1
|
Lai M, Lai R, He B, Wang X, Chen L, Mo Q. Robust antiviral innate immune response and miRNA regulatory network were identified in ZIKV-infected cells: implications in the pathogenesis of ZIKV infection. Virus Genes 2025; 61:249-264. [PMID: 39955676 DOI: 10.1007/s11262-025-02136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Zika virus (ZIKV) infection has emerged as a significant public health concern due to its association with fetal microcephaly and Guillain-Barre syndrome (GBS). Unfortunately, its detailed pathogenesis remains unclear. To better understand how ZIKV evades host antiviral immunity, we analyzed the microarray dataset (GSE98889) of ZIKV-infected primary human brain microvascular endothelial cells (hBMECs) retrieved from the gene expression omnibus (GEO). 160, 1423, 969, 829, and 600 differentially expressed genes (DEGs) were identified at 12, 24, 48, 72, and 216 hours post-ZIKV infection in hBMECs, respectively. Subsequently, 31 common DEGs across all time-points were selected for further analysis. Gene ontology (GO) functional analysis showed these 31 DEGs were mainly involved in the host antiviral innate immune responses. Protein-protein interaction (PPI) network analysis identified 10 hub genes (MX1, OAS1, OAS2, IFI44, IFI44L, IFIT1, IFIT2, IFIT3, IFIH1, and XAF1), which were all interferon-stimulated genes (ISGs) and upregulated. qRT-PCR was used to validate the expression patterns of these 10 hub genes in different ZIKV-infected cell lines. Finally, miRNA-mRNA regulatory network analysis revealed that hsa-miR-129-2-3p, hsa-miR-138-5p, hsa-miR-21-3p, hsa-miR-27a-5p, hsa-miR-449a, and hsa-miR449b-5p were key miRNAs regulating these hub genes. Our study showed that ZIKV infection activated the host innate immune response to restrict ZIKV infection. The common pathways, hub genes, and their regulatory miRNA network offer new insights into virus-host interactions, enhancing our understanding of ZIKV pathogenesis.
Collapse
Affiliation(s)
- Mingshuang Lai
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Rongji Lai
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Baoren He
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Xinwei Wang
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Limin Chen
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Qiuhong Mo
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, China.
| |
Collapse
|
2
|
Bahadir Z, Narayan P, Wolters R, Permar SR, Fouda G, Hessell AJ, Haigwood NL. Monoclonal Antibodies for Pediatric Viral Disease Prevention and Treatment. Pediatrics 2025; 155:e2024068690. [PMID: 40174915 DOI: 10.1542/peds.2024-068690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
Medical advancements over the last century have improved our ability to treat pediatric infectious diseases, significantly reducing associated morbidity and mortality worldwide. Although vaccines have been pivotal in this progress, many viral pathogens still do not currently have effective vaccines. The COVID-19 pandemic highlighted the need for rapid responses to emerging viral pathogens and introduced new tools to combat them. This review addresses human monoclonal antibodies (mAbs) as a strategy for treating and preventing viral infections in pediatric populations. We discuss previously used and currently available mAbs and advancements in mAb discovery. We address the future of mAb therapy by describing novel approaches in drug production and delivery platforms in addition to alternative antibody classes. Finally, we review the challenges and limitations of mAb therapy development for newborns and children.
Collapse
Affiliation(s)
- Zeynep Bahadir
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Priyanka Narayan
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Rachael Wolters
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Genevieve Fouda
- Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
3
|
Peeling RW, Fongwen NT, Guzman MG, Méndez-Rico JA, Avumegah MS, Jaenisch T, Lackritz EM. Specimen and data sharing to advance research and development on Zika virus. THE LANCET. MICROBE 2025:101057. [PMID: 40024261 DOI: 10.1016/j.lanmic.2024.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 03/04/2025]
Abstract
For diseases with epidemic potential, specimen and data sharing is crucial for sustained research and development of medical countermeasures such as diagnostics, therapeutics, and vaccines. In the case of Zika virus, although a global framework for specimen and data sharing to advance research and development is highly desirable, challenges related to legal, ethical, and intellectual property issues persist. Since the 2015-16 Zika virus outbreak, regional laboratory networks and research partnerships have made some progress in specimen and data sharing among some Zika virus-endemic countries. Pragmatic steps such as securing funds for augmenting laboratory capacity, building biobanks within public health laboratory infrastructures in low-income and middle-income countries, clearly defining the specimens and data that need to be collected, developing standardised protocols, harmonising data system interoperability to facilitate sharing, and defining mechanisms for benefit sharing will pave the way for timely development and deployment of medical countermeasures in public health emergencies.
Collapse
Affiliation(s)
| | - Noah T Fongwen
- London School of Hygiene & Tropical Medicine, London, UK; Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Maria G Guzman
- Institute of Tropical Medicine "Pedro Kouri", Havana, Cuba
| | | | | | - Thomas Jaenisch
- Center for Global Health, Colorado School of Public Health, Aurora, CO, USA; Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Liu T, Li M, Tian Y, Dong Y, Liu N, Wang Z, Zhang H, Zheng A, Cui C. Immunogenicity and safety of a self-assembling ZIKV nanoparticle vaccine in mice. Int J Pharm 2024; 660:124320. [PMID: 38866086 DOI: 10.1016/j.ijpharm.2024.124320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that highly susceptibly causes Guillain-Barré syndrome and microcephaly in newborns. Vaccination is one of the most effective measures for preventing infectious diseases. However, there is currently no approved vaccine to prevent ZIKV infection. Here, we developed nanoparticle (NP) vaccines by covalently conjugating self-assembled 24-subunit ferritin to the envelope structural protein subunit of ZIKV to achieve antigen polyaggregation. The immunogenicityof the NP vaccine was evaluated in mice. Compared to monomer vaccines, the NP vaccine achieved effective antigen presentation, promoted the differentiation of follicular T helper cells in lymph nodes, and induced significantly greater antigen-specific humoral and cellular immune responses. Moreover, the NP vaccine enhanced high-affinity antigen-specific IgG antibody levels, increased secretion of the cytokines IL-4 and IFN-γ by splenocytes, significantly activated T/B lymphocytes, and improved the generation of memory T/B cells. In addition, no significant adverse reactions occurred when NP vaccine was combined with adjuvants. Overall, ferritin-based NP vaccines are safe and effective ZIKV vaccine candidates.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yuhan Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China.
| |
Collapse
|
5
|
Metthew Lam LK, Oatman E, Eckart KA, Klingensmith NJ, Flowers E, Sayegh L, Yuen J, Clements RL, Meyer NJ, Jurado KA, Vaughan AE, Eisenbarth SC, Mangalmurti NS. Human red blood cells express the RNA sensor TLR7. Sci Rep 2024; 14:15789. [PMID: 38982195 PMCID: PMC11233670 DOI: 10.1038/s41598-024-66410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Red blood cells (RBCs) express the nucleic acid-binding toll-like receptor 9 (TLR9) and bind CpG-containing DNA. However, whether human RBCs express other nucleic acid-binding TLRs is unknown. Here we show that human RBCs express the RNA sensor TLR7. TLR7 is present on the red cell membrane and is associated with the RBC membrane protein Band 3. In patients with SARS-CoV2-associated sepsis, TLR7-Band 3 interactions in the RBC membrane are increased when compared with healthy controls. In vitro, RBCs bind synthetic ssRNA and RNA from ssRNA viruses. Thus, RBCs may serve as a previously unrecognized sink for exogenous RNA, expanding the repertoire of non-gas exchanging functions performed by RBCs.
Collapse
Affiliation(s)
- L K Metthew Lam
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily Oatman
- Division of Traumatology, Surgical Critical Care, and Emergency Surgical Services, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kaitlyn A Eckart
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nathan J Klingensmith
- Division of Traumatology, Surgical Critical Care, and Emergency Surgical Services, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily Flowers
- Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Layal Sayegh
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Yuen
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca L Clements
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kellie A Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Stephanie C Eisenbarth
- Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nilam S Mangalmurti
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Emperador DM, Stone M, Grebe E, Escadafal C, Dave H, Lackritz E, Kelly-Cirino C, Rabe I, Rojas DP, Busch MP, Simmons G. Comparative Evaluation of Select Serological Assays for Zika Virus Using Blinded Reference Panels. Viruses 2024; 16:1075. [PMID: 39066237 PMCID: PMC11281645 DOI: 10.3390/v16071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
In response to the 2015 Zika virus (ZIKV) epidemic that occurred in Brazil, numerous commercial serological assays have been developed for clinical and research applications. Diagnosis of recent infection in pregnant women remains challenging. Having standardized, comparative studies of ZIKV tests is important for implementing optimal diagnostic testing and disease surveillance. This is especially important for serology tests used to detect ZIKV infection given that antibodies against ZIKV can cross-react with other arboviruses in the same virus family, such as dengue virus (DENV), yellow fever virus (YFV) and West Nile virus (WNV). We looked at the sensitivity and specificity of tests detecting ZIKV antibodies (IgM, IgG) from multiple manufacturers using panels of samples previously collected with known exposure to ZIKV and other arboviruses. We found that performance of the IgM tests was highly variable, with only one test (Inbios 2.0 IgM capture ELISA) having both high sensitivity and specificity. All IgG tests showed good sensitivity; however, specificity was highly variable, with some assays giving false-positive results on samples infected by another flavivirus. Overall, the results confirmed that accurate ZIKV antibody testing is challenging, especially in specimens from regions endemic for multiple other flaviviruses, and highlight the importance of available and suitable reference samples to evaluate ZIKV diagnostics.
