1
|
Capilla-Flores R, López-Ruíz R, Romero-González R, Garrido Frenich A. Innovative extraction methods for non-phthalate plastic additives determination in water using GC and LC coupled to Q-Orbitrap. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137623. [PMID: 40010226 DOI: 10.1016/j.jhazmat.2025.137623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
This study investigates the presence of non-phthalate plastic additives (NPPAs), emerging contaminants increasingly used as alternatives to hazardous phthalates, in various water sources. To address their potential environmental and health risks, two complementary extraction methods were developed: direct immersion solid-phase microextraction gas chromatography coupled to Q-Orbitrap (DI-SPME-GC-Q-Orbitrap) and salting-out assisted liquid-liquid extraction combined with ultra-high-performance liquid chromatography (SALLE-UHPLC-Q-Orbitrap). The complementary use of these two methods makes it possible to analyse a larger number of analytes, 27 in particular, enabling the detection of 19 and 23 NPPAs by GC and LC, respectively (15 compounds were simultaneously monitored by both techniques), with limits of quantification (LOQs) ranging from 0.05 to 4.0 μg/L. Both methods demonstrated satisfactory trueness and precision in accordance with analytical validation standards. The application of these methods to water samples revealed the widespread presence of NPPAs, particularly 1-hydroxycyclohexyl phenyl ketone (HCPK) and triacetin (TA), which were detected at concentrations up to 5.33 μg/L. Toxicity assessments based on LD50 values indicated that these compounds pose significant environmental and health risks, surpassing some restricted phthalates in toxicity. These findings underscore the urgent need to monitor and regulate NPPAs as hazardous materials to safeguard water quality and public health. This work highlights the utility of green analytical methods for evaluating emerging pollutants in water systems, aligning with the principles of sustainable environmental management.
Collapse
Affiliation(s)
- Raquel Capilla-Flores
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food, Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International, Excellence, ceiA3, Almeria E-04120, Spain.
| | - Rosalía López-Ruíz
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food, Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International, Excellence, ceiA3, Almeria E-04120, Spain.
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food, Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International, Excellence, ceiA3, Almeria E-04120, Spain.
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food, Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International, Excellence, ceiA3, Almeria E-04120, Spain.
| |
Collapse
|
2
|
Gill K, Bindal E, Garg P, Kumar D, Bhattacharyya R, Banerjee D. Exposure of Bisphenols (BPA, BPB and BPC) in HepG2 Cells Results in Lysosomal Dysfunction and Lipid Accumulation. Cell Biol Int 2025; 49:709-722. [PMID: 40099744 DOI: 10.1002/cbin.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Nonalcoholic fatty liver disease poses a significant public health concern, as do the issues surrounding plastic usage. The bisphenols are reported to cause fat accumulation in the liver. However, literature is scanty about the effect of bisphenols on lysosomes or lysosomal functions. We predicted the interaction of bisphenols with lysosomal proteins available in the online databases using in silico tools. Molecular docking revealed that chosen Bisphenols interact with critical lysosomal proteins including lipid hydrolyzing enzymes. Following exposure of BPA, BPB and BPC to HepG2 cells fat accumulation and lysosomal functions were evaluated. Exposure to BPB and BPC results intracellular fat accumulation under experimental conditions like BPA. All three Bisphenols disturb lysosomal homeostasis perhaps by different mechanisms. Overall our results suggest that Bisphenols can also cause fat accumulation in liver by disturbing lysosomal homeostasis.
Collapse
Affiliation(s)
- Kiran Gill
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Eshika Bindal
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parul Garg
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Kumar
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Lee CS, Adam M, Robinson JP, Binner ER. Highly efficient and rapid dechlorination of polyvinyl chloride via microwave pyrolysis. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2025; 383:20240064. [PMID: 40400320 DOI: 10.1098/rsta.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 05/23/2025]
Abstract
Polyvinyl chloride (PVC) waste recycling is challenging due to its high chlorine content, which generates hazardous chlorinated pollutants if treated improperly. A safe and promising PVC dechlorination method is urgently needed to address this issue. Several dechlorination methods have been reported at the laboratory scale; however, each method has its downsides, and none has been proven at the commercial scale. We present, for the first time in the literature, an effective microwave pyrolysis process that can dechlorinate PVC rapidly without the requirement of a solvent/microwave absorber. High dechlorination efficiency up to 99.6% was achieved within 96 s. This process releases hydrogen chloride and generates hydrocarbon-containing liquid and a dechlorinated residue. Dielectric analysis revealed that the untreated PVC was readily heated under microwaves due to the polar chlorine group in its structure. Thermogravimetric analysis confirmed that there were two pyrolysis stages and dechlorination was achieved after the first pyrolysis stage. Fourier-transform infrared (IR) analysis showed that all the bands corresponding to the stretching of C-Cl bonds were not detected in the dechlorinated residue. All these results prove that microwave pyrolysis is a promising process for PVC dechlorination, and it could be the game changer that makes PVC recycling commercially viable.This article is part of the discussion meeting issue 'Microwave science in sustainability'.
Collapse
Affiliation(s)
- Chai Siah Lee
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Mohamed Adam
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | | | - Eleanor R Binner
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Macan Schönleben A, den Ouden F, Yin S, Fransen E, Bosschaerts S, Andjelkovic M, Rehman N, van Nuijs ALN, Covaci A, Poma G. Organophosphorus Flame Retardant, Phthalate, and Alternative Plasticizer Contamination in Novel Plant-Based Food: A Food Safety Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9209-9220. [PMID: 40116373 PMCID: PMC12080256 DOI: 10.1021/acs.est.4c11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
With plant-based (PB) diets gaining popularity, ultraprocessed novel plant-based foods (NPBFs) are an increasingly available alternative to animal-based foods (ABFs). The degree of industrial food processing has been associated with higher organophosphorus flame retardant (PFR) and plasticizer contamination. Here, the occurrence of these contaminants in NPBFs was investigated by using liquid chromatography-tandem mass spectrometry. Our findings show differences in contamination levels and patterns between PB food categories, with PB cheese-alternatives showing the highest levels of both total PFRs (mean: 123 ng/g ww) and total plasticizers (mean: 1155 ng/g ww). The results further point to food contact material and industrial processing as possible contamination sources. Compared with previous studies of ABFs, NPBFs generally showed higher contamination levels, leading to a higher dietary exposure in a vegan diet scenario. While the adult population is not at immediate risk following NPBF consumption, based on these results, a direct replacement of all ABFs with NPBFs is not recommended. Additionally, it is suggested that different PB food categories be included in future food studies monitoring dietary exposure.
Collapse
Affiliation(s)
| | - Fatima den Ouden
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Key
Laboratory of Pollution Exposure and Health Intervention of Zhejiang
Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Erik Fransen
- Centre
of Medical Genetics, University of Antwerp
and Antwerp University Hospital, 2650 Edegem, Belgium
- Centre
for
Oncological Research, University of Antwerp
and Antwerp University Hospital, 2610 Wilrijk, Belgium
| | - Stijn Bosschaerts
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Mirjana Andjelkovic
- Sciensano,
Service Risk and Health Impact Assessment, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nayyer Rehman
- WRG
Europe Ltd., 26-28 Southernhay East, EX1 1NS, Exeter, U.K.
| | | | - Adrian Covaci
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
5
|
Matsuo Y, Jiang JJ, Horie Y. Comprehensive assessment of tris(2-ethylhexyl) trimellitate acute toxicity and ecological risks: Species-specific sensitivity and environmental monitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126413. [PMID: 40368011 DOI: 10.1016/j.envpol.2025.126413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
Tris(2-ethylhexyl) trimellitate (TOTM), a non-phthalate plasticizer, has gained popularity as a safer alternative to phthalates; however, its ecotoxicological impact and environmental behavior remain unclear. In this study, we investigated the species-specific sensitivity of Oryzias latipes (Japanese medaka) and Danio rerio (zebrafish) to TOTM exposure, and determined the residual concentrations in aquatic environments and ecological risk. Embryonic and larval toxicity tests revealed significant species differences: zebrafish showed higher sensitivity, with a lowest observed effect concentration (LOEC) of 43.7 μg/L, exhibiting increased mortality, swim bladder inflation failure, and growth inhibition. In contrast, the Japanese medaka showed no significant adverse effects under similar exposure conditions. TOTM residues were detected in a single sample (348.2 ng/L) after environmental monitoring of the Sumiyoshi River over 3 months, highlighting potential environmental persistence despite limited detection. Risk assessment using the ratio of the measured environmental concentration (MEC) to the predicted no effect concentration (PNEC) revealed a value > 13, indicating a significant ecological risk posed by the TOTM. These findings underscore the importance of evaluating species-specific responses, conducting comprehensive environmental monitoring, and addressing ecological risks associated with TOTM contamination in aquatic environments.
Collapse
Affiliation(s)
- Yusei Matsuo
- Faculty of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Yoshifumi Horie
- Faculty of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan; Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan.
| |
Collapse
|
6
|
Dziendzioł P, Waśkiewicz S, Jaszcz K. New Biobased Plasticizers for PVC Derived from Saturated Dimerized Fatty Acids. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2155. [PMID: 40363658 PMCID: PMC12072859 DOI: 10.3390/ma18092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
Phthalates are compounds widely used as very effective plasticizers of PVC. Unfortunately, they are also widely known to be endocrine disruptors and are detrimental to human health and the environment. For this reason, environmentally friendly plasticizers are being intensively sought after in response to the market needs in the context of sustainable development and legislative changes regarding the use of phthalates. Our research presents an innovative approach to addressing this problem. In this paper, we propose new biobased oligoesters as non-toxic and harmless plasticizers of poly(vinyl chloride). New plasticizers were obtained by polyesterification of saturated dimerized fatty acid (DFA), adipic acid (ADA), triethylene glycol (TEG), and 2-ethylhexanol (2-EH), and were characterized by nuclear magnetic resonance, size exclusion chromatography, and viscosity analyses. The compatibility of the obtained oligoesters with PVC was determined using the method for obtaining PVC films by casting from a THF solution. Selected plasticizers were used to obtain PVC blends at 50 phr. They were then tested for plasticizer migration, hardness, thermogravimetric analysis, differential scanning calorimetry, and mechanical strength. Their properties were compared with the commercially available monomeric plasticizers di(2-ethylhexyl) terephthalate and di(2-ethylhexyl) adipate. The conducted study shows that the oligoesters obtained at a molar ratio of ADA to DFA of 9:1 and using an excess of 2-EH exhibit very good compatibility and plasticizing ability. The use of higher amounts of DFA worsens the compatibility of the oligoesters with PVC. However, a 4:1 ADA-to-DFA molar ratio produced results that still allow for the use of these compounds as plasticizers at lower concentrations or in combination with other plasticizers.
Collapse
Affiliation(s)
- Patryk Dziendzioł
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
- Department of Development, R&D of Grupa Azoty Zakłady Azotowe Kędzierzyn S.A., Mostowa 30A Street, 47-220 Kędzierzyn-Koźle, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Sylwia Waśkiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| | - Katarzyna Jaszcz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| |
Collapse
|
7
|
Shi Y, Li K, Qian Y, Guo W, Cao Y, Cheng Z, Zhu H. Beyond phthalates: Investigating non-phthalate plasticizers in indoor environments-A nationwide survey from China. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138497. [PMID: 40344834 DOI: 10.1016/j.jhazmat.2025.138497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/21/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Research on plasticizers, particularly non-phthalate plasticizers (NPAEs), in indoor environments and their associated human exposure risks remains limited in China. To address this, we analyzed 374 house dust samples nationwide for 11 phthalates (PAEs) and 16 NPAEs. Nineteen of 27 target analytes were widely detected, with total plasticizer concentrations (∑27plasticizers) ranging from 14.3 to 3358 μg/g (median: 226 μg/g). While PAEs dominated of total plasticizers (>70 %), however, some NPAEs, such as trioctyl trimellitate and methyl oleate, showed comparable or higher levels than certain PAEs, indicating their increasing presence. A temporal analysis of PAE occurrence in indoor dust from 2007 to 2023 revealed a significant downward trend. Geographically, Northeast China exhibited the highest ∑27plasticizers levels (median: 539 μg/g), 1.93-3.73 times higher than those in other regions. Additionally, urban households displayed significantly higher ∑27plasticizers concentrations than rural homes, suggesting more intensive emission sources. Floor and dwelling materials were identified as key contributors to plasticizer contamination. Although estimated hazard quotient values suggest minimal health risks under current exposure conditions, the complexity of exposure pathways warrants further investigation. This study provides a national-scale assessment of indoor plasticizer contamination and human exposure risks, offering critical insights for environmental health research and regulatory policies.
