1
|
Peng SY, Lu N, Tian R. Inhibitory mechanisms of quercetin on myoglobin-mediated lipid oxidation: Multi-spectroscopic and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126096. [PMID: 40147393 DOI: 10.1016/j.saa.2025.126096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Myoglobin (Mb) is an efficient inducer for lipid oxidation in muscle foods and protein-polyphenol binding is a well-known phenomenon. The effects of the interaction between quercetin (one of the most common flavonoids in natural plants and human diet) and Mb on lipid oxidation were scarcely elucidated. In this study, the interactions between quercetin and Mb were systematically investigated by multi-spectroscopic techniques (fluorescence, UV-vis absorption, circular dichroism (CD) spectra) and molecular docking, to demonstrate the structural mechanisms whereby bioactive quercetin influenced Mb redox state and stability. Quercetin bound into Mb central pocket to generate Mb-quercetin complex with one binding site, and binding process was spontaneous where hydrophobic interaction played a major role. Heme stability and free hemin (but not inorganic iron) liberated from Mb was vital to Mb oxidation and Mb-mediated lipid oxidation, and quercetin significantly inhibited Mb-mediated lipid oxidation in liposomes or muscles. The inhibitory mechanisms of quercetin were possibly attributable to that the binding of quercetin promoted the compactness of Mb and narrowed the crevice surrounding heme group, which resulted in the reduction of met-Mb to oxy-Mb state and suppression of free hemin loss. In agreement with its weaker properties to bind Mb and scavenge free radicals, rutin (a natural quercetin derivative) did not affect the redox state and stability of Mb, and then, it lesser attenuated Mb-induced lipid oxidation than quercetin. Collectively, our results about the interaction of quercetin with Mb suggest a new mechanism for the antioxidant capability of natural flavonoids and are beneficial to the nutritional application of quercetin in the freshness and good quality of hemeprotein-containing foods.
Collapse
Affiliation(s)
- Shi-Ya Peng
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, China
| | - Naihao Lu
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, China
| | - Rong Tian
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
2
|
Alsufyani MM, Alqarni WM, Alzahrani Y, Balbed AK, Alkathyri MM, Rahman MA. Spontaneous nanoemulsification for solubility enhancement of BCS class II and IV molecules, quercetin as a model drug. MethodsX 2025; 14:103298. [PMID: 40241705 PMCID: PMC12002819 DOI: 10.1016/j.mex.2025.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Spontaneous emulsification represents a practicable and efficient method for the formulation of nanoemulsion utilized in drug delivery systems. This method provides numerous advantages, such as increased energy efficiency optimization, the possibility of scaling up for industrial use, enhanced drug loading capacity, and safeguarding sensitive compounds designated for encapsulation. Nanoemulsion can be produced simply by combining water, oil, surfactant, and co-surfactant in specific ratios. The sequence in which these components are mixed is generally regarded as non-critical, as nanoemulsions form spontaneously. However, despite the spontaneous nature of nanoemulsification, the forces driving this process are minimal, and the time required for these systems to achieve equilibrium can be considerable. The titration method employed for developing the phase diagram, along with the selection of nanoemulsions from the constructed phase diagram, is crucial for researchers. The objective of this study is to understand the feasibility of this method to prepare nanoemulsion using quercetin as model drug. Overall,•This method resulted in development of efficient screening technique for nanoemulsion.•Validation was achieved by measuring droplet size and drug release confirmed the usefulness of the method.•This approach presents a cost-effective method applicable in drug design to enhance its solubility and thus bioavailability.
Collapse
Affiliation(s)
- Marwan Motuq Alsufyani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Waleed Mohammad Alqarni
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Yousef Alzahrani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Alaa Khalid Balbed
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Musab Musleh Alkathyri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Mohammed Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
3
|
Okselni T, Septama AW, Juliadmi D, Dewi RT, Angelina M, Yuliani T, Saragih GS, Saputri A. Quercetin as a therapeutic agent for skin problems: a systematic review and meta-analysis on antioxidant effects, oxidative stress, inflammation, wound healing, hyperpigmentation, aging, and skin cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5011-5055. [PMID: 39738831 DOI: 10.1007/s00210-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis. The meta-analysis indicated that quercetin had powerful antioxidant properties, protecting against oxidative stress by significantly lowering levels of MDA (Z-score, 2.51), ROS (Z-score, 3.81), and LPO (Z-score, 4.46), and enhancing enzymes of GSH (Z-score, 5.46), CAT (Z-score, 5.20), and SOD (Z-score, 4.37). Quercetin acted as an anti-inflammatory by significantly suppressing protein regulators such as NF-κβ, AP-1, and MAPKs (ERK and JNK), cytokines of TNFα, IL-6, IL-1β, IL-8, and MCP-1, and enzymes of COX-2, iNOS, and MPO, while upregulating the cytokine IL-10. Additionally, quercetin significantly suppressed IL-4 (Z-score, 3.16) and IFNγ (Z-score, 3.76) cytokines involved in chronic inflammation of atopic dermatitis. Quercetin also supported wound healing by significantly decreasing inflammatory cells (Z-score, 5.60) and enhancing fibroblast distribution (Z-score, 5.98), epithelialization (Z-score, 8.57), collagen production (Z-score, 4.20), and angiogenesis factors of MVD (Z-score, 5.66) and VEGF (Z-score, 3.86). Furthermore, quercetin significantly inhibited tyrosinase activity (Z-score, 1.95), resulting in a significantly reduced melanin content (Z-score, 2.56). A significant reduction in DNA damage (Z-score, 3.27), melanoma cell viability (Z-score, 2.97), and tumor formation was also observed to ensure the promising activity of quercetin for skin issues. This review highlights quercetin's potential as a multifaceted agent in skin care and treatment.
Collapse
Affiliation(s)
- Tia Okselni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
- BRIN-Kawasan BJ Habibie, Serpong, Banten, Indonesia.
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Dian Juliadmi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Tri Yuliani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Grace Serepina Saragih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Ariyanti Saputri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
4
|
Elmahy RA, Radwan NA. In vitro Evaluation of the Nematicidal Efficacy of Quercetin on Adult Toxocara canis. Acta Parasitol 2025; 70:96. [PMID: 40268792 PMCID: PMC12018618 DOI: 10.1007/s11686-025-01026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
PURPOSE Toxocara canis is a globally distributed zoonotic parasite found in dogs' intestines, leading to various pathological damages, particularly to the intestinal flora. The larval stage causes human toxocariasis, especially in children, and may result in neurological disorders and blindness. Quercetin is a flavonoid with strong secondary metabolites and possesses medicinal advantages and antiparasitic qualities. METHODS The assay involved four groups, each of 10 young adult T. canis; Group I was incubated in concentrations of an ethanolic extract of quercetin, Group II in albendazole (0.2 mM/ml) (+ve control), Group III in RPMI 1640 medium with ethanol (control), and Group IV in RPMI 1640 medium only (-ve control). The potential action of quercetin against adult T. canis in vitro was detected using scanning electron microscopy, histological investigations, and enzyme analysis. RESULTS SEM declared that exposure to LC90 of quercetin caused body shrinkage, cuticle and caudal papillae swelling, and disfigurement and erosion of cuticular annulations. Compared to albendazole's effect on the treated worm's body wall, results showed that quercetin generates oxidative stress and has an extensive and variable effect on T. canis organs, including the body wall, the gut, and the genitalia. CONCLUSION Quercetin may set the stage for a new class of medications with remarkable potential for treating parasitic nematodes in dogs and could be extended to humans. This is the first time to employ a comprehensive study illuminating the potential action of quercetin against adult Toxocara canis in vitro.
Collapse
Affiliation(s)
- Rasha A Elmahy
- Department of Zoology, Tanta University, Tanta, 31527, Egypt.
| | - Nahla A Radwan
- Department of Zoology, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Ganguly SC, Maity R, Manna P, Sardar A, Mukherjee S, Karati D. Amplifying therapeutic potential through optimization of bioavailability of poorly soluble flavonols via albumin-based nanoparticles. Drug Dev Ind Pharm 2025:1-12. [PMID: 40186858 DOI: 10.1080/03639045.2025.2490281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE Flavonols have different pharmacological actions that render them highly promising therapeutic targets. However, their water solubility and bioavailability are low, which restricts their therapeutic potential. ABNPs, albumin-based nanoparticles, are potential nanocarriers that enhance flavonol solubility, stability, and targeted delivery. By utilizing ABNPs, in this work we provide a detailed overview of strategies employed to attain maximum bioavailability of poorly water-soluble flavonols. The review critically evaluates ABNP-mediated delivery's pharmacokinetic advantage, physicochemical properties, and formulation principles. We also highlight existing gaps in research, such as the need for stringent in vivo validity tests, standardized formulation procedures, and in-depth mechanistic understanding of flavonol-albumin interactions. SIGNIFICANCE Despite having potential therapeutic activities, the utilization of flavonoids in the form of medication is limited. Some recent studies have shown that flavonoids exhibit low solubility, low permeability and chemical instability, thereby limiting their bioavailability and therapeutic responses. METHODS To overcome these drawbacks, multiple novel drug delivery approaches have emerged in the pharmaceutical research. RESULTS These novel approaches seem to offer a viable foundation for improving the bioavailability of the flavonoids and positioning them as viable therapeutic options. Out of all the polymers implemented in enhancing the solubility and bioavailability of the flavonoids, albumin-based nanomaterials have been the most efficacious one. CONCLUSION Compared to all other polymeric nano-carriers, albumin nano-carriers offer a greater scale of drug entrapment and drug loading because of their capacity for surface modification, crosslinking, conjugation, coupling, and characteristics including biodegradability and biocompatibility.