Collapse
Affiliation(s)
- Devy M. Emperador
- Pandemic Threats Programme, Foundation for Innovative New Diagnostics (FIND), 1218 Geneva, Switzerland; (D.M.E.)
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eduard Grebe
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Camille Escadafal
- Pandemic Threats Programme, Foundation for Innovative New Diagnostics (FIND), 1218 Geneva, Switzerland; (D.M.E.)
| | - Honey Dave
- Vitalant Research Institute, San Francisco, CA 94105, USA
| | - Eve Lackritz
- Epidemic and Pandemic Preparedness and Prevention Department, Health Emergencies Programme, World Health Organization, 1211 Geneva, Switzerland
| | - Cassandra Kelly-Cirino
- Pandemic Threats Programme, Foundation for Innovative New Diagnostics (FIND), 1218 Geneva, Switzerland; (D.M.E.)
| | - Ingrid Rabe
- Epidemic and Pandemic Preparedness and Prevention Department, Health Emergencies Programme, World Health Organization, 1211 Geneva, Switzerland
| | - Diana P. Rojas
- Epidemic and Pandemic Preparedness and Prevention Department, Health Emergencies Programme, World Health Organization, 1211 Geneva, Switzerland
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Madewell ZJ, Hernandez-Romieu AC, Wong JM, Zambrano LD, Volkman HR, Perez-Padilla J, Rodriguez DM, Lorenzi O, Espinet C, Munoz-Jordan J, Frasqueri-Quintana VM, Rivera-Amill V, Alvarado-Domenech LI, Sainz D, Bertran J, Paz-Bailey G, Adams LE. Sentinel Enhanced Dengue Surveillance System - Puerto Rico, 2012-2022. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2024; 73:1-29. [PMID: 38805389 PMCID: PMC11152364 DOI: 10.15585/mmwr.ss7303a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Problem/Condition Dengue is the most prevalent mosquitoborne viral illness worldwide and is endemic in Puerto Rico. Dengue's clinical spectrum can range from mild, undifferentiated febrile illness to hemorrhagic manifestations, shock, multiorgan failure, and death in severe cases. The disease presentation is nonspecific; therefore, various other illnesses (e.g., arboviral and respiratory pathogens) can cause similar clinical symptoms. Enhanced surveillance is necessary to determine disease prevalence, to characterize the epidemiology of severe disease, and to evaluate diagnostic and treatment practices to improve patient outcomes. The Sentinel Enhanced Dengue Surveillance System (SEDSS) was established to monitor trends of dengue and dengue-like acute febrile illnesses (AFIs), characterize the clinical course of disease, and serve as an early warning system for viral infections with epidemic potential. Reporting Period May 2012-December 2022. Description of System SEDSS conducts enhanced surveillance for dengue and other relevant AFIs in Puerto Rico. This report includes aggregated data collected from May 2012 through December 2022. SEDSS was launched in May 2012 with patients with AFIs from five health care facilities enrolled. The facilities included two emergency departments in tertiary acute care hospitals in the San Juan-Caguas-Guaynabo metropolitan area and Ponce, two secondary acute care hospitals in Carolina and Guayama, and one outpatient acute care clinic in Ponce. Patients arriving at any SEDSS site were eligible for enrollment if they reported having fever within the past 7 days. During the Zika epidemic (June 2016-June 2018), patients were eligible for enrollment if they had either rash and conjunctivitis, rash and arthralgia, or fever. Eligibility was expanded in April 2020 to include reported cough or shortness of breath within the past 14 days. Blood, urine, nasopharyngeal, and oropharyngeal specimens were collected at enrollment from all participants who consented. Diagnostic testing for dengue virus (DENV) serotypes 1-4, chikungunya virus, Zika virus, influenza A and B viruses, SARS-CoV-2, and five other respiratory viruses was performed by the CDC laboratory in San Juan. Results During May 2012-December 2022, a total of 43,608 participants with diagnosed AFI were enrolled in SEDSS; a majority of participants (45.0%) were from Ponce. During the surveillance period, there were 1,432 confirmed or probable cases of dengue, 2,293 confirmed or probable cases of chikungunya, and 1,918 confirmed or probable cases of Zika. The epidemic curves of the three arboviruses indicate dengue is endemic; outbreaks of chikungunya and Zika were sporadic, with case counts peaking in late 2014 and 2016, respectively. The majority of commonly identified respiratory pathogens were influenza A virus (3,756), SARS-CoV-2 (1,586), human adenovirus (1,550), respiratory syncytial virus (1,489), influenza B virus (1,430), and human parainfluenza virus type 1 or 3 (1,401). A total of 5,502 participants had confirmed or probable arbovirus infection, 11,922 had confirmed respiratory virus infection, and 26,503 had AFI without any of the arboviruses or respiratory viruses examined. Interpretation Dengue is endemic in Puerto Rico; however, incidence rates varied widely during the reporting period, with the last notable outbreak occurring during 2012-2013. DENV-1 was the predominant virus during the surveillance period; sporadic cases of DENV-4 also were reported. Puerto Rico experienced large outbreaks of chikungunya that peaked in 2014 and of Zika that peaked in 2016; few cases of both viruses have been reported since. Influenza A and respiratory syncytial virus seasonality patterns are distinct, with respiratory syncytial virus incidence typically reaching its annual peak a few weeks before influenza A. The emergence of SARS-CoV-2 led to a reduction in the circulation of other acute respiratory viruses. Public Health Action SEDSS is the only site-based enhanced surveillance system designed to gather information on AFI cases in Puerto Rico. This report illustrates that SEDSS can be adapted to detect dengue, Zika, chikungunya, COVID-19, and influenza outbreaks, along with other seasonal acute respiratory viruses, underscoring the importance of recognizing signs and symptoms of relevant diseases and understanding transmission dynamics among these viruses. This report also describes fluctuations in disease incidence, highlighting the value of active surveillance, testing for a panel of acute respiratory viruses, and the importance of flexible and responsive surveillance systems in addressing evolving public health challenges. Various vector control strategies and vaccines are being considered or implemented in Puerto Rico, and data from ongoing trials and SEDSS might be integrated to better understand epidemiologic factors underlying transmission and risk mitigation approaches. Data from SEDSS might guide sampling strategies and implementation of future trials to prevent arbovirus transmission, particularly during the expansion of SEDSS throughout the island to improve geographic representation.
Collapse
|
8
|
Earnest JT, Ciau-Carillo KJ, Kirstein OD, Che-Mendoza A, Espinoza DO, Puerta-Guardo H, Yam-Trujillo K, Parra-Cardeña M, Barrera-Fuentes GA, Pavia-Ruz N, Correa-Morales F, Gomez-Dantes H, Granja-Perez P, Villanueva S, Manrique-Saide P, Ayora-Talavera G, Collins MH, Vazquez-Prokopec G. Evidence of Ongoing Transmission of Zika Virus in Mérida, Mexico. Am J Trop Med Hyg 2024; 110:724-730. [PMID: 38377614 PMCID: PMC10993846 DOI: 10.4269/ajtmh.23-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/05/2023] [Indexed: 02/22/2024] Open
Abstract
Since the Zika virus (ZIKV) pandemic in 2015-2017, there has been a near absence of reported cases in the Americas outside of Brazil. However, the conditions for Aedes-borne transmission persist in Latin America, and the threat of ZIKV transmission is increasing as population immunity wanes. Mexico has reported only 70 cases of laboratory-confirmed ZIKV infection since 2020, with no cases recorded in the Yucatán peninsula. Here, we provide evidence of active ZIKV transmission, despite the absence of official case reports, in the city of Mérida, Mexico, the capital of the state of Yucatán. Capitalizing on an existing cohort, we detected cases in participants with symptoms consistent with flavivirus infection from 2021 to 2022. Serum samples from suspected cases were tested for ZIKV RNA by polymerase chain reaction or ZIKV-reactive IgM by ELISA. To provide more specific evidence of exposure, focus reduction neutralization tests were performed on ELISA-positive samples. Overall, we observed 25 suspected ZIKV infections for an estimated incidence of 2.8 symptomatic cases per 1,000 persons per year. Our findings emphasize the continuing threat of ZIKV transmission in the setting of decreased surveillance and reporting.
