1
|
Zhang Y, Zhu Y, Jiang G, Chen K, Zhang G, Chen K, Ye T, Zhou Y, Li G. ROS Induced by Aphrocallistes vastus Lectin Enhance Oncolytic Vaccinia Virus Replication and Induce Apoptosis in Hepatocellular Carcinoma Cells. Mar Drugs 2024; 22:307. [PMID: 39057416 PMCID: PMC11278381 DOI: 10.3390/md22070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy is expected to provide a new treatment strategy for cancer. Aphrocallistes vastus lectin (AVL) is a Ca2+-dependent lectin receptor containing the conserved domain of C-type lectin and the hydrophobic N-terminal region, which can bind to the bird's nest glycoprotein and D-galactose. Our previous studies suggested that the oncolytic vaccinia virus (oncoVV) armed with the AVL gene exerted remarkable replication and antitumor effects in vitro and in vivo. In this study, we found that oncoVV-AVL may reprogram the metabolism of hepatocellular carcinoma cells to promote ROS, and elevated ROS subsequently promoted viral replication and induced apoptosis. This study will provide a new theoretical basis for the application of oncoVV-AVL in liver cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Han J, Park JC, Choi BS, Kim MS, Kim HS, Hagiwara A, Park HG, Lee BY, Lee JS. The genome of the marine monogonont rotifer Brachionus plicatilis: Genome-wide expression profiles of 28 cytochrome P450 genes in response to chlorpyrifos and 2-ethyl-phenanthrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105230. [PMID: 31306923 DOI: 10.1016/j.aquatox.2019.105230] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Brachionus spp. (Rotifera: Monogononta) are globally distributed in aquatic environments and play important roles in the aquatic ecosystem. The marine monogonont rotifer Brachionus plicatilis is considered a suitable model organism for ecology, evolution, and ecotoxicology. In this study, we assembled and characterized the B. plicatilis genome. The total length of the assembled genome was 106.9 Mb and the number of final scaffolds was 716 with an N50 value of 1.15 Mb and a GC content of 26.75%. A total of 20,154 genes were annotated after manual curation. To demonstrate the use of whole genome data, we targeted one of the main detoxifying enzyme of phase I detoxification system and identified in a total of 28 cytochrome P450 s (CYPs). Based on the phylogenetic analysis using the maximum likelihood, 28 B. plicatilis-CYPs were apparently separated into five different clans, namely, 2, 3, 4, mitochondrial (MT), and 46 clans. To better understand the CYPs-mediated xenobiotic detoxification, we measured the mRNA expression levels of 28 B. plicatilis CYPs in response to chlorpyrifos and 2-ethyl-phenanthrene. Most B. plicatilis CYPs were significantly modulated (P < 0.05) in response to chlorpyrifos and 2-ethyl-phenanthrene. In addition, xenobiotic-sensing nuclear receptor (XNR) response element sequences were identified in the 5 kb upstream of promoter regions of 28 CYPs from the genome of B. plicatilis, indicating that these XNR can be associated with detoxification of xenobiotics. Overall, the assembled B. plicatilis genome presented here will be a useful resource for a better understanding the molecular ecotoxicology in the view of molecular mechanisms underlying toxicological responses, particularly on xenobiotic detoxification in this species.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam 13558, Republic of Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Kim DH, Kim HS, Hwang DS, Kim HJ, Hagiwara A, Lee JS, Jeong CB. Genome-wide identification of nuclear receptor (NR) genes and the evolutionary significance of the NR1O subfamily in the monogonont rotifer Brachionus spp. Gen Comp Endocrinol 2017; 252:219-225. [PMID: 28673513 DOI: 10.1016/j.ygcen.2017.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are a large family of transcription factors that are involved in many fundamental biological processes. NRs are considered to have originated from a common ancestor, and are highly conserved throughout the whole animal taxa. Therefore, the genome-wide identification of NR genes in an animal taxon can provide insight into the evolutionary tendencies of NRs. Here, we identified all the NR genes in the monogonont rotifer Brachionus spp., which are considered an ecologically key species due to their abundance and world-wide distribution. The NR family was composed of 40, 32, 29, and 32 genes in the genomes of the rotifers B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis, respectively, which were classified into seven distinct subfamilies. The composition of each subfamily was highly conserved between species, except for NR1O genes, suggesting that they have undergone sporadic evolutionary processes for adaptation to their different environmental pressures. In addition, despite the dynamics of NR evolution, the significance of the conserved endocrine system, particularly for estrogen receptor (ER)-signaling, in rotifers was discussed on the basis of phylogenetic analyses. The results of this study may help provide a better understanding the evolution of NRs, and expand our knowledge of rotifer endocrine systems.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Pozzolini M, Scarfì S, Ghignone S, Mussino F, Vezzulli L, Cerrano C, Giovine M. Molecular characterization and expression analysis of the first Porifera tumor necrosis factor superfamily member and of its putative receptor in the marine sponge Chondrosia reniformis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:88-98. [PMID: 26705701 DOI: 10.1016/j.dci.2015.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Here we report the molecular cloning and characterization of the first Tumor Necrosis Factor homologous and of its putative receptor in the marine sponge Chondrosia reniformis: chTNF and chTNFR, respectively. The deduced chTNF amino acid sequence is a type II transmembrane protein containing the typical TNFSF domain. Phylogenetic analysis reveals that chTNF is more related to Chordata TNFs rather than to other invertebrates. chTNF and chTNFR are constitutively expressed both in the ectosome and in the choanosome of the sponge, with higher levels in the ectosome. chTNF and chTNFR mRNAs were monitored in sponge fragmorphs treated with Gram(+) or Gram(-) bacteria. chTNF was significantly upregulated in Gram(+)-treated fragmorphs as compared to controls, while chTNFR was upregulated by both treatments. Finally, the possible chTNF fibrogenic role in sponge fragmorphs was studied by TNF inhibitor treatment measuring fibrillar and non fibrillar collagen gene expression; results indicate that the cytokine is involved in sponge collagen deposition and homeostasis.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection-Turin Unit (CNR), Viale Mattioli 25, 10125 Torino, Italy
| | - Francesca Mussino
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy
| | - Carlo Cerrano
- Department of Life and Environment Sciences (DiSVA), Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, Via Pastore 3, 16132, Italy
| |
Collapse
|
5
|
Tang QY, Larry T, Hendra K, Yamamoto E, Bell J, Cui M, Logothetis DE, Boland LM. Mutations in Nature Conferred a High Affinity Phosphatidylinositol 4,5-Bisphosphate-binding Site in Vertebrate Inwardly Rectifying Potassium Channels. J Biol Chem 2015; 290:16517-29. [PMID: 25957411 DOI: 10.1074/jbc.m115.640409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
All vertebrate inwardly rectifying potassium (Kir) channels are activated by phosphatidylinositol 4,5-bisphosphate (PIP2) (Logothetis, D. E., Petrou, V. I., Zhang, M., Mahajan, R., Meng, X. Y., Adney, S. K., Cui, M., and Baki, L. (2015) Annu. Rev. Physiol. 77, 81-104; Fürst, O., Mondou, B., and D'Avanzo, N. (2014) Front. Physiol. 4, 404-404). Structural components of a PIP2-binding site are conserved in vertebrate Kir channels but not in distantly related animals such as sponges and sea anemones. To expand our understanding of the structure-function relationships of PIP2 regulation of Kir channels, we studied AqKir, which was cloned from the marine sponge Amphimedon queenslandica, an animal that represents the phylogenetically oldest metazoans. A requirement for PIP2 in the maintenance of AqKir activity was examined in intact oocytes by activation of a co-expressed voltage-sensing phosphatase, application of wortmannin (at micromolar concentrations), and activation of a co-expressed muscarinic acetylcholine receptor. All three mechanisms to reduce the availability of PIP2 resulted in inhibition of AqKir current. However, time-dependent rundown of AqKir currents in inside-out patches could not be re-activated by direct application to the inside membrane surface of water-soluble dioctanoyl PIP2, and the current was incompletely re-activated by the more hydrophobic arachidonyl stearyl PIP2. When we introduced mutations to AqKir to restore two positive charges within the vertebrate PIP2-binding site, both forms of PIP2 strongly re-activated the mutant sponge channels in inside-out patches. Molecular dynamics simulations validate the additional hydrogen bonding potential of the sponge channel mutants. Thus, nature's mutations conferred a high affinity activation of vertebrate Kir channels by PIP2, and this is a more recent evolutionary development than the structures that explain ion channel selectivity and inward rectification.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- From the Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, the Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, XuZhou Medical College, Xuzhou, 221004 Jiangsu Province, China
| | - Trevor Larry
- the Department of Biology, University of Richmond, Richmond, Virginia 23173
| | - Kalen Hendra
- the Department of Biology, University of Richmond, Richmond, Virginia 23173
| | - Erica Yamamoto
- the Department of Biology, University of Richmond, Richmond, Virginia 23173
| | - Jessica Bell
- the Department of Chemistry and Biochemistry, University of San Diego, San Diego, California 92110, and
| | - Meng Cui
- From the Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Diomedes E Logothetis
- From the Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Linda M Boland
- the Department of Biology, University of Richmond, Richmond, Virginia 23173
| |
Collapse
|
6
|
Abstract
Cnidaria is a rich phylum that includes thousands of marine species. In this study, we focused on Anthozoa and Hydrozoa that are represented by the Nematostella vectensis (Sea anemone) and Hydra magnipapillata genomes. We present a method for ranking the toxin-like candidates from complete proteomes of Cnidaria. Toxin-like functions were revealed using ClanTox, a statistical machine-learning predictor trained on ion channel inhibitors from venomous animals. Fundamental features that were emphasized in training ClanTox include cysteines and their spacing along the sequences. Among the 83,000 proteins derived from Cnidaria representatives, we found 170 candidates that fulfill the properties of toxin-like-proteins, the vast majority of which were previously unrecognized as toxins. An additional 394 short proteins exhibit characteristics of toxin-like proteins at a moderate degree of confidence. Remarkably, only 11% of the predicted toxin-like proteins were previously classified as toxins. Based on our prediction methodology and manual annotation, we inferred functions for over 400 of these proteins. Such functions include protease inhibitors, membrane pore formation, ion channel blockers and metal binding proteins. Many of the proteins belong to small families of paralogs. We conclude that the evolutionary expansion of toxin-like proteins in Cnidaria contributes to their fitness in the complex environment of the aquatic ecosystem.