Collapse
Affiliation(s)
| | - Ritam Maity
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Priya Manna
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Avisek Sardar
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Swarupananda Mukherjee
- NSHM College of Pharmacy and Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, West Bengal, Kolkata, India
| |
Collapse
|
6
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Ortuño-Hernández G, Silva M, Toledo R, Ramos H, Reis-Mendes A, Ruiz D, Martínez-Gómez P, Ferreira IMPLVO, Salazar JA. Nutraceutical Profile Characterization in Apricot ( Prunus armeniaca L.) Fruits. PLANTS (BASEL, SWITZERLAND) 2025; 14:1000. [PMID: 40219068 PMCID: PMC11990447 DOI: 10.3390/plants14071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
This study characterizes the metabolomic profiles of three reference apricot cultivars ('Bergeron', 'Currot', and 'Goldrich') using 1H NMR spectroscopy and untargeted UPLC-QToF MS/MS to support plant breeding by correlating metabolomic data with fruit phenotyping. The primary objective was to identify and quantify the key metabolites influencing fruit quality from a nutraceutical perspective. The analysis revealed significant differences in primary and secondary metabolites among the cultivars. 'Bergeron' and 'Goldrich' exhibited higher concentrations of organic acids (109 mg/g malate in 'Bergeron' and 202 mg/g citrate in 'Goldrich'), flavonoids such as epicatechin (0.44 mg/g and 0.79 mg/g, respectively), and sucrose (464 mg/g and 546 mg/g), contributing to their acidity-to-sugar balance. Conversely, 'Currot' showed higher levels of amino acids (24.44 mg/g asparagine) and sugars, particularly fructose and glucose (79 mg/g and 180 mg/g), enhancing its characteristic sweetness. These findings suggest that metabolomic profiling can provide valuable insights into the biochemical pathways underlying apricot quality traits, aiding in the selection of cultivars with desirable characteristics. The integration of phenotyping data with 1H NMR and UPLC-QToF MS/MS offers a comprehensive approach to understanding apricot metabolomic diversity, crucial for breeding high-quality, nutritionally enriched fruits that meet market demands.
Collapse
Affiliation(s)
- Germán Ortuño-Hernández
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (D.R.); (P.M.-G.)
| | - Marta Silva
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n°. 228, 4050-313 Porto, Portugal; (M.S.); (H.R.); (A.R.-M.); (I.M.P.L.V.O.F.)
| | - Rosa Toledo
- Metabolomics Platform of CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain;
| | - Helena Ramos
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n°. 228, 4050-313 Porto, Portugal; (M.S.); (H.R.); (A.R.-M.); (I.M.P.L.V.O.F.)
| | - Ana Reis-Mendes
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n°. 228, 4050-313 Porto, Portugal; (M.S.); (H.R.); (A.R.-M.); (I.M.P.L.V.O.F.)
| | - David Ruiz
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (D.R.); (P.M.-G.)
| | - Pedro Martínez-Gómez
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (D.R.); (P.M.-G.)
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n°. 228, 4050-313 Porto, Portugal; (M.S.); (H.R.); (A.R.-M.); (I.M.P.L.V.O.F.)
| | - Juan Alfonso Salazar
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (D.R.); (P.M.-G.)
| |
Collapse
|
8
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
9
|
Sharma S, Thukral R, Singla LD, Singla N, Choudhury D. Quercetin-loaded solid lipid nanoparticles for enhanced anti-helminthic activity. Int J Pharm 2025; 672:125308. [PMID: 39894091 DOI: 10.1016/j.ijpharm.2025.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Quercetin, a naturally occurring flavonoid, exhibits various anti-carcinogenic, anti-viral, anti-inflammatory properties, and anti-helminthic properties. Still, a major portion of orally administered quercetin is metabolized in the intestine and only little amount get absorbed in the portal veins, attributing to its poor bioavailability. The lipid content of food increases the solubility, which inspired us to fabricate lipid-based nanoparticles that will be biocompatible, orally administrable, and enhance the effectiveness of quercetin in hosts. Quercetin-loaded solid lipid nanoparticles (SLN-Qt) are spherical-shaped, water-soluble in nature, and nanocarriers having a hydrodynamic size of 130.7 ± 42.0 nm showing a drug entrapment efficiency of 79.75 % with sustained drug release of 37.5 ± 1.5 % within the first 24 h at pH 6.4. The drug release was observed till 6 days with 93.7 ± 3.0 % of drug release at pH 7.4. These results suggest improved drug entrapment, high saturation solubility, and better drug distribution. The in-vivo analysis was performed in house rats (Rattus rattus), which were found infected with Syphacia muris, Aspicularis tetraptera, Hymenolepis diminuta, Hymenolepis nana, Cysticercus fasciolaris, Calodium hepaticum, and/ or Trichuris muris. SLN-Qt (200 mg/Kg) treatment showed a significant reduction of parasite egg counts (85.09 ± 15.00 %) of gastrointestinal helminths after 3-dose weekly treatment. Liver histology and biochemical analysis of blood plasma and liver homogenate showed no toxic effects of quercetin and SLN-Qt. Therefore, SLN-Qt presents a promising strategy for delivering poorly soluble drugs and could be a valuable tool in controlling parasitic infections and diseases.
Collapse
Affiliation(s)
- Sunidhi Sharma
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Ruchika Thukral
- Department of Zoology, Punjab Agricultural University (PAU), Ludhiana 141001, Punjab, India
| | - Lachhman Das Singla
- Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana 141001, Punjab, India
| | - Neena Singla
- Department of Zoology, Punjab Agricultural University (PAU), Ludhiana 141001, Punjab, India.
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
10
|
Nunes KC, Lazarin-Bidoia D, Ueda-Nakamura T, de Oliveira Silva Lautenschlager S, Michel R, Auzély-Velty R, Nakamura CV. Syringic acid protective role: Combatting oxidative stress induced by UVB radiation in L-929 fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113104. [PMID: 39884103 DOI: 10.1016/j.jphotobiol.2025.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Neglecting proper skin care and repeated exposure to ultraviolet (UV) radiation can have serious consequences, including skin burns, photoaging and even the development of skin cancer. UV radiation-induced damage is mediated by highly unstable and reactive molecules, named reactive oxygen species (ROS). To counteract ROS, the skin has an endogenous antioxidant system. Considering that, many sunscreens incorporate antioxidant substances to ensure additional photochemioprotective action in the formulation. Syringic acid (SA) is classified as a phenolic acid derived from hydroxybenzoic acid. It has antioxidant properties, which can reduce oxidative stress, and has shown potential to prevent skin cancer. The aim of this study was to assess the ability of SA to protect L-929 fibroblasts from UVB radiation by evaluating oxidative stress biomarkers. As a result, we demonstrated the antioxidant activity of SA through four methodologies, and confirmed the photochemioprotective activity of SA by attenuating the cytotoxicity of UVB radiation in L-929 fibroblasts. The mechanisms involved in the photoprotection of SA include a significant reduction in total ROS, maintenance of mitochondrial membrane potential, decrease in lipid peroxidation, preservation of endogenous antioxidant system enzymes and reduced glutathione (GSH) levels, thereby mitigating the ultrastructural damage caused by UVB. Additionally, SA showed promising results in wound healing. Considering such properties, SA emerges as a strong candidate for incorporation into photoprotective and multifunctional formulations.
Collapse
Affiliation(s)
- Karine Campos Nunes
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidoia
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Raphaël Michel
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | | | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
11
|
Verma A, Anwer T, Iqbal M, Gahlot V, Khan R, Sharma M, Akhtar MS. Investigating the cardioprotective potential of quercetin against tacrolimus-induced cardiotoxicity in Wistar rats: A mechanistic insights. Open Med (Wars) 2025; 20:20241130. [PMID: 40028266 PMCID: PMC11868710 DOI: 10.1515/med-2024-1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 03/05/2025] Open
Abstract
Purpose The aim of this research study is to assess the ability of quercetin to protect the heart from the negative consequences of tacrolimus-induced cardiotoxicity. Methods A total of 30 rats were divided into 5 groups. Tacrolimus was used to induce cardiotoxicity, whereas quercetin was employed as a protective agent. Results Tacrolimus administration significantly raised the levels of serum cardiac biomarkers (Lactate dehydrogenase, creatine kinase-myocardial band, and troponin-I) as well as inflammatory biomarkers (tumor necrosis alpha and interleukin 6). The administration of quercetin reduced raised levels of cardiac and inflammatory biomarkers significantly. In addition, treatment with tacrolimus resulted in higher malondialdehyde (MDA) (lipid peroxidation marker) levels and falling in the levels of reduced glutathione (GSH) as well as antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT). Quercetin treatment significantly reduced MDA levels and increased GSH and antioxidant enzyme (SOD, GR, and CAT) levels. Moreover, the tacrolimus-administered group exhibited histological changes in cardiac tissue cited as vacuole formation, large and uncondensed nucleus, and cardiomyocyte hypertrophy. The quercetin treatment reduced the inflammatory cell infiltration in cardiac tissue and thus reduced vacuole formation and hypertrophy. Conclusions The outcome showed quercetin's cardioprotective potential against tacrolimus-administered cardiotoxicity. Consequently, it is concluded that quercetin may be used as add-on therapy with tacrolimus to reduce cardiac adverse effects.