Collapse
Affiliation(s)
- Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Keyi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Qian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wencheng Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhao Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Ishak SA, Aris AZ, Law MC, Looi LJ, Abd Karim MM. Impact of plasticiser exposure on oyster Crassostrea (Magallana) saidii: assessing oxidative stress and biomarker responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:654-665. [PMID: 40074971 DOI: 10.1007/s10646-025-02866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Plasticisers are prevalent chemical contaminants that leach from plastics into aquatic ecosystems, posing potential risks to marine life. This study investigated the effects of alternative plasticisers [epoxidised methyl oleate (EMO), di-(2-ethylhexyl) adipate (DEHA), and diisononyl phthalate (DINP)] at 100 µg/L in oysters Crassostrea (Magallana) saidii over 21 days under controlled laboratory conditions. This study focused on changes in body weight, antioxidant enzyme activities such as superoxide dismutase (SOD) and catalase (CAT), non-enzymatic antioxidant reduced glutathione (GSH), lipid peroxidation (malondialdehyde (MDA) levels) after plasticisers exposure for 7, 14 and 21 days. The results indicated a decline in body weight in DINP-exposed oysters, indicating metabolic alterations. DEHA and DINP showed a pronounced increase in SOD activity at the end of the experiment, indicating elevated oxidative stress. CAT activity increased with EMO exposure, but decreased in oysters treated with DEHA and DINP. GSH levels were inversely proportional to CAT activity. Oysters exposed to DEHA and DINP exhibited higher MDA levels, indicating oxidative lipid damage associated with these plasticisers. Multi-biomarker data were integrated using the Integrated Biomarker Response (IBR) index, which ranked the plasticisers' oxidative stress potential as DEHA > DINP > EMO. The IBR analysis also suggested distinct modes of action among the plasticisers and provided insights into their toxicity mechanisms. Notably, EMO exhibited lower toxicity compared to DEHA and DINP, supporting its potential as a more friendly alternative to conventional plasticisers, albeit not exempt from toxic effects. These insights underscore the importance of environmental risk assessments in the future development of safer chemical alternatives.
Collapse
Affiliation(s)
- Siti Afida Ishak
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| | - Ahmad Zaharin Aris
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mei Ching Law
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ley Juen Looi
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Murni Marlina Abd Karim
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
9
|
Bartl I, Chen Y, Rindelaub J, Ladewig S, Thrush S. Benthic ecosystem function responses to plasticizer content in polyester and PVC. MARINE POLLUTION BULLETIN 2025; 214:117713. [PMID: 40009895 DOI: 10.1016/j.marpolbul.2025.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Plastics are ubiquitous contaminants in marine systems with a diverse set of chemical components. While eco-toxicological effects of plastic chemicals provide insights on how marine species respond to plastic exposure, there is lack in ecological understanding of such impacts. In a mesocosm experiment, we measured benthic fluxes to determine ecosystem function responses to polyester netting (low plasticizer concentration) and PVC netting (high plasticizer concentration). Gross primary production rates and ammonium efflux were higher in both plastic treatments compared to the control, but responses were stronger in the polyester treatment. In the PVC treatment we additionally observed a strong response in nitrate fluxes which suggests a disturbance of the benthic N cycle. Our results imply that the concentration of chemical additives in new plastics can be a driver for ecological responses and reduction of plastic emissions needs to remain at the forefront of environmental plastic pollution regulations.
Collapse
Affiliation(s)
- Ines Bartl
- Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand.
| | - Yuchuan Chen
- Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand
| | - Joel Rindelaub
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Samantha Ladewig
- Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand
| | - Simon Thrush
- Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
10
|
McNell EE, Stevens DR, Welch BM, Rosen EM, Fenton S, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Exposure to phthalates and replacements during pregnancy in association with gestational blood pressure and hypertensive disorders of pregnancy. ENVIRONMENTAL RESEARCH 2025; 279:121739. [PMID: 40311894 DOI: 10.1016/j.envres.2025.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Exposure to endocrine-disrupting chemicals such as phthalates may increase risk of hypertensive disorders of pregnancy (HDP). Prior studies lack investigation of chemical mixtures, phthalate replacements, or key periods of susceptibility including early pregnancy. In the present study, we used a longitudinal approach to evaluate gestational exposure to phthalates and replacements, as both single-pollutants and mixtures, in association with blood pressure and diagnosis of preeclampsia or any HDP. The Human Placenta and Phthalates prospective pregnancy cohort includes 291 participants recruited from two U.S. clinics. Urinary metabolites of ten phthalates and replacements were quantified at up to 8 time points per individual and averaged to create early (12-15 weeks) and overall (12-38 weeks) pregnancy exposure biomarkers. We collected data on gestational blood pressure (mean = 6.2 measures per participant) and diagnosis of preeclampsia (n = 26 cases) or any HDP (n = 44 cases). Linear mixed effects models estimated associations between exposure biomarkers and repeated blood pressure measures. We estimated exposure biomarker associations with preeclampsia and HDP using Cox proportional hazards or logistic regression models, respectively. Quantile g-computation was used to estimate joint effects of a phthalate or replacement mixture with each outcome. Early pregnancy exposure biomarkers demonstrated greater associations with adverse outcomes compared to overall pregnancy. A one-interquartile range increase in early pregnancy di-isononyl phthalate metabolites (ƩDiNP) was associated with a 1.13 mmHg (95 % confidence interval [CI]: 0.25, 2.37) and 0.90 mmHg (CI: 0.16, 1.65) increase in systolic and diastolic blood pressure, respectively. We also found positive but nonsignificant associations of early pregnancy mono-3-carboxypropyl phthalate, di-2-ethylhexyl terephthalate metabolites, and the high molecular weight phthalate mixture with blood pressure. Early pregnancy ƩDiNP was furthermore associated with increased odds of HDP (odds ratio: 1.37, CI: 1.03, 1.82), but not preeclampsia. In sum, early gestational exposure to DiNP and other high molecular weight phthalates may contribute to HDP.
Collapse
Affiliation(s)
- Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada Reno, Reno, NV, USA
| | - Emma M Rosen
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Suzanne Fenton
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School at Old Dominion University, Norfolk, VA, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School at Old Dominion University, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School at Old Dominion University, Norfolk, VA, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School at Old Dominion University, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
11
|
Arif SM, Khan I, Saeed M, Chaudhari SK, Ghorbanpour M, Hasan M, Mustafa G. Exploring omics solutions to reduce micro/nanoplastic toxicity in plants: A comprehensive overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179220. [PMID: 40147233 DOI: 10.1016/j.scitotenv.2025.179220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The proliferation of plastic waste, particularly in the form of microplastics (MPs) and nanoplastics (NPs), has emerged as a significant environmental challenge with profound implications for agricultural ecosystems. These pervasive pollutants accumulate in soil, altering its physicochemical properties and disrupting microbial communities. MPs/NPs can infiltrate plant systems, leading to oxidative stress and cytotoxic effects, which in turn compromise essential physiological functions such as water uptake, nutrient absorption, and photosynthesis. This situation threatens crop yield and health, while also posing risks to human health and food security through potential accumulation in the food chain. Despite increasing awareness of this issue, substantial gaps still remain in our understanding of the physiological and molecular mechanisms that govern plant responses to MP/NP stress. This review employs integrative omics techniques including genomics, transcriptomics, proteomics, metabolomics, and epigenomics to elucidate these responses. High-throughput methodologies have revealed significant genetic and metabolic alterations that enable plants to mitigate the toxicity associated with MPs/NPs. The findings indicate a reconfiguration of metabolic pathways aimed at maintaining cellular homeostasis, activation of antioxidant mechanisms, and modulation of gene expression related to stress responses. Additionally, epigenetic modifications suggest that plants adapt to prolonged plastics exposure, highlighting unexplored avenues for targeted research. By integrating various omics approaches, a comprehensive understanding of molecular interactions and their effects on plant systems can be achieved. This review underscores potential targets for biotechnological and agronomic interventions aimed at enhancing plant resilience by identifying key stress-responsive genes, proteins, and metabolites. Ultimately, this work addresses critical knowledge gaps and highlights the importance of multi-omics strategies in developing sustainable solutions to mitigate the adverse effects of MP/NP pollution in agriculture, thereby ensuring the integrity of food systems and ecosystems.
Collapse
Affiliation(s)
- Samia Muhammad Arif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saeed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha 42100, Pakistan
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
12
|
Fernández-Arribas J, Moreno T, Eljarrat E. Plastic additives in the diet: Occurrence and dietary exposure in different population groups. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138317. [PMID: 40273863 DOI: 10.1016/j.jhazmat.2025.138317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
A total diet study focused on exposure to plastic additives has been performed on 109 food samples. Plasticizers were detected in 85 % of analyzed samples with total concentrations ranging between not detected (nd) and 22.0 µg/g wet weight (ww). Non-phthalate plasticizers (NPPs), such as acetyl tributyl citrate (ATBC) or di(2-ethylhexyl) adipate (DEHA), were detected predominantly in baby foods (nd-3.38 µg/g ww) and meat (nd-15.0 µg/g ww), respectively. Significant differences (p ≤ 0.001) were observed across foods with different packaging types regarding the presence of ATBC and DEHA. ATBC was primarily detected in foods packaged in glass containers, meanwhile DEHA is mainly related to fresh food wrapped in plastic materials. Additionally, transference assays in selected ready to cook meals and fresh vegetables were performed, with NPPs exhibiting a higher transference from packaging to food than other compounds. The data obtained have been used for an assessment of estimated daily intake (EDI) of plastic additives in infants (6-12 months), toddlers (1-3 years), and adults (>18 years), resulting in values ranging 0.29-516 µg/kg body weight (bw)/day. Human risk related to baby food consumption, expressed as hazard quotients (HQs), was found with di(2-ethylhexyl) phthalate (DEHP) in the infant population sub-group.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
13
|
Lv H, Mu B, Xu H, Li X, Yao X, Wang Q, Yang H, Ding J, Wang J. Do emerging alternatives pose similar soil ecological risks as traditional plasticizers? A multi-faceted analysis using earthworms as a case study. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137298. [PMID: 39847925 DOI: 10.1016/j.jhazmat.2025.137298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
The extensive application of plasticizers has led to significant environmental issues. This study focused on the ecotoxic effects on earthworms of the traditional plasticizer di(2-ethylhexyl) phthalate (DEHP) and non-phthalate plasticizers di(ethylhexyl) terephthalate (DEHT) and acetyltributyl citrate (ATBC). At an environmentally relevant concentration (50 mg/kg), significant accumulation of ROS was observed in earthworms, with a trend of DEHP > DEHT > ATBC, inducing oxidative stress and lipid peroxidation. DEHP, DEHT, and ATBC impaired the energy metabolism in earthworms, as evidenced by a sharp reduction in ATP content ranging from 43.2 % to 75.8 %, which was attributed to the disruption of glycolysis and the TCA cycle. Concurrently, the numbers of cocoons and juvenile earthworms decreased by 23.3 %-76.7 % and 24.2 %-75.8 %, respectively, indicating a significant decline in reproductive capacity. Using qPCR, AlphaFold2, and molecular docking techniques, this study is the first to report that because of their similar molecular structures, the alternatives to DEHP exhibit estrogen-like effects in earthworms, which may be a key mechanism of reproductive toxicity. These results provide valuable references and profound insights for the development of novel plasticizer alternatives and the assessment of their impact on soil ecosystems.