Collapse
Affiliation(s)
- Yitshak Tirosh
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (Y.T.); (M.A.)
| | - Itai Linial
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Manor Askenazi
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (Y.T.); (M.A.)
| | - Michal Linial
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (Y.T.); (M.A.)
- Author to whom correspondence should be addressed; ; Tel.: +972-2-658-5425; Fax: +972-2-658-6448
| |
Collapse
|
7
|
Song X, Jin P, Hu J, Qin S, Chen L, Li-Ling J, Ma F. Involvement of AmphiREL, a Rel-like gene identified in Brachiastoma belcheri, in LPS-induced response: Implication for evolution of Rel subfamily genes. Genomics 2012; 99:361-9. [DOI: 10.1016/j.ygeno.2012.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 12/20/2022]
|
8
|
Wang X, Schröder HC, Wiens M, Schloßmacher U, Müller WEG. Biosilica: Molecular Biology, Biochemistry and Function in Demosponges as well as its Applied Aspects for Tissue Engineering. ADVANCES IN MARINE BIOLOGY 2012; 62:231-271. [PMID: 22664124 DOI: 10.1016/b978-0-12-394283-8.00005-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biomineralization, biosilicification in particular (i.e. the formation of biogenic silica, SiO(2)), has become an exciting source of inspiration for the development of novel bionic approaches following 'nature as model'. Siliceous sponges are unique among silica-forming organisms in their ability to catalyze silica formation using a specific enzyme termed silicatein. In this study, we review the present state of knowledge on silicatein-mediated 'biosilica' formation in marine demosponges, the involvement of further molecules in silica metabolism and their potential applications in nano-biotechnology and bio-medicine. While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. Only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e. biosilicification), hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometres to metres. This peculiar phenomenon has been comprehensively studied in recent years, and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1/silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nano-structured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) with promising results.
Collapse
Affiliation(s)
- Xiaohong Wang
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China; ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
9
|
Müller WEG, Binder M, von Lintig J, Guo YW, Wang X, Kaandorp JA, Wiens M, Schröder HC. Interaction of the retinoic acid signaling pathway with spicule formation in the marine sponge Suberites domuncula through activation of bone morphogenetic protein-1. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:1178-1194. [PMID: 21952113 DOI: 10.1016/j.bbagen.2011.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND The formation of the spicules in siliceous sponges involves the formation of cylinder-like structures in the extraspicular space, composed of the enzyme silicatein and the calcium-dependent lectin. SCOPE OF REVIEW Molecular cloning of the cDNAs (carotene dioxygenase, retinal dehydrogenase, and BMB-1 [bone morphogenic protein-1]) from the demosponge Suberites domuncula was performed. These tools were used to understand the retinoid metabolism in the animal by qRT-PCR, immunoblotting and TEM. MAJOR CONCLUSIONS We demonstrate that silintaphin-2, a silicatein-interacting protein, is processed from a longer-sized 15-kDa precursor to a truncated, shorter-sized 13kDa calcium-binding protein via proteolytic cleavage at the dipeptide Ala↓Asp, mediated by BMP-1. The expression of this protease as well as the expression of two key enzymes of the carotinoid metabolism, the β,β-carotene-15,15'-dioxygenase and the retinal dehydrogenase/reductase, were found to be strongly up-regulated by retinoic acid. Hence retinoic acid turned out to be a key factor in skeletogenesis in the most ancient still existing metazoans, the sponges. GENERAL SIGNIFICANCE It is shown that retinoic acid regulates the formation of the organic cylinder that surrounds the axis of the spicules and enables, as a scaffold, the radial apposition of new silica layers and hence the growth of the spicules.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Grant Research Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Renard E, Vacelet J, Gazave E, Lapébie P, Borchiellini C, Ereskovsky AV. Origin of the neuro-sensory system: new and expected insights from sponges. Integr Zool 2011; 4:294-308. [PMID: 21392302 DOI: 10.1111/j.1749-4877.2009.00167.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The capacity of all cells to respond to stimuli implies the conduction of information at least over short distances. In multicellular organisms, more complex systems of integration and coordination of activities are necessary. In most animals, the processing of information is performed by a nervous system. Among the most basal taxa, sponges are nerveless so that it is traditionally assumed that the integrated neuro-sensory system originated only once in Eumetazoa, a hypothesis not in agreement with some recent phylogenomic studies. The aim of this review is to show that recent data on sponges might provide clues for understanding the origin of this complex system. First, sponges are able to react to external stimuli, and some of them display spontaneous movement activities. These coordinated behaviors involve nervous system-like mechanisms, such as action potentials and/or neurotransmitters. Second, genomic analyses show that sponges possess genes orthologous to those involved in the patterning or functioning of the neuro-sensory system in Eumetazoa. Finally, some of these genes are expressed in specific cells (flask cells, choanocytes). Together with ultrastructural data, this gives rise to challenging hypotheses concerning cell types that might play neuro-sensory-like roles in sponges.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Centre d'océanologie de Marseille, CNRS - Aix-Marseille Université, Marseille, France.
| | | | | | | | | | | |
Collapse
|
11
|
Poriferan survivin exhibits a conserved regulatory role in the interconnected pathways of cell cycle and apoptosis. Cell Death Differ 2010; 18:201-13. [PMID: 20651742 DOI: 10.1038/cdd.2010.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Survivin orchestrates intracellular pathways during cell division and apoptosis. Its central function as mitotic regulator and inhibitor of cell death has major implications for tumor cell proliferation. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution a complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulator, a survivin-like protein (SURVL) of one of the earliest-branching metazoan taxa was identified and functionally characterized. SURVL of the sponge Suberites domuncula shares considerable similarities with its metazoan homologs, ranging from conserved exon/intron structure to presence of protein-interaction domains. Whereas sponge tissue shows a low steady-state level, SURVL expression was significantly upregulated in rapidly proliferating primmorph cells. In addition, challenge of tissue and primmorphs with heavy metal or lipopeptide stimulated SURVL expression, concurrent with the expression of a newly discovered caspase. Complementary functional analyses in transfected HEK-293 cells revealed that heterologous expression of a SURVL-EFGP fusion not only promotes proliferation but also enhances resistance to cadmium-induced cell death. Taken together, these results suggest both a deep evolutionary conserved dual role of survivin and an equally conserved central position in the interconnected pathways of cell cycle and apoptosis.