Collapse
Affiliation(s)
- Ankit Verma
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Tarique Anwer
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vinod Gahlot
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Roshi Khan
- HIMT College of Pharmacy, Dr. A.P.J Abdul Kalam Technical University (AKTU), Knowledge Park 1, Greater Noida, Gautam Budh Nagar, 201310, U.P, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | | |
Collapse
|
12
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Promising Natural Remedies for Alzheimer's Disease Therapy. Molecules 2025; 30:922. [PMID: 40005231 PMCID: PMC11858286 DOI: 10.3390/molecules30040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the intricacies of Alzheimer's disease (AD), its origins, and the potential advantages of various herbal extracts and natural compounds for enhancing memory and cognitive performance. Future studies into AD treatments are encouraged by the review's demonstration of the effectiveness of phytoconstituents that were extracted from a number of plants. In addition to having many beneficial effects, such as improved cholinergic and cognitive function, herbal medicines are also much less harmful, more readily available, and easier to use than other treatments. They also pass without difficulty through the blood-brain barrier (BBB). This study focused on natural substances and their effects on AD by using academic databases to identify peer-reviewed studies published between 2015 and 2024. According to the literature review, 66 phytoconstituents that were isolated from 21 distinct plants have shown efficacy, which could be encouraging for future research on AD therapies. Since most clinical trials produce contradictory results, the study suggests that larger-scale studies with longer treatment durations are necessary to validate or refute the therapeutic efficacy of herbal AD treatments.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, West Bank, Ramallah 00972, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
13
|
Di Pierro F, Rabbani F, Tareen M, Nigar R, Khan A, Zerbinati N, Tanda ML, Cazzaniga M, Bertuccioli A, Falasca P, Damiani G, Villanova N. Potential pharmacological effect of Quercetin Phytosome™ in the management of hyperuricemia: results from real-life clinical studies. Front Nutr 2025; 12:1519459. [PMID: 39990611 PMCID: PMC11844220 DOI: 10.3389/fnut.2025.1519459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Background Hyperuricemia is associated with several metabolic and cardiovascular disorders, and traditional treatments, such as xanthine oxidase (XO) inhibitors, often have limitations, such as severe hypersensitivity reactions or ineffectiveness in achieving target serum urate levels in some patients. Quercetin, a naturally occurring flavonoid, has shown potential as a hypouricemic agent through XO inhibition. Objective This study aims to evaluate the potential hypouricemic effect of Quercetin Phytosome™ (QP) supplementation across three cohort studies involving healthy adults with various metabolic health profiles, exploring its potential as a safe, effective intervention for hyperuricemia. Methods Clinical data collected in various clinics in Italy between September 2021 and April 2024 under real-life clinical settings from three distinct cohort studies, were analyzed. Cohort 1 consisted of 164 healthy participants (87 QP-treated, 77 probiotic Streptococcus salivarius (S. salivarius) K12-treated) who were monitored for 90 days. Cohort 2 included 22 mildly hyperuricemic adults with metabolic disorders receiving QP, while Cohort 3 comprised 64 obese adults with hypercholesterolemia, further divided into moderately hyperuricemic QP-treated group (n = 20), a moderately hyperuricemic Berberine Phytosome™ and monacolins (BM)-treated group (n = 22), and a normouricemic BM-treated group (n = 22). QP was administered at 400 mg of quercetin daily in all cohorts. Primary endpoints were reductions in serum uric acid levels, while secondary outcomes included effects on lipid profile, glycemia, liver enzymes, and treatment tolerability. Results In Cohort 1, QP significantly reduced uric acid levels by 15.2% in males and 13.8% in females, with no significant changes observed in the probiotic group. Cohort 2 showed a significant 13.1% reduction in uric acid (p < 0.01) and a concurrent 10.2% reduction in triglycerides (p < 0.05). In Cohort 3, QP led to a 13.7% decrease in uric acid and a 20.8% reduction in triglycerides (p < 0.01), with no significant uric acid changes in the BM-treated group. QP was well tolerated across all cohorts, with minimal, transient side effects. Conclusion QP supplementation demonstrates a significant hypouricemic effect. Additionally, triglyceride-lowering benefits were evident, particularly in metabolically compromised individuals (Cohorts 2 and 3), where these effects were statistically significant. With high tolerability, these findings highlight Quercetin Phytosome™'s potential as a safe adjunctive therapy for hyperuricemia management, meriting further investigation in larger, randomized trials to confirm its efficacy and safety. Clinical Trial Registration clinicaltrials.gov, identifier NCT06652035.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Microbiota International Clinical Society, Torino, Italy
- Department of Scientific and Research, Velleja Research, Milano, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Fazle Rabbani
- Department of Psychiatry, Lady Reading Hospital, Peshawar, Pakistan
| | - Meherullah Tareen
- Department of Oncology, Bolan Medical College Hospital, Quetta, Pakistan
| | - Roohi Nigar
- Department of Obstetrics and Gynecology, Bilawal Medical College, Jamshoro, Pakistan
| | - Amjad Khan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola Zerbinati
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Maria L. Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Alexander Bertuccioli
- Microbiota International Clinical Society, Torino, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Gabriele Damiani
- Department of Scientific and Research, Velleja Research, Milano, Italy
| | - Nicola Villanova
- IRCCS-Azienda Ospedaliera di Bologna Sant' Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
14
|
Tanikawa M, Ishida T, Nakamura Y, Makino K, Shimada N. Unified Strategy for the Concise Total Syntheses of All Six 3″- O-Acyl Quercitrins Based on Regioselective Acylation Catalyzed by Boronic Acid. J Org Chem 2025. [PMID: 39898530 DOI: 10.1021/acs.joc.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The naturally occurring 3″-O-acylquercitrin family exhibits a range of biological activities with significant potential health and medical benefits. Herein, we present a unified strategy for concise total syntheses of all six known 3″-O-acylquercitrin natural products─namely, 3″-O-galloylquercitrin, 3″-O-(E)-cinnamoylquercitrin, 3″-O-(E)-coumaroylquercitrin, 3″-O-(E)-feruloylquercitrin, 3″-O-acetylquercitrin, and 3″-O-tigloylquercitrin─based on regioselective acylation of carbohydrates catalyzed by N-methylimidazole-containing boronic acid. The core advancement in this approach is a late-stage catalytic regioselective functionalization of a common synthetic intermediate, enabling efficient access to the natural products.
Collapse
Affiliation(s)
- Mari Tanikawa
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Toshihiro Ishida
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| |
Collapse
|
15
|
Kršková K, Dobrócsyová V, Ferenczyová K, Hricovíniová J, Kaločayová B, Duľová U, Bozorgnia M, Barteková M, Zorad Š. Modification of adipogenesis and oxidative stress by quercetin: positive or negative impact on adipose tissue metabolism of obese diabetic Zucker rats? J Physiol Biochem 2025; 81:137-156. [PMID: 39576482 PMCID: PMC11958396 DOI: 10.1007/s13105-024-01060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/06/2024] [Indexed: 04/02/2025]
Abstract
Reactive oxygen species (ROS) play a key role in the regulation of adipogenesis. The aim of our study was to investigate the effect of quercetin (QCT) supplement on obese adipose tissue metabolism of 30-week-old diabetic Zucker rats (ZDF), not well examined yet. QCT was administered orally at dose of 20 mg/kg body weight/day for 6 weeks. Adipocytes from subcutaneous adipose tissue (ScWAT) were isolated and their size was evaluated by light microscopy. Gene expression of adipogenic markers in subcutaneous and visceral adipose tissue was determined by real-time PCR and expression of proteins involved in lipid and glucose metabolism was determined in ScWAT by immunoblotting. Obese ZDF rats suffered from diabetes, hyperinsulinemia and had higher index HOMA-IR (Homeostatic Model Assessment for Insulin Resistance). Treatment with QCT had no significant impact on these metabolic disorders in genetic model of obesity and type 2 diabetes used in our study. Nevertheless, QCT reduced expression of inflammatory cytokine tumour necrosis factor alpha in ScWAT and also visceral adipose tissue and up-regulated expression of anti-inflammatory adiponectin in ScWAT. A shift in redox equilibrium was detected via inhibition of pro-oxidant genes by QCT. Furthermore, QCT reduced adipocyte size in ScWAT, down-regulated expression of fatty acid synthase and adipogenic markers, and moreover stimulated expression of proteolytic enzymes. These changes likely resulted in reduced fat deposition in ScWAT, which was reflected in the elevated circulated levels of free fatty acids in QCT-treated obese ZDF rats compared with obese untreated controls. This increase could, at least in part, explain why we did not observe an improvement in systemic metabolic health by QCT in our model. In conclusion, our study suggests that preventive treatment with QCT might be more effective than its administration in the stage of fully developed diabetes, and further research in this area is needed.
Collapse
Affiliation(s)
- Katarína Kršková
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 4, 84505, Slovakia.
| | - Viktória Dobrócsyová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 4, 84505, Slovakia
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84104, Slovakia
| | - Jana Hricovíniová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, Bratislava, 83232, Slovakia
| | - Barbora Kaločayová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84104, Slovakia
| | - Ulrika Duľová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84104, Slovakia
| | - Mahdi Bozorgnia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 4, 84505, Slovakia
| | - Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84104, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 81372, Slovakia
| | - Štefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 4, 84505, Slovakia
| |
Collapse
|
16
|
Carra JB, Darido MLG, Vecchi CF, de Oliveira MC, de Matos RLN, Pattini PMT, Masquetti BL, da Silva Tavares B, Bruschi ML, Bracarense APFRL, do Couto RO, Casagrande R, Georgetti SR, Verri WA, Faccin-Galhardi LCF, Baracat MM. Patches containing quercetin microcapsules to ameliorate dermal herpes simplex virus injuries in mice. Eur J Pharm Biopharm 2025; 207:114631. [PMID: 39809416 DOI: 10.1016/j.ejpb.2025.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
This study aimed to develop patches containing quercetin-loaded microcapsules and to evaluate their in vitro and in vivo safety and efficacy in preclinical surveys. A set of in vitro experiments evidenced the virucidal activity of quercetin against the HSV-1-KOS (sensitive to acyclovir) and HSV-1-AR (resistant to acyclovir) strains, with improved outcomes upon the first. The patches presented a homogeneous aspect, were easily handled, had a suitable bioadhesion, and possessed mechanical properties of soft and weak material, besides a pH compatible with human skin. The in vitro release profile of quercetin showed an initial burst release, followed by a controlled release rate, which was best described by Gompertz kinetics (R2 of 0.93). Using quercetin-loaded patches for treating HSV-1-KOS-induced injuries was feasible since they were well tolerated in the in vivo skin irritation test and significantly decreased the injury scores until the fourth out of eight days of treatment in mice compared to acyclovir cream (50 mg/g). Altogether, the in vitro and in vivo antiviral assays indicate that this flavonol acts in the earlier stage of the infection, likely impairing the HSV-1 adsorption to the cell. The anti-inflammatory capacity of the quercetin-loaded patches was noteworthy as evidenced by histological analysis. These findings bring prospects for safer and more effective management of mucocutaneous HSV-1 injuries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Renê Oliveira do Couto
- Federal University of São João Del-Rei, Centro-Oeste Campus (Dona Lindu), Divinópolis, MG, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Waldiceu A Verri
- Department of Immunology, Parasitology and General Pathology, State University of Londrina, Londrina, PR, Brazil
| | | | - Marcela Maria Baracat
- Department of Chemistry, State University of Londrina, Londrina, PR, Brazil; Department of Pharmaceutical Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
17
|
Innuan P, Kongkarnka S, Thongtharb A, Kantapan J, Dechsupa N. Iron(III)-Quercetin Complex: In Vivo Acute Toxicity and Biodistribution of Novel MRI Agent. Int J Nanomedicine 2025; 20:1303-1320. [PMID: 39906526 PMCID: PMC11792624 DOI: 10.2147/ijn.s496015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Background The iron(III)-quercetin complex, known as "IronQ", is an innovative MRI contrast agent composed of one Fe(III) ion and two quercetin molecules. IronQ is efficiently internalized by cells, enabling T1-weighted MRI tracking. It has demonstrated therapeutic benefits in reducing inflammation in an intracerebral hemorrhage (ICH) mouse model and offers a safer alternative to gadolinium-based agents by avoiding cytotoxicity and genotoxicity. These properties make IronQ a promising candidate for safe and effective MRI contrast enhancement. Purpose This study aims to further the development of IronQ as an MRI contrast agent by investigating its biodistribution, pharmacokinetics, and acute toxicity in a preclinical animal model. Methods The relaxivity of IronQ was measured in water and whole blood phantoms. Acute toxicity was evaluated in Sprague Dawley rats administered single intraperitoneal doses of IronQ (75, 150, and 225 µmol Fe/kg BW) over a 14-day period. Pharmacokinetic studies were performed at a dose of 150 µmol Fe/kg BW, with blood iron content analyzed using ICP-OES. For in vivo biodistribution, SD rats were administered an intravenous dose of IronQ (225 µmol Fe/kg BW), followed by MR imaging using a 1.5 T scanner and subsequent tissue-ICP analysis. Results The longitudinal relaxivity (r1) of IronQ was measured to be 2.17 mm⁻¹s⁻¹ in ultrapure water and 3.56 mm⁻¹s⁻¹ in whole blood. Acute toxicity studies showed no mortality, morbidity, or significant biochemical changes, with histopathology confirming no irreversible organ damage. Pharmacokinetics revealed peak blood iron content at 1.1 hours post-administration and clearance within 24 hours. MRI demonstrated enhanced T1 signal intensity, particularly in the liver and kidney. Conclusion These findings provide valuable insights into the safety, pharmacokinetics, and imaging efficacy of IronQ, highlighting its potential as a robust and biocompatible MRI contrast agent.