Collapse
Affiliation(s)
- Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Baoyan Mu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haixia Xu
- Dongying Ecological Environment Monitoring Centre, Dongying Ecological Environment Bureau, Dongying, Shandong 257000, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huiyan Yang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
14
|
Gorini F, Tonacci A, Sanmartin C, Venturi F. Phthalates and Non-Phthalate Plasticizers and Thyroid Dysfunction: Current Evidence and Novel Strategies to Reduce Their Spread in Food Industry and Environment. TOXICS 2025; 13:222. [PMID: 40137549 PMCID: PMC11945544 DOI: 10.3390/toxics13030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Thyroid hormones (THs) play a crucial role in various biological functions, including metabolism, cell growth, and nervous system development, and any alteration involving the structure of the thyroid gland and TH secretion may result in thyroid disease. Growing evidence suggests that phthalate plasticizers, which are commonly used in a wide range of products (e.g., food packaging materials, children's toys, cosmetics, medical devices), can impact thyroid function, primarily affecting serum levels of THs and TH-related gene expression. Like phthalate compounds, recently introduced alternative plasticizers can leach from their source material into the environment, particularly into foods, although so far only a very limited number of studies have investigated their thyroid toxicity. This review aimed at summarizing the current knowledge on the role of phthalate and non-phthalate plasticizers in thyroid dysfunction and disease, describing the major biological mechanisms underlying this relationship. We will also focus on the food industry as one of the main players for the massive spread of such compounds in the human body, in turn conveyed by edible compounds. Given the increasing worldwide use of plasticizers and the essential role of THs in humans, novel strategies should be envisaged to reduce this burden on the thyroid and, in general, on human health.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| |
Collapse
|
15
|
Zhang Z, Li Z, Nan J, Ouyang J, Chen X, Wang H, Wang A. Evaluating advancements and opportunities in electro-assisted biodehalogenation of emerging halogenated contaminants. BIORESOURCE TECHNOLOGY 2025; 419:132011. [PMID: 39725360 DOI: 10.1016/j.biortech.2024.132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Electro-assisted biodehalogenation (EASB) as a biostimulation strategy can accelerate the slow attenuation of emerging halogenated contaminants (EHCs) in anaerobic aqueous environments. A timely review is urgent to evaluate the knowledge gaps and potential opportunities, further facilitating its design and application. Till now, EASB achieves promising progress in accelerating biohalogenation rates, promoting the detoxification of EHCs to cope with unfavourable environments and mitigating greenhouse gas emissions. However, EASB of EHCs still faces several knowledge gaps. Exploring crucial microbes and deciphering insights into dehalogenase characteristics and extracellular electron transfer (EET) pathways remain the prominent task for EASB of EHCs. Moreover, microbial ecological relationships and intricate environmental factors affecting performances and applications are largely underexplored. The emergence of emerging tools holds promises for sorting the intricate changes and addressing these knowledge gaps. Judicious use of emerging tools will rejuvenate EASB strategy, from EET to scale-up, to purposefully and effectively address cascading EHCs.
Collapse
Affiliation(s)
- Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Ouyang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
16
|
Liu Y, Wang S, Chai Y, Yuan R, Li H, Liu H. A "super-off" photoelectrochemical biosensor based on Cu-BTC nanozyme quenching strategy for the detection of dibutyl phthalate plasticizer. Talanta 2025; 284:127241. [PMID: 39581106 DOI: 10.1016/j.talanta.2024.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Ultrasensitive detection of phthalic acid (PAEs) is an extremely critical mission in environmental monitoring. We designed a "super-off" photoelectrochemical (PEC) biosensor by using MoO3/Bi2MoO6 as photoanode and copper(II) benzene-1,3,5-tricarboxylate (Cu-BTC) nanozyme as highly efficient signal quencher. It was found that the PEC signal of MoO3/Bi2MoO6 photoelectric material is very sensitive to the concentration of co-reactor H2O2. Therefore, a target-triggered endonuclease-assisted recycle was employed to convert the target DBP into amount of output DNA, which can trigger the assembly of DNA nanonet for the immobilization of Cu-BTC nanozyme. Thanks to the peroxidase-like activity of Cu-BTC, a "super off" photocurrent was observed due to the consumption of electron donor H2O2 in the electrolyte. Compared with the traditional quenching strategies such as steric hindrance and light energy competition, this enzymatic reaction on the electrode interfaces is more effective to induce the distinct decrease of photocurrent for analysis. Ultimately, the constructed PEC sensor exhibited a broad linear range from 1 fM to 100 nM and a detection threshold of 0.3 fM. This work highlights the significance of using peroxide-mimic enzyme as a signal amplifier in PEC sensing platform for environmental monitoring.
Collapse
Affiliation(s)
- Yajuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shuai Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hongyan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
17
|
Kuiper JR, Bembea M, Gaynor JW, Graham D, Graham EM, Kannan K, Posnack NG, Everett AD, Buckley JP. Exposed and Vulnerable: Sources and Health Implications of Chemical Exposures in Neonatal, Pediatric, and Cardiac Intensive Care Units. Curr Environ Health Rep 2025; 12:11. [PMID: 39951231 PMCID: PMC12020004 DOI: 10.1007/s40572-025-00477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE OF REVIEW Exposures to endocrine disrupting chemicals (EDCs) in early life have demonstrable adverse implications on child health and development. Yet, there is a dearth of studies evaluating the potential exposures to EDCs, such as bisphenols, parabens, phthalates, and volatile organic compounds (VOCs), in hospital-based settings among children who are critically ill and/or particularly vulnerable. This narrative review seeks to provide up-to-date evidence on the sources and magnitude of exposure to EDCs in neonatal-, pediatric-, and cardiac intensive care units (NICUs/PICUs/CICUs) as well as resulting health impacts. RECENT FINDINGS Thirty-three studies were included in this review. The most frequently studied and characterized EDCs in NICUs/PICUs/CICUs were phthalates followed by terephthalates and alternative plasticizers. Evaluations of health outcomes resulting from such exposures were scarce, and few studies assessed health outcomes after hospital discharge. EDCs are pervasive in NICU/PICU/CICU settings and pediatric exposure levels are much higher than in other environments. However, the existing evidence has multiple limitations that should be addressed in future work. Specifically, studies evaluating a more expansive array of chemicals, including contemporary and emerging replacements for legacy compounds, are needed, as are studies that consider chemical mixtures. Additionally, few studies evaluated the health impacts of chemical exposures, and their mixtures, in NICU/PICU/CICU settings, especially long-term health outcomes observed after hospital discharge. Such studies could be invaluable in supporting policy as well as development of medical products without toxic chemicals.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, #2, Washington, D.C, 20037, USA.
| | - Melania Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Department of Surgery, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - David Graham
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric M Graham
- Department of Pediatrics, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, D.C, USA
| | - Allen D Everett
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Jessie P Buckley
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Chen Z, Tian E, Jiang Y, Mo J. Global perspectives on indoor phthalates and alternative plasticizers: Occurrence and key transport parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136506. [PMID: 39577293 DOI: 10.1016/j.jhazmat.2024.136506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Phthalates and emerging alternative plasticizers have garnered significant attention due to their ubiquitous presence indoors and potential adverse health effects. However, the occurrences and key transport parameters of indoor alternative plasticizers have not been sufficiently summarized and analyzed, complicating exposure evaluation and pollution control efforts. This study addresses the gap by providing a comprehensive overview of the occurrence and key transport parameters of the most reported plasticizers, including 10 phthalates and 14 alternative plasticizers. The plasticizer content in source materials was found to range up to 27.6 wt%. An empirical formula was developed to predict the surface-adjacent gaseous plasticizer concentration (y0) of source materials, with values ranging from 0.015 to 64.7 μg/m3. Variations in plasticizer concentrations across source, gas, particle, and dust phases were thoroughly analyzed over both temporal and spatial dimensions from a global perspective, indicating significant differences between continents over time. A detailed investigation of phthalate regulations across continents suggests that the earlier enactment of phthalate bans in Europe is likely a key factor contributing to the most significant decrease in indoor phthalate concentrations. Furthermore, after systematically reviewing mass-transfer and partitioning theories, we developed empirical formulas to predict mass-transfer coefficients (hm) and partition coefficients (K) for both phthalates and alternative plasticizers. Notably, the hm and K parameters of the plasticizers were thoroughly calculated for typical indoor interfaces, including airborne particles, settled dust, and impermeable and permeable materials. Overall, this study advances the understanding of indoor plasticizers, facilitating health-risk assessment and the development of suitable control and monitoring technologies.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jinhan Mo
- Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
19
|
Bian J, Guo Z, Liao G, Wang F, Yu YHK, Arrandale VH, Chan AHS, Huang J, Ge Y, Li X, Chen X, Lu B, Tang X, Liu C, Tse LA, Lu S. Increased health risk from co-exposure to polycyclic aromatic hydrocarbons, phthalates, and per- and polyfluoroalkyl substances: Epidemiological insight from e-waste workers in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177912. [PMID: 39671928 DOI: 10.1016/j.scitotenv.2024.177912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
The alarming surge in electronic waste (e-waste) in Hong Kong has heightened concerns regarding occupational exposure to a myriad of pollutants. Among these, polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFASs) are prevalent and known for their harmful effects, including the induction of oxidative stress and DNA damage, thereby contributing to various diseases. This study addresses gaps in knowledge by investigating exposure levels of these pollutants-measured via hydroxylated PAHs (OH-PAHs), phthalate metabolites (mPAEs), and PFASs-in urine from 101 e-waste workers and 100 office workers. E-waste workers exhibited higher concentrations of these substances compared to office workers. Elevated urinary levels of OH-PAHs, mPAEs, and PFASs correlated significantly with increased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels (β = 2.53, 95 % CI: 2.12-3.02). The association between short-chain PFASs (Perfluoropentanoic acid, PFPeA) and DNA damage was discovered for the first time. Despite most participants (95 %) showing hazard index (HI) values below non-carcinogenic risk thresholds for PAHs and PAEs, certain pollutants posed higher risks among e-waste workers, necessitating enhanced protective measures. Moreover, the 95th percentile of carcinogenic risk associated with diethylhexyl phthalate (DEHP) exceeded 10-4 in both groups, highlighting the urgent need for regulatory measures to mitigate DEHP exposure risks in Hong Kong.
Collapse
Affiliation(s)
- Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Gengze Liao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Feng Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | | | | | - Alan Hoi-Shou Chan
- Department of Systems Engineering, City University of Hong Kong, Hong Kong
| | - Jiayin Huang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China
| | - Chengwen Liu
- Shenzhen Quality and Safety Inspection and Testing Institute, Shenzhen, China
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; The CUHK Centre for Public Health and Primary Care (Shenzhen) & Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China; Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, China.
| |
Collapse
|
20
|
Potts C, Harbolic A, Murphy M, Jojy M, Hanna C, Nadeem M, Alahmadi H, Martinez S, Warner GR. A common phthalate replacement disrupts ovarian function in young adult mice. Reprod Toxicol 2025; 131:108748. [PMID: 39549769 PMCID: PMC11634652 DOI: 10.1016/j.reprotox.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Di-2-ethylhexyl terephthalate (DEHTP) is a replacement for its structural isomer di-2-ethylhexyl phthalate (DEHP), a known endocrine disrupting chemical and ovarian toxicant. DEHTP is used as a plasticizer in polyvinyl chloride products and its metabolites are increasingly found in biomonitoring studies at levels similar to phthalates. However, little is known about the effects of DEHTP on the ovary. In this research, we tested the hypothesis that DEHTP is an ovarian toxicant and likely endocrine disrupting chemical like its isomer DEHP. The impact of environmentally relevant exposure to DEHTP and/or its metabolite mono-2-ethylhexyl terephthalate (MEHTP) on the mouse ovary was investigated in vivo and in vitro. For the in vivo studies, young adult CD-1 mice were orally dosed with vehicle, 10 µg/kg, 100 µg/kg, or 100 mg/kg of DEHTP for 10 days. For the in vitro studies, isolated untreated ovarian follicles were exposed to vehicle, 0.1, 1, 10, or 100 µg/mL of DEHTP or MEHTP. Follicle counts, hormone levels, and gene expression of steroidogenic enzymes, cell cycle regulators, and apoptosis factors were analyzed. In vivo, DEHTP exposure altered follicle counts compared to control. DEHTP exposure also decreased expression of cell cycle regulators and apoptotic factors compared to control. In vitro, follicle growth was reduced compared to controls, and expression of the cell cycle regulator Cdkn2b was increased. Overall, these results suggest that DEHTP and MEHTP may be ovarian toxicants at low doses and should be subjected to further scrutiny for reproductive toxicity due to their similar structures to phthalates.