Collapse
|
12
|
Cárdenas P, Rapp HT, Schander C, Tendal OS. Molecular taxonomy and phylogeny of the Geodiidae (Porifera,Demospongiae, Astrophorida) â combining phylogenetic and Linnaean classification. ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2009.00402.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Naamati G, Fromer M, Linial M. Expansion of tandem repeats in sea anemone Nematostella vectensis proteome: A source for gene novelty? BMC Genomics 2009; 10:593. [PMID: 20003297 PMCID: PMC2805694 DOI: 10.1186/1471-2164-10-593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 12/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The complete proteome of the starlet sea anemone, Nematostella vectensis, provides insights into gene invention dating back to the Cnidarian-Bilaterian ancestor. With the addition of the complete proteomes of Hydra magnipapillata and Monosiga brevicollis, the investigation of proteins having unique features in early metazoan life has become practical. We focused on the properties and the evolutionary trends of tandem repeat (TR) sequences in Cnidaria proteomes. RESULTS We found that 11-16% of N. vectensis proteins contain tandem repeats. Most TRs cover 150 amino acid segments that are comprised of basic units of 5-20 amino acids. In total, the N. Vectensis proteome has about 3300 unique TR-units, but only a small fraction of them are shared with H. magnipapillata, M. brevicollis, or mammalian proteomes. The overall abundance of these TRs stands out relative to that of 14 proteomes representing the diversity among eukaryotes and within the metazoan world. TR-units are characterized by a unique composition of amino acids, with cysteine and histidine being over-represented. Structurally, most TR-segments are associated with coiled and disordered regions. Interestingly, 80% of the TR-segments can be read in more than one open reading frame. For over 100 of them, translation of the alternative frames would result in long proteins. Most domain families that are characterized as repeats in eukaryotes are found in the TR-proteomes from Nematostella and Hydra. CONCLUSIONS While most TR-proteins have originated from prediction tools and are still awaiting experimental validations, supportive evidence exists for hundreds of TR-units in Nematostella. The existence of TR-proteins in early metazoan life may have served as a robust mode for novel genes with previously overlooked structural and functional characteristics.
Collapse
|
14
|
Towards a Molecular Systematics of the Lake Baikal/Lake Tuva Sponges. BIOSILICA IN EVOLUTION, MORPHOGENESIS, AND NANOBIOTECHNOLOGY 2009; 47:111-44. [DOI: 10.1007/978-3-540-88552-8_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Müller WEG, Schröder HC, Belikov SI. Sustainable Exploitation and Conservation of the Endemic Lake Baikal Sponge (Lubomirskia baicalensis) for Application in Nanobiotechnology. BIOSILICA IN EVOLUTION, MORPHOGENESIS, AND NANOBIOTECHNOLOGY 2009; 47:383-416. [DOI: 10.1007/978-3-540-88552-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
The transcription factor NF-kappaB in the demosponge Amphimedon queenslandica: insights on the evolutionary origin of the Rel homology domain. Dev Genes Evol 2008; 218:23-32. [PMID: 18175145 DOI: 10.1007/s00427-007-0197-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
The Rel/nuclear factor-kappa B (NF-kappaB) and nuclear factor of activated T-cells (NFAT) transcription factors contribute to the regulation of an assortment of biological processes by binding DNA with high specificity using their Rel homology domain (RHD). Recently, it has been shown that members of these gene families are present in the genome of the anthozoan cnidarian Nematostella vectensis, indicating that they predate the evolution of the most recent ancestor to living bilaterians. By identifying a single NF-kappaB gene in the genome of the demosponge Amphimedon queenslandica, a representative of an even earlier branching metazoan lineage, we demonstrate here that the Rel/NF-kappaB family originated at the dawn of the Metazoa. There is no evidence of RHDs in fungal and choanoflagellate genomes, supporting the notion that the RHD is a metazoan-specific innovation. The A. queenslandica gene (AmqNF-kappaB) encodes a protein that is highly similar in structure to the vertebrate NF-kappaB p50/p52 proteins, possessing both a RHD and ankyrin (ANK) repeats. The intact AmqNF-kappaB contrasts with the N. vectensis NF-kappaB, which lacks ANK repeats, and suggests that the ancestral metazoan NF-kappaB was configured identically to contemporary vertebrate and sponge forms. AmqNF-kappaB is expressed during A. queenslandica embryogenesis, suggesting a developmental role.
Collapse
|
17
|
Evolution of a novel subfamily of nuclear receptors with members that each contain two DNA binding domains. BMC Evol Biol 2007; 7:27. [PMID: 17319953 PMCID: PMC1810520 DOI: 10.1186/1471-2148-7-27] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 02/23/2007] [Indexed: 11/11/2022] Open
Abstract
Background Nuclear receptors (NRs) are important transcriptional modulators in metazoans which regulate transcription through binding to the promoter region of their target gene by the DNA binding domain (DBD) and activation or repression of mRNA synthesis through co-regulators bound to the ligand binding domain (LBD). NRs typically have a single DBD with a LBD. Results Three nuclear receptors named 2DBD-NRs, were identified from the flatworm Schistosoma mansoni that each possess a novel set of two DBDs in tandem with a LBD. They represent a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. The 2DBD-NRs form a new subfamily of NRs, VII. By database mining, 2DBD-NR genes from other flatworm species (Schmidtea mediterranea and Dugesia japonica), from Mollusks (Lottia gigantean) and from arthropods (Daphnia pulex) were also identified. All 2DBD-NRs possess a P-box sequence of CEACKK in the first DBD, which is unique to 2DBD-NRs, and a P-box sequence of CEGCKG in the second DBD. Phylogenetic analyses of both DBD and ligand binding domain sequences showed that 2DBD-NR genes originate from a common two DBD-containing ancestor gene. A single 2DBD-NR orthologue was found in Arthropoda, Platyhelminths and Mollusca. Subsequent 2DBD-NR gene evolution in Mollusks and Platyhelminths involved gene duplication. Chromosome localization of S. mansoni 2DBD-NR genes by Fluorescent in situ hybridization (FISH) suggests that 2DBD-NR genes duplicated on different chromosomes in the Platyhelminths. Dimerization of Sm2DBDα indicates that 2DBD-NRs may act as homodimers, suggesting either that two repeats of a half-site are necessary for each DBD of 2DBD-NRs to bind to its target gene, or that each 2DBD-NR can recognize multiple sites. Conclusion 2DBD-NRs share a common ancestor gene which possessed an extra DBD that likely resulted from a recombination event. After the split of the Arthropods, Mollusks and Platyhelminths, 2DBD-NR underwent a recent duplication in a common ancestor of Mollusks, while two rounds of duplication occurred in a common ancestor of the Platyhelminths. This demonstrates that certain NR gene underwent recent duplication in Prostostome lineages after the split of the Prostostomia and Deuterostomia.
Collapse
|
18
|
Kubrycht J, Sigler K, Růzicka M, Soucek P, Borecký J, Jezek P. Ancient Phylogenetic Beginnings of Immunoglobulin Hypermutation. J Mol Evol 2006; 63:691-706. [PMID: 17031458 DOI: 10.1007/s00239-006-0051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 04/20/2006] [Indexed: 12/15/2022]
Abstract
Many structures and molecules closely related to those involved in the specific process of immunoglobulin (Ig) hypermutation existed before the appearance of primordial Ig genes. Consequently, these structures can be found even in animals and organisms distinct from vertebrates; likewise, homologues of hypermutation enzymes are present in a broad range of species, from bacteria to mammals. Our analysis, based predominantly on primary structure, demonstrates the existence of molecules similar to Ig domains, variable Ig domains (IGv), and antigen receptors (AR) in unicellular organisms, nonvertebrate metazoans, and nonvertebrate Coelomata, respectively. In addition, we deal here with some important structural properties of CDR1-like segments of the selected sponge adhesion molecule GCSAMS exhibiting chimerical Ig domain similarities, and demonstrate the occurrence of conserved regions corresponding to Ohno's modern intact primordial building block in the C-terminal part of IGv-related segments of nonvertebrate origin. The results of our analysis are also discussed with respect to the possible phylogeny of molecules preceding the hypothetical common antigen receptor ancestor.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Center of Occupational Medicine, National Institute of Public Health, 100 42 Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
19
|
Bern M, Goldberg D, Lyashenko E. Data mining for proteins characteristic of clades. Nucleic Acids Res 2006; 34:4342-53. [PMID: 16936320 PMCID: PMC1636346 DOI: 10.1093/nar/gkl440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Revised: 04/18/2006] [Accepted: 06/05/2006] [Indexed: 12/03/2022] Open
Abstract
A synapomorphy is a phylogenetic character that provides evidence of shared descent. Ideally a synapomorphy is ubiquitous within the clade of related organisms and nonexistent outside the clade, implying that it arose after divergence from other extant species and before the last common ancestor of the clade. With the recent proliferation of genetic sequence data, molecular synapomorphies have assumed great importance, yet there is no convenient means to search for them over entire genomes. We have developed a new program called Conserv, which can rapidly assemble orthologous sequences and rank them by various metrics, such as degree of conservation or divergence from out-group orthologs. We have used Conserv to conduct a largescale search for molecular synapomorphies for bacterial clades. The search discovered sequences unique to clades, such as Actinobacteria, Firmicutes and gamma-Proteobacteria, and shed light on several open questions, such as whether Symbiobacterium thermophilum belongs with Actinobacteria or Firmicutes. We conclude that Conserv can quickly marshall evidence relevant to evolutionary questions that would be much harder to assemble with other tools.