Collapse
Affiliation(s)
- Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Atigan Thongtharb
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
18
|
Nalkiran I, Sevim Nalkiran H. Phytochemical Profile and Anticancer Potential of Helichrysum arenarium Extracts on Glioblastoma, Bladder Cancer, and Breast Cancer Cells. Pharmaceuticals (Basel) 2025; 18:144. [PMID: 40005959 PMCID: PMC11859872 DOI: 10.3390/ph18020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cancer is the second leading cause of death globally. Medicinal plants have emerged as fundamental sources of bioactive compounds with anticancer potential, largely attributed to their diverse secondary metabolites. This study aimed to investigate the cytotoxic effects of Helichrysum arenarium extracts from two distinct regions of Turkiye, Mersin, and Artvin, on cancerous (MDA-MB-231, RT4, T98G) and non-cancerous (ARPE-19, hGF) cell lines and to identify bioactive compounds responsible for these effects. METHODS H. arenarium plant extracts were prepared using ethanol and methanol as solvents, followed by lyophilization and dissolution in DMSO. The cytotoxic effects of the extracts were evaluated using Hoechst staining and MTS assays to assess cell viability. IC50 values and selectivity indices were calculated. Phytochemical composition was analyzed using Quadrupole Time-of-Flight mass spectrometry. RESULTS The ethanol extract from Mersin (HAE-M) demonstrated superior cytotoxicity, particularly against breast and bladder cancer cells, while showing minimal impact on non-cancerous cells. HAM-M, HAE-A, and HAM-A exhibited comparatively less potent effects. Phytochemical analysis of HAE-M identified 16 bioactive compounds, including Naringenin, Luteolin, and Quercitrin, known for their antioxidant and anticancer properties. CONCLUSIONS These findings highlight the potential of H. arenarium extracts, particularly HAE-M, as a source of potent anticancer agents. This study is novel in its comprehensive analysis of different extraction methods and regional plant sources, combined with phytochemical profiling, to identify selective anticancer effects. Further investigations into the mechanisms of action of these extracts could contribute to the development of plant-derived anticancer therapies.
Collapse
Affiliation(s)
| | - Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53020, Türkiye;
| |
Collapse
|
19
|
Mongalo NI, Raletsena MV. Bioactive Molecules, Ethnomedicinal Uses, Toxicology, and Pharmacology of Peltophorum africanum Sond (Fabaceae): Systematic Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:239. [PMID: 39861592 PMCID: PMC11768249 DOI: 10.3390/plants14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Plants have long been used to treat serious illnesses in both humans and animals. A significant underappreciated medicinal tree, Peltophorum africanum Sond is utilized by many different ethnic groups to cure a wide range of illnesses. A variety of electronic databases, including ScienceDirect, Scopus, Scielo, Scifinder, PubMed, Web of Science, Medline, and Google Scholar, were used to search the literature on P. africanum, using key words such as uses, survey, pharmacology, antigonococcal, toxicity, phytochemistry and others. Further data was obtained from several scholarly theses, dissertations, and books on general plant sciences, ethnomedicine, and other pertinent ethnobotanical topics. The plant species possess very important pharmacological activities in vitro, which includes antimicrobial, anti-HIV, antioxidant, anticancer, antidiabetic, and other activities. Phytochemically, the plant possesses various classes of compounds, dominated by flavonols, which may well explain its wider range of pharmacological activities. Although the plant is promising anti-HIV activity, the mode of action and safety profiles of the plant also need to be explored as its extracts exerted some degree of mutagenicity. It is also important to further explore its ethnoveterinary use against a plethora of nematodes that infects both wild and domestic animals. Given its potent pharmacological activity, the further in vivo studies need to be explored to ascertain the comprehensive toxicology of the plant species, thereby developing possible medications. The plant species may further be elevated to a potent pharmaceutical product against plethora of infections.
Collapse
Affiliation(s)
- Nkoana I. Mongalo
- College of Agriculture and Environmental Science (CAES), University of South Africa, Priva Bag X06, Florida 0710, South Africa;
| | | |
Collapse
|
20
|
Azam MNK, Biswas P, Khandker A, Tareq MMI, Tauhida SJ, Shishir TA, Bibi S, Alam MA, Zilani MNH, Albekairi NA, Alshammari A, Rahman MS, Hasan MN. Profiling of antioxidant properties and identification of potential analgesic inhibitory activities of Allophylus villosus and Mycetia sinensis employing in vivo, in vitro, and computational techniques. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118695. [PMID: 39142619 DOI: 10.1016/j.jep.2024.118695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional use of plants for medicinal purposes, called phytomedicine, has been known to provide relief from pain. In Bangladesh, the Chakma indigenous community has been using Allophylus villosus and Mycetia sinensis to treat various types of pain and inflammation. AIM OF THE STUDY The object of this research is to evaluate the effectiveness of these plants in relieving pain and their antioxidant properties using various approaches such as in vitro, in vivo, and computational techniques. Additionally, the investigation will also analyse the phytochemicals present in these plants. MATERIALS AND METHODS We conducted in vivo analgesic experiment on Swiss albino mice and in-silico inhibitory activities on COX-2 & 15-LOX-2 enzymes. Assessment of DPPH, Anti Radical Activities (ARA), FRAP, H2O2 Free Radical Scavenging, Reducing the power of both plants performed significant % inhibition with tolerable IC50. Qualitative screening of functional groups of phytochemicals was précised by FTIR and GC-MS analysis demonstrated phytochemical investigations. RESULTS The ethyl acetate (EtOAc) fractioned Mycetia sinensis extract as well as the ethanoic extract and all fractioned extracts of Allophylus villosus have reported a significant percentage (%) of writhing inhibition (p < 0.05) with the concentrated doses 250 mg as well as 500 mg among the Swiss albino mice for writhing observation of analgesic effect. In the silico observation, a molecular-docking investigation has performed according to GC-MS generated 43 phyto-compounds of both plants to screen their binding affinity by targeting COX-2 and 15-LOX-2 enzymes. Consequently, in order to assess and ascertain the effectiveness of the sorted phytocompounds, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) investigation, DFT (Density-functional theory) by QM (Quantum mechanics), and MDS (Molecular dynamics simulation) were carried out. As the outcome, compounds like 5-(2,4-ditert-butylphenoxy)-5-oxopentanoic acid; 2,4-ditert-butylphenyl 5-hydroxypentanoate; 3,3-diphenyl-5-methyl-3H-pyrazole; 2-O-(6-methylheptan-2-yl) 1-O-octyl benzene-1,2-dicarboxylate and dioctan-3-yl benzene-1,2-dicarboxylate derived from the ethnic plant A. villosus and another ethnic plant M. sinensis extracts enchants magnificent analgesic inhibitions and performed more significant drug like activities with the targeted enzymes. CONCLUSIONS Phytocompounds from A. villosus & M. sinensis exhibited potential antagonist activity against human 15-lipoxygenase-2 and cyclooxygenase-2 proteins. The effective ester compounds from these plants performed more potential anti-nociceptive activity which could be used as a drug in future.
Collapse
Affiliation(s)
- Md Nur Kabidul Azam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Amia Khandker
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhanmondi, Dhaka, 1209, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, 41000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Shahedur Rahman
- Bioresources Technology & Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
21
|
Kurtz JA, Feresin RG, Grazer J, Otis J, Wilson KE, Doyle JA, Zwetsloot KA. Effects of Quercetin and Citrulline on Nitric Oxide Metabolites and Antioxidant Biomarkers in Trained Cyclists. Nutrients 2025; 17:224. [PMID: 39861353 PMCID: PMC11767657 DOI: 10.3390/nu17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT). METHODS In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups. Supplements were consumed twice daily for 28 days. Biochemical assessments included NO metabolites (nitrate/nitrite), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD) activity, and antioxidant capacity, measured pre- and post-TT. RESULTS NO metabolites were significantly elevated post-supplementation (p = 0.03); however, no significant interaction effects were observed for NO metabolites, FRAP, SOD, or antioxidant capacity across the groups (p > 0.05). Post-hoc analyses revealed that QCT significantly reduced FRAP concentrations compared to PL (p = 0.01), while no significant changes in SOD or antioxidant capacity were found across any groups. CONCLUSIONS These findings suggest that combined and independent QCT and CIT supplementation did not significantly improve these biomarkers, suggesting that baseline training adaptations, supplementation timing, and individual variability may influence the efficacy of these compounds in enhancing exercise performance and oxidative stress markers. The ergogenic efficacy of QCT + CIT on antioxidant-related markers remains inconclusive.
