--a procedure called electrotransfer--could improve the immunogenicity of suboptimal doses of a DNA vaccine expressing the influenza hemagglutinin protein. The results show a significant enhancement of the cellular and antibody responses following electrotransfer for the 1- and 10-microg DNA doses, respectively, but no effect on a lower dose. At the 10-microg dose, the IgG and hemagglutination inhibition mean titres were increased 25-fold and the inter-individual variability was markedly reduced.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Cytotoxicity Tests, Immunologic
- Dose-Response Relationship, Immunologic
- Electric Stimulation/methods
- Enzyme-Linked Immunosorbent Assay
- Female
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunoglobulin G/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Injections, Intramuscular
- Interferon-gamma/biosynthesis
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- M Bachy
- Aventis Pasteur, Campus Mérieux, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Shahabuddin M, Khan AS. Inhibition of human immunodeficiency virus type 1 by packageable, multigenic antisense RNA. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:141-51. [PMID: 10905551 DOI: 10.1089/oli.1.2000.10.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Viral-based vectors can provide an efficient delivery mechanism for stable expression of antisense RNA. To enhance and propagate the antiviral effect of antisense RNA, two novel human immunodeficiency virus type 1 (HIV-1)-based vector DNAs, designated as pMAG7 and pMAG19, were constructed which contained HIV-1 cis-acting packaging elements and produced multigenic HIV-1 antisense RNA that could target the entire pol, env, vif, vpu, vpr, rev, and tat and portions of gag and nef. The two DNAs were identical except that pMAG19 had additional gag coding sequences. Cotransfection of pMAG DNA and infectious, cloned HIV-1 DNA in 293 cells inhibited virus production (81%-98% reduction in reverse transcriptase activity) of various T cell-tropic and macrophage-tropic clade B isolates, such as NL4-3, YU-2, and JR-CSF. In addition, virion-associated pMAG antisense RNA was detected in residual virus particles produced by pNL4-3 in the presence of pMAG7 DNA, and the antisense sequences were stably transferred by infection of 174 x CEM cells. The results suggest that pMAG DNA may confer broad protection against HIV-1 by reducing initial virus burden due to antisense RNA and subsequent virus spread by propagation of antisense sequences along with wild-type virus.
Collapse
Affiliation(s)
- M Shahabuddin
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|