Collapse
Affiliation(s)
- Marshall Bern
- Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA.
| | | | | |
Collapse
|
20
|
Schröder HC, Breter HJ, Fattorusso E, Ushijima H, Wiens M, Steffen R, Batel R, Müller WEG. Okadaic acid, an apoptogenic toxin for symbiotic/parasitic annelids in the demosponge Suberites domuncula. Appl Environ Microbiol 2006; 72:4907-16. [PMID: 16820487 PMCID: PMC1489365 DOI: 10.1128/aem.00228-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 05/08/2006] [Indexed: 11/20/2022] Open
Abstract
The role of okadaic acid (OA) in the defense system of the marine demosponge Suberites domuncula against symbiotic/parasitic annelids was examined. Bacteria within the mesohyl produced okadaic acid at concentrations between 32 ng/g and 58 ng/g of tissue (wet weight). By immunocytochemical methods and by use of antibodies against OA, we showed that the toxin was intracellularly stored in vesicles. Western blotting experiments demonstrated that OA also existed bound to a protein with a molecular weight of 35,000 which was tentatively identified as a galectin (by application of antigalectin antibodies). Annelids that are found in S. domuncula undergo apoptotic cell death. OA is one candidate inducer molecule of this process, since this toxin accumulated in these symbionts/parasites. Furthermore, we identified the cDNA encoding the multifunctional prosurvival molecule BAG-1 in S. domuncula; it undergoes strong expression in the presence of the annelid. Our data suggest that sponges use toxins (here, OA) produced from bacteria to eliminate metazoan symbionts/parasites by apoptosis.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sanetra M, Begemann G, Becker MB, Meyer A. Conservation and co-option in developmental programmes: the importance of homology relationships. Front Zool 2005; 2:15. [PMID: 16216118 PMCID: PMC1282587 DOI: 10.1186/1742-9994-2-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 10/10/2005] [Indexed: 12/01/2022] Open
Abstract
One of the surprising insights gained from research in evolutionary developmental biology (evo-devo) is that increasing diversity in body plans and morphology in organisms across animal phyla are not reflected in similarly dramatic changes at the level of gene composition of their genomes. For instance, simplicity at the tissue level of organization often contrasts with a high degree of genetic complexity. Also intriguing is the observation that the coding regions of several genes of invertebrates show high sequence similarity to those in humans. This lack of change (conservation) indicates that evolutionary novelties may arise more frequently through combinatorial processes, such as changes in gene regulation and the recruitment of novel genes into existing regulatory gene networks (co-option), and less often through adaptive evolutionary processes in the coding portions of a gene. As a consequence, it is of great interest to examine whether the widespread conservation of the genetic machinery implies the same developmental function in a last common ancestor, or whether homologous genes acquired new developmental roles in structures of independent phylogenetic origin. To distinguish between these two possibilities one must refer to current concepts of phylogeny reconstruction and carefully investigate homology relationships. Particularly problematic in terms of homology decisions is the use of gene expression patterns of a given structure. In the future, research on more organisms other than the typical model systems will be required since these can provide insights that are not easily obtained from comparisons among only a few distantly related model species.
Collapse
Affiliation(s)
- Matthias Sanetra
- Lehrstuhl für Zoologie und Evolutionsbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Gerrit Begemann
- Lehrstuhl für Zoologie und Evolutionsbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - May-Britt Becker
- Lehrstuhl für Zoologie und Evolutionsbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
22
|
Schröder HC, Perovic-Ottstadt S, Grebenjuk VA, Engel S, Müller IM, Müller WEG. Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics 2005; 85:666-78. [PMID: 15885494 DOI: 10.1016/j.ygeno.2005.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 02/02/2005] [Indexed: 11/29/2022]
Abstract
The formation of spicules is a complicated morphogenetic process in sponges (phylum Porifera). The primmorph system was used to demonstrate that in the demosponge Suberites domuncula the synthesis of the siliceous spicules starts intracellularly and is dependent on the concentration of silicic acid. To understand spicule formation, a cluster of genes was isolated. In the center of this cluster is the silicatein gene, which codes for the enzyme that synthesizes spicules. This gene is flanked by an ankyrin repeat gene at one side and by a tumor necrosis factor receptor-associated factor and a protein kinase gene at the other side. All genes are strongly expressed in primmorphs and intact animals after exposure to silicic acid, and this expression is restricted to those areas where the spicule formation starts or where spicules are maintained in the animals. Our observations suggest that in S. domuncula a coordinated expression of physically linked genes is essential for the synthesis of the major skeletal elements.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Breter HJ, Grebenjuk VA, Skorokhod A, Müller WEG. Approaches for a sustainable use of the bioactive potential in sponges: analysis of gene clusters, differential display of mRNA and DNA chips. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 37:199-230. [PMID: 15825645 DOI: 10.1007/978-3-642-55519-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In recent years, analyses of the genome organization of marine sponges have begun that have led to the elucidation of selected genes and gene arrangements that exist in gene clusters (e.g. the receptor tyrosine kinase cluster and the allograft inflammatory factor cluster). Most of these studies were performed with the demosponge Suberites domuncula; but Geodia cydonium (Demospongiae), Aphrocallistes vastus (Hexactinellida) and Sycon raphanus (Calcarea) were also investigated. Both S. domuncula and G. cydonium possess a surprisingly large genome of approximately 1.7 pg DNA per haploid set. Taking the high gene density in these sponges into account and considering that predominantly single-copy DNA exists, the gene number of S. domuncula and G. cydonium was estimated to be approximately 300,000. Presumably, the large gene number in the sponge genome is due to regional gene duplication; so far evidence for a transposition in sponges has been presented. Data indicate that only 0.25 % of the total sponge genome comprises CA/TG microsatellites, and until now also no SINEs/transposable elements have been identified. Due to the rapid progress in the field of molecular biology of sponges the application of sponge genes for expression studies by DNA-array techniques (microarray) has become possible. These achievements will be further supported by the systematic analysis of the expressed genome of sponges; the results will be (partially) released (http://spongebase.uni-mainz.de/cgi-bin/blast/blastserver.cgi). In our efforts employing the results from the analysis of the genome to molecular biotechnology, we applied the technique of differential display of mRNA. One example, the effect of silicate on gene expression in S. domuncula, is outlined here. Future results will allow the identification of the genes involved in the synthesis of bioactive compounds from sponges [Porifera]. This progress will contribute considerably to a fruitful and fast development in the field of molecular marine biotechnology.
Collapse
Affiliation(s)
- H J Breter
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 55099 Mainz; Germany
| | | | | | | |
Collapse
|
24
|
Wiens M, Korzhev M, Krasko A, Thakur NL, Perović-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG. Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem 2005; 280:27949-59. [PMID: 15923643 DOI: 10.1074/jbc.m504049200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sponges (phylum Porifera) are the phylogenetically oldest metazoa; as filter feeders, they are abundantly exposed to marine microorganisms. Here we present data indicating that the demosponge Suberites domuncula is provided with a recognition system for gram-negative bacteria. The lipopolysaccharide (LPS)-interacting protein was identified as a receptor on the sponge cell surface, which recognizes the bacterial endotoxin LPS. The cDNA was isolated, and the protein (Mr 49,937) was expressed. During binding to LPS, the protein dimerizes and interacts with MyD88, which was also identified and cloned. The sponge MyD88 (Mr 28,441) is composed of two protein interaction domains, a Toll/interleukin-1 receptor domain (found in MyD88 and in Toll-like receptors) and a death domain (present in MyD88 and interleukin-1 receptor-associated kinase). Northern blot experiments and in situ hybridization studies showed that after LPS treatment, the level of the LPS-interacting protein remains unchanged, whereas MyD88 is strongly up-regulated. A perforin-like molecule (Mr 74,171), the macrophage-expressed protein, was identified as an executing molecule of this pathway. This gene is highly expressed after LPS treatment, especially at the surfaces of the animals. The recombinant protein possesses biological activity and eliminates gram-negative bacteria; it is inactive against gram-positive bacteria. These data indicate that S. domuncula is provided with an innate immune system against gram-negative bacteria; the ligand LPS (a pathogen-associated molecular pattern) is recognized by the pattern recognition receptor (LPS-interacting protein), which interacts with MyD88. A signal transduction is established, which results in an elevated expression of MyD88 as well as of the macrophage-expressed protein as an executing protein.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/chemistry
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Cross-Linking Reagents/pharmacology
- DNA, Complementary/metabolism
- Dimerization
- Fluorescein-5-isothiocyanate/pharmacology
- Gene Library
- Immunohistochemistry
- Immunoprecipitation
- In Situ Hybridization
- Ligands
- Lipopolysaccharides/chemistry
- Macrophages/metabolism
- Membrane Glycoproteins/chemistry
- Models, Biological
- Molecular Sequence Data
- Myeloid Differentiation Factor 88
- Perforin
- Phylogeny
- Pore Forming Cytotoxic Proteins
- Protein Binding
- Protein Structure, Tertiary
- RNA/chemistry
- Receptors, Immunologic/chemistry
- Recombinant Proteins/chemistry
- Sequence Homology, Amino Acid
- Signal Transduction
- Suberites/immunology
- Suberites/metabolism
- Suberites/microbiology
- Up-Regulation
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Müller WEG, Batel R, Müller IM, Schröder HC. Cultural heritage: porifera (sponges), a taxon successfully progressing paleontology, biology, biochemistry, biotechnology and biomedicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 546:325-58. [PMID: 15584385 DOI: 10.1007/978-1-4757-4820-8_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany.