Collapse
Affiliation(s)
- Jennifer A. Kurtz
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30203, USA;
| | - Jacob Grazer
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jeff Otis
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kathryn E. Wilson
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - J. Andrew Doyle
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kevin A. Zwetsloot
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
- Department of Biology, Appalachian State University, Boone, NC 28607, USA
| |
Collapse
|
22
|
Pandey P, Lakhanpal S, Mahmood D, Kang HN, Kim B, Kang S, Choi J, Choi M, Pandey S, Bhat M, Sharma S, Khan F, Park MN, Kim B. An updated review summarizing the anticancer potential of flavonoids via targeting NF-kB pathway. Front Pharmacol 2025; 15:1513422. [PMID: 39834817 PMCID: PMC11743680 DOI: 10.3389/fphar.2024.1513422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Nuclear factor-κB (NF-κB) cell signaling pathway is essential for the progression and development of numerous human disorders, including cancer. NF-κB signaling pathway regulates a wide range of physiological processes, such as cell survival, growth, and migration. Deregulated NF-kB signaling resulted in unregulated cell proliferation, viability, movement, and invasion, thus promoting tumor development. Recent findings have increasingly shown that plant derived phytochemicals that inhibit NF-κB signaling have the potential to be employed in cancer therapeutics. Flavonoids are a group of polyphenolic natural compounds present in various plants and their fruits, vegetables, and leaves. These compounds have numerous medicinal properties owing to their antioxidant, anti-inflammatory, antiviral, and antitumor characteristics. The main mechanism by which these flavonoids exhibit their anticancer potential is via potent antioxidative and immunomodulatory actions. Current research reports have demonstrated that these flavonoids exhibited their anticancer effects via suppressing the NF-κB signaling. Based on these facts, we have comprehensively outlined the cancer promoting role of NF-κB pathway in various processes including tumor progression, drug resistance, angiogenesis and metastasis. In addition to these, we also summarize the anticancer potential of flavonoids by specifically targeting the NF-κB pathway in various types of cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Byunggyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
24
|
Kumar A V H, Kantlam C. Intensification of quercetin nanobubble formulation and performance by multi-factor optimization and interaction analysis. Pharm Dev Technol 2025; 30:10-24. [PMID: 39718513 DOI: 10.1080/10837450.2024.2441182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles. An optimized formulation consisted of 50 mg QT, 250 mg PLGA, and 1.89% w/v PVA. The nanobubbles displayed a particle size of 139.5 ± 6.24 nm, polydispersity index of 0.296 ± 0.19, and zeta potential of -23.0 ± 3.44 mV, with an entrapment efficiency of 59.24 ± 3.08%. Analysis through Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction confirmed no drug-polymer interaction, while scanning electron microscopy revealed a uniform spherical nanoparticle. In vitro studies exhibited an excellent drug release, and stability studies showed no significant changes after one month. In vivo studies in rats demonstrated increased Cmax (3.03) and AUC0-t (5.84), indicating an improved sustained release and absorption. These findings underscored a potential of QT-loaded PLGA nanobubbles to enhance the drug kinetics and bioavailability, offering possibilities for targeted drug delivery and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Hema Kumar A V
- Bharatiya Engineering Science and Technology Innovation University (BESTIU), Anantapur, Andhra Pradesh, India
| | - Chamakuri Kantlam
- Brilliant Grammar School Educational Society's Group of Institutions - Integrated Campus (Faculty of Engineering and Faculty of Pharmacy), Hyderabad, Telangana, India
| |
Collapse
|
25
|
da Silva RR, Leal GF, da Costa Gomes C, de Oliveira JEB, da Silva Soares CM, Morais RA, de Souza Martins GA. Chemical Characterization, Antioxidant Potential and Phenolic Profile of the Pulp and By-Products of Black puçá (Mouriri pusa), a Fruit from the Brazilian Cerrado region. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:16. [PMID: 39704851 DOI: 10.1007/s11130-024-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 12/21/2024]
Abstract
The black puçá (Mouriri pusa) is an unconventional fruit from the Cerrado region of Brazil, commonly known as the jabuticaba of the forest. However, data on its nutritional and phytochemical composition are limited. This study investigated the nutritional composition, physicochemical characteristics, profile of carbohydrates and organic acids, phenolics and flavonoids individual, amino acids composition, bioactive substances, and antioxidant potential in the pulp, peel, and seed fractions of puçá-preto. The results confirm that puçá-preto is an important nutritional source. The main organic acids were malic acid (187.54 - 290.50 mg g-1) followed by tartaric acid (57.89 - 134.79 mg g-1). In the black puçá, 8 of the 9 essential amino acids were determined, with arginine presenting the highest results (0.24 - 2.03 g 100 g-1), followed by glutamic acid (0.34 - 1.87 g 100 g-1). It presented satisfactory results for vitamin C, carotenoids, and anthocyanins, demonstrating potential for pigment extraction. The pulp and peel showed good antioxidant activity in capturing free radicals by the DPPH method and reducing ferric ions in the pulp. Regarding individual phenolic compounds, quercetin was the major compound in the pulp fraction (4.69 µg mL-1); on the other hand, kaempferol had greater expression in the peels (20.78 µg mL-1), while myricetin was quantified only in the seeds (10.67 µg mL-1). The results showed that black puçá is rich in nutrients and bioactive products and can be fully utilized. The products from black puçá processing can be applied in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Romilda Ramos da Silva
- Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil
- Kinetics and Process Modeling Laboratory, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil
| | - Gabriela Fonseca Leal
- Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil
- Kinetics and Process Modeling Laboratory, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil
| | - Camila da Costa Gomes
- Kinetics and Process Modeling Laboratory, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil
| | - José Eduardo Bento de Oliveira
- Kinetics and Process Modeling Laboratory, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil
| | | | - Rômulo Alves Morais
- Kinetics and Process Modeling Laboratory, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil.
| | - Glêndara Aparecida de Souza Martins
- Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil
- Kinetics and Process Modeling Laboratory, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas, 77001-090, Brazil
| |
Collapse
|
26
|
Jakubczyk K, Szymczykowska K, Melkis K, Maciejewska-Markiewicz D, Nowak A, Muzykiewicz-Szymańska A, Skonieczna-Żydecka K. The Role of Light in Enhancing the Nutritional and Antioxidant Qualities of Basil, Mint and Lemon Balm. Foods 2024; 13:3954. [PMID: 39683026 DOI: 10.3390/foods13233954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Mint (Mentha L.), basil, (Ocimum basilicum) and Melissa (Melissa officinalis L.) are herbaceous plants from the Lamiaceae family. They have a wide range of health benefits and flavour properties which are highly valued around the world. Alternative methods of growing plants to minimise greenhouse gas emissions during autumn and winter are being sought in the face of increasing climate change. One way to achieve this is to switch from HPS to LED lighting. LED lighting has a longer lifespan and higher efficiency while using less energy and better matching the colour of the light to the needs of the herbs. This study tested the hypothesis that the type of illumination (solar, HPS, and LED) significantly impacts the antioxidant and nutritional qualities of herbs. The results indicated that LED lighting enhanced biochemical properties, supporting its adoption for sustainable plant cultivation.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Kinga Szymczykowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, 70-111 Szczecin, Poland
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, 70-111 Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Research, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| |
Collapse
|
27
|
Ivan A, Lukinich-Gruia AT, Cristea IM, Pricop MA, Calma CL, Simina AG, Tatu CA, Galuscan A, Păunescu V. Quercetin and Mesenchymal Stem Cell Metabolism: A Comparative Analysis of Young and Senescent States. Molecules 2024; 29:5755. [PMID: 39683913 DOI: 10.3390/molecules29235755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Quercetin is a natural flavonoid renowned for its potent antioxidant, anti-inflammatory, anti-diabetic, and antibacterial properties, making it a highly promising candidate for the treatment of various medical conditions. Our current study investigates the influence of quercetin on energy metabolism, fatty acid composition, oxidative stress gene expression, and sirtuin expression in early- and late-stage passages of stem cells derived from human exfoliated deciduous teeth (SHEDs). Mitochondrial respiration was analyzed by measuring oxygen consumption following a 24 h quercetin treatment, while fatty acid profiles were examined using gas chromatography-mass spectrometry (GC-MS). Additionally, quantitative PCR (qPCR) was used to assess the expression of oxidative stress genes and sirtuins. In younger SHEDs, quercetin enhances metabolic activity and mitochondrial respiration, although higher doses may decrease mitochondrial activity. Conversely, in older, senescent SHEDs, quercetin supports mitochondrial function at lower concentrations but appears to inhibit respiration at higher doses. These results suggest that quercetin may hold therapeutic potential for maintaining SHED viability and function, especially at lower doses in older cells. Further research is essential to fully elucidate a dose-dependent effect of quercetin and optimize its applications in regenerative medicine.