Collapse
Affiliation(s)
- Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Allison Harbolic
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Maire Murphy
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Michelle Jojy
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Christine Hanna
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Maira Nadeem
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Hanin Alahmadi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Stephanie Martinez
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
21
|
Cropper M, Dunlop S, Hinshaw H, Landrigan P, Park Y, Symeonides C. The benefits of removing toxic chemicals from plastics. Proc Natl Acad Sci U S A 2024; 121:e2412714121. [PMID: 39680769 DOI: 10.1073/pnas.2412714121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
More than 16,000 chemicals are incorporated into plastics to impart properties such as color, flexibility, and durability. These chemicals may leach from plastics, resulting in widespread human exposure during everyday use. Two plastic-associated chemicals-bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP)-and a class of chemicals-brominated flame retardants [polybrominated diphenyl ethers (PBDEs)]-are credibly linked to adverse health and cognitive impacts. BPA exposures are associated with ischemic heart disease (IHD) and stroke, DEHP exposure with increased all-cause mortality among persons 55 to 64 y old, and prenatal PBDE exposures in mothers with IQ losses in their children. We estimate BPA, DEHP, and PBDE exposures in 38 countries containing one-third of the world's population. We find that in 2015, 5.4 million cases of IHD and 346,000 cases of stroke were associated with BPA exposure; that DEHP exposures were linked to approximately 164,000 deaths among 55-to-64 y olds; and that 11.7 million IQ points were lost due to maternal PBDE exposure. We estimate the costs of these health impacts to be $1.5 trillion 2015 purchasing power parity dollars. If exposures to BPA and DEHP in the United States had been at 2015 levels since 2003, 515,000 fewer deaths would have been attributed to BPA and DEHP between 2003 and 2015. If PBDE levels in mothers had been at 2015 levels since 2005, over 42 million IQ points would have been saved between 2005 and 2015.
Collapse
Affiliation(s)
- Maureen Cropper
- Department of Economics, University of Maryland, College Park, MD 20742
- Resources for the Future, Washington, DC 20036
| | - Sarah Dunlop
- Minderoo Foundation, Perth, WA 6000, Australia
- School of Biological Sciences, University of Western Australia, Perth WA 6009, Australia
| | - Hudson Hinshaw
- Department of Economics, University of Maryland, College Park, MD 20742
| | - Philip Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA 02467
- Centre Scientifique de Monaco, 98000 Monaco
| | - Yongjoon Park
- Department of Resource Economics, University of Massachusetts Amherst, Amherst, MA 01003
| | - Christos Symeonides
- Minderoo Foundation, Perth, WA 6000, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
22
|
Freitas F, Brinco J, Cabrita MJ, Gomes da Silva M. Analysis of Plasticizer Contamination Throughout Olive Oil Production. Molecules 2024; 29:6013. [PMID: 39770098 PMCID: PMC11678070 DOI: 10.3390/molecules29246013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
This study monitored the contamination of 32 plasticizers in olive oil throughout the production and storage process. Samples were collected at different stages of production from three olive oil production lines in distinct regions of Portugal and analyzed for 23 phthalates and 9 phthalates substitutes to identify contamination sources. The developed analytical method employed liquid-liquid extraction with hexane/methanol (1:4, v/v), followed by centrifugation, extract removal, and freezing as a clean-up step. Analysis was conducted using gas chromatography tandem mass spectrometry (GC-MS/MS), with detection limits ranging from 0.001 to 0.103 mg/kg. The results revealed that plasticizer concentrations progressively increased at each stage of the production process, although unprocessed olives also contained contaminants. Di-isononyl phthalate (DINP) was the most prevalent compound, but all phthalates regulated by the European Union for food contact materials were detected, as well as some unregulated plasticizers. In a few packaged olive oils, DINP concentrations exceeded the specific migration limits established by European regulations. Samples stored in glass and plastic bottles showed no significant differences in plasticizer concentrations after six months of storage. However, higher concentrations were observed in plastic-packaged samples after 18 months of storage. Our findings indicate that the primary source of plasticizer contamination in olive oil originates from the production process itself, except for prolonged storage in plastic bottles, which should be avoided.
Collapse
Affiliation(s)
- Flávia Freitas
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - João Brinco
- CENSE-Center for Environmental and Sustainability Research & CHANGE-Global Change and Sustainability Institute, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Maria João Cabrita
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Marco Gomes da Silva
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| |
Collapse
|
23
|
Manatunga DC, Sewwandi M, Perera KI, Jayarathna MD, Peramune DL, Dassanayake RS, Ramanayaka S, Vithanage M. Plasticizers: distribution and impact in aquatic and terrestrial environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2114-2131. [PMID: 39404615 DOI: 10.1039/d4em00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Plasticizers, essential additives for enhancing plastic properties, have emerged as significant environmental and health concerns due to their persistence and widespread use. This study provides an in-depth exploration of plasticizers, focusing on their types, structures, properties, production methods, environmental distribution, and associated risks. The findings reveal that petroleum-based phthalates, particularly di-(2-ethylhexyl) phthalate (DEHP), are prevalent in aquatic and terrestrial environments, primarily due to the gradual degradation of plastic polymers. In the analysis of 39 studies on water contamination during the period of 2022-2023, only 22 works could be extracted due to insufficient details on the numerical value of plasticizer concentrations. Similarly, soil and sediment contamination studies were fewer, with only 11 studies focusing on sediments. These studies reveal that high plasticizer concentrations, notably in industrial and urban areas, often exceed recommended environmental limits, posing risks to ecological integrity and human health through bioaccumulation. Bioaccumulation of these compounds in soil and water could negatively affect the microbial communities, nutrient cycling, and could destabilize the overall ecological integrity. Concerns about their direct uptake by plants and potential risks to human health and food safety are highlighted in this study due to the high concentrations exceeding the threshold values. The review evaluates current treatment technologies, including metal-organic frameworks, electrochemical systems, multi-walled carbon nanotubes, and microbial degradation, noting their potential and challenges related to cost and energy consumption. It underscores the need for improved detection protocols, cost-effective treatments, stricter regulations, public awareness, and collaborative research to mitigate the adverse impacts of plasticizers on ecosystems and human health.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Madushika Sewwandi
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Kalani Imalka Perera
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | | | - Dinusha L Peramune
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
| | - Sammani Ramanayaka
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- The Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
24
|
Kim Y, Lim JE, Moon HB. Legacy and alternative plasticizers in sediment from artificial lakes and coastal waters near high-tech industrial complexes in Korea: Contamination, ecological risk, mass inventory, and dilution factor. MARINE POLLUTION BULLETIN 2024; 209:117185. [PMID: 39461178 DOI: 10.1016/j.marpolbul.2024.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Few studies have been conducted on the occurrence and distribution of alternative plasticizers (APs) in aquatic environments. Legacy plasticizers (LPs) and APs were measured in sediments collected from four artificial lakes and a bay surrounded by high-tech industrial complexes. Bis(2-ethylhexyl) phthalate (DEHP) and bis(2-ethylhexyl) terephthalate were major plasticizers. The concentrations of LPs and APs in sediment were similar, implying rapid adoption of APs. The highest AP concentrations were observed in sediment from a lake close to semi-conductor, liquid crystal display, and automobile manufactures, suggesting a preferential shift to APs. Contamination profiles of APs differed according to industrial type. The mass inventories of plasticizers in sediment from the lakes were 25 times higher than those from the bay. Hydrophobicity was a major factor determinant of dilution factors of plasticizers in sedimentary environments. The DEHP concentrations in lake sediments exceeded threshold values, indicating potential health risks to benthic organisms.
Collapse
Affiliation(s)
- Youngju Kim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea; West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
25
|
Hilz EN, Gillette R, Thompson LM, Ton L, Pham T, Kunkel MN, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Female Rats Exposed to Aroclor 1221 and Vinclozolin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127005. [PMID: 39739409 DOI: 10.1289/ehp15621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations. OBJECTIVES We assessed consequences of both direct and ancestral exposure to EDCs over six generations, examining anxiety-like behaviors in maternal and paternal lines of female rats. We used the "two hits, three generations apart" multigenerational exposure model to explore how two distinct EDCs-the weakly estrogenic PCB mixture Aroclor 1221 (A1221) and the antiandrogenic VIN-interact on behavior across generations. We also explored serum hormones as a potential mechanism. METHODS Rats were prenatally exposed to A1221, VIN, or vehicle (DMSO) in the F1 generation, and a second exposure (same or different) was administered to the F4 generation. Anxiety-like behavior was measured in the Open Field test, Light:Dark box, and Elevated Plus Maze in the F1, F3, F4, and F6 generations. Serum concentrations of estradiol and corticosterone were analyzed. RESULTS Behavioral effects were not detectable in the F1 generation but emerged and became more robust across generations. Rats with ancestral VIN exposure demonstrated less anxiety-like behavior in the F3 paternal line in comparison with controls. Rats exposed to ancestral then prenatal A1221/VIN and VIN/A1221 had more anxiety-like behavior in the F4 maternal line, and those with two ancestral hits of VIN/VIN had more anxiety in the F6 paternal line, in comparison with controls. DISCUSSION Our findings suggest that anxiety-like behavioral phenotypes can manifest in rats following germline exposure to EDCs and that subsequent exposures across generations can intensify these effects in a lineage-dependent manner. https://doi.org/10.1289/EHP15621.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Ross Gillette
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lexi Ton
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Timothy Pham
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - M Nicole Kunkel
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
26
|
Seewoo BJ, Wong EVS, Mulders YR, Gozt A, Elagali A, Symeonides C, Dunlop SA. A systematic evidence map protocol for mapping global exposure to bisphenols and their alternatives and social and environmental justice implications. ENVIRONMENT INTERNATIONAL 2024; 194:109091. [PMID: 39577356 DOI: 10.1016/j.envint.2024.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Stricter regulations around the use of BPA have led many manufacturers to switch to other bisphenol chemicals with similar functions such as bisphenol S and F. Even though exposure to BPA, other bisphenol chemicals and bisphenol alternatives poses a health risk for humans, very little is known about the granular exposure levels of different populations around the world. AIM This systematic evidence map (SEM) will identify human studies reporting concentrations of bisphenols and their alternatives measured in human bio-samples with the aim to chart the global human exposure levels by country and population characteristics to identify research gaps and discuss any social and environmental injustice implications. SEARCH STRATEGY AND ELIGIBILITY CRITERIA MEDLINE®, Embase and Web of Science (WoS) databases as well as grey literature sources will be searched using predefined search strings. The database search results will be supplemented by backward and forward citation tracking on included studies. A scoping exercise conducted during planning identified 90 bisphenol chemicals and alternatives used in plastics. These include BPA, other bisphenol chemicals with/without similar functions to BPA as well as alternatives with similar functions to bisphenol chemicals. Eligible studies must measure concentrations of at least one relevant bisphenol chemical/alternative in human bio-samples. STUDY SELECTION Only primary studies published in English since 2010 will be considered. The title, abstract and keywords will be screened by the DistillerAI tool and two independent reviewers. Grey literature will be screened by two reviewers for inclusion and exclusion. The full text of the included studies will then be screened by two independent reviewers. STUDY APPRAISAL Study quality will not be evaluated in this SEM. DATA EXTRACTION AND CODING Data extraction and coding will be performed by two independent reviewers. Parameters of interest will include the following: study characteristics (e.g., year of publication, sampling timepoints and study design), population information (e.g., country, age, sex, ethnicity, number of participants) and exposure information (sources of exposure, bio-sample analyzed, chemical name, concentration, and detection frequencies). SYNTHESIS AND VISUALIZATION The results will be presented using a narrative summary, tables, bar plots and color-coded maps. The interactive database will be available on a dedicated freely accessible website. SYSTEMATIC MAP PROTOCOL REGISTRY AND REGISTRATION NUMBER This protocol has been registered on Open Science Framework (OSF) and is available at https://doi.org/10.17605/OSF.IO/MNWTD.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Enoch V S Wong
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Yannick R Mulders
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Aleksandra Gozt
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia.