| | | | | | | |
Collapse
|
26
|
Cetkovic H, Grebenjuk VA, Müller WEG, Gamulin V. Src proteins/src genes: from sponges to mammals. Gene 2004; 342:251-61. [PMID: 15527984 DOI: 10.1016/j.gene.2004.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/08/2004] [Accepted: 07/23/2004] [Indexed: 11/27/2022]
Abstract
The genome of marine sponge Suberites domuncula, a member of the most ancient and most simple metazoan phylum Porifera, encodes at least five genes for Src-type proteins, more than, i.e., Caenorhabditis elegans or Drosophila melanogaster (two in each). Three proteins, SRC1SD, SRC2SD and SRC3SD, were fully characterized. The overall homology (identity+similarity) among the three S. domuncula Srcs (68-71%) is much lower than the sequence conservation between orthologous Src proteins from freshwater sponges (82-85%). It is therefore very likely that several src genes/proteins were already present in the genome of Urmetazoa, the hypothetical metazoan ancestor. We have identified in the S. domuncula expressed sequence tags (ESTs) database further Src homology 2 (SH2) and 3 (SH3) domains that are unrelated to protein tyrosine kinases (PTKs). Src-related SH2 and SH3 domains from different species are much more conserved than SH2 and SH3 domains from different proteins in the same organism (S. domuncula), supporting the view that the common, ancestral src gene was already a multidomain protein composed of SH3, SH2 and tyrosine kinase (TK) domains. Two S. domuncula src genes were fully sequenced: src1SD gene has six and src2SD gene only one intron in front of SH2 domain, located at the same position in both genes. All vertebrate src genes, from fish to human, originated from the same ancestral gene, because they all have 10 introns at conserved positions. However, src genes in invertebrates have fewer introns that are located at different positions. Only the intron in front of the SH2 domain is present at the absolutely conserved position (and phase) in all known src genes, indicating that at least this intron was already present in the ancestral gene, common to all Metazoa. Our results also suggest that TK domain in this ancestral src was encoded on a single exon.
Collapse
Affiliation(s)
- Helena Cetkovic
- Department of Molecular Biology, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
27
|
Keränen SVE. Simulation study on effects of signaling network structure on the developmental increase in complexity. J Theor Biol 2004; 231:3-21. [PMID: 15363926 DOI: 10.1016/j.jtbi.2004.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 03/17/2004] [Accepted: 03/17/2004] [Indexed: 11/30/2022]
Abstract
The developmental increase in structural complexity in multicellular lifeforms depends on local, often non-periodic differences in gene expression. These, in turn, depend on a network of gene-gene interactions coded within the organismal genome. To see what architectural features of a network (size, connectivity, etc.) affect the likelihood of patterns with multiple cell types (i.e. patterns where cells express > or = 3 different combinations of genes), developmental pattern formation was simulated in virtual blastoderm embryos with small artificial genomes. Several basic properties of these genomic signaling networks, such as the number of genes, the distributions of positive (inductive) and negative (repressive) interactions, and the strengths of gene-gene interactions were tested. The results show that the frequencies of complex and/or stable patterns depended not only on the existence of negative interactions, but also on the distribution of regulatory interactions: for example, coregulation of signals and their intracellular effectors increased the likelihood of pattern formation compared to differential regulation of signaling pathway components. Interestingly, neither quantitative differences in strengths of signaling interactions nor multiple response thresholds to different levels of signal concentration (as in morphogen gradients) were essential for formation of multiple, spatially unique "cell types". However, those combinations of architectural features that greatly increased the likelihood for pattern complexity tended to decrease the likelihoods for pattern stability and developmental robustness. Nevertheless, elements of complex patterns (e.g. genes, cell type order within the pattern) could differ in their developmental robustness, which may be important for the evolution of complexity. The results show that depending on the network structure, the same set of genes can produce patterns of different complexity, robustness and stability. Because of this, the evolution of metazoan complexity with a combinatorial code of gene regulation may have depended at least as much on selection for favorable distribution of connections between existing developmental regulatory genes as on the simple increase in numbers of regulatory genes.
Collapse
Affiliation(s)
- Soile V E Keränen
- Genome Sciences Department, Ernest Orlando Lawrence Berkeley National Laboratory, MS 171-84, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Bowers-Morrow VM, Ali SO, Williams KL. Comparison of molecular mechanisms mediating cell contact phenomena in model developmental systems: an exploration of universality. Biol Rev Camb Philos Soc 2004; 79:611-42. [PMID: 15366765 DOI: 10.1017/s1464793103006389] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Are there universal molecular mechanisms associated with cell contact phenomena during metazoan ontogenesis? Comparison of adhesion systems in disparate model systems indicates the existence of unifying principles. Requirements for multicellularity are (a) the construction of three-dimensional structures involving a crucial balance between adhesiveness and motility; and (b) the establishment of integration at molecular, cellular, tissue, and organismal levels of organization. Mechanisms for (i) cell-cell and cell-substrate adhesion, (ii) cell movement, (iii) cell-cell communication, (iv) cellular responses, (v) regulation of these processes, and (vi) their integration with patterning, growth, and other developmental processes are all crucial to metazoan development, and must have been present for the emergence and radiation of Metazoa. The principal unifying themes of this review are the dynamics and regulation of cell contact phenomena. Our knowledge of the dynamic molecular mechanisms underlying cell contact phenomena remains fragmentary. Here we examine the molecular bases of cell contact phenomena using extant model developmental systems (representing a wide range of phyla) including the simplest i.e. sponges, and the eukaryotic protist Dictyostelium discoideum, the more complex Drosophila melanogaster, and vertebrate systems. We discuss cell contact phenomena in a broad developmental context. The molecular language of cell contact phenomena is complex; it involves a plethora of structurally and functionally diverse molecules, and diverse modes of intermolecular interactions mediated by protein and/or carbohydrate moieties. Reasons for this are presumably the necessity for a high degree of specificity of intermolecular interactions, the requirement for a multitude of different signals, and the apparent requirement for an increasingly large repertoire of cell contact molecules in more complex developmental systems, such as the developing vertebrate nervous system. However, comparison of molecular models for dynamic adhesion in sponges and in vertebrates indicates that, in spite of significant differences in the details of the way specific cell-cell adhesion is mediated, similar principles are involved in the mechanisms employed by members of disparate phyla. Universal requirements are likely to include (a) rapidly reversible intermolecular interactions; (b) low-affinity intermolecular interactions with fast on-off rates; (c) the compounding of multiple intermolecular interactions; (d) associated regulatory signalling systems. The apparent widespread employment of molecular mechanisms involving cadherin-like cell adhesion molecules suggests the fundamental importance of cadherin function during development, particularly in epithelial morphogenesis, cell sorting, and segregation of cells.
Collapse
|
29
|
Abstract
The transition to multicellularity that launched the evolution of animals from protozoa marks one of the most pivotal, and poorly understood, events in life's history. Advances in phylogenetics and comparative genomics, and particularly the study of choanoflagellates, are yielding new insights into the biology of the unicellular progenitors of animals. Signaling and adhesion gene families critical for animal development (including receptor tyrosine kinases and cadherins) evolved in protozoa before the origin of animals. Innovations in transcriptional regulation and expansions of certain gene families may have allowed the integration of cell behavior during the earliest experiments with multicellularity. The protozoan perspective on animal origins promises to provide a valuable window into the distant past and into the cellular bases of animal development.
Collapse
Affiliation(s)
- Nicole King
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, #3200, 94720, USA.
| |
Collapse
|
30
|
Cereijido M, Contreras RG, Shoshani L. Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans. Physiol Rev 2004; 84:1229-62. [PMID: 15383651 DOI: 10.1152/physrev.00001.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transporting epithelia posed formidable conundrums right from the moment that Du Bois Raymond discovered their asymmetric behavior, a century and a half ago. It took a century and a half to start unraveling the mechanisms of occluding junctions and polarity, but we now face another puzzle: lest its cells died in minutes, the first high metazoa (i.e., higher than a sponge) needed a transporting epithelium, but a transporting epithelium is an incredibly improbable combination of occluding junctions and cell polarity. How could these coincide in the same individual organism and within minutes? We review occluding junctions (tight and septate) as well as the polarized distribution of Na+-K+-ATPase both at the molecular and the cell level. Junctions and polarity depend on hosts of molecular species and cellular processes, which are briefly reviewed whenever they are suspected to have played a role in the dawn of epithelia and metazoan. We come to the conclusion that most of the molecules needed were already present in early protozoan and discuss a few plausible alternatives to solve the riddle described above.