Collapse
Affiliation(s)
- James T. Earnest
- Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Karina Jacqueline Ciau-Carillo
- Laboratorio de Virologia, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Oscar D. Kirstein
- Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Azael Che-Mendoza
- Unidad Colaborativa para Bioensayos Entomologicos, Campus de Ciencias Biológicas y Agropecurias, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Daniel O. Espinoza
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Henry Puerta-Guardo
- Laboratorio de Virologia, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
- Unidad Colaborativa para Bioensayos Entomologicos, Campus de Ciencias Biológicas y Agropecurias, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Kevin Yam-Trujillo
- Laboratorio de Virologia, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Manuel Parra-Cardeña
- Laboratorio de Virologia, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Gloria A. Barrera-Fuentes
- Unidad Colaborativa para Bioensayos Entomologicos, Campus de Ciencias Biológicas y Agropecurias, Universidad Autónoma de Yucatán, Mérida, Mexico
- Laboratorio de Hematologia, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Norma Pavia-Ruz
- Laboratorio de Hematologia, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Fabian Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE), Secretaria de Salud Mexico, Mexico City, Mexico
| | - Hector Gomez-Dantes
- Health Systems Research Centre, National Institute of Public Health, Cuernavaca, Mexico
| | | | | | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomologicos, Campus de Ciencias Biológicas y Agropecurias, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Guadalupe Ayora-Talavera
- Laboratorio de Virologia, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Matthew H. Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
9
|
Miller MJ, Perinet L, Alter HJ, Conry-Cantilena K, De Giorgi V. Natural History Studies, a Natural Next Step to Study Emerging Transfusion-Transmitted Infections. Transfus Med Rev 2024; 38:150820. [PMID: 38364616 DOI: 10.1016/j.tmrv.2024.150820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Maureen J Miller
- Infectious Diseases Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Lara Perinet
- Infectious Diseases Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Harvey J Alter
- Infectious Diseases Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Kathleen Conry-Cantilena
- Infectious Diseases Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Valeria De Giorgi
- Infectious Diseases Section, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
10
|
Abad P, Coronado M, Vincelle-Nieto Á, Pérez-Benavente S, Fobil JN, Puyet A, Diez A, Reyes-Palomares A, Azcárate IG, Bautista JM. Shotgun Characterization of the Circulating IgM Antigenome of an Infectious Pathogen by Immunocapture-LC-MS/MS from Dried Serum Spots. J Proteome Res 2024; 23:633-643. [PMID: 38183416 DOI: 10.1021/acs.jproteome.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
One of the main challenges in compiling the complete collection of protein antigens from pathogens for the selection of vaccine candidates or intervention targets is to acquire a broad enough representation of them to be recognized by the highly diversified immunoglobulin repertoire in human populations. Dried serum spot sampling (DSS) retains a large repertoire of circulating immunoglobulins from each individual that can be representative of a population, according to the sample size. In this work, shotgun proteomics of an infectious pathogen based on DSS sampling coupled with IgM immunoprecipitation, liquid chromatography-mass spectrometry (LC-MS/MS), and bioinformatic analyses was combined to characterize the circulating IgM antigenome. Serum samples from a malaria endemic region at different clinical statuses were studied to optimize IgM binding efficiency and antibody leaching by varying serum/immunomagnetic bead ratios and elution conditions. The method was validated using Plasmodium falciparum extracts identifying 110 of its IgM-reactive antigens while minimizing the presence of human proteins and antibodies. Furthermore, the IgM antigen recognition profile differentiated between malaria-infected and noninfected individuals at the time of sampling. We conclude that a shotgun proteomics approach offers advantages in providing a high-throughput, reliable, and clean way to identify IgM-recognized antigens from trace amounts of serum. The mass spectrometry raw data and metadata have been deposited with ProteomeXchange via MassIVE with the PXD identifier PXD043800.
Collapse
Affiliation(s)
- Paloma Abad
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Montserrat Coronado
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - África Vincelle-Nieto
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Susana Pérez-Benavente
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
| | - Julius N Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, P.O. Box LG 13, G-4381 Legon, Ghana
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| | - Isabel G Azcárate
- Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
| | - José M Bautista
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Faculty of Veterinary Sciences, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
11
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
12
|
Calvet GA, Kara EO, Bôtto-Menezes CHA, da Costa Castilho M, de Oliveira Franca RF, Habib N, Neto AM, Pereira GFM, Giozza SP, Bermúdez XPD, Fernandes TJ, Modjarrad K, Brasil P, Broutet NJN, de Filippis AMB. Detection and persistence of Zika virus in body fluids and associated factors: a prospective cohort study. Sci Rep 2023; 13:21557. [PMID: 38057382 PMCID: PMC10700488 DOI: 10.1038/s41598-023-48493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
This study aimed to analyze the detection and duration of the Zika virus (ZIKV) in plasma, urine, saliva, sweat, rectal swabs, vaginal secretions, breast milk, and semen and to explore risk factors associated with prolonged viral persistence. A prospective cohort study of symptomatic patients and their household contacts was conducted in Brazil from July 2017 to June 2019. A total of 260 individuals (184 women and 76 men) with confirmed ZIKV infection were enrolled and followed up for 12 months. ZIKV RNA was present in all body fluid specimens and detectable for extended periods in urine, sweat, rectal swabs, and semen. The longest detection duration was found in semen, with high viral loads in the specimens. ZIKV RNA clearance was associated with several factors, including age, sex, education level, body mass index, non-purulent conjunctivitis, joint pain, and whether the participant had a history of yellow fever vaccination. The influence of each of these factors on the low or fast viral clearance varied according to the specific body fluid under investigation. Recurrent ZIKV detection events after total viral clearance were observed in the cohort. Our findings provide valuable insights into the persistence and potential recurrence of ZIKV infection, highlighting the need for continued monitoring and follow-up of individuals infected with ZIKV and for effective prevention measures to reduce the risk of transmission.
Collapse
Affiliation(s)
- Guilherme Amaral Calvet
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Edna Oliveira Kara
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Camila Helena Aguiar Bôtto-Menezes
- Department of Malaria, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- School of Health Sciences, Amazonas State University (UEA), Manaus, Amazonas, Brazil
| | - Marcia da Costa Castilho
- Department of Malaria, Tropical Medicine Foundation Doctor Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | | | - Ndema Habib
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Armando Menezes Neto
- Department of Virology and Experimental Therapy, Institute Aggeu Magalhães, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Gerson Fernando Mendes Pereira
- Department of HIV/AIDS, Tuberculosis, Viral Hepatitis and Sexually Transmitted Infections (DATHI), Ministry of Health, Brasília, Brazil
| | - Silvana Pereira Giozza
- Department of HIV/AIDS, Tuberculosis, Viral Hepatitis and Sexually Transmitted Infections (DATHI), Ministry of Health, Brasília, Brazil
| | | | - Tatiana Jorge Fernandes
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrícia Brasil
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Limothai U, Tachaboon S, Dinhuzen J, Singh J, Jirawannaporn S, Leewongworasingh A, Thongpin M, Brameld S, Watanaboonyongcharoen P, Sitprija V, Tantawichien T, Thisyakorn U, Srisawat N. Seroprevalence of leptospirosis among blood donors in an endemic area. Sci Rep 2023; 13:12336. [PMID: 37524788 PMCID: PMC10390486 DOI: 10.1038/s41598-023-39461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Thailand is known to be endemic for leptospirosis. This bacterium may pose a potential risk to transfusion safety. This study was a cross-sectional study examining the seroprevalence of leptospirosis among Thai blood donors. A total of 1053 serum specimens collected from blood donors residing in 5 regions of Thailand during March to September 2020 were included in this study. All samples were tested for the presence of antibodies to 22 leptospiral serovars using the microscopic agglutination test (MAT) and anti-Leptospira IgG antibodies using commercially available enzyme immunoassay. We found no evidence of recent exposure to Leptospira spp. in sera of healthy Thai blood donors by MAT, including those in higher-risk areas. However, in this same group, we did find small numbers of past exposure (1.7%) to Leptospira spp. by IgG ELISA. According to the findings of this study, there is currently no evidence for implementing new blood banking procedures to identify possible carriers in Thailand, however these should be continually monitored and revised according to the infectious disease burden in each country. It should be noted that there was a difference in the occupation rate between the general population reported in Thailand and blood donors in this study; it may not reflect the actual situation in the country.
Collapse
Affiliation(s)
- Umaporn Limothai
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Sasipha Tachaboon
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Janejira Dinhuzen
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Jasleen Singh
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thailand Public Health Research Fellowship, Health Education England, London, UK
| | - Sirawit Jirawannaporn
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Akarathep Leewongworasingh
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Phandee Watanaboonyongcharoen
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University and Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Visith Sitprija
- Thai Red Cross, Queen Saovabha Memorial Institute, Bangkok, Thailand
| | - Terapong Tantawichien
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Usa Thisyakorn
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Nattachai Srisawat
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Center for Critical Care Nephrology, The CRISMA Center, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand.