| | - Ahmed Elagali
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Christos Symeonides
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| | - Sarah A Dunlop
- Plastics and Human Health, Minderoo Foundation, 171-173 Mounts Bay Road 6000, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
27
|
Folarin BT, Poma G, Yin S, Altamirano JC, Cleys P, Oluseyi T, Covaci A. Source identification and human exposure assessment of organophosphate flame retardants and plasticisers in soil and outdoor dust from Nigerian e-waste dismantling and dumpsites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124998. [PMID: 39313125 DOI: 10.1016/j.envpol.2024.124998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Electronic waste (e-waste) dismantling and dumpsite processes are major sources of organophosphate flame retardant and plasticiser emissions and may pose potentially adverse effects on environment and human health. In 20 outdoor dust and 49 soil samples collected from four e-waste dismantling and three e-waste dumpsites in two States of Nigeria (Lagos and Ogun), we identified 13 alternative plasticisers (APs), 7 legacy phthalate plasticisers (LPs), and 17 organophosphorus flame retardants (OPFRs) for the first time in African e-waste streams. In the samples from dismantling sites, the range (median) concentrations of ∑13APs, ∑7LPs, and ∑17OPFRs were 11-2747 μg/g (144 μg/g), 11-396 μg/g (125 μg/g), and 0.2-68 μg/g (5.5 μg), in dust respectively and 1.8-297 μg/g (55 μg/g), 1.3-274 μg/g (48.5 μg/g), and 1.6-62 μg/g (1.6 μg/g), in soil respectively. Results for soil samples from e-waste dumpsites were (6.6-195 μg/g (23.7 μg/g), 6.0-295 μg/g (54.8), and 0.4-42.3 μg/g (9.0 μg/g) for ∑13APs, ∑7LPs, and ∑17OPFRs respectively. Overall, concentrations of APs were significantly higher at the dismantling sites (p = 0.005) compared to dumpsites, levels of LPs were higher at dismantling sites but not significant, while OPFR concentrations were significantly higher in dumpsite samples (p = 0.005). Plasticisers were found to be major contributors to pollution at e-waste dismantling sites, while OPFRs were associated with both automobile dismantling and e-waste dumpsite processes. Following particle size fractionation of selected soil samples, higher concentrations of targeted compounds were observed in the smaller mesh (180 μm) soil sieve fraction. For dust, the total median estimated daily intake via ingestion and dermal adsorption (EDIing and EDIderm) ranged from 43 to 74 ng/kg bw/day and 0.4-0.7 ng/kg bw/day, respectively. Correspondingly, 4.6-45 ng/kg bw/day and 0.015-0.57 ng/kg bw/day were the values found for soil, respectively. According to these results, the targeted chemicals do not appear to pose a non-carcinogenic risk to e-waste workers through ingestion or dermal contact of bio-accessible fractions of the chemicals. Human biomonitoring campaigns are recommended in the Nigerian e-waste environment considering the elevated concentration levels found for the majority of targeted compounds and that risk parameters required for exposure assessment were only available for a limited number of compounds.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State, 23409, Nigeria
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jorgelina C Altamirano
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, 5500, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, 5500, Mendoza, Argentina
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
28
|
Maurya AC, Bhattacharya A, Khare SK. Biodegradation of terephthalic acid using Rhodococcus erythropolis MTCC 3951: Insights into the degradation process, applications in wastewater treatment and polyhydroxyalkanoate production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57376-57385. [PMID: 37794223 DOI: 10.1007/s11356-023-30054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Terephthalic acid (TPA) is an endocrine disruptor widely used as a plasticizer and as a monomer in the manufacturing of PET bottles. However, because of various harmful effects on humans and the environment, it is now recognized as a priority pollutant whose environmental level needs to be controlled. In the present work, the TPA biodegradation efficacy of the bacterium Rhodococcus erythropolis (MTCC 3951) was studied in mineral salt media with TPA as the sole carbon and energy source. R. erythropolis was observed to degrade 5 mM and 120 mM TPA within 10 h and 84 h of incubation, respectively. The degradation efficiency was further optimized by varying the culture conditions, and the following optimum conditions were obtained: inoculum size- 5% (v/v), temperature- 30 °C, agitation speed- 200 rpm, and pH- 8.0. The bacterium was found to use an ortho-cleavage pathway for TPA degradation determined based on enzymatic and GC-MS studies. Moreover, during the degradation of TPA, the bacterium was observed to produce polyhydroxyalkanoate (PHA)-a biopolymer. Biodegradation of 120 mM TPA resulted in an accumulation of PHA. The PHA granules were visualized using fluorescence and transmission electron microscopy and were later characterized using FTIR spectroscopy. Furthermore, the robustness of the bacterium was demonstrated by its ability to degrade TPA in real industrial wastewater. Overall, R. erythropolis (MTCC 3951) hold the potential for controlling TPA pollution in the environment and vis-à-vis the production of PHA biopolymer.
Collapse
Affiliation(s)
- Ankita C Maurya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, Delhi, New Delhi, 110016, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, Delhi, New Delhi, 110016, India
- Amity Institute of Environmental Sciences, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, Delhi, New Delhi, 110016, India.
| |
Collapse
|
29
|
Bloom MS, Clark JM, Pearce JL, Ferguson PL, Newman RB, Roberts JR, Grobman WA, Sciscione AC, Skupski DW, Garcia K, Vena JE, Hunt KJ. Impact of Skin Care Products on Phthalates and Phthalate Replacements in Children: the ECHO-FGS. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97001. [PMID: 39230332 PMCID: PMC11373421 DOI: 10.1289/ehp13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Phthalates and their replacements have been implicated as developmental toxicants. Young children may be exposed to phthalates/replacements when using skin care products (SCPs). OBJECTIVES Our objective is to assess the associations between use of SCPs and children's urinary phthalate/replacement metabolite concentrations. METHODS Children (4-8 years old) from the Environmental Influences on Child Health Outcomes-Fetal Growth Study (ECHO-FGS) cohort provided spot urine samples from 2017 to 2019, and mothers were queried about children's SCP use in the past 24 h (n = 906 ). Concentrations of 16 urinary phthalate/replacement metabolites were determined by liquid chromatography-tandem mass spectrometry (n = 630 ). We used linear regression to estimate the child's use of different SCPs as individual predictors of urinary phthalate/replacement metabolites, adjusted for urinary specific gravity, age, sex assigned at birth, body mass index, and self-reported race/ethnic identity, as well as maternal education, and season of specimen collection. We created self-organizing maps (SOM) to group children into "exposure profiles" that reflect discovered patterns of use for multiple SCPs. RESULTS Children had lotions applied (43.0%) frequently, but "2-in-1" hair-care products (7.5%), sunscreens (5.9%), and oils (4.3%) infrequently. Use of lotions was associated with 1.17-fold [95% confidence interval (CI): 1.00, 1.34] greater mono-benzyl phthalate and oils with 2.86-fold (95% CI: 1.89, 4.31) greater monoethyl phthalate (MEP), 1.43-fold (95% CI: 1.09, 1.90) greater monobutyl phthalate (MBP), and 1.40-fold (95% CI: 1.22, 1.61) greater low-molecular-weight phthalates (LMW). Use of 2-in-1 haircare products was associated with 0.84-fold (95% CI: 0.72, 0.97) and 0.78-fold (95% CI: 0.62, 0.98) lesser mono(3-carboxypropyl) phthalate (MCPP) and MBP, respectively. Child's race/ethnic identity modified the associations of lotions with LMW, oils with MEP and LMW, sunscreen with MCPP, ointments with MEP, and hair conditioner with MCPP. SOM identified four distinct SCP-use exposure scenarios (i.e., profiles) within our population that predicted 1.09-fold (95% CI: 1.03, 1.15) greater mono-carboxy isononyl phthalate, 1.31-fold (95% CI: 0.98, 1.77) greater mono-2-ethyl-5-hydroxyhexyl terephthalate, 1.13-fold (95% CI: 0.99, 1.29) greater monoethylhexyl phthalate, and 1.04-fold (95% CI: 1.00, 1.09) greater diethylhexyl phthalate. DISCUSSION We found that reported SCP use was associated with urinary phthalate/replacement metabolites in young children. These results may inform policymakers, clinicians, and parents to help limit children's exposure to developmental toxicants. https://doi.org/10.1289/EHP13937.
Collapse
Affiliation(s)
- Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - Juliana M. Clark
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - John L. Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Pamela L. Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Roger B. Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James R. Roberts
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - William A. Grobman
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anthony C. Sciscione
- Department of Obstetrics and Gynecology, Christiana Care Health System, Newark, Delaware, USA
| | - Daniel W. Skupski
- Department of Obstetrics and Gynecology, New York-Presbyterian Queens Hospital, Queens, New York, USA
| | - Kelly Garcia
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
| | - John E. Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelly J. Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - the ECHO-FGS study group
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, USA
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Obstetrics and Gynecology, Christiana Care Health System, Newark, Delaware, USA
- Department of Obstetrics and Gynecology, New York-Presbyterian Queens Hospital, Queens, New York, USA
| |
Collapse
|
30
|
Symeonides C, Aromataris E, Mulders Y, Dizon J, Stern C, Barker TH, Whitehorn A, Pollock D, Marin T, Dunlop S. An Umbrella Review of Meta-Analyses Evaluating Associations between Human Health and Exposure to Major Classes of Plastic-Associated Chemicals. Ann Glob Health 2024; 90:52. [PMID: 39183960 PMCID: PMC11342836 DOI: 10.5334/aogh.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
Background: Epidemiological research investigating the impact of exposure to plastics, and plastic-associated chemicals, on human health is critical, especially given exponentially increasing plastic production. In parallel with increasing production, academic research has also increased exponentially both in terms of the primary literature and ensuing systematic reviews with meta-analysis. However, there are few overviews that capture a broad range of chemical classes to present a state of play regarding impacts on human health. Methods: We undertook an umbrella review to review the systematic reviews with meta-analyses. Given the complex composition of plastic and the large number of identified plastic-associated chemicals, it was not possible to capture all chemicals that may be present in, and migrate from, plastic materials. We therefore focussed on a defined set of key exposures related to plastics. These were microplastics, due to their ubiquity and potential for human exposure, and the polymers that form the matrix of consumer plastics. We also included plasticisers and flame retardants as the two classes of functional additive with the highest concentration ranges in plastic. In addition, we included bisphenols and per- and polyfluoroalkyl substances (PFAS) as two other major plastic-associated chemicals with significant known exposure through food contact materials. Epistemonikos and PubMed were searched for systematic reviews with meta-analyses, meta-analyses, and pooled analyses evaluating the association of plastic polymers, particles (microplastics) or any of the selected groups of high-volume plastic-associated chemicals above, measured directly in human biospecimens, with human health outcomes. Results: Fifty-two systematic reviews were included, with data contributing 759 meta-analyses. Most meta-analyses (78%) were from reviews of moderate methodological quality. Across all the publications retrieved, only a limited number of plastic-associated chemicals within each of the groups searched had been evaluated in relevant meta-analyses, and there were no meta-analyses evaluating polymers, nor microplastics. Synthesised estimates of the effects of plastic-associated chemical exposure were identified for the following health outcome categories in humans: birth, child and adult reproductive, endocrine, child neurodevelopment, nutritional, circulatory, respiratory, skin-related and cancers. Bisphenol A (BPA) is associated with decreased anoclitoral distance in infants, type 2 diabetes (T2D) in adults, insulin resistance in children and adults, polycystic ovary syndrome, obesity and hypertension in children and adults and cardiovascular disease (CVD); other bisphenols have not been evaluated. Phthalates, the only plasticisers identified, are associated with spontaneous pregnancy loss, decreased anogenital distance in boys, insulin resistance in children and adults, with additional associations between certain phthalates and decreased birth weight, T2D in adults, precocious puberty in girls, reduced sperm quality, endometriosis, adverse cognitive development and intelligence quotient (IQ) loss, adverse fine motor and psychomotor development and elevated blood pressure in children and asthma in children and adults. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) but not other flame retardants, and some PFAS were identified and are all associated with decreased birth weight. In general populations, PCBs are associated with T2D in adults and endometriosis, bronchitis in infants, CVD, non-Hodgkin's lymphoma (NHL) and breast cancer. In PCB-poisoned populations, exposure is associated with overall mortality, mortality from hepatic disease (men), CVD (men and women) and several cancers. PBDEs are adversely associated with children's cognitive development and IQ loss. PBDEs and certain PFAS are associated with changes in thyroid function. PFAS exposure is associated with increased body mass index (BMI) and overweight in children, attention deficit hyperactive disorder (ADHD) in girls and allergic rhinitis. Potential protective associations were found, namely abnormal pubertal timing in boys being less common with higher phthalate exposure, increased high-density lipoprotein (HDL) with exposure to mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and reduced incidence of chronic lymphocytic lymphoma (a subtype of NHL) with PCB exposure. Conclusions: Exposure to plastic-associated chemicals is associated with adverse outcomes across a wide range of human health domains, and every plastic-associated chemical group is associated with at least one adverse health outcome. Large gaps remain for many plastic-associated chemicals. Recommendations: For research, we recommend that efforts are harmonised globally to pool resources and extend beyond the chemicals included in this umbrella review. Priorities for primary research, with ensuing systematic reviews, could include micro- and nanoplastics as well as emerging plastic-associated chemicals of concern such as bisphenol analogues and replacement plasticisers and flame retardants. With respect to chemical regulation, we propose that safety for plastic-associated chemicals in humans cannot be assumed at market entry. We therefore recommend that improved independent, systematic hazard testing for all plastic-associated chemicals is undertaken before market release of products. In addition because of the limitations of laboratory-based testing for predicting harm from plastic in humans, independent and systematic post-market bio-monitoring and epidemiological studies are essential to detect potential unforeseen harms.