Collapse
Affiliation(s)
- M Cereijido
- Center For Research and Advanced Studies, Dept. of Physiology, Biophysics, and Neurosciences, Avenida Instituto Politécnico Nacional 2508, Código Postal 07360, México D.F., Mexico.
| | | | | |
Collapse
|
31
|
Kubrycht J, Borecký J, Soucek P, Jezek P. Sequence similarities of protein kinase substrates and inhibitors with immunoglobulins and model immunoglobulin homologue: cell adhesion molecule from the living fossil sponge Geodia cydonium. Mapping of coherent database similarities and implications for evolution of CDR1 and hypermutation. Folia Microbiol (Praha) 2004; 49:219-46. [PMID: 15259763 DOI: 10.1007/bf02931038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sequences of immunoglobulin (Ig) domains of adhesive molecule GSAMS from the living fossil sponge Geodia cydonium were compared with the important motif of peptide protein kinase substrates and inhibitors (PKSI), detail PKSI sequences, and a common template sequence, derived from structures determined previously. We found the site-restricted sequence similarities to these peptide sequences predominantly in the GSAM Ig1 domain of GSAMS in the domain region related to corresponding Ig similarities detected earlier. Additional sequence block-related analysis revealed the presence of CDR1-like segments within PKSI-related regions and resulted in the detection of increased numbers of hypermutation motifs just in the CDR1-like segment of GSAM Ig1 (GSAM(cdrl.1)). In the following database searches with PKSI-related regions and GSAM(cdr1.1) we looked for: (i) peptide similarities present in the context of Ig domains or related structures in a large range of species from Archaea to Vertebrata, and (ii) some special nucleotide similarities.
Collapse
Affiliation(s)
- J Kubrycht
- Center of Occupational Diseases, National Institute of Public Health, 100 42 Prague, Czechia.
| | | | | | | |
Collapse
|
32
|
Müller WEG, Schwertner H, Müller IM. Porifera a reference phylum for evolution and bioprospecting: the power of marine genomics. Keio J Med 2004; 53:159-165. [PMID: 15477729 DOI: 10.2302/kjm.53.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The term Urmetazoa, as the hypothetical metazoan ancestor, was introduced to highlight the finding that all metazoan phyla including the Porifera [sponges] derived from one common ancestor. Analyses of sponge genomes, from Demospongiae, Calcarea and Hexactinellida have permitted the reconstruction of the evolutionary trail from Fungi to Metazoa. This has provided evidence that the characteristic evolutionary novelties of Metazoa existing in Porifera share high sequence similarities and in some aspects also functional similarities to related polypeptides found in other metazoan phyla. It is surprising that the genome of Porifera is large and comprises substantially more genes than Protostomia and Deuterostomia. On the basis of solid taxonomy and ecological data, the high value of this phylum for human application becomes obvious especially with regard to the field of chemical ecology and the hope to find novel potential drugs for clinical use. In addition, the benefit of efforts in understanding molecular biodiversity with focus on sponges can be seen in the fact that these animals as "living fossils" allow to stethoscope into the past of our globe especially with respect to the evolution of Metazoa.
Collapse
Affiliation(s)
- Werner E G Müller
- Institute for Physiological Chemistry, Department of Applied Molecular Biology, University, Duesbergweg, Mainz, Germany.
| | | | | |
Collapse
|
33
|
Wiens M, Mangoni A, D'Esposito M, Fattorusso E, Korchagina N, Schröder HC, Grebenjuk VA, Krasko A, Batel R, Müller IM, Müller WEG. The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges. J Mol Evol 2004; 57 Suppl 1:S60-75. [PMID: 15008404 DOI: 10.1007/s00239-003-0008-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular data on development/differentiation and on comparative genomics allow insights into the genetic basis of the evolution of a bodyplan. Sponges (phylum Porifera) are animals that are the (still extant) stem group with the hypothetical Urmetazoa as the earliest common ancestor of all metazoans; they possess the basic features of the characteristic metazoan bodyplan also valid for the animals of the crown taxa. Here we describe three homeobox genes from the demosponge Suberites domuncula whose deduced proteins (HOXa1_SUBDO, HOXb1_SUBDO, HOXc1_SUBDO) are to be grouped with the Antennapedia class of homeoproteins (subclasses TIx-Hox11 and NK-2). In addition, a cDNA encoding a LIM/homeobox protein has been isolated which comprises high sequence similarity to the related LIM homeodomain (HD) proteins in its LIM as well as in its HD domains. To elucidate the potential function of these proteins in the sponge a new in vitro system was developed. Primmorphs which are formed from dissociated cells were grown on a homologous galectin matrix. This galectin cDNA was cloned and the recombinant protein was used for the preparation of the matrix. The galectin/polylysine matrix induced in primmorphs the formation of channels, one major morphogenetic process in sponges. Under such conditions the expression of the gene encoding the LIM/homeobox protein is strongly upregulated, while the expression of the other homeobox genes remains unchanged or is even downregulated. Competition experiments with galactosylceramides isolated from S. domuncula were performed. They revealed that a beta-galactosylceramide, named Sdgal-1, prevented the expression of the LIM gene on the galectin matrix, while Sdgal-2, a diglycosylceramide having a terminal alpha-glycosidically linked galactose, caused no effect on the formation of channels in primmorphs or on LIM expression. This study demonstrates for the first time that an extracellular matrix molecule, galectin, induces a morphogenetic process in sponges which is very likely caused by a LIM/homeobox protein. Furthermore, a new model is introduced (galectin-caused channel formation in sponge primmorphs) to investigate basic pathways, thus allowing new insights into the functional molecular evolution of Metazoa.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bosch TCG. Ancient signals: peptides and the interpretation of positional information in ancestral metazoans. Comp Biochem Physiol B Biochem Mol Biol 2004; 136:185-96. [PMID: 14529745 DOI: 10.1016/s1096-4959(03)00226-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the 'tool kit' that builds the most fundamental aspects of animal complexity requires data from the basal animals. Among the earliest diverging animal phyla are the Cnidaria which are the first in having a defined body plan including an axis, a nervous system and a tissue layer construction. Here I revise our understanding of patterning mechanism in cnidarians with special emphasis on the nature of positional signals in Hydra as perhaps the best studied model organism within this phylum. I show that (i) peptides play a major role as positional signals and in cell-cell communication; (ii) that intracellular signalling pathways in Hydra leading to activation of target genes are shared with all multicellular animals; (iii) that homeobox genes translate the positional signals; and (iv) that the signals are integrated by a complex genetic regulatory machinery that includes both novel cis regulatory elements as well as taxon specific target genes. On the basis of these results I present a model for the regulatory interactions required for axis formation in Hydra.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University, Olshausenstrasse 40, Kiel 24098, Germany.