- Excellence Center for Critical Care Nephrology, Thai Red Cross Society, King Chulalongkorn Memorial Hospital, 1873, Rama 4 Rd., Lumphini, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Laroche L, Ayhan N, Charrel R, Bañuls AL, Prudhomme J. Persistence of Toscana virus in sugar and blood meals of phlebotomine sand flies: epidemiological and experimental consequences. Sci Rep 2023; 13:5608. [PMID: 37019992 PMCID: PMC10076283 DOI: 10.1038/s41598-023-32431-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Many virological studies have tested the persistence of enveloped RNA viruses in various environmental and laboratory conditions and shown their short-term persistence. In this article, we analyzed Toscana virus (TOSV) infectivity, a pathogenic sandfly-borne phlebovirus, in two different conditions: in the sugar meal and blood meal of sand flies. Our results showed that TOSV RNA was detectable up to 15 days in sugar solution at 26 °C and up to 6 h in blood at 37 °C. Moreover, TOSV remains infective for 7 days in sugar solution and for minimum 6 h in rabbit blood. TOSV has shown persistent infectivity/viability under different conditions, which may have important epidemiological consequences. These results strengthen new hypotheses about the TOSV natural cycle, such as the possibility of horizontal transmission between sand flies through infected sugar meal.
Collapse
Affiliation(s)
- Lison Laroche
- UMR MIVEGEC, Université de Montpellier - IRD 224 - CNRS 5290, 911 Avenue Agropolis, 34394, Montpellier, France.
| | - Nazli Ayhan
- UVE, Aix Marseille Université - IRD 190 - Inserm 1207 - AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| | - Rémi Charrel
- UVE, Aix Marseille Université - IRD 190 - Inserm 1207 - AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| | - Anne-Laure Bañuls
- UMR MIVEGEC, Université de Montpellier - IRD 224 - CNRS 5290, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Jorian Prudhomme
- UMR MIVEGEC, Université de Montpellier - IRD 224 - CNRS 5290, 911 Avenue Agropolis, 34394, Montpellier, France
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
15
|
Standardized evaluation of Zika nucleic acid tests used in clinical settings and blood screening. PLoS Negl Trop Dis 2023; 17:e0011157. [PMID: 36930653 PMCID: PMC10072466 DOI: 10.1371/journal.pntd.0011157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/04/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
Early detection of Zika virus (ZIKV) transmission within geographic regions informs implementation of community mitigation measures such as vector reduction strategies, travel advisories, enhanced surveillance among pregnant women, and possible implementation of blood and organ donor screening or deferral. Standardized, comparative assessments of ZIKV assay and testing lab performance are important to develop optimal approaches to ZIKV diagnostic testing and surveillance. We conducted an expanded blinded panel study to characterize and compare the analytical performance of fifteen diagnostic and blood screening ZIKV NAT assays, including detection among single- and multiplex assays detecting ZIKV, dengue virus (DENV) and chikungunya virus (CHIKV). A 300 member blinded panel was constructed, consisting of 11 serial half-log dilutions ranging from ~104 to 10-1 genome equivalents/mL in 25 replicates each of the Tahitian Asian ZIKV isolate in ZIKV-negative human serum. Additionally, clinical samples from individuals with DENV-like syndrome or suspected ZIKV infection in Brazil were evaluated. The majority of assays demonstrated good specificity. Analytical sensitivities varied 1-2 logs, with a substantially higher limit of detection (LOD) in one outlier. Similar analytical sensitivity for ZIKV RNA detection in singleplex and multiplex assays of the Grifols and ThermoFisher tests were observed. Coefficient of Assay Efficiency (CE), calculated to characterize assays' RNA extraction and amplification efficiency, ranged from 0.13 for the Certest VIASURE multiplex and 0.75 for the Grifols multiplex assays. In general, assays using transcription mediated amplification (TMA) technology had greater CE compared to assays using conventional PCR technology. Donor screening NAT assays were significantly more sensitive than diagnostic RT-qPCR assays, primarily attributable to higher sample input volumes. However, ideal assays to maximize sensitivity and throughput may not be a viable option in all contexts, with other factors such as cost, instrumentation, and regulatory approval status influencing assay availability and selection, particularly in resource constrained settings.
Collapse
|
16
|
Custer B, Grebe E, Buccheri R, Bakkour S, Stone M, Capuani L, Alencar C, Amorim L, Loureiro P, Carneiro-Proietti AB, Mendrone-Junior A, Gonçalez T, Gao K, Livezey KW, Linnen JM, Brambilla D, McClure C, Busch MP, Sabino EC, for the Recipient Epidemiology and Donor Evaluation Study (REDS-III) International Component Brazil. Surveillance for Zika, Chikungunya, and Dengue Virus Incidence and RNAemia in Blood Donors at 4 Brazilian Blood Centers During 2016-2019. J Infect Dis 2023; 227:696-707. [PMID: 35687888 PMCID: PMC10152499 DOI: 10.1093/infdis/jiac173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Except for public health case reports, the incidence of Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) infection are not available to assess the potential blood transfusion safety threat in Brazil. METHODS Pools of 6 donation samples (MP6) left over from human immunodeficiency virus, hepatitis B virus, and hepatitis C virus nucleic acid testing were combined to create MP18 pools (3 MP6 pools). Samples were tested using the Grifols triplex ZIKV, CHIKV, and DENV real-time transcription mediated amplification assay to estimate prevalence of RNAemia and incidence, and to compare these results to case reports in São Paulo, Belo Horizonte, Recife, and Rio de Janeiro, from April 2016 through June 2019. RESULTS ZIKV, CHIKV, and DENV RNAemia were found from donors who donated without overt symptoms of infection that would have led to deferral. The highest RNAemic donation prevalence was 1.2% (95% CI, .8%-1.9%) for DENV in Belo Horizonte in May 2019. Arbovirus infections varied by location and time of year, and were not always aligned with annual arbovirus outbreak seasons in different regions of the country. CONCLUSIONS Testing donations for arboviruses in Brazil can contribute to public health. Transfusion recipients were likely exposed to ZIKV, CHIKV, and DENV viremic blood components during the study period.
Collapse
Affiliation(s)
- Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Eduard Grebe
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa
| | | | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ligia Capuani
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cecilia Alencar
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Paula Loureiro
- Fundação Hemope, Recife, Brazil
- Faculdade de Medicina da Universidade de Pernambuco, Recife, Brazil
| | | | | | | | - Kui Gao
- Grifols Diagnostics Solutions, San Diego, California, USA
| | | | | | - Don Brambilla
- Research Triangle Institute International, Rockville, Maryland, USA
| | - Chris McClure
- Research Triangle Institute International, Rockville, Maryland, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ester C Sabino
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
17
|
Van Rompay KK, Coffey LL, Yee JL, Singapuri A, Stuart J, Lanteri MC, Maria FS, Lu K, Singh I, Bakkour S, Stone M, Williamson PC, Muench MO, Busch MP, Simmons G. Plasma transfusion-transmission of Zika virus in mice and macaques. Transfusion 2023; 63:574-585. [PMID: 36621777 PMCID: PMC10134791 DOI: 10.1111/trf.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Zika virus (ZIKV) epidemics with infections in pregnant women are associated with severe neurological disease in newborns. Although an arbovirus, ZIKV is also blood transfusion-transmitted (TT). Greater knowledge of the efficiency of ZIKV TT would aid decisions on testing and pathogen reduction technologies (PRT). STUDY DESIGN AND METHODS Plasma units from ZIKV RNA-reactive blood donors were used to study infectivity in vitro, in mice, and in macaques. Furthermore, plasma units were subjected to PRT using amotosalen/ultraviolet light A (A/UVA) before transfusion. RESULTS In vitro infectivity of ZIKV RNA-reactive plasma varied between 100 and 1000 international units (IU) of ZIKV RNA. Immunodeficient mice were more sensitive with as low as 32 IU sufficient to infect 50% of mice. 50-5500 IU of RNA led to TT in macaques using dose escalation of three different RNA-positive, seronegative plasma units. In contrast, RNA-reactive units collected postseroconversion were not infectious in macaques, even at a dose of 9 million IU RNA. After A/UVA PRT, transfusion of plasma containing up to 18 million IU was no longer infectious in vitro and did not result in ZIKV TT in macaques. CONCLUSION Significant risks of ZIKV TT are likely confined to a relatively short viremic window before seroconversion, and that sensitive nucleic acid amplification testing likely identifies the majority of infectious plasma. PRT was demonstrated to be effective at preventing ZIKV TT. Considering that there is no approved ZIKV vaccine, these data are relevant to mitigate the risk of TT during the future ZIKV outbreaks.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - JoAnn L. Yee
- California National Primate Research Center, University of California, Davis, CA, United States of America
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Jackson Stuart
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | | | | | - Kai Lu
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Inderdeep Singh
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | | | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
18
|
Celegato M, Sturlese M, Vasconcelos Costa V, Trevisan M, Lallo Dias AS, Souza Passos IB, Queiroz-Junior CM, Messa L, Favaro A, Moro S, Teixeira MM, Loregian A, Mercorelli B. Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy In Vivo. mBio 2023; 14:e0309722. [PMID: 36622141 PMCID: PMC9973282 DOI: 10.1128/mbio.03097-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023] Open
Abstract
Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.
Collapse
Affiliation(s)
- Marta Celegato
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Angélica Samer Lallo Dias
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
19
|
Singh T, Hwang KK, Miller AS, Jones RL, Lopez CA, Dulson SJ, Giuberti C, Gladden MA, Miller I, Webster HS, Eudailey JA, Luo K, Von Holle T, Edwards RJ, Valencia S, Burgomaster KE, Zhang S, Mangold JF, Tu JJ, Dennis M, Alam SM, Premkumar L, Dietze R, Pierson TC, Eong Ooi E, Lazear HM, Kuhn RJ, Permar SR, Bonsignori M. A Zika virus-specific IgM elicited in pregnancy exhibits ultrapotent neutralization. Cell 2022; 185:4826-4840.e17. [PMID: 36402135 PMCID: PMC9742325 DOI: 10.1016/j.cell.2022.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.