Collapse
Affiliation(s)
- Christos Symeonides
- Minderoo Foundation, Perth, Western Australia, Australia
- Centre for Community Child Health, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Edoardo Aromataris
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Janine Dizon
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Cindy Stern
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy Hugh Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ashley Whitehorn
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Danielle Pollock
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tania Marin
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Sarah Dunlop
- Minderoo Foundation, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
31
|
Scopetani C, Pellinen J, Selonen S. Phthalates and other organic chemicals in agricultural soils after use of different types of conventional and biodegradable plastics. ENVIRONMENTAL RESEARCH 2024; 255:119177. [PMID: 38788789 DOI: 10.1016/j.envres.2024.119177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Various plastic materials are used in contact with agricultural soil, like mulching films, crop covers, weed controlling fabrics and nets. Polyethylene (PE) mulches have already been recognized as a significant source of plastic in soil and they have been shown to contain additives like phthalates, known as endocrine disruptors. However, other agricultural plastics are less studied, and little is known on the substances potentially released from them endangering biodiversity and the human health. This research aims to assess whether different agricultural plastics release additives into soil and to compare the release among various materials. We collected soil samples from 38 agricultural fields where conventional mulching films (PE), weed controlling fabrics (PP), biodegradable mulches based on polybutylene adipate terephthalate (PBAT), frost covers (PP), and oxo-degradable films (at least OXO-PE) were used. We analyzed the soils for phthalates and acetyl tributyl citrate (ATBC), used as plastic additives, and for polycyclic aromatic hydrocarbons (PAH) and dodecane that have high affinity for plastics. In comparison to the control soils, dibutylphthalate (DBP) and ATBC concentrations were significantly higher in soils mulched with PE and, partly, with biodegradable films. DBP concentration found in soil samples ranged between below the limit of quantification at a control site (1.5 μg kg-1) to 135 μg kg-1 at a site mulched with OXO-PE. The highest ATBC concentration, 22 ± 6 μg kg-1, was registered in a site mulched with PE, showing a statistically significant difference not only in comparison to the controls but also when compared to sites mulched with OXO-PE (p = 0.029) and PBAT (p < 0.009). On the contrary, the use of agricultural plastics did not influence the concentration of PAHs and dodecane. Our results indicate that agricultural plastics are a source of some organic chemicals to agricultural soils, including phthalates that are known for posing threat to soil ecosystem and human health.
Collapse
Affiliation(s)
- Costanza Scopetani
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland.
| | - Jukka Pellinen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland
| | - Salla Selonen
- Finnish Environment Institute SYKE, Latokartanonkaari 11, 00790, Helsinki, Finland
| |
Collapse
|
32
|
Shi Y, Zhao L, Zheng J, Ding R, Li K, Zhao H, Baqar M, Zhu H, Cheng Z, Sun H. End-of-life vehicle dismantling activity emits large quantities of phthalates and their alternatives: New insights on environmental sources and co-exposure risks. ENVIRONMENT INTERNATIONAL 2024; 190:108933. [PMID: 39111170 DOI: 10.1016/j.envint.2024.108933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
Automotive interiors have been identified as significant sources of various chemicals, yet their occupational hazards for end-of-life vehicle (ELV) dismantlers remain poorly characterized. Herein, eight classes of plasticizers, including 11 phthalates esters (PAEs) and 16 non-phthalates esters (NPAEs), were detected in dust samples from inside and outside ELV dismantling workshops. Moreover, indoor dust from ordinary households and university dormitories was compared. The indoor dust from the ELV dismantling workshops contained the highest concentrations of plasticizers (median: 594 μg/g), followed by ordinary households (296 µg/g), university dormitories (186 µg/g), and outdoor dust (157 µg/g). PAEs remained the dominant plasticizers, averaging 11.7-fold higher than their NPAE alternatives. Specifically, diisononyl phthalate and trioctyl trimellitate were notably elevated in workshop dust, being 15.5 and 4.78 times higher, respectively, than in ordinary household dust, potentially indicating their association with ELV dismantling activities. The estimated daily intake of occupational ELV dismantling workers was up to five times higher than that of the general population. Moreover, certain dominant NPAEs demonstrated nuclear receptor interference abilities comparable to typical PAEs, suggesting potential toxic effects. This study is the first to demonstrate that ELV dismantling activities contribute to the co-emission of PAEs and NPAEs, posing a substantial risk of exposure to workers, which warrants further investigation.
Collapse
Affiliation(s)
- Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jie Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ran Ding
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Keyi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
33
|
Recabarren T, Torres M, Gómez V, Jacobsen C, Villablanca M, Ahrendt C, da Silva Montes C, Galbán-Malagón C, Tombesi N, Pozo K. Occurrence of marine plastic litter and plasticizers from touristic beaches of Arauco Gulf in Central Chile. MARINE POLLUTION BULLETIN 2024; 205:116575. [PMID: 38885574 DOI: 10.1016/j.marpolbul.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Marine plastic litter (MPL) was collected from beaches (n = 3) of the Arauco Gulf in central Chile in spring 2021 and summer 2022. MPL was analyzed for physical and chemical characteristics, and plasticizers were also screened using FTIR-ATR. Three hundred seventeen plastic items with an accumulated weight of 226.8 g were found. MPL densities ranged from 0.4 to 17.1 items m-2. Significant differences (p < 0.05) between seasons were observed for Arauco and Maule beaches, being ∼ten times higher in summer compared to spring. Solid pieces were the predominant shape, macroplastics were the most abundant (>2.5 cm), and white and blue colors were dominant. Polypropylene (52 %) and polyethylene (31 %) were the predominant polymers. Plasticizers (n = 3) were detected in the MPL in the study area (dioctyl phthalate, polybutene, and alpha-methylstyrene) for the first time. This study contributes new information related to MPL in coastal areas of central Chile and their chemical composition.
Collapse
Affiliation(s)
- Tatiana Recabarren
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile
| | - Mariett Torres
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile
| | - Victoria Gómez
- Centro GEMA (Genómica, Ecología y Medio Ambiente), Universidad Mayor, Huechuraba, Santiago de Chile, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile
| | - Camila Jacobsen
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile
| | - Mathias Villablanca
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile
| | | | - Caroline da Silva Montes
- Laboratory of Ecotoxicology and Laboratory of Marine Environmental Monitoring Research (LAPMAR), Federal University of Pará, Belém, Pará, Brazil
| | - Cristóbal Galbán-Malagón
- Centro GEMA (Genómica, Ecología y Medio Ambiente), Universidad Mayor, Huechuraba, Santiago de Chile, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Center for Environment, Florida International University, Miami, FL, USA
| | - Norma Tombesi
- Instituto de Química del Sur (INQUISUR - CONICET/UNS), Bahía Blanca, Argentina
| | - Karla Pozo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile; RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
34
|
Kuklya A, Poelke B, Michna K, Lehmann S, Kappenstein O, Sarvan I, Luch A, Roloff A, Bruhn T. A multi-technique approach for the quantification of 60 plasticizers and selected additives using GC- and LC-MS/MS and its application for beverages in the BfR MEAL study. Food Chem 2024; 446:138874. [PMID: 38460277 DOI: 10.1016/j.foodchem.2024.138874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
The development of multi-analyte methods is always challenging, especially when the target compounds derive from many different substance classes. We present an approach to analyze up to 60 additives - mainly plasticizer - including 28 phthalates and 32 further compounds such as sebacates, adipates, citrates, fatty acid amides, among others. Our multi-analyte multi-technique approach combines a single sample preparation step with one GC-MS/MS and two LC-MS/MS quantification methods. We demonstrate the applicability for beverages by a full validation in tomato juice matrix and determining the recoveries in apple juice, mulled wine, and spirits. The approach features good reproducibilities and high precisions with limits of quantification in the low µg·kg-1 food range, enabling the method to be applied for enforcement and especially for exposure investigations. In course of the BfR MEAL study, 16 pooled beverage samples were examined and - if at all - analytes were found only in very low concentrations.
Collapse
Affiliation(s)
- Andriy Kuklya
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Birte Poelke
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Klaudia Michna
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Saskia Lehmann
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Oliver Kappenstein
- German Federal Institute for Risk Assessment, Department of Safety in the Food Chain, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Irmela Sarvan
- German Federal Institute for Risk Assessment, Department of Exposure, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Alexander Roloff
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Torsten Bruhn
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
35
|
Liao M, Gan Z, Sun W, Su S, Li Z, Zhang Y. Spatial distribution, source identification, and potential risks of 14 bisphenol analogues in soil under different land uses in the megacity of Chengdu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124064. [PMID: 38701965 DOI: 10.1016/j.envpol.2024.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
This study explored the levels, distribution, potential sources, ecological risks and estrogenic activities of 14 bisphenol analogues (BPs) in soil under eight land-use types in the megacity of Chengdu, China. Eleven BPs were detected in the soil samples and the total concentrations ranged from 32.3 to 570 ng/g d.w. Levels of bisphenol BP (BPBP) in the soil (up to 208 ng/g d.w.) only second to the most dominant compound bisphenol A (BPA) were found. Relatively higher Σ14BP accumulation in the soil was observed in the commercial and residential areas (median: 136 ng/g d.w. and 131 ng/g d.w.) compared with agricultural area (median: 67.5 ng/g d.w.). Source identification indicated the role of atmospheric particulate deposition and consecutive anthropogenic activities in BP emission. The ecotoxicity assessment implied that BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol PH (BPPH) might pose low to medium risk to the ecosystem due to their extensive use and biological effects. The calculated 17β-estradiol equivalents of BPs were in the range of 0.501-7.74 pg E2/g d.w, and the estrogenic activities were inferior to those contributed by natural estrogens in the soil.