| |
Collapse
|
35
|
Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM. Bauplan of Urmetazoa: Basis for Genetic Complexity of Metazoa. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 235:53-92. [PMID: 15219781 DOI: 10.1016/s0074-7696(04)35002-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sponges were first grouped to the animal-plants or plant-animals then to the Zoophyta or Mesozoa and finally to the Parazoa. Only after the application of molecular biological techniques was it possible to place the Porifera monophyletically with the other metazoan phyla, justifying a unification of all multicellular animals to only one kingdom, the Metazoa. The first strong support came from the discovery that cell-cell and cell-matrix adhesion molecules that were cloned from sponges and were subsequently expressed share a high DNA sequence and protein function similarity with the corresponding molecules of other metazoans. Besides these evolutionary novelties for Metazoa, sponges also have morphogens and transcription factors in common with other metazoan phyla. Surprisingly, even those elements exist in Porifera, which are characteristic for pattern and axis formation. Recent studies showed that epithelial layers of sponges are sealed against the extracellular milieu through tight-junction proteins. The cell culture system from sponges, the primmorphs, was suitable for understanding morphogenetic events. Finally, stem cell marker genes were isolated, which underscored that sponge cells have the capacity to differentiate. In the relatively short period of time, approximately 200 million years, the basic pathways had to be established that allowed the transition for multicellular organisms to a colonial system through the formation of adhesion molecules; based on the development of a complex immune system and the apoptotic machinery of an integrated system, the Urmetazoa, which evolved approximately 800 million years ago, could be reached. Hence, the Bauplan of the hypothetical Urmetazoa can now be constructed according to genomic regulatory systems similar to those found in higher Metazoa. These data caused a paradigmatic change; the Porifera are complex and simple but by far not primitive.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Müller WEG, Batel R, Schröder HC, Müller IM. Traditional and Modern Biomedical Prospecting: Part I-the History: Sustainable Exploitation of Biodiversity (Sponges and Invertebrates) in the Adriatic Sea in Rovinj (Croatia). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2004; 1:71-82. [PMID: 15257328 PMCID: PMC442115 DOI: 10.1093/ecam/neh013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 02/02/2004] [Indexed: 11/24/2022]
Abstract
Nature, especially the marine environment, provides the most effective drugs used in human therapy. Among the metazoans, the marine sponges (phylum Porifera), which are sessile filter feeders, produce the most potent and highly selective bioactive secondary metabolites. These animals (or their associated symbiotic microorganisms) synthesize secondary metabolites whose activity and selectivity has developed during their long evolutionary history (evochemistry). The exploitation of these resources has become possible due to the progress in molecular and cell biology. BIOTECmarin, the German Center of Excellence follows this rationale. In the past, these animals have been successfully and extensively utilized to isolate bioactive compounds and biomaterials for human benefit. Pharmaceuticals prepared from marine animals, primarily sponges, have been applied since ancient times (Hippocrates, Aristotle and later Plinius). It has been reported that extracts and/or components from sponges can be used for the treatment of specific diseases. For a systematic and applied-oriented exploitation, the successful development of effective compounds largely depends on quality of the institutional infrastructure of marine stations and more so on the biodiversity. The Center for Marine Research in Rovinj (Croatia) fulfils these prerequisites. Founded in 1891, this institute has to its credit major discoveries related to exploitation of secondary metabolites/biomaterials from sponges for therapeutical application and to obtain biomaterials for general wellbeing. This is the first part of a review focusing on biomedical prospecting. Here, we have mainly described the historic background. The details of techniques, substances, approaches and outlooks will be discussed in the second part.
Collapse
Affiliation(s)
- Werner E. G. Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, UniversitätDuesbergweg 6, D-55099 Mainz, Germany
- For reprints and all correspondence: Prof. Werner E.G. Müller, Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany. Tel.: +6131-3925910; Fax.: +6131-3925243; E-mail:
| | - Renato Batel
- Center for Marine Research, Ruder Boskovic InstituteHR-52210 Rovinj, Croatia
| | - Heinz C. Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, UniversitätDuesbergweg 6, D-55099 Mainz, Germany
| | - Isabel M. Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, UniversitätDuesbergweg 6, D-55099 Mainz, Germany
| |
Collapse
|
37
|
Wiens M, Batel R, Korzhev M, Müller WEG. Retinoid X receptor and retinoic acid response in the marine sponge Suberites domuncula. J Exp Biol 2003; 206:3261-71. [PMID: 12909707 DOI: 10.1242/jeb.00541] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date no nuclear receptors have been identified or cloned from the phylogenetically oldest metazoan phylum, the Porifera (sponges). We show that retinoic acid causes tissue regression in intact individuals of the demosponge Suberites domuncula and in primmorphs, special three-dimensional cell aggregates. Primmorphs were cultivated on a galectin/poly-L-lysine matrix in order to induce canal formation. In the presence of 1 or 50 micromol l(-1) retinoic acid these canals undergo regression, a process that is reversible. We also cloned the cDNA from S. domuncula encoding the retinoid X receptor (RXR), which displays the two motifs of nuclear hormone receptors, the ligand-binding and the DNA-binding domains, and performed phylogenetic analyses of this receptor. RXR expression undergoes strong upregulation in response to treatment with retinoic acid, whereas the expression of the sponge caspase is not increased. The gene encoding the LIM homeodomain protein was found to be strongly upregulated in response to retinoic acid treatment. These data indicate that the RXR and its ligand retinoic acid play a role in the control of morphogenetic events in sponges.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | |
Collapse
|
38
|
Müller WEG, Korzhev M, Le Pennec G, Müller IM, Schröder HC. Origin of metazoan stem cell system in sponges: first approach to establish the model (Suberites domuncula). BIOMOLECULAR ENGINEERING 2003; 20:369-79. [PMID: 12919822 DOI: 10.1016/s1389-0344(03)00055-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is established that Porifera (sponges) represent the earliest phylum which branched off from the common ancestor of all multicellular animals, the Urmetazoa. In the present study, the hypothesis is tested if, during this transition, pluripotent stem cells were formed which are provided-similar to the totipotent cells (archaeocytes/germ cells)-with a self-renewal capacity. As a model system, primmorphs from the sponge Suberites domuncula were used. These 3D-cell aggregates were cultivated in medium (RPMI 1640/seawater) either lacking silicate and ferric iron or in medium which was supplemented with these 'morphogenetic' factors. As molecular markers for the potential existence of stem cells in primmorphs, two genes which encode proteins found in stem cells of higher metazoan species, were cloned from S. domuncula. First, the noggin gene, which is present in the Spemann organizer of amphibians and whose translation product acts during the formation of dorsal mesoderm derivatives. The second gene encodes the mesenchymal stem cell-like protein. Both cDNAs were used to study their expression in primmorphs in dependence on the incubation conditions. It was found that noggin expression is strongly upregulated in primmorphs kept in the presence of silicate and ferric iron, while the expression of the mesenchymal stem cell-like protein was downregulated. These data are discussed with respect to the existence of stem cells in sponges.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
39
|
Schroder HC, Efremova SM, Itskovich VB, Belikov S, Masuda Y, Krasko A, Muller IM, Muller WEG. Molecular phylogeny of the freshwater sponges in Lake Baikal. J ZOOL SYST EVOL RES 2003. [DOI: 10.1046/j.1439-0469.2003.00199.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Müller WEG, Brümmer F, Batel R, Müller IM, Schröder HC. Molecular biodiversity. Case study: Porifera (sponges). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2003; 90:103-20. [PMID: 12649752 DOI: 10.1007/s00114-003-0407-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Biological diversity--or biodiversity--is the term given to the variety of life on Earth and the natural patterns it forms. The biodiversity we see today is the fruit of billions of years of evolution, shaped by natural processes and, increasingly, by the influence of humans. It forms the web of life of which we are an integral part and upon which we so fully depend. The research on molecular biodiversity tries to lay the scientific foundation of a rational conservation policy that has its roots in various disciplines including systematics/taxonomy (species richness), present day ecology (diversity of ecological systems), and functional genetics (genetic diversity). The results of ongoing genome analyses (genome projects and expressed sequence tag projects) and the achievements of molecular evolution may allow us not only to quantitate the diversity of the present biota but also to extrapolate to their diversification in the future. A link between biodiversity and genomics/molecular evolution will create a platform which we hope may facilitate a sustainable management of organismic life and ensure its exploitation for human benefit. In the present review we outline possible strategies, using the Porifera (sponges) as a prominent example. On the basis of solid taxonomy and ecological data, the high value of this phylum for human application becomes obvious, especially with regard to the field of chemical ecology and the desire to find novel potential drugs for clinical use. In addition, the benefit of trying to make sense of molecular biodiversity using sponges as an example can be seen in the fact that the study of these animals, which are "living fossils", gives us a good insight into the history of our planet, especially with respect to the evolution of Metazoa.
Collapse
Affiliation(s)
- Werner E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany.
| | | | | | | | | |
Collapse
|
41
|
Wiens M, Krasko A, Perovic S, Müller WEG. Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:179-89. [PMID: 12581862 DOI: 10.1016/s0167-4889(02)00388-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sponges (phylum Porifera) represent the phylogenetically oldest metazoan phylum. These animals have complex cell adhesion and powerful immune systems which allow the formation of a distinct body plan. Consequently, an apoptotic machinery has to be predicted that allows sponges to eliminate unwanted cells accumulating during development. With the marine sponge Geodia cydonium, it is shown that allografts of these animals undergo apoptosis as demonstrated by apoptotic DNA fragmentation. Extracts from allografts contain an enzymic activity characteristic for caspases; as substrate to determine the cleavage activity, Ac-DEVD-AMC was applied. cDNAs encoding predicted caspase-3-related proteins were isolated; they comprise the characteristic structure known from caspases of other metazoan phyla. The two cDNAs are assumed to originate from one gene by alternative splicing; the longer form comprises a caspase recruitment domain (CARD), whereas the shorter one is missing CARD. The expression of sponge caspase genes is up-regulated during allograft rejection. In vivo incubation experiments with Ac-DEVD-CHO (a caspase-3 inhibitor) showed a reduction of apoptotic DNA fragmentation, whereas Ac-LEHD-CHO (an inhibitor of caspase-9) caused no effect. It is concluded, that for the establishment of the metazoan body plan, both the adhesion molecules and the apoptotic molecules (described here) were essential prerequisites.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | | | | | | |
Collapse
|
42
|
Bridgham JT, Wilder JA, Hollocher H, Johnson AL. All in the family: evolutionary and functional relationships among death receptors. Cell Death Differ 2003; 10:19-25. [PMID: 12655292 DOI: 10.1038/sj.cdd.4401174] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Over the last decade, significant progress has been made towards identifying the signaling pathways within mammalian cells that lead to apoptosis mediated by death receptors. The simultaneous expression of more than one death receptor in many, if not all, cell types suggests that functional innovation has driven the divergence of these receptors and their cognate ligands. To better understand the physiological divergence of the death receptors, a phylogenetic analysis of vertebrate death receptors was conducted based upon amino-acid sequences encoding the death domain regions of currently known and newly identified members of the family. Evidence is presented to indicate an ancient radiation of death receptors that predates the emergence of vertebrates, as well as ongoing divergence of additional receptors both within several receptor lineages as well as modern taxonomic lineages. We speculate that divergence among death receptors has led to their functional specialization. For instance, some receptors appear to be primarily involved in mediating the immune response, while others play critical roles during development and tissue differentiation. The following represents an evolutionary approach towards an understanding of the complex relationship among death receptors and their proposed physiological functions in vertebrate species.