Collapse
Affiliation(s)
- Tulika Singh
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew S. Miller
- Department of Biological Sciences, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca L. Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cesar A. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah J. Dulson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camila Giuberti
- Núcleo de Doenças Infecciosas—Universidade Federal do Espírito Santo, Vitoria, Espírito Santo 29075-910, Brazil
| | - Morgan A. Gladden
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Itzayana Miller
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Helen S. Webster
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua A. Eudailey
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA,Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katherine E. Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Summer Zhang
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Jesse F. Mangold
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria Dennis
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas—Universidade Federal do Espírito Santo, Vitoria, Espírito Santo 29075-910, Brazil,Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon 1349-008, Portugal
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, 169857, Singapore
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10065, USA,Senior author. These authors contributed equally,Correspondence: (S.R.P.), (M.B.)
| | - Mattia Bonsignori
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Grass V, Hardy E, Kobert K, Talemi SR, Décembre E, Guy C, Markov PV, Kohl A, Paris M, Böckmann A, Muñoz-González S, Sherry L, Höfer T, Boussau B, Dreux M. Adaptation to host cell environment during experimental evolution of Zika virus. Commun Biol 2022; 5:1115. [PMID: 36271143 PMCID: PMC9587232 DOI: 10.1038/s42003-022-03902-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Zika virus (ZIKV) infection can cause important developmental and neurological defects in Humans. Type I/III interferon responses control ZIKV infection and pathological processes, yet the virus has evolved various mechanisms to defeat these host responses. Here, we established a pipeline to delineate at high-resolution the genetic evolution of ZIKV in a controlled host cell environment. We uncovered that serially passaged ZIKV acquired increased infectivity and simultaneously developed a resistance to TLR3-induced restriction. We built a mathematical model that suggests that the increased infectivity is due to a reduced time-lag between infection and viral replication. We found that this adaptation is cell-type specific, suggesting that different cell environments may drive viral evolution along different routes. Deep-sequencing of ZIKV populations pinpointed mutations whose increased frequencies temporally coincide with the acquisition of the adapted phenotype. We functionally validated S455L, a substitution in ZIKV envelope (E) protein, recapitulating the adapted phenotype. Its positioning on the E structure suggests a putative function in protein refolding/stability. Taken together, our results uncovered ZIKV adaptations to the cellular environment leading to accelerated replication onset coupled with resistance to TLR3-induced antiviral response. Our work provides insights into Zika virus adaptation to host cells and immune escape mechanisms. In vitro analyses and computational modelling indicate that Zika virus adapts to the cellular environment of its host over time
Collapse
Affiliation(s)
- Vincent Grass
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Emilie Hardy
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Kassian Kobert
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), UMR CNRS 5558, Université Claude Bernard Lyon 1, Lyon, 69622, France
| | - Soheil Rastgou Talemi
- Theoretical Systems Biology, German Cancer Research Center, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Heidelberg, 69120, Germany
| | - Elodie Décembre
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Coralie Guy
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Peter V Markov
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), UMR CNRS 5558, Université Claude Bernard Lyon 1, Lyon, 69622, France
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, 69007, France
| | - Sara Muñoz-González
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Lee Sherry
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Thomas Höfer
- Theoretical Systems Biology, German Cancer Research Center, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Heidelberg, 69120, Germany
| | - Bastien Boussau
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), UMR CNRS 5558, Université Claude Bernard Lyon 1, Lyon, 69622, France.
| | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France.
| |
Collapse
|
21
|
Nourmohammadi H, Dehkordi AH, Adibi A, Amin Hashemipour SM, Abdan M, Fakhri M, Abdan Z, Sarokhani D. Seroprevalence of COVID-19 in Blood Donors: A Systematic Review and Meta-Analysis. Adv Virol 2022; 2022:9342680. [PMID: 35910542 PMCID: PMC9334089 DOI: 10.1155/2022/9342680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Determining the prevalence of SARS-CoV-2 in blood donors makes the control of virus circulation possible in healthy people and helps implement strategies to reduce virus transmission. The purpose of the study was to examine the seroprevalence of COVID-19 in blood donors using systematic review and meta-analysis. Materials and Methods The electronic databases PubMed, Scopus, Web of Science, and the Google Scholar search engine were searched using standard keywords up to 2022-04-26. The variance of each study was calculated according to the binomial distribution. Studies were combined according to the sample size and variance. Q Cochrane test and I2 index were used to examine the heterogeneity of the studies. Data analysis was performed in STATA 14 software, and the significance level of the tests was P < 0.05. Results In the 28 papers examined with 227894 samples, the seroprevalence of COVID-19 in blood donors was 10% (95% CI: 9%, 11%), estimated 5% (95% CI: 4%, 7%) among men and 6% (95% CI: 4%, 7%) among women. This rate in different blood groups was as follows: A 12% (95% CI: 10%-14%), B 12% (95% CI: 10%-15%), AB 9% (95% CI: 7%-12%), and O 13% (95% CI: 11%-16%). The seroprevalence of COVID-19 in blood donors in North America 10%, Europe 7%, Asia 23%, South America 5%, and Africa was 4%; Moreover, the seroprevalence of IgG antibodies was estimated to be 23% (95% CI: 18%-29%) and IgM 29% (95% CI: 9%-49%). Conclusion The highest prevalence of COVID-19 serum in women blood donors was among blood group O and Asia. The seroprevalence of IgG and IgM antibodies was high too.
Collapse
Affiliation(s)
| | - Ali Hasanpour Dehkordi
- Social Determinants of Health Research Center, School of Allied Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Adibi
- Department of Child and Adolescent Psychiatry, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Mohsen Abdan
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Moloud Fakhri
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Abdan
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Diana Sarokhani
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Lam LKM, Dobkin J, Eckart KA, Gereg I, DiSalvo A, Nolder A, Anis E, Ellis JC, Turner G, Mangalmurti NS. Bat Red Blood Cells Express Nucleic Acid-Sensing Receptors and Bind RNA and DNA. Immunohorizons 2022; 6:299-306. [PMID: 35595326 DOI: 10.4049/immunohorizons.2200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
RBCs demonstrate immunomodulatory capabilities through the expression of nucleic acid sensors. However, little is known about bat RBCs, and no studies have examined the immune function of bat erythrocytes. In this study, we show that bat RBCs express the nucleic acid-sensing TLRs TLR7 and TLR9 and bind the nucleic acid ligands, ssRNA, and CpG DNA. Collectively, these data suggest that, like human RBCs, bat erythrocytes possess immune function and may be reservoirs for nucleic acids. These findings provide unique insight into bat immunity and may uncover potential mechanisms by which virulent pathogens of humans are concealed in bats.
Collapse
Affiliation(s)
- L K Metthew Lam
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jane Dobkin
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kaitlyn A Eckart
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ian Gereg
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA
| | - Andrew DiSalvo
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, PA; and
| | - Amber Nolder
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, PA; and
| | - Eman Anis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA
| | - Julie C Ellis
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA
| | - Greg Turner
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, PA; and
| | - Nilam S Mangalmurti
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
McCarthy EE, Odorizzi PM, Lutz E, Smullin CP, Tenvooren I, Stone M, Simmons G, Hunt PW, Feeney ME, Norris PJ, Busch MP, Spitzer MH, Rutishauser RL. A cytotoxic-skewed immune set point predicts low neutralizing antibody levels after Zika virus infection. Cell Rep 2022; 39:110815. [PMID: 35584677 PMCID: PMC9151348 DOI: 10.1016/j.celrep.2022.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022] Open
Abstract
Although generating high neutralizing antibody levels is a key component of protective immunity after acute viral infection or vaccination, little is known about why some individuals generate high versus low neutralizing antibody titers. Here, we leverage the high-dimensional single-cell profiling capacity of mass cytometry to characterize the longitudinal cellular immune response to Zika virus (ZIKV) infection in viremic blood donors in Puerto Rico. During acute ZIKV infection, we identify widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated cell types during acute infection are associated with high titers of ZIKV neutralizing antibodies 6 months post-infection, while stable immune features suggesting a cytotoxic-skewed immune set point are associated with low titers. Our study offers insight into the coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials aimed at inducing high levels of antiviral neutralizing antibodies.