Collapse
Affiliation(s)
- Alexandra Ivan
- Department of Functional Sciences, Center of Immuno-Physiology (CIFBIOTEH), University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | | | - Iustina-Mirabela Cristea
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Maria-Alexandra Pricop
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
- Department of Applied Chemistry and Environmental Engineering and Inorganic Compounds, Faculty of Industrial Chemistry, Biotechnology and Environmental Engeneering, Polytechnic University of Timisoara, Vasile Pârvan 6, 300223 Timisoara, Romania
| | - Crenguta Livia Calma
- Department of Functional Sciences, Center of Immuno-Physiology (CIFBIOTEH), University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Alina-Georgiana Simina
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Călin Adrian Tatu
- Department of Functional Sciences, Center of Immuno-Physiology (CIFBIOTEH), University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Atena Galuscan
- Translational and Experimental Clinical Research Centre in Oral Health, Department of Preventive, Community Dentistry and Oral Health, "Victor Babes" University of Medicine and Pharmacy, 300040 Timisoara, Romania
- Department I, Department of Preventive, Community Dentistry and Oral Health, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Virgil Păunescu
- Department of Functional Sciences, Center of Immuno-Physiology (CIFBIOTEH), University of Medicine and Pharmacy "Victor Babes", Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- OncoGen Centre, Clinical County Hospital "Pius Branzeu", Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| |
Collapse
|
28
|
Sapiun Z, Imran AK, Mohamad SNFS, Aisyah AN, Stephanie S, Himawan A, Manggau MA, Sartini S, Rifai Y, Permana AD. Hispidulin-rich fraction of Clerodendrum fragrans Wild. (Sesewanua) dissolving microneedle as antithrombosis candidate: A proof of concept study. Int J Pharm 2024; 666:124766. [PMID: 39332463 DOI: 10.1016/j.ijpharm.2024.124766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Existing conventional antithrombosis drugs have caused many side effects, opening up opportunities for the development of new thrombotic drugs. There is potential to use the hispidulin-rich fraction of sesewanua (HRFS) as a new antithrombotic. The oral route limitation of hispidulin, as a low water solubility and non-polar compound, can be addressed. This study explores the potential of HRFS in the form of dissolving microneedles (DMN). The formula was created using polymers such as polyvinyl alcohol (PVA), polyvinyl pyrrolidone K-30 (PVP), and non-ionic surfactant. Ex vivo permeation studies found that 184.95 µg/cm2 of hispidulin was released 60 h after the best formulation. After 14 days of applying HRFS-DMN, the anticoagulant and antioxidant activity in male albino rats showed higher Activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT) values and lower Inter Cellular Adhesion Molecule-1 (ICAM-1) values. No statistically significant differences were found between the effects of two and four HRFS-DMN and the injection of heparin at a dosage of 200 IU per kilogram. However, notable distinctions were observed when comparing HRFS-DMN to negative controls, oral and quercetin as positive controls at anti-ICAM activity. The findings confirmed the feasibility of HRFS-DMN for thrombosis and its effectiveness in delivering Hispidulin (HIS) into the bloodstream. This DMN is non-irritating, safe, and painless, showing promising outcomes in enhancing the efficacy of thrombosis treatment via the transdermal route.
Collapse
Affiliation(s)
- Zulfiayu Sapiun
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia; Department of Pharmacy, Health Polytechnic of Gorontalo, Gorontalo 96123, Indonesia
| | - Arlan K Imran
- Department of Pharmacy, Health Polytechnic of Gorontalo, Gorontalo 96123, Indonesia
| | - Siti Nur Fatimah S Mohamad
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Nur Aisyah
- Department of Pharmacy and Pharmaceutical Technology, Almarisah Madani University, Indonesia
| | - Stephanie Stephanie
- Postgraduate Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Achmad Himawan
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Marianti A Manggau
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Sartini Sartini
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Yusnita Rifai
- Department of Pharmaceutical Science, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia.
| |
Collapse
|
29
|
Kurtz JA, Grazer J, Wilson K, Feresin RG, Doyle JA, Middleton R, Devis E, VanDusseldorp TA, Fasczewski K, Otis J. The effect of quercetin and citrulline on cycling time trial performance. J Int Soc Sports Nutr 2024; 21:2416909. [PMID: 39417670 PMCID: PMC11488173 DOI: 10.1080/15502783.2024.2416909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND There is growing interest in the use of nutrition and dietary supplements to optimize training and time-trial (TT) performance in cyclists. Separately, quercetin (QCT) and citrulline (CIT) have been used as ergogenic aids to improve oxygen (VO2) kinetics, perceived effort, and cycling TT performance. However, whether the combination of QCT and CIT can provide additive benefits and further enhance cycling performance production is currently unknown. METHODS We examined 28-days of QCT + CIT supplementation on TT performance and several performance measures (i.e. mean power, VO2, respiratory exchange ratio (RER), and rate of perceived exertion (RPE)). Forty-eight highly trained cyclists were assigned to one of four supplementation groups: (1) QCT + CIT (QCT: 500 mg, CIT: 3000 g), (2) QCT (500 mg), (3) CIT (3000 mg), or (4) placebo (3500 mg of a zero-calorie flavored crystal light package). Supplements were consumed two times per day for 28 consecutive days. Participants performed a 20-km cycling time-trial race, pre- and post-supplementation to determine the impact of the combined effects of QCT + CIT. RESULTS There were no potential benefits of QCT +CIT supplementation on TT performance and several performance measures. However, there was an improvement in VO2 from pre-to-post-supplementation in QCT (p = 0.05) and CIT (p = 0.04) groups, but not in the QCT+CIT and PL groups. CONCLUSIONS QCT + CIT does not seem beneficial for 20-km TT performance; further exploration with a focus on an increase in cycling duration or QCT+CIT combined with additional polyphenols may amplify any perceived bioactive or metabolic effects on cycling performance. The efficacy of QCT + CIT supplementation to improve cycling performance remains ambiguous.
Collapse
Affiliation(s)
- Jennifer A. Kurtz
- Appalachian State University, Department of Public Health & Exercise Science, Boone, NC, USA
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Jacob Grazer
- Kennesaw State University, Department of Exercise Science and Sport Management, Kennesaw, GA, USA
| | - Kathryn Wilson
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
- Georgia State University, Center for the Study of Stress, Trauma, and Resilience, Atlanta, Georgia
| | | | - J. Andrew Doyle
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Ryan Middleton
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Emma Devis
- University of Miami, Miller School of Medicine, Department of Physical Therapy, Coral Gables, FL, USA
| | | | - Kimberly Fasczewski
- Appalachian State University, Department of Public Health & Exercise Science, Boone, NC, USA
| | - Jeff Otis
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| |
Collapse
|
30
|
Bose S, Chaudhari VS, Kushram P. 3D printed scaffolds with quercetin and vitamin D3 nanocarriers: In vitro cellular evaluation. J Biomed Mater Res A 2024; 112:2110-2123. [PMID: 38894584 PMCID: PMC11464199 DOI: 10.1002/jbm.a.37756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Increasing bone diseases and anomalies significantly challenge bone regeneration, necessitating the development of innovative implantable devices for effective healing. This study explores the potential of 3D-printed calcium phosphate (CaP) scaffolds functionalized with natural medicine to address this issue. Specifically, quercetin and vitamin D3 (QVD) encapsulated solid lipid nanoparticles (QVD-SLNs) are incorporated into the scaffold to enhance bone regeneration. The melt emulsification method is utilized to achieve high drug encapsulation efficiency (~98%) and controlled biphasic release kinetics. The process-structure-property performance of these systems allows more controlled release while maintaining healthy cell-material interactions. The functionalized scaffolds show ~1.3- and ~-1.6-fold increase in osteoblast cell proliferation and differentiation, respectively, as compared with the control. The treated scaffold demonstrates a reduction in osteoclastic activity as compared with the control. The QVD-SLN-loaded scaffolds show ~4.2-fold in vitro chemopreventive potential against osteosarcoma cells. Bacterial assessment with both Staphylococcus aureus and Pseudomonas aeruginosa shows a significant reduction in bacterial colony growth over the treated scaffold. These findings summarize that the release of QVD-SLNs through a 3D-printed CaP scaffold can treat various bone-related disorders for low or non-load-bearing applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
31
|
Godara P, Reddy KS, Sahu W, Naik B, Srivastava V, Das R, Mahor A, Kumar P, Giri R, Anirudh J, Tak H, Banavath HN, Bhatt TK, Goyal AK, Prusty D. Structure-based virtual screening against multiple Plasmodium falciparum kinases reveals antimalarial compounds. Mol Divers 2024; 28:3661-3681. [PMID: 38127294 DOI: 10.1007/s11030-023-10770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
The continuous emergence of resistance against most frontline antimalarial drugs has led to countless deaths in malaria-endemic countries, counting 619,000 deaths in 2021, with mutation in drug targets being the sole cause. As mutation is correlated frequently with fitness cost, the likelihood of mutation emergence in multiple targets at a time is extremely low. Hence, multitargeting compounds may seem promising to address drug resistance issues with additional benefits like increased efficacy, improved safety profile, and the requirement of fewer pills compared to traditional single and combinational drugs. In this study, we attempted to use the High Throughput Virtual Screening approach to predict multitarget inhibitors against six chemically validated Plasmodium falciparum (Pf) kinases (PfPKG, PfMAP2, PfCDPK4, PfTMK, PfPK5, PfPI4K), resulting in 21 multitargeting hits. The molecular dynamic simulation of the top six complexes (Myricetin-MAP2, Quercetin-CDPK4, Myricetin-TMK, Quercetin-PKG, Salidroside-PK5, and Salidroside-PI4K) showed stable interactions. Moreover, hierarchical clustering reveals the structural divergence of the compounds from the existing antimalarials, indicating less chance of cross-resistance. Additionally, the top three hits were validated through parasite growth inhibition assays, with quercetin and myricetin exhibiting an IC50 value of 1.84 and 3.93 µM, respectively.
Collapse
Affiliation(s)
- Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Welka Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Rusham Das
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ajay Mahor
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Jivanage Anirudh
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Harshita Tak
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Hemanth Naick Banavath
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
32
|
Ping J, Hao HZ, Wu ZQ, Yang YJ, Yu HS. Integrating data mining and network pharmacology for traditional Chinese medicine for drug discovery of diabetic peripheral neuropathy. SLAS Technol 2024; 29:100228. [PMID: 39638256 DOI: 10.1016/j.slast.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The purpose of this study was to examine the therapeutic potential of core traditional Chinese medicine (CTCM) in the treatment of diabetic peripheral neuropathy (DPN) through the use of a data-driven approach that combined network pharmacology and data mining. Important components of traditional Chinese medicine (TCM) and the targets that correspond with them were found through the examination of numerous databases and clinical prescriptions. The possible therapeutic pathways were investigated, with an emphasis on the AGE-RAGE pathway that was discovered via network pharmacology analysis. By evaluating histopathological alterations, inflammatory and apoptotic markers, microcirculation, and blood hypercoagulability in a rat model of DPN, the effectiveness of CTCM was confirmed.Through experimental validation in DPN rats, it was shown that CTCM improved histopathology, decreased inflammation and apoptosis, improved microcirculation, and corrected coagulation abnormalities in addition to alleviating neuropathic pain. These studies show the value of data-driven approaches in advancing traditional medicine research for drug development and offer a mechanistic basis for CTCM's therapeutic potential in DPN.