Collapse
Affiliation(s)
- Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yunqian Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, Beijing, China
| |
Collapse
|
36
|
Li D, Suh S. Comments on "Phthalates and attributable mortality: A population-based longitudinal cohort study and cost analysis". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:121636. [PMID: 37068652 DOI: 10.1016/j.envpol.2023.121636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Dingsheng Li
- School of Public Health, University of Nevada, Reno, NV, 89557, United States.
| | - Sangwon Suh
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93117, United States; The Institute of Environmental Sciences, Leiden University, 2300 RA Leiden, the Netherlands
| |
Collapse
|
37
|
Lim HJ, Song H, Son A. Multi-target aptamer assay for endocrine-disrupting phthalic acid ester panel screening in plastic leachates. CHEMOSPHERE 2024; 359:142366. [PMID: 38768782 DOI: 10.1016/j.chemosphere.2024.142366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity. The assay is highly selective for PAE-13 clusters. The selectivity of the assay was evaluated using 13 different PAEs and mixtures depending on the side chain structure. The quantitative detection of PAEs was demonstrated by adopting mixed PAE-13 simulants and achieved a limit of detection of ∼1.4 pg/mL. The repeatability and reproducibility of the assay were also evaluated by presenting acceptable coefficients of variation (%CV less than 10% and 15%, respectively). The performance of the assay was demonstrated by analyzing the plastic leachate samples, and the positive correlation (correlation coefficient, r = 0.985) was confirmed by comparing them with the total sum of individual PAE peak areas obtained by gas chromatography mass spectrometry analysis.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyerin Song
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
38
|
Seewoo BJ, Wong EV, Mulders YR, Goodes LM, Eroglu E, Brunner M, Gozt A, Toshniwal P, Symeonides C, Dunlop SA. Impacts associated with the plastic polymers polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene across their life cycle: A review. Heliyon 2024; 10:e32912. [PMID: 39022097 PMCID: PMC11253235 DOI: 10.1016/j.heliyon.2024.e32912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Polymers are the main building blocks of plastic, with the annual global production volume of fossil carbon-based polymers reaching over 457 million metric tons in 2019 and this figure is anticipated to triple by 2060. There is potential for environmental harm and adverse human health impacts associated with plastic, its constituent polymers and the chemicals therein, at all stages of the plastic life cycle, from extraction of raw materials, production and manufacturing, consumption, through to ultimate disposal and waste management. While there have been considerable research and policy efforts in identifying and mitigating the impacts associated with problematic plastic products such as single-use plastics and hazardous chemicals in plastics, with national and/or international regulations to phase out their use, plastic polymers are often overlooked. In this review, the polymer dimension of the current knowledge on environmental release, human exposure and health impacts of plastic is discussed across the plastic life cycle, including chemicals used in production and additives commonly used to achieve the properties needed for applications for which the polymers are generally used. This review focuses on polycarbonate, polystyrene, polyvinyl chloride, and polybutadiene, four common plastic polymers made from the hazardous monomers, bisphenol, styrene, vinyl chloride and 1,3-butadiene, respectively. Potential alternative polymers, chemicals, and products are considered. Our findings emphasise the need for a whole system approach to be undertaken for effective regulation of plastics whereby the impacts of plastics are assessed with respect to their constituent polymers, chemicals, and applications and across their entire life cycle.
Collapse
Affiliation(s)
- Bhedita J. Seewoo
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Enoch V.S. Wong
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yannick R. Mulders
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Louise M. Goodes
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ela Eroglu
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Manuel Brunner
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Aleksandra Gozt
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
| | - Priyanka Toshniwal
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christos Symeonides
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Sarah A. Dunlop
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000, Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
39
|
Jang M, Lee M, Chung S, Park SA, Park H, Jeon H, Jegal J, Park SB, Oh DX, Shin G, Kim HJ. Ecotoxicity assessment of additives in commercial biodegradable plastic products: Implications for sustainability and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172903. [PMID: 38697526 DOI: 10.1016/j.scitotenv.2024.172903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/11/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Biodegradable plastics have gained popularity as environmentally friendly alternatives to conventional petroleum-based plastics, which face recycling and degradation challenges. Although the biodegradability of these plastics has been established, research on their ecotoxicity remains limited. Biodegradable plastics may still contain conventional additives, including toxic and non-degradable substances, to maintain their functionality during production and processing. Despite degrading the polymer matrix, these additives can persist in the environment and potentially harm ecosystems and humans. Therefore, this study aimed to assess the potential ecotoxicity of biodegradable plastics by analyzing the phthalate esters (PAEs) leaching out from biodegradable plastics through soil leachate. Sixteen commercial biodegradable plastic products were qualitatively and quantitatively analyzed using gas chromatography-mass spectrometry to determine the types and amounts of PAE used in the products and evaluate their ecotoxicity. Among the various PAEs analyzed, non-regulated dioctyl isophthalate (DOIP) was the most frequently detected (ranging from 40 to 212 μg g-1). Although the DOIP is considered one of PAE alternatives, the detected amount of it revealed evident ecotoxicity, especially in the aquatic environment. Other additives, including antioxidants, lubricants, surfactants, slip agents, and adhesives, were also qualitatively detected in commercial products. This is the first study to quantify the amounts of PAEs leached from biodegradable plastics through water mimicking PAE leaching out from biodegradable plastics to soil leachate when landfilled and evaluate their potential ecotoxicity. Despite their potential toxicity, commercial biodegradable plastics are currently marketed and promoted as environmentally friendly materials, which could lead to indiscriminate public consumption. Therefore, in addition to improving biodegradable plastics, developing eco-friendly additives is significant. Future studies should investigate the leaching kinetics in soil leachate over time and toxicity of biodegradable plastics after landfill disposal.
Collapse
Affiliation(s)
- Min Jang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seonghyn Chung
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Huijeong Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
40
|
Hamieda SF, Reffaee A, Saied M. Biophysical studies of modified PVC sheet based on sunflower oil for antistatic and blood bags applications. Sci Rep 2024; 14:13051. [PMID: 38844516 PMCID: PMC11156637 DOI: 10.1038/s41598-024-62709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
In this work, the surface of polyvinyl chloride PVC sheet was modified by blending it with sunflower seed oil SSO to obtain PVC sheet/SSO films of ratios 100/0, 90/10, 80/20, 70/30, 60/40, and 50/50 (v/v)% using the solution casting method. Various techniques were used to characterize the prepared films, besides the use of hemolysis assays and blood clot formation tests. FTIR spectra revealed that there was a good interaction between the PVC sheet and the oil. The dielectric measurement indicated that SSO addition enhanced the dielectric properties of the sheet. The study of dielectric relaxation times confirmed the interaction between SSO and the sheet. DC conductivity increased to 6 × 10-6 S/m, so it could be applied in antistatic applications. Also, SSO addition increased the value of the thermal stability. According to SEM micrographs, the film was roughened at a ratio of 60/40 and smoothed out at 50/50. This behavior was confirmed with roughness and contact angle measurement results, in which the film of ratio 60/40 had the highest value equal to (72.03°) and then decreased at 50/50 to (59.62°). These results were confirmed by XRD measurement as the crystallinity increased at the film ratio of 60/40 and decreased again at 50/50. Also, the ratio of 60/40 demonstrated a large decrease in thrombus weights along with a slight increase in hemolysis, which is within the acceptable range and has a high degree of biocompatibility, so this concentration is recommended to be used in blood bags applications.
Collapse
Affiliation(s)
- Shimaa Farag Hamieda
- Microwave Physics and Dielectrics Department, National Research Centre, Giza, Egypt.
| | - Abeer Reffaee
- Microwave Physics and Dielectrics Department, National Research Centre, Giza, Egypt
| | - Mona Saied
- Microwave Physics and Dielectrics Department, National Research Centre, Giza, Egypt
| |
Collapse
|
41
|
Aldegunde-Louzao N, Lolo-Aira M, Herrero-Latorre C. Phthalate esters in clothing: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104457. [PMID: 38677495 DOI: 10.1016/j.etap.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers to enhance the flexibility and durability of different consumer products, including clothing. However, concerns have been raised about the potential adverse health effects associated with the presence of phthalates in textiles, such as endocrine disruption, reproductive toxicity and potential carcinogenicity. Based on examination of more than 120 published articles, this paper presents a comprehensive review of studies concerning the phthalate content in clothing and other textile products, with special emphasis on those conducted in the last decade (2014-2023). The types and role of PAEs as plasticizers, the relevant legislation in different countries (emphasizing the importance of monitoring PAE levels in clothing to protect consumer health) and the analytical methods used for PAE determination are critically evaluated. The review also discusses the models used to evaluate exposure to PAEs and the associated health risks. Finally, the study limitations and challenges related to determining the phthalate contents of textile products are considered.
Collapse
Affiliation(s)
- Natalia Aldegunde-Louzao
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry Nutrition and Bromatology Department, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, Lugo 27002, Spain.
| | - Manuel Lolo-Aira
- Applied Mass Spectrometry Laboratory (AMSlab), Avda. Benigno Rivera, 56, Lugo 27003, Spain.
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry Nutrition and Bromatology Department, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, Lugo 27002, Spain.
| |
Collapse
|
42
|
Qadeer A, Anis M, Warner GR, Potts C, Giovanoulis G, Nasr S, Archundia D, Zhang Q, Ajmal Z, Tweedale AC, Kun W, Wang P, Haoyu R, Jiang X, Shuhang W. Global Environmental and Toxicological Data of Emerging Plasticizers: Current Knowledge, Regrettable Substitution Dilemma, Green Solution and Future Perspectives. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:5635-5683. [PMID: 39553194 PMCID: PMC11566117 DOI: 10.1039/d3gc03428c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The global plasticizer market is projected to increase from $17 billion in 2022 to $22.5 billion in 2027. Various emerging/alternative plasticizers entered the market following the ban on several phthalate plasticizers because of their harmful effects. However, there is limited data (especially peer-reviewed) on emerging plasticizers' toxicity and environmental impact. This review compiles available data on toxicity, exposure, environmental effects, and safe production of emerging plasticizers. It identifies gaps in scientific research and provides evidence that emerging plasticizers are potential cases of regrettable substitution. Several alternative plasticizers, such as acetyl tributyl citrate (ATBC), diisononyl cyclohexane-1,2 dicarboxylate (DINCH), tris-2-ethylhexyl phosphate (TEHP), tricresyl phosphate (TCP), tris-2-ethylhexyl phosphate (TPHP), bis-2-ethylhexyl terephthalate (DEHT), and tris-2-ethylhexyl trimellitate (TOTM), show potential as endocrine disrupting properties and other toxic characteristics. Some chemicals like bis-2-ethylhexyl adipate (DEHA), diisobutyl adipate (DIBA), ATBC, DINCH, bis-2-ethylhexyl sebacate (DOS), diethylene glycol dibenzoate (DEGDB), DEHT, and phosphate esters showed the potential to cause toxicity in aquatic species. Plus, there is great lack of information on compounds like diisononyl adipate (DINA), dibutyl adipate (DBA), diisodecyl adipate (DIDA), dipropylene glycol dibenzoate (DPGDB), dibutyl sebacate (DBS), alkylsulfonic phenyl ester (ASE), trimethyl pentanyl diisobutyrate (TXIB), DEGDB and bis-2-ethylhexyl sebacate (DOS). Some compounds like epoxidized soybean oil (ESBO), castor-oil-mono-hydrogenated acetate (COMGHA), and glycerin triacetate (GTA) are potentially safer or less toxic. Alternative plasticizers such as adipates (LogKow 4.3-10.1), cyclohexane dicarboxylic acids (LogKow 10), phosphate esters (LogKow 2.7-9.5), sebacates (LogKow 6.3-10.1), terephthalates (LogKow 8.4), and vegetable oil derivatives (LogKow 6.4-14.8) have logKow values that are comparable to phthalate plasticizers (LogKow 7.5-10.4), indicating potential bioaccumulation and health consequences. Field studies have demonstrated that phosphate esters can undergo bioaccumulation and biomagnification, but there is a lack of bioaccumulation studies for other compounds. We also discuss the metabolism of emerging plasticizers, though data is limited. Our article highlights that numerous alternative compounds display potential health and ecological risks, indicating they might not be suitable substitutes for legacy plasticizers. There is also a lack of scientific data on most emerging plasticizers. This way, we call for increased research and timely regulatory action to prevent global contamination and health risks. Finally, this study presents a scientifically robust protocol to avoid harmful substitutions and ensure the production of safer chemicals.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Muhammad Anis
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
| | - Genoa R. Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Samia Nasr
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Qinghuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Zeeshan Ajmal
- College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
| | - Anthony C. Tweedale
- R.I.S.K. Consultancy (Rebutting Industry Science with Knowledge), Brussels, Belgium
| | - Wang Kun
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Pengfei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Ren Haoyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Wang Shuhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| |
Collapse
|
43
|
Li J, Chen R, Liu P, Zhang X, Zhou Y, Xing Y, Xiao X, Huang Z. Association of Di(2-ethylhexyl) Terephthalate and Its Metabolites with Nonalcoholic Fatty Liver Disease: An Epidemiology and Toxicology Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8182-8193. [PMID: 38691136 DOI: 10.1021/acs.est.3c09503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
As an alternative plasticizer to conventional phthalates, di(2-ethylhexyl) terephthalate (DEHTP) has attracted considerable concerns, given its widespread detection in the environment and humans. However, the potential toxicity, especially liver toxicity, posed by DEHTP remains unclear. In this study, based on the 2017-2018 National Health and Nutrition Examination Survey, two metabolites of DEHTP, i.e., mono(2-ethyl-5-hydroxyhexyl) terephthalate (MEHHTP) and mono(2-ethyl-5-carboxypentyl) terephthalate (MECPTP), were found to be present in the urine samples of nearly all representative U.S. adults. Moreover, a positive linear correlation was observed between the concentrations of the two metabolites and the risk of nonalcoholic fatty liver disease (NAFLD) in the population. Results of weighted quantile sum and Bayesian kernel machine regression indicated that MEHHTP contributed a greater weight to the risk of NAFLD in comparison with 12 conventional phthalate metabolites. In vitro experiments with hepatocyte HepG2 revealed that MEHHTP exposure could increase lipogenic gene programs, thereby promoting a dose-dependent hepatic lipid accumulation. Activation of liver X receptor α may be an important regulator of MEHHTP-induced hepatic lipid disorders. These findings provide new insights into the liver lipid metabolism toxicity potential of DEHTP exposure in the population.