Collapse
Affiliation(s)
- Elizabeth E McCarthy
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pamela M Odorizzi
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Emma Lutz
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Carolyn P Smullin
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Iliana Tenvooren
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter W Hunt
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA
| | - Margaret E Feeney
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA 94110, USA
| | - Philip J Norris
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA 94104, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Departments of Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Rachel L Rutishauser
- Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA; Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Yu Y, Gao C, Wen C, Zou P, Qi X, Cardona CJ, Xing Z. Intrinsic features of Zika Virus non-structural proteins NS2A and NS4A in the regulation of viral replication. PLoS Negl Trop Dis 2022; 16:e0010366. [PMID: 35522620 PMCID: PMC9075646 DOI: 10.1371/journal.pntd.0010366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus and can cause neurodevelopmental disorders in fetus. As a neurotropic virus, ZIKV persistently infects neural tissues during pregnancy but the viral pathogenesis remains largely unknown. ZIKV has a positive-sense and single-stranded RNA genome, which encodes 7 non-structural (NS) proteins, participating in viral replication and dysregulation of host immunity. Like those in many other viruses, NS proteins are considered to be products evolutionarily beneficiary to viruses and some are virulence factors. However, we found that some NS proteins encoded by ZIKV genome appeared to function against the viral replication. In this report we showed that exogenously expressed ZIKV NS2A and NS4A inhibited ZIKV infection by inhibiting viral RNA replication in microglial cells and astrocytes. To understand how viral NS proteins suppressed viral replication, we analyzed the transcriptome of the microglial cells and astrocytes and found that expression of NS4A induced the upregulation of ISGs, including MX1/2, OAS1/2/3, IFITM1, IFIT1, IFI6, IFI27, ISG15 or BST2 through activating the ISGF3 signaling pathway. Upregulation of these ISGs seemed to be related to the inhibition of ZIKV replication, since the anti-ZIKV function of NS4A was partially attenuated when the cells were treated with Abrocitinib, an inhibitor of the ISGF3 signaling pathway, or were knocked down with STAT2. Aborting the protein expression of NS4A, but not its nucleic acid, eliminated the antiviral activity of NS4A effectively. Dynamic expression of viral NS proteins was examined in ZIKV-infected microglial cells and astrocytes, which showed comparatively NS4A occurred later than other NS proteins during the infection. We hypothesize that NS4A may possess intrinsic features to serve as a unique type of pathogen associated molecular pattern (PAMP), detectable by the cells to induce an innate immune response, or function with other mechanisms, to restrict the viral replication to a certain level as a negative feedback, which may help ZIKV maintain its persistent infection in fetal neural tissues. The birth of microcephaly infants due to ZIKV infection in pregnant women is related to ZIKV persistent infection. However, it is unclear how ZIKV maintains its persistent infection. In this work, we observed the delayed appearance of ZIKV NS4A protein in neuroglia including microglia and astrocytes compared with other non-structural proteins. Subsequently, we revealed that ZIKV NS4A inhibited viral RNA replication by activating the ISGF3 signaling pathway and inducing the production of ISGs. Aborting NS4A protein expression totally rescued ZIKV viral replication. Our study, combined with the previous findings, suggests that viral non-structural proteins may regulate viral replication, thus perpetuating ZIKV infection. Our hypothesis provides a mechanism for ZIKV to maintain its status of a persistent infection during viral infection in fetus, which can shed lights on our further understanding of viral neuropathogenesis in ZIKV infection.
Collapse
Affiliation(s)
- Yufeng Yu
- Shanxi Provincial Key Laboratory for Functional Proteins, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail: (YY); (ZX)
| | - Chengfeng Gao
- Jiangsu Key Laboratory of Molecular Medicine, Medical school, Nanjing University, Nanjing, Jiangsu, China
| | - Chunxia Wen
- Jiangsu Key Laboratory of Molecular Medicine, Medical school, Nanjing University, Nanjing, Jiangsu, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xian Qi
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Carol J. Cardona
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Zheng Xing
- Jiangsu Key Laboratory of Molecular Medicine, Medical school, Nanjing University, Nanjing, Jiangsu, China
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
- * E-mail: (YY); (ZX)
| |
Collapse
|
25
|
Catala A, Stone M, Busch MP, D’Alessandro A. Reprogramming of red blood cell metabolism in Zika virus-infected donors. Transfusion 2022; 62:1045-1064. [PMID: 35285520 PMCID: PMC9086146 DOI: 10.1111/trf.16851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diseases caused by arthropod-borne viruses remain a burden to global health; in particular, Zika virus (ZIKV) has been reported in 87 countries and territories. In healthy blood donors, ZIKV RNA can be detected in red blood cells (RBCs) months after infection, clearance of detectable nucleic acid in plasma, and seroconversion. However, little information is available on the impact of ZIKV infection to metabolism. STUDY DESIGN AND METHODS We applied mass spectrometry-based metabolomics and lipidomics approaches to investigate the impact of ZIKV infection on RBCs over the course of infection. ZIKV-infected blood donors (n = 25) were identified through molecular and serologic methods, which included nucleic acid amplification testing and real-time polymerase chain reaction (PCR) for detection of ZIKV RNA and enzyme-linked immunosorbent assay (ELISA) for detection of flavivirus-specific IgM and IgG. RESULTS In ZIKV RNA-positive donors, we observed lower glucose and lactate levels, and higher levels of ribose phosphate, suggestive of the activation of the pentose phosphate pathway. The top pathways altered in RBCs from ZIKV-IgM-positive donors include amino acid metabolism and biosynthesis, fatty acid metabolism and biosynthesis, linoleic acid and arachidonate metabolism and glutathione metabolism. RBCs from ZIKV-infected donors had increased levels of early glycolytic metabolites, and higher levels of metabolites of the pentose phosphate pathway. Alterations in acyl-carnitine and fatty acid metabolism are consistent with impaired membrane lipid homeostasis in RBCs from ZIKV IgM positive donors. CONCLUSION RBC from healthy blood donors who had been infected by ZIKV are characterized by long-lasting metabolic alterations even months after infection has resolved.
Collapse
Affiliation(s)
- Alexis Catala
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
Stone M, Di Germanio C, Wright DJ, Sulaeman H, Dave H, Fink RV, Notari EP, Green V, Strauss D, Kessler D, Destree M, Saa P, Williamson PC, Simmons G, Stramer SL, Opsomer J, Jones JM, Kleinman S, Busch MP. Use of US Blood Donors for National Serosurveillance of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies: Basis for an Expanded National Donor Serosurveillance Program. Clin Infect Dis 2022; 74:871-881. [PMID: 34111244 PMCID: PMC8406874 DOI: 10.1093/cid/ciab537] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P) Epidemiology, Surveillance and Preparedness of the Novel SARS-CoV-2 Epidemic (RESPONSE) seroprevalence study conducted monthly cross-sectional testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in blood donors in 6 US metropolitan regions to estimate the extent of SARS-CoV-2 infections over time. METHODS During March-August 2020, approximately ≥1000 serum specimens were collected monthly from each region and tested for SARS-CoV-2 antibodies using a well-validated algorithm. Regional seroprevalence estimates were weighted based on demographic differences compared with the general population. Seroprevalence was compared with reported coronavirus disease 2019 (COVID-19) case rates over time. RESULTS For all regions, seroprevalence was <1.0% in March 2020. New York, New York, experienced the biggest increase (peak seroprevalence, 15.8% in May). All other regions experienced modest increases in seroprevalence (1%-2% in May-June to 2%-4% in July-August). Seroprevalence was higher in younger, non-Hispanic black, and Hispanic donors. Temporal increases in donor seroprevalence correlated with reported case rates in each region. In August, 1.3-5.6 estimated cumulative infections (based on seroprevalence data) per COVID-19 case were reported to the Centers for Disease Control and Prevention. CONCLUSIONS Increases in seroprevalence were found in all regions, with the largest increase in New York. Seroprevalence was higher in non-Hispanic black and Hispanic than in non-Hispanic white blood donors. SARS-CoV-2 antibody testing of blood donor samples can be used to estimate the seroprevalence in the general population by region and demographic group. The methods derived from the RESPONSE seroprevalence study served as the basis for expanding SARS-CoV-2 seroprevalence surveillance to all 50 states and Puerto Rico.
Collapse
Affiliation(s)
- Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | | | | | - Hasan Sulaeman
- Vitalant Research Institute, San Francisco, California, USA
| | - Honey Dave
- Vitalant Research Institute, San Francisco, California, USA
| | | | | | | | | | | | | | - Paula Saa
- American Red Cross, Gaithersburg, Maryland, USA
| | - Phillip C Williamson
- Vitalant Research Institute, San Francisco, California, USA
- Creative Testing Solutions, Tempe, Arizona, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | | | | | - Jefferson M Jones
- Centers for Disease Control and Prevention COVID-19 Response Team, Atlanta, Georgia, USA
| | - Steven Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
27
|
Apoptosis during ZIKA Virus Infection: Too Soon or Too Late? Int J Mol Sci 2022; 23:ijms23031287. [PMID: 35163212 PMCID: PMC8835863 DOI: 10.3390/ijms23031287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cell death by apoptosis is a major cellular response in the control of tissue homeostasis and as a defense mechanism in the case of cellular aggression such as an infection. Cell self-destruction is part of antiviral responses, aimed at limiting the spread of a virus. Although it may contribute to the deleterious effects in infectious pathology, apoptosis remains a key mechanism for viral clearance and the resolution of infection. The control mechanisms of cell death processes by viruses have been extensively studied. Apoptosis can be triggered by different viral determinants through different pathways as a result of virally induced cell stresses and innate immune responses. Zika virus (ZIKV) induces Zika disease in humans, which has caused severe neurological forms, birth defects, and microcephaly in newborns during the last epidemics. ZIKV also surprised by revealing an ability to persist in the genital tract and in semen, thus being sexually transmitted. Mechanisms of diverting antiviral responses such as the interferon response, the role of cytopathic effects and apoptosis in the etiology of the disease have been widely studied and debated. In this review, we examined the interplay between ZIKV infection of different cell types and apoptosis and how the virus deals with this cellular response. We illustrate a duality in the effects of ZIKV-controlled apoptosis, depending on whether it occurs too early or too late, respectively, in neuropathogenesis, or in long-term viral persistence. We further discuss a prospective role for apoptosis in ZIKV-related therapies, and the use of ZIKV as an oncolytic agent.