Collapse
Affiliation(s)
- Jing Ping
- Medical Laboratory, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - Hong-Zheng Hao
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - Zhen-Qi Wu
- Dean's Office, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - Yong-Ju Yang
- Department of Rehabilitation, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China
| | - He-Shan Yu
- Medical Laboratory, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
33
|
Zhang L, Wang X, Chang L, Ren Y, Sui M, Fu Y, Zhang L, Hao L. Quercetin improves diabetic kidney disease by inhibiting ferroptosis and regulating the Nrf2 in streptozotocin-induced diabetic rats. Ren Fail 2024; 46:2327495. [PMID: 38465879 DOI: 10.1080/0886022x.2024.2327495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading factor in end-stage renal disease. The complexity of its pathogenesis, combined with the limited treatment efficacy, necessitates deeper insights into potential causes. Studies suggest that ferroptosis-driven renal tubular damage contributes to DKD's progression, making its counteraction a potential therapeutic strategy. Quercetin, a flavonoid found in numerous fruits and vegetables, has demonstrated DKD mitigation in mouse models, though its protective mechanism remains ambiguous. In this study, we delved into quercetin's potential anti-ferroptotic properties, employing a DKD rat model and high glucose (HG)-treated renal tubular epithelial cell models. Our findings revealed that HG prompted unusual ferroptosis activation in renal tubular epithelial cells. However, quercetin counteracted this by inhibiting ferroptosis and activating NFE2-related factor 2 (Nrf2) expression in both DKD rats and HG-treated HK-2 cells, indicating its renal protective role. Further experiments, both in vivo and in vitro, validated that quercetin stimulates Nrf2. Thus, our research underscores quercetin's potential in DKD treatment by modulating the ferroptosis process via activating Nrf2 in a distinct DKD rat model, offering a fresh perspective on quercetin's protective mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xingzhi Wang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liang Chang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yiqun Ren
- Department of Pathology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Manshu Sui
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuting Fu
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lei Zhang
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lirong Hao
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Nephropathy, Southern University of Science and Technology Hospital, Shenzhen, China
| |
Collapse
|
34
|
Nicolucci C, Padovani M, Rodrigues FDC, Fritsch LN, Santos AC, Priolli DG, Sciani JM. Flavonoids: the use in mental health and related diseases. Nat Prod Res 2024; 38:4223-4233. [PMID: 37948603 DOI: 10.1080/14786419.2023.2275275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Given the current increase in mental and neurological disorders, there is an urgent need to develop alternative treatments for patients. Flavonoids exhibit diverse biological activities, including antioxidant, anti-inflammatory and neuroprotective, and has been considered potential therapies for central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, drug addiction, and stroke. Studies have shown that flavonoids protect neurons from oxidative stress, reduce inflammation, improve brain blood flow and enhance cognitive function. Moreover, its modulation of neurotransmission, such as GABAergic, dopaminergic, serotoninergic, and noradrenergic, has been studied for the treatment of mental disorders that require sedative effects, antidepressants, sleep inducers and anxiety reduction. Although more research is needed to fully understand the mechanisms and potential benefits of these compounds, the use of flavonoids for neurological diseases is a promising avenue for future research and development. This review focuses on major flavonoid subclasses and their applications in central nervous system disorders.
Collapse
Affiliation(s)
- Camilla Nicolucci
- Medical School, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Postgraduate Program in Health Sciences, Bragança Paulista, São Paulo, Brazil
| | - Milena Padovani
- Medical School, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | | | - Laura Nagy Fritsch
- Psychiatry Medical Residency Program, São Francisco University Hospital, Bragança Paulista, São Paulo, Brazil
| | - Ana Cristina Santos
- Institute of Biophysics of University of Coimbra, Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR/Cibb), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Denise Gonçalves Priolli
- Department of Coloproctology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Medical School from Pitágoras Faculty, Codó, Maranhão, Brazil
| | - Juliana M Sciani
- Postgraduate Program in Health Sciences, Bragança Paulista, São Paulo, Brazil
- Laboratory of Natural Products, Bragança Paulista, São Paulo, Brazil
| |
Collapse
|
35
|
Mostafa EMA, Atta R, Maher SA, El-Kherbetawy MK, Ameen AM. Quercetin and its potential therapeutic effects on aluminum phosphide-induced cardiotoxicity in rats: Role of NOX4, FOXO1, ERK1/2, and NF-κB. Tissue Cell 2024; 91:102622. [PMID: 39549503 DOI: 10.1016/j.tice.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Acute Aluminum phosphide (AlP) poisoning poses a serious global issue, yet the exact mechanisms behind AlP-induced cardiotoxicity are still not well understood. Moreover, there is no specific antidote available for AlP toxicity. Nevertheless, Quercetin (QE) has emerged as a promising therapeutic candidate in various contexts. Accordingly, our study aimed to evaluate the QE potential therapeutic effects against AlP-induced cardiotoxicity and the mechanisms underlying such effects. Rats were assigned into four groups: Group I (control group), Group II (vehicle (corn oil) group), Group III (AlP group) received a single dose of AlP (10 mg/kg body weight) dissolved in corn oil by oral gavage, and Group IV (AlP + QE group) received a single dose of QE (400 mg/kg body weight) dissolved in saline, one hour after AlP administration. AlP-induced cardiotoxicity was evidenced by the increase in cardiac troponin I (cTnI) as well as the hemodynamic, ECG, and histopathological abnormalities. The AlP group denoted a decrease of the antioxidant enzymes; catalase and SOD and an increase of the lipid peroxidation marker; MDA. This was associated with a notable increase in inflammatory cytokines (TNFα, IL-6, and IL1β), in addition to a significant upregulation of the expression of NOX4, FOXO1, ERK1/2, and NF-κB. Moreover, Caspase3, and BAX showed strong immunopositive expression, while Bcl-2 showed mild immunoexpression. On the other hand, treatment with QE showed an improvement in the cardiotoxic effects of AlP, as indicated by significant enhancements in biomarkers, functional assessments, and histopathological findings. These results suggest that QE may be a promising candidate for treating AlP-induced cardiotoxicity, attributed to its antioxidant, anti-inflammatory, and anti-apoptotic properties, particularly emphasizing the roles of NOX4, FOXO1, ERK1/2, and NF-κB.
Collapse
Affiliation(s)
- Enas M A Mostafa
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rasha Atta
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa Ahmed Maher
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Angie M Ameen
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
36
|
Rahat I, Yadav P, Singhal A, Fareed M, Purushothaman JR, Aslam M, Balaji R, Patil-Shinde S, Rizwanullah M. Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1473-1497. [PMID: 39600519 PMCID: PMC11590012 DOI: 10.3762/bjnano.15.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Phytochemicals, naturally occurring compounds in plants, possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, their clinical application is often hindered by poor water solubility, low bioavailability, rapid metabolism, and instability under physiological conditions. Polymer lipid hybrid nanoparticles (PLHNPs) have emerged as a novel delivery system that combines the advantages of both polymeric and lipid-based nanoparticles to overcome these challenges. This review explores the potential of PLHNPs to enhance the delivery and efficacy of phytochemicals for biomedical applications. We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface modification strategies to improve overall therapeutic efficacy by site-specific delivery of encapsulated phytochemicals are also discussed. Furthermore, we extensively discuss the preclinical studies on phytochemical encapsulated PLHNPs for the management of different diseases. Additionally, we explore the challenges ahead and prospects of PLHNPs regarding their widespread use in clinical settings. Overall, PLHNPs hold strong potential for the effective delivery of phytochemicals for biomedical applications. As per the findings from pre-clinical studies, this may offer a promising strategy for managing various diseases.
Collapse
Affiliation(s)
- Iqra Rahat
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Aditi Singhal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Jaganathan Raja Purushothaman
- Department of Orthopaedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamil Nadu, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Raju Balaji
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamil Nadu, India
| | - Sonali Patil-Shinde
- Department of Pharmaceutical Chemistry, Dr. D.Y Patil Institute of Pharmaceutical Sciences and Research, Pimpri Pune-411018, Maharashtra, India
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
37
|
Milutinov J, Pavlović N, Ćirin D, Atanacković Krstonošić M, Krstonošić V. The Potential of Natural Compounds in UV Protection Products. Molecules 2024; 29:5409. [PMID: 39598798 PMCID: PMC11597743 DOI: 10.3390/molecules29225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Overexposure to ultraviolet radiation mainly leads to skin disorders (erythema, burns, immunosuppression), skin aging, and skin cancer as the most serious side effect. It has been widely accepted that using sunscreen products is an important way to protect against the harmful effects of UV rays. Although commercial sunscreens have constantly changed and improved over time, there are emerging concerns about the safety of conventional, organic, UV filters due to adverse effects on humans (such as photoallergic dermatitis, contact sensitivity, endocrine-disrupting effects, etc.) as well as accumulation in the environment and aquatic organisms. This is why natural compounds are increasingly being investigated and used in cosmetic and pharmaceutical sunscreens. Some of these compounds are widely available, non-toxic, safer for use, and have considerable UV protective properties and less side effects. Plant-based compounds such as flavonoids can absorb UVA and UVB rays and possess antioxidant, anticarcinogenic, and anti-inflammatory effects that contribute to photoprotection. Apart from flavonoids, other natural products such as certain vegetable oils, carotenoids, stilbenes, and ferulic acid also have UV-absorbing properties. Some vitamins might also be beneficial for skin protection due to their antioxidant activity. Therefore, the aim of this research was to gain insight into the potential of natural compounds to replace or reduce the amount of conventional UV filters, based on recent research.