Collapse
Affiliation(s)
- J T Bridgham
- Department of Biological Sciences and Walther Cancer Center, University of Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
43
|
Müller WEG, Müller IM. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 37:1-33. [PMID: 15825638 DOI: 10.1007/978-3-642-55519-0_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sponges [phylum Porifera] form the basis of the metazoan kingdom and represent the evolutionary earliest phylum still extant. Hence, as living fossils, they are the taxon closest related to the hypothetical ancestor of all Metazoa, the Urmetazoa. Until recently, it was still unclear whether sponges are provided with a defined body plan. Only after the cloning, expression and functional studies of characteristic metazoan genes, could it be demonstrated that these animals comprise the structural elements which allow the sponge cells to organize themselves according to a body plan. Adhesion molecules involved in cell-cell and cell-matrix interactions have been identified. Among the cell-cell adhesion molecules the aggregation factor (AF) is the prominent particle. It is composed of a core protein that is associated with the adhesion molecules, a 36 kDa as well as a 86 kDa polypeptide. A galectin functions as a linker of the AF to the cell-membrane-associated receptor, the aggregation receptor (AR). The most important extracellular matrix molecules are collagen- and fibronectin-like molecules. These proteins interact with the cell-membrane receptors, the integrins. In addition, a neuronal receptor has been identified, which--together with the identified neuroactive molecules--indicate the existence of a primordial neuronal network already in Porifera. The primmorph system, aggregated cells that retain the capacity to proliferate and differentiate, has been used to demonstrate that a homeobox-containing gene, Iroquois, is expressed during canal formation in primmorphs. The formation of a body plan in sponges is supported by skeletal elements, the spicules, which are composed in Demospongiae as well as in Hexactinellida of amorphous, noncrystalline silica. In Demospongiae the spicule formation is under enzymic control of silicatein. Already at least one morphogen has been identified in sponges, myotrophin, which is likely to be involved in the axis formation. Taken together, these elements support the recent conclusions that sponges are not merely nonorganized cell aggregates, but already complex animals provided with a defined body plan.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | |
Collapse
|
44
|
Müller WEG, Wiens M, Müller IM, Schröder HC. The Chemokine Networks in Sponges: Potential Roles in Morphogenesis, Immunity and Stem Cell Formation. INVERTEBRATE CYTOKINES AND THE PHYLOGENY OF IMMUNITY 2003; 34:103-43. [PMID: 14979666 DOI: 10.1007/978-3-642-18670-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Porifera (sponges) are now well accepted as the phylum which branched off first from the common ancestor of all metazoans, the Urmetazoa. The transition to the Metazoa became possible because during this phase, cell-cell as well as cell-matrix adhesion molecules evolved which allowed the formation of a colonial stage of animals. The next prerequisite for the evolution to the Urmetazoa was the establishment of an effective immune system which, flanked by apoptosis, allowed the formation of a first level of individuation. In sponges (with the model Suberites domuncula and Geodia cydonium), the main mediators of the immune responses are the chemokines. Since sponges lack a vascular system and consequently blood cells (in the narrow sense), we have used the term chemokines (in a broad sense) to highlight that the complex network of intercellular mediators initiates besides differentiation processes also cell movement. In the present review, the cDNAs encoding the following chemokines were described and the roles of their deduced proteins during self-self and nonself recognition outlined: the allograft inflammatory factor, the glutathione peroxidase, the endothelial-monocyte-activating polypeptide, the pre-B-cell colony-enhancing factor and the myotrophin as well as an enzyme, the (2-5)A synthetase, which is involved in cytokine response in vertebrates. A further step required to reach the evolutionary step of the integrated stage of the Urmetazoa was the acquisition of a stem cell system. In this review, first markers for stem cells (mesenchymal stem cell-like protein) as well as for chemokines involved in the maintenance of stem cells (noggin and glia maturation factor) are described at the molecular level, and a first functional analysis is approached. Taken together, it is outlined that the chemokine network was essential for the establishment of metazoans, which evolved approximately 600 to 800 million years ago.
Collapse
Affiliation(s)
- W E G Müller
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | |
Collapse
|
45
|
Yuasa HJ, Nakatomi A, Suzuki T, Yazawa M. Genomic structure of the sponge, Halichondria okadai calcyphosine gene. Gene 2002; 298:21-7. [PMID: 12406572 DOI: 10.1016/s0378-1119(02)00920-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcyphosine is an EF-hand Ca(2+)-binding protein, which was first isolated from the canine thyroid. It is phosphorylated in a cyclic AMP (cAMP)-dependent manner; then it is thought to be implicated in the cross-signaling between the cAMP and calcium-phosphatidylinositol cascades. Here, we isolated the DNA complementary to RNA (cDNA) of an EF-hand Ca(2+)-binding protein from the sponge, Halichondria okadai and determined its genomic structure. The deduced sequence of the sponge Ca(2+)-binding protein showed significant similarity (about 40% identity) with those of mammal calcyphosines, and the intron positions were well conserved between the sponge and human calcyphosine genes. We considered that the isolated cDNA was that of sponge calcyphosine, and that sponge and mammalian calcyphosines evolved from a common ancestor gene. Recent cDNA projects have revealed that a calcyphosine cDNA is also expressed by human, mouse, and the ascidia. These cDNAs have more than 60% identity with sponge calcyphosine and each other, and all are composed of 208 amino acid residues. On the constructed phylogenetic trees, calcyphosines are essentially divided into two groups, types-I and -II calcyphosines. Type-I calcyphosine may be specific to mammals, and type-II is widely distributed among metazoan species. This suggests that type-II calcyphosine is a rather ancient gene with some essential function.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Faculty of Science, Kochi University, Kochi 780-8520, Japan.
| | | | | | | |
Collapse
|
46
|
Grebenjuk VA, Kuusksalu A, Kelve M, Schütze J, Schröder HC, Müller WEG. Induction of (2'-5')oligoadenylate synthetase in the marine sponges Suberites domuncula and Geodia cydonium by the bacterial endotoxin lipopolysaccharide. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1382-92. [PMID: 11874452 DOI: 10.1046/j.1432-1033.2002.02781.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have shown that the Porifera, with the examples of the demosponges Suberites domuncula and Geodia cydonium, comprise a series of pathways found also in the immune system of Deuterostomia, such as vertebrates, but are absent in Protostomia, with insects or nematodes as examples. One pathway is the (2'-5')oligoadenylate synthetase [(2-5)A synthetase] system. In the present study we show that crude extracts from tissue of S. domuncula collected from the sea display a considerable amount of (2-5)A synthetase activity; 16% of the ATP substrate is converted to the (2-5)A product, while tissue from specimens which were kept for 6 months in an aquarium shows only 1% of conversion. As aquarium animals show a lower bacterial load, those specimens were treated for the experiments with the bacterial endotoxin lipopolysaccharide (LPS); they responded to LPS with a stimulation of the (2-5)A synthetase activity. To monitor if this effect can be obtained also on the in vitro level, primmorphs which comprise proliferating and differentiating cells, were incubated with LPS. Extracts obtained from LPS-treated primmorphs also convert ATP to the (2-5)A products mediated by the synthetase. In parallel to this effect on protein level, LPS causes after an incubation period of 12 h also an increase in the steady-state level of the transcripts encoding the putative (2-5)A synthetase. It is postulated that in sponges the (2-5)A synthetase is involved in antimicrobial defense of the animals.
Collapse
Affiliation(s)
- Vladislav A Grebenjuk
- Institut für Physiologische Chemie, Abteilung für Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | | | | | |
Collapse
|