Collapse
|
28
|
Biggs JR, Sy AK, Brady OJ, Kucharski AJ, Funk S, Tu YH, Reyes MAJ, Quinones MA, Jones-Warner W, Ashall J, Avelino FL, Sucaldito NL, Tandoc AO, Cutiongco-de la Paz E, Capeding MRZ, Padilla CD, Hibberd ML, Hafalla JCR. Serological Evidence of Widespread Zika Transmission across the Philippines. Viruses 2021; 13:1441. [PMID: 34452307 PMCID: PMC8402696 DOI: 10.3390/v13081441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) exposure across flavivirus-endemic countries, including the Philippines, remains largely unknown despite sporadic case reporting and environmental suitability for transmission. Using laboratory surveillance data from 2016, 997 serum samples were randomly selected from suspected dengue (DENV) case reports across the Philippines and assayed for serological markers of short-term (IgM) and long-term (IgG) ZIKV exposure. Using mixture models, we re-evaluated ZIKV IgM/G seroprevalence thresholds and used catalytic models to quantify the force of infection (attack rate, AR) from age-accumulated ZIKV exposure. While we observed extensive ZIKV/DENV IgG cross-reactivity, not all individuals with active DENV presented with elevated ZIKV IgG, and a proportion of dengue-negative cases (DENV IgG-) were ZIKV IgG-positive (14.3%, 9/63). We identified evidence of long-term, yet not short-term, ZIKV exposure across Philippine regions (ZIKV IgG+: 31.5%, 314/997) which was geographically uncorrelated with DENV exposure. In contrast to the DENV AR (12.7% (95%CI: 9.1-17.4%)), the ZIKV AR was lower (5.7% (95%CI: 3-11%)) across the country. Our results provide evidence of widespread ZIKV exposure across the Philippines and suggest the need for studies to identify ZIKV infection risk factors over time to better prepare for potential future outbreaks.
Collapse
Affiliation(s)
- Joseph R. Biggs
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.J.-W.); (J.A.); (M.L.H.); (J.C.R.H.)
| | - Ava Kristy Sy
- Department of Virology, Research Institute for Tropical Medicine, Manila 1781, Philippines; (A.K.S.); (M.A.J.R.); (M.A.Q.); (A.O.T.)
- Dengue Study Group, Research Institute for Tropical Medicine, Manila 1781, Philippines;
| | - Oliver J. Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (O.J.B.); (A.J.K.); (S.F.)
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Adam J. Kucharski
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (O.J.B.); (A.J.K.); (S.F.)
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sebastian Funk
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (O.J.B.); (A.J.K.); (S.F.)
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Yun-Hung Tu
- Department of Molecular Parasitology and Tropical Diseases, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Mary Anne Joy Reyes
- Department of Virology, Research Institute for Tropical Medicine, Manila 1781, Philippines; (A.K.S.); (M.A.J.R.); (M.A.Q.); (A.O.T.)
- Dengue Study Group, Research Institute for Tropical Medicine, Manila 1781, Philippines;
| | - Mary Ann Quinones
- Department of Virology, Research Institute for Tropical Medicine, Manila 1781, Philippines; (A.K.S.); (M.A.J.R.); (M.A.Q.); (A.O.T.)
- Dengue Study Group, Research Institute for Tropical Medicine, Manila 1781, Philippines;
| | - William Jones-Warner
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.J.-W.); (J.A.); (M.L.H.); (J.C.R.H.)
| | - James Ashall
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.J.-W.); (J.A.); (M.L.H.); (J.C.R.H.)
| | - Ferchito L. Avelino
- Department of Health, Philippine Epidemiology Bureau, Manila 1003, Philippines; (F.L.A.); (N.L.S.)
| | - Nemia L. Sucaldito
- Department of Health, Philippine Epidemiology Bureau, Manila 1003, Philippines; (F.L.A.); (N.L.S.)
| | - Amado O. Tandoc
- Department of Virology, Research Institute for Tropical Medicine, Manila 1781, Philippines; (A.K.S.); (M.A.J.R.); (M.A.Q.); (A.O.T.)
| | - Eva Cutiongco-de la Paz
- Institute of Human Genetics, University of the Philippines, Manila 1000, Philippines; (E.C.-d.l.P.); (C.D.P.)
- Philippine Genome Centre, University of the Philippines, Manila 1101, Philippines
| | - Maria Rosario Z. Capeding
- Dengue Study Group, Research Institute for Tropical Medicine, Manila 1781, Philippines;
- Institute of Human Genetics, University of the Philippines, Manila 1000, Philippines; (E.C.-d.l.P.); (C.D.P.)
| | - Carmencita D. Padilla
- Institute of Human Genetics, University of the Philippines, Manila 1000, Philippines; (E.C.-d.l.P.); (C.D.P.)
- Philippine Genome Centre, University of the Philippines, Manila 1101, Philippines
| | - Martin L. Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.J.-W.); (J.A.); (M.L.H.); (J.C.R.H.)
- Institute of Human Genetics, University of the Philippines, Manila 1000, Philippines; (E.C.-d.l.P.); (C.D.P.)
- Philippine Genome Centre, University of the Philippines, Manila 1101, Philippines
| | - Julius Clemence R. Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (W.J.-W.); (J.A.); (M.L.H.); (J.C.R.H.)
| |
Collapse
|
29
|
Ngo-Giang-Huong N, Leroi C, Fusco D, Cressey TR, Wangsaeng N, Salvadori N, Kongyai N, Sirirungsi W, Lallemant M, Auewarakul P, Khamduang W, Jourdain G. Lack of Association between Adverse Pregnancy Outcomes and Zika Antibodies among Pregnant Women in Thailand between 1997 and 2015. Viruses 2021; 13:1423. [PMID: 34452289 PMCID: PMC8402824 DOI: 10.3390/v13081423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 01/28/2023] Open
Abstract
Data about Zika virus infection and adverse pregnancy outcomes in Southeast Asia are scarce. We conducted an unmatched case-control study of Zika virus (ZIKV) serology in pregnant women enrolled in human immunodeficiency virus (HIV) or hepatitis B virus (HBV) perinatal prevention trials between 1997 and 2015 in Thailand. Case and control groups included women with and without adverse pregnancy outcomes. Plasma samples collected during the last trimester of pregnancy were tested for ZIKV IgG/IgM and Dengue IgG/IgM (Euroimmun, AG, Germany). Case newborn plasma samples were tested for ZIKV IgM and ZIKV RNA (Viasure, Spain). The case group included women with stillbirth (n = 22) or whose infants had microcephaly (n = 4), a head circumference below the first percentile (n = 14), neurological disorders (n = 36), or had died within 10 days after birth (n = 11). No women in the case group were positive for ZIKV IgM, and none of their live-born neonates were positive for ZIKV IgM or ZIKV RNA. The overall ZIKV IgG prevalence was 29%, 24% in the case and 34% in the control groups (Fisher's exact test; p = 0.13), while the dengue IgG seroprevalence was 90%. Neither neonatal ZIKV infections nor ZIKV-related adverse pregnancy outcomes were observed in these women with HIV and/or HBV during the 18-year study period.
Collapse
Affiliation(s)
- Nicole Ngo-Giang-Huong
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France; (T.R.C.); (N.W.); (N.S.); (G.J.)
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Inthawaroros Road, Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Charline Leroi
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
| | - Dahlene Fusco
- Department of Medicine, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112, USA;
| | - Tim R. Cressey
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France; (T.R.C.); (N.W.); (N.S.); (G.J.)
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Inthawaroros Road, Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Nantawan Wangsaeng
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France; (T.R.C.); (N.W.); (N.S.); (G.J.)
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
| | - Nicolas Salvadori
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France; (T.R.C.); (N.W.); (N.S.); (G.J.)
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Inthawaroros Road, Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Natedao Kongyai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Inthawaroros Road, Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Wasna Sirirungsi
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Inthawaroros Road, Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Marc Lallemant
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand;
| | - Woottichai Khamduang
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Inthawaroros Road, Sripoom, Muang, Chiang Mai 50200, Thailand;
| | - Gonzague Jourdain
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France; (T.R.C.); (N.W.); (N.S.); (G.J.)