Collapse
Affiliation(s)
- Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Rongbin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P.R. China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| | - Xinhua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, P.R. China
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
44
|
Chen S, Liu H, Sun Y, Li S, Shi Y, Cheng Z, Zhu H, Sun H. Phthalate Biomarkers Composition in Relation to Fatty Liver: Evidence from Epidemiologic and in vivo studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171607. [PMID: 38461993 DOI: 10.1016/j.scitotenv.2024.171607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Phthalates, classified as environmental endocrine disruptors, pose potential toxicity risks to human health. Metabolic dysfunction-associated fatty liver disease is one of the most widespread liver diseases globally. Compared to studies focusing on metabolic disorders in relation to pollutants exposure, the impact of individual factors such as fatty liver on the in vivo metabolism of pollutants is always overlooked. Therefore, this study measured concentrations and composition of phthalate monoesters (mPAEs) in human urine samples, particularly those from fatty liver patients. Furthermore, we induced fatty liver in male Wistar rats by formulating a high-fat diet for twelve weeks. After administering a single dose of DEHP at 500 mg/kg bw through gavage, we compared the levels of di-2-ethylhexyl phthalate (DEHP), its metabolites (mDEHPs) and three hepatic metabolic enzymes, namely cytochrome P450 enzymes (CYP450), UDP glucuronosyltransferase 1 (UGT1), and carboxylesterase 1 (CarE1), between the normal and fatty liver rat groups. Compared to healthy individuals (n = 75), fatty liver patients (n = 104) exhibited significantly lower urinary concentrations of ∑mPAEs (median: 106 vs. 166 ng/mL), but with a higher proportion of mono-2-ethylhexyl phthalate in ∑mDEHPs (25.7 % vs. 9.9 %) (p < 0.05). In the animal experiment, we found that fatty liver in rats prolonged the elimination half-life of DEHP (24.61 h vs. 18.89 h) and increased the contents of CYP450, CarE1, and UGT1, implying the common but differentiated metabolism of DEHP as excess lipid accumulation in liver cells. This study provides valuable information on how to distinguish populations in biomonitoring studies across a diverse population and in assigning exposure classifications of phthalates or similar chemicals in epidemiologic studies.
Collapse
Affiliation(s)
- Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yulian Sun
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shuxian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yixuan Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
45
|
Peng X, Yang T, Guo S, Zhou J, Chen G, Zhu Z, Tan J. Revealing chemical release from plastic debris in animals' digestive systems using nontarget and suspect screening and simulating digestive fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123793. [PMID: 38513944 DOI: 10.1016/j.envpol.2024.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Plastic debris in the environment are not only pollutants but may also be important sources of a variety of contaminants. This work simulated kinetics and potential of chemical leaching from plastic debris in animals' digestive systems by incubating polyvinyl chloride (PVC) cord particles in artificial digestive fluids combined with nontarget and suspect screening based on UHPLC-Orbitrap HRMS. Impacts of particle size, aging, and digestive fluid were investigated to elucidate mechanisms of chemical leaching. Thousands of chemical features were screened in the leachates of PVC cord particles in the artificial digestive fluids, among which >60% were unknown. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant identified CL1 compounds. Finer size and aging of the PVC particles and prolonged incubation time enhanced chemical release, resulting in greater numbers, higher levels, and more complexity in components of the released chemicals. The gastrointestinal fluid was more favorable for chemical leaching than the gastric fluid, with greater numbers and higher levels. Hundreds to thousands of chemical features were screened and filtered in the leachates of consumer plastic products, including food contact products (FCPs) in the artificial bird gastrointestinal fluid. In addition to BPA and DEHP, several novel bisphenol analogues were identified in the leachate of at least one FCP. The results revealed that once plastic debris are ingested by animals, hundreds to thousands of chemicals may be released into animals' digestive tracts in hours, posing potential synergistic risks of plastic debris and chemicals to plastic-ingesting animals. Future research should pay more attentions to identification, ecotoxicities, and environmental fate of vast amounts of unknown chemicals potentially released from plastics in order to gain full pictures of plastic pollution in the environment.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Tao Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Guo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510050, China
| |
Collapse
|
46
|
Chi ZH, Liu L, Zheng J, Tian L, Chevrier J, Bornman R, Obida M, Goodyer CG, Hales BF, Bayen S. Biomonitoring of bisphenol A (BPA) and bisphenol analogues in human milk from South Africa and Canada using a modified QuEChERS extraction method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123730. [PMID: 38458524 DOI: 10.1016/j.envpol.2024.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
A sensitive modified QuEChERS extraction method was developed to assess the levels of free and conjugated bisphenols (BPs) in human milk collected between 2018 and 2019 from two regions of South Africa (the Limpopo Province Vhembe district, n = 194; Pretoria, n = 193) and Canada (Montreal, n = 207). Total BPA (free and conjugated) and BPS were the predominant bisphenols detected in samples from Vhembe and Pretoria, whereas total BPS was the predominant bisphenol detected in Montreal samples. The levels of total BPA in samples from Vhembe and Pretoria ranged between < MDL-18.61 and
Collapse
Affiliation(s)
- Zhi Hao Chi
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | | | | | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
47
|
Bajetto G, Scutera S, Menotti F, Banche G, Chiaradia G, Turesso C, De Andrea M, Vallino M, Es DSV, Biolatti M, Dell’Oste V, Musso T. Antimicrobial Efficacy of a Vegetable Oil Plasticizer in PVC Matrices. Polymers (Basel) 2024; 16:1046. [PMID: 38674966 PMCID: PMC11054656 DOI: 10.3390/polym16081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The growing prevalence of bacterial and viral infections, highlighted by the recent COVID-19 pandemic, urgently calls for new antimicrobial strategies. To this end, we have synthesized and characterized a novel fatty acid epoxy-ester plasticizer for polymers, named GDE. GDE is not only sustainable and user-friendly but also demonstrates superior plasticizing properties, while its epoxy components improve the heat stability of PVC-based matrices. A key feature of GDE is its ability to confer antimicrobial properties to surfaces. Indeed, upon contact, this material can effectively kill enveloped viruses, such as herpes simplex virus type 1 (HSV-1) and the β-coronavirus prototype HCoV-OC43, but it is ineffective against nonenveloped viruses like human adenovirus (HAdV). Further analysis using transmission electron microscopy (TEM) on HSV-1 virions exposed to GDE showed significant structural damage, indicating that GDE can interfere with the viral envelope, potentially causing leakage. Moreover, GDE demonstrates antibacterial activity, albeit to a lesser extent, against notorious pathogens such as Staphylococcus aureus and Escherichia coli. Overall, this newly developed plasticizer shows significant potential as an antimicrobial agent suitable for use in both community and healthcare settings to curb the spread of infections caused by microorganisms contaminating physical surfaces.
Collapse
Affiliation(s)
- Greta Bajetto
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, 28100 Novara, Italy
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | - Francesca Menotti
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | | | | | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, 28100 Novara, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Centre (CNR), 10135 Turin, Italy;
| | - Daan S. Van Es
- Wageningen Food & Biobased Research, 6708 WG Wageningen, The Netherlands;
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| | - Tiziana Musso
- Department of Public Health and Pediatric Sciences, University of Turin, 10100 Turin, Italy; (G.B.); (S.S.); (F.M.); (G.B.); (M.D.A.); (V.D.); (T.M.)
| |
Collapse
|
48
|
Cai FS, Tang B, Zheng J, Yan X, Ding XF, Liao QL, Luo XJ, Ren MZ, Yu YJ, Mai BX. First Insight into Fetal Exposure to Legacy and Emerging Plasticizers Revealed by Infant Hair and Meconium: Occurrence, Biotransformation, and Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5739-5749. [PMID: 38456395 DOI: 10.1021/acs.est.3c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.
Collapse
Affiliation(s)
- Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Xiao-Fan Ding
- Faculty of Health Sciences, University of Macau, Building E12, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Qi-Long Liao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, P. R. China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| |
Collapse
|
49
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
50
|
Shi SC, Lu FI, Wang CY, Chen YT, Tee KW, Lin RC, Tsai HL, Rahmadiawan D. Rice straw-derived chitosan-enhanced plasticizers as biologically and environmentally friendly alternatives for sustainable materials. Int J Biol Macromol 2024; 264:130547. [PMID: 38431012 DOI: 10.1016/j.ijbiomac.2024.130547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Plasticizers like Bis(2-ethylhexyl)phthalate (DEHP) are commonly used to enhance plastic properties but pose environmental and health risks. This study successfully derived plasticizers X and Y from rice straws, demonstrating efficacy in chitosan polymer coatings. Chitosan-based polymers exhibit exceptional hardness, with a value of 300 MPa, due to their enriched structure and robust chitosan bonding. This surpasses the hardness of DEHP. Zebrafish exposure over 5 days revealed that X and Y had no significant behavioral impact, while DEHP caused noticeable toxic effects. Maternal DEHP exposure reduced placental cell growth, unlike X and Y, which had no adverse effects on uterine differentiation or placenta formation, suggesting their safety in human pregnancy. The successful development of X and Y represents a crucial step towards greener plasticizers, addressing environmental concerns and promoting safer alternatives in various industries.
Collapse
Affiliation(s)
- Shih-Chen Shi
- Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan 70101, Taiwan.
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Yan-Ting Chen
- Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan 70101, Taiwan
| | - Kah-Wei Tee
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ruei-Ci Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hui-Ling Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Dieter Rahmadiawan
- Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan 70101, Taiwan; Department of Mechanical Engineering, Universitas Negeri Padang, 25173 Padang, Sumatera Barat, Indonesia
| |
Collapse
|