- Associated Medical Sciences (AMS)-PHPT Research Collaboration, Chiang Mai 50200, Thailand; (C.L.); (W.S.); (M.L.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Inthawaroros Road, Sripoom, Muang, Chiang Mai 50200, Thailand;
| |
Collapse
|
30
|
The Specificity of the Persistent IgM Neutralizing Antibody Response in Zika Virus Infections among Individuals with Prior Dengue Virus Exposure. J Clin Microbiol 2021; 59:e0040021. [PMID: 33980647 DOI: 10.1128/jcm.00400-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dengue viruses (DENV) and Zika virus (ZIKV) are related mosquito-borne flaviviruses with similar disease manifestations, vector ecologies, and geographic ranges. The ability to differentiate these viruses serologically is vital due to the teratogenic nature of ZIKV and the potential confounding of preexisting cross-reactive anti-DENV antibodies. Here, we illustrate the kinetics of the IgM neutralizing antibody (NAb) response using longitudinal samples ranging from acute ZIKV infection to late convalescence from individuals with evidence of prior DENV infection. By serially depleting antibody isotypes prior to the neutralization assay, we determined that IgM contributes predominantly to ZIKV neutralization and is less cross-reactive than the IgG NAb. The IgM NAb peaked around 14 days (95% confidence interval [95% CI], 13 to 15) and had a median duration of 257 days (95% CI, 133 to 427). These results demonstrate the persistence of IgM NAb after ZIKV infection and imply its potential role in diagnosis, vaccine evaluation, serosurveillance, and research on flavivirus-host interactions.
Collapse
|
31
|
Rosinger AY, Olson SM, Ellington SR, Perez-Padilla J, Simeone RM, Pedati CS, Schroeder BA, Santiago GA, Medina FA, Muñoz-Jordán JL, Adams LE, Galang RR, Valencia-Prado M, Bakkour S, Colón C, Goodwin M, Meaney-Delman D, Read JS, Petersen LR, Jamieson DJ, Deseda CC, Honein MA, Rivera-García B, Shapiro-Mendoza CK. Evaluating Differences in Whole Blood, Serum, and Urine Screening Tests for Zika Virus, Puerto Rico, USA, 2016. Emerg Infect Dis 2021; 27:1505-1508. [PMID: 33900183 PMCID: PMC8084515 DOI: 10.3201/eid2705.203960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated nucleic acid amplification testing (NAAT) for Zika virus on whole-blood specimens compared with NAAT on serum and urine specimens among asymptomatic pregnant women during the 2015–2016 Puerto Rico Zika outbreak. Using NAAT, more infections were detected in serum and urine than in whole blood specimens.
Collapse
|
32
|
Busch MP, Stone M. Serosurveillance for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Incidence Using Global Blood Donor Populations. Clin Infect Dis 2021; 72:254-256. [PMID: 33501953 PMCID: PMC7454349 DOI: 10.1093/cid/ciaa1116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 12/05/2022] Open
Affiliation(s)
- Michael P Busch
- Vitalant Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mars Stone
- Vitalant Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
33
|
Williamson PC, Biggerstaff BJ, Simmons G, Stone M, Winkelman V, Latoni G, Alsina J, Bakkour S, Newman C, Pate LL, Galel SA, Kleinman S, Busch MP. Evolving viral and serological stages of Zika virus RNA-positive blood donors and estimation of incidence of infection during the 2016 Puerto Rican Zika epidemic: an observational cohort study. THE LANCET. INFECTIOUS DISEASES 2020; 20:1437-1445. [PMID: 32673594 DOI: 10.1016/s1473-3099(19)30706-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/31/2019] [Accepted: 11/14/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Puerto Rico began screening blood donations for Zika virus RNA with nucleic acid amplification tests (NAATs) on April 3, 2016, because of an emerging Zika virus outbreak. We followed up positive donors to assess the dynamics of viral and serological markers during the early stages of Zika virus infection and update the estimate of infection incidence in the Puerto Rican population during the outbreak. METHODS Blood donations from volunteer donors in Puerto Rico were screened for the presence of Zika virus RNA using the cobas Zika NAAT. Positive donations were further tested to confirm infection, estimate viral load, and identify Zika virus-specific IgM antibodies. Individuals with positive blood donations were invited to attend follow-up visits. Donations with confirmed infection (defined as detection of Zika virus RNA or IgM on additional testing of index or follow-up samples) were assessed for stage of infection according to Zika virus RNA detectability in simulated minipools, viral load, and Zika virus IgM status. A three-step process was used to estimate the mean duration of NAAT reactivity of Zika virus in human plasma from individuals identified pre-seroconversion with at least one follow up visit and to update the 2016 incidence estimate of Zika virus infection. FINDINGS Between April 3 and Dec 31, 2016, 53 112 blood donations were screened for Zika virus, of which 351 tested positive, 339 had confirmed infections, and 319 could be staged. Compared with IgM-positive index donations (n=110), IgM-negative index donations (n=209) had higher mean viral loads (1·1 × 106vs 8·3 × 104 international units per mL) and were more likely to be detected in simulated minipools (93% [n=194] vs 26% [n=29]). The proportions of donations with confirmed infections that had viral RNA detected only in individual-donation NAATs (ie, not in simulated minipools) and were IgM positive increased as the epidemic evolved. The estimated mean duration of NAAT detectability in the 140 donors included in the follow-up study was 11·70 days (95% CI 10·06-14·36). Applying this detection period to the observed proportion of donations that were confirmed NAAT positive yielded a Zika virus seasonal incidence estimate of 21·1% (95% CI 18·1-24·1); 768 101 infections in a population of 3 638 773 in 2016. INTERPRETATION Characterisation of early Zika virus infection has implications for blood safety because infectivity of blood donations and utility of screening methods likely correlate with viral load and serological stage of infection. Our findings also have implications for diagnostic testing, public health surveillance, and epidemiology, and we estimate that around 21% of the Puerto Rican population was infected during the 2016 outbreak. FUNDING Biomedical Advanced Research and Development Authority, National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
| | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | - Jose Alsina
- Banco de Sangre Servicios Mutuos, Guaynabo, PR, USA
| | | | - Christina Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lisa L Pate
- Roche Molecular Systems, Pleasanton, CA, USA
| | | | - Steven Kleinman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
34
|
Masmejan S, Musso D, Vouga M, Pomar L, Dashraath P, Stojanov M, Panchaud A, Baud D. Zika Virus. Pathogens 2020; 9:pathogens9110898. [PMID: 33126413 PMCID: PMC7692141 DOI: 10.3390/pathogens9110898] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV), a neurotropic single-stranded RNA flavivirus, remains an important cause of congenital infection, fetal microcephaly, and Guillain-Barré syndrome in populations where ZIKV has adapted to a nexus involving the Aedes mosquitoes and humans. To date, outbreaks of ZIKV have occurred in Africa, Southeast Asia, the Pacific islands, the Americas, and the Caribbean. Emerging evidence, however, suggests that the virus also has the potential to cause infections in Europe, where autochtonous transmission of the virus has been identified. This review focuses on evolving ZIKV epidemiology, modes of transmission and host-virus interactions. The clinical manifestations, diagnostic issues relating to cross-reactivity to the dengue flavivirus and concerns surrounding ZIKV infection in pregnancy are discussed. In the last section, current challenges in treatment and prevention are outlined.
Collapse
Affiliation(s)
- Sophie Masmejan
- Maternofetal and Obstetrics Research Unit, Department “Woman-Mother-Child”, University Hospital, 1011 Lausanne, Switzerland; (S.M.); (M.V.); (L.P.); (M.S.)
| | - Didier Musso
- Laboratoire Eurofins Labazur Guyane, 97300 Cayenne, French Guiana;
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, 13007 Marseille, France
| | - Manon Vouga
- Maternofetal and Obstetrics Research Unit, Department “Woman-Mother-Child”, University Hospital, 1011 Lausanne, Switzerland; (S.M.); (M.V.); (L.P.); (M.S.)
| | - Leo Pomar
- Maternofetal and Obstetrics Research Unit, Department “Woman-Mother-Child”, University Hospital, 1011 Lausanne, Switzerland; (S.M.); (M.V.); (L.P.); (M.S.)
| | - Pradip Dashraath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, National University Hospital, Singapore 119074, Singapore;
| | - Milos Stojanov
- Maternofetal and Obstetrics Research Unit, Department “Woman-Mother-Child”, University Hospital, 1011 Lausanne, Switzerland; (S.M.); (M.V.); (L.P.); (M.S.)
| | - Alice Panchaud
- Service of Pharmacy, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
- Institute of Primary Health Care (BIHAM), University of Bern, 3012 Bern, Switzerland
| | - David Baud
- Maternofetal and Obstetrics Research Unit, Department “Woman-Mother-Child”, University Hospital, 1011 Lausanne, Switzerland; (S.M.); (M.V.); (L.P.); (M.S.)
- Correspondence:
| |
Collapse
|
35
|
Petersen LR, Cassetti MC. Learning about Zika virus epidemiology and diagnostics from blood donor studies. THE LANCET. INFECTIOUS DISEASES 2020; 20:1357-1359. [PMID: 32673592 DOI: 10.1016/s1473-3099(20)30125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Lyle R Petersen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - M Cristina Cassetti
- Division of Microbiology and Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|