Collapse
Affiliation(s)
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.M.); (D.Ć.); (M.A.K.); (V.K.)
| | | | | | | |
Collapse
|
38
|
Mianda SM, Li J, Akter S, Adiamo O, Sivakumar D, Sultanbawa Y. Impact of Drying on Phytonutritional Compounds, In Vitro Antioxidant Activity and Cytotoxicity of Spiny Saltbush ( Rhagodia spinescens). Antioxidants (Basel) 2024; 13:1382. [PMID: 39594524 PMCID: PMC11591164 DOI: 10.3390/antiox13111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The Spiny saltbush (Rhagodia spinscens) is a halophyte species with the potential to provide natural ingredients used in food and pharmaceutical industries. In food and pharmaceutical applications, drying is necessary to maintain shelf-life, which reduces phytonutrient content. In this study, changes in the nutritional composition, phenolic and carotenoid profiles of radical antioxidant scavenging activity [(2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS)], antioxidant power [ferric reducing antioxidant ability assay (FRAP)], and cytotoxicity of freeze- and oven-dried (55 °C for 24 h) spiny saltbush were determined. Sodium (4.72 g/100 g dry weight (DW), potassium (6.86 g/100 g DW), calcium (4.06 g/100 g DW), zinc (372 mg/kg DW) and protein content were higher in oven-dried samples than freeze-dried samples. Ultra-performance liquid chromatography-mass spectrometry analysis detected 18 metabolites in saltbush extracts. Partial Least-Squares Discriminant Analysis, Hierarchical Cluster Analysis, and Variable Importance in Projection discriminated between freeze-dried and oven-dried samples. Freeze-dried samples retained more individual metabolites than oven-dried samples, while oven-dried samples had higher antioxidant activity (ABTS and FRAP), lutein, trans-β carotene, and cis-β-carotene. Correlation analysis identified potential antioxidant candidates between phenolic and carotenoid compounds. Neither freeze-dried nor oven-dried spiny saltbush samples showed cytotoxicity. The study uncovered changes in phytonutritional compounds after the oven and freeze-drying spiny saltbush, a potential salt alternative and functional ingredient for the food industry.
Collapse
Affiliation(s)
- Sephora Mutombo Mianda
- Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa;
| | - Jiaxuan Li
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| | - Saleha Akter
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| | - Oladipupo Adiamo
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| | - Dharini Sivakumar
- Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa;
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| | - Yasmina Sultanbawa
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia; (J.L.); (S.A.); (O.A.); (Y.S.)
| |
Collapse
|
39
|
Kábelová A, Malínská H, Marková I, Hüttl M, Liška F, Chylíková B, Šeda O. Quercetin supplementation in metabolic syndrome: nutrigenetic interactions with the Zbtb16 gene variant in rodent models. GENES & NUTRITION 2024; 19:22. [PMID: 39455928 PMCID: PMC11515271 DOI: 10.1186/s12263-024-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16). RESULTS Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q. CONCLUSION Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.
Collapse
Affiliation(s)
- Adéla Kábelová
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - František Liška
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
40
|
Rabaan AA, Halwani MA, Garout M, Turkistani SA, Alsubki RA, Alawfi A, Alshengeti A, Najim MA, Al Kaabi NA, Alqazih TQ, Aseeri AA, Bahitham AS, Alsubaie MA, Alissa M, Aljeldah M. Identification of natural potent inhibitors against Mycobacterium tuberculosis isocitrate lyase: an in silico study. Mol Divers 2024; 28:2783-2799. [PMID: 37578620 DOI: 10.1007/s11030-023-10711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Tuberculosis (TB) is a global burden to humanity due to its adverse effects on health and society since time is not clearly defined. The existence of drug-resistant strains and the potential threat posed by latent tuberculosis act as strong impetuses for developing novel anti-tuberculosis drugs. In this study, various flavonoids were tested against the Mycobacterium tuberculosis (Mtb) Isocitrate Lyase (ICL), which has been identified as an authorised therapeutic target for treating Mtb infection. Using in silico drug discovery approach, a library of 241 flavonoid compounds was virtually screened against the binding pocket of the crystalline ligand, the VGX inhibitor, in the Mtb ICL protein. As a result, the top four flavonoids were selected based on binding score and were further considered for redocking and intermolecular contact profiling analysis. The global and local fluctuations in the protein and ligand structure were analysed using their root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values obtained from the GROMACS generated 100 ns molecular dynamics (MD) simulation trajectories. The end-state binding free energy was also calculated using the MMPBSA approach for all the respective docked complexes. All four selected compounds exhibited considerable stability and affinity compared to control ligands, i.e. VGX inhibitor; however, Vaccarin showed the highest stability and affinity against the Mtb ICL protein active site, followed by the Genistin, Glabridin, and Corylin. Therefore, this study recommends selected flavonoids for in vitro and in vivo experimental studies to check their potency and efficacy against Mtb.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha, 4781, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Roua A Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, 41491, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 41411, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates
| | - Thikrayat Q Alqazih
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates
| | - Ali A Aseeri
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates
| | - Afnan S Bahitham
- Microbiology Laboratory Department, King Fahad Specialist Hospital, Dammam, 32253, Saudi Arabia
| | - Manal A Alsubaie
- Biochemistry Laboratory Department, King Fahad Specialist Hospital, Dammam, 32253, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 39831, Saudi Arabia.
| |
Collapse
|
41
|
Abolfazli S, Foroumand S, Mohammadi E, Ahangar N, Kheirandish A, Fathi H, Mohammadi H. Brain mitochondrial damage attenuation by quercetin and N-acetyl cysteine: peripheral and central antiemetic effects. Toxicol Res (Camb) 2024; 13:tfae139. [PMID: 39246710 PMCID: PMC11374534 DOI: 10.1093/toxres/tfae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Nausea serves as a protective mechanism in organisms to prevent excessive consumption of toxic substances. Due to the adverse effects of chemical anti-nausea drugs, there is a growing interest in using herbal remedies and natural antioxidants. In this study, we evaluated the neuroprotective effects of quercetin (QU) and N-acetylcysteine (NAC) against oxidative damage induced by nausea. Emesis was induced in chickens using ipecac and copper sulfate (600 and 60 mg/kg, orally, respectively). QU and NAC (with doses of 50, 100, 200 mg/kg), and their combination were administered, along with a standard therapy (metoclopramide; MET 2 mg/kg) for one-time. Mitochondrial function, lipid peroxidation (LPO), protein carbonyl (PC), glutathione level (GSH), and reactive oxygen species (ROS) as oxidative damage biomarkers were evaluated in the chicken's brain mitochondria. QU and NAC significantly reduced emesis induced by copper sulfate and ipecac compared to the control group (P < 0.001). Significant differences in oxidative damage were observed in the groups received of copper sulfate and ipecac compared with control group. Levels of LPO, ROS, and PC were significantly decreased after the administration of QU and NAC in emesis induced by copper sulfate and ipecac. While, mitochondrial function and GSH levels were increased after the administration of QU and NAC. Combination therapy with QU and NAC yielded the most effective results. This study suggests that QU and NAC possess antiemetic effects through both peripheral and central mechanisms and exhibit neuroprotective effects against oxidative brain damage induced by emesis by increasing plasma antioxidants or scavenging free radicals.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R. PO Box- 48175/861, Sari, Iran
| | - Sarvenaz Foroumand
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R. PO Box- 48175/861, Ramsar, Iran
| | - Elham Mohammadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R. PO Box- 48175/861, Ramsar, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, school of medicine, Gilan University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R. PO Box- 48175/861, Rasht, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R. PO Box- 48175/861, Tehran, Iran
| | - Hamed Fathi
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R. PO Box- 48175/861, Sari, Iran
| | - Hamidreza Mohammadi
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R. PO Box- 48175/861, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R. PO Box- 48175/861, Sari, Iran
| |
Collapse
|
42
|
Gautheron G, Péraldi-Roux S, Vaillé J, Belhadj S, Patyra A, Bayle M, Youl E, Omhmmed S, Guyot M, Cros G, Guichou JF, Uzan B, Movassat J, Quignard JF, Neasta J, Oiry C. The flavonoid resokaempferol improves insulin secretion from healthy and dysfunctional pancreatic β-cells. Br J Pharmacol 2024. [PMID: 39327688 DOI: 10.1111/bph.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND AND PURPOSE The pharmacology of flavonoids on β-cell function is largely undefined especially in the context of defective secretion of insulin. We sought to identify flavonoids that increased the insulin-secreting function of β-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH INS-1 β-cells in culture and islets of Langerhans isolated from control and diabetic male rats were used for insulin secretion experiments. Pharmacological and electrophysiological approaches were used for mechanistic studies. KEY RESULTS Among a set of flavonoids, exposure of INS-1 β-cells to resokaempferol (ResoK) enhanced glucose-stimulated insulin secretion and therefore we further characterised its activity and its pharmacological mechanism. ResoK glucose-dependently enhanced insulin secretion in INS-1 β-cells and pancreatic islets isolated from rats. Mechanistically, whole cell patch clamp recordings in INS-1 cells showed that ResoK rapidly and dose-dependently enhanced the L-type Ca2+ current whereas it was inactive towards T-type Ca2+ current. Accordingly, pharmacological inhibition of L-type Ca2+ current but not T-type Ca2+ current blocked the effects of ResoK on glucose-stimulated insulin secretion. ResoK was still active on dysfunctional β-cells as it ameliorated glucose-stimulated insulin secretion in glucotoxicity-induced dysfunctional INS-1 cells and in pancreatic islets isolated from diabetic rats. CONCLUSION AND IMPLICATIONS ResoK is a glucose-dependent activator of insulin secretion. Our results indicated that the effects of ResoK on insulin secretion involved its capacity to stimulate L-type Ca2+ currents in cultured β-cells. As ResoK was also effective on dysfunctional β-cells, our work provides a new approach to stimulating insulin secretion, using compounds based on the structure of ResoK.
Collapse
Affiliation(s)
| | | | - Justine Vaillé
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sahla Belhadj
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Andrzej Patyra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmaceutical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Morgane Bayle
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Estelle Youl
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Mélanie Guyot
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gérard Cros
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Benjamin Uzan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Jérémie Neasta
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Catherine Oiry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
43
|
Rana A, Matiyani M, Negi PB, Tiwari H, Garwal K, Basak S, Sahoo NG. Polyvinylpyrrolidone‐functionalized graphene oxide as a nanocarrier for dual‐drug delivery of quercetin and curcumin against HeLa cancer cells. JOURNAL OF VINYL AND ADDITIVE TECHNOLOGY 2024; 30:1241-1253. [DOI: 10.1002/vnl.22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/30/2024] [Indexed: 01/06/2025]
Abstract
AbstractThis study is to develop a nanocarrier based on polyvinylpyrrolidone (PVP)‐functionalized graphene oxide (GO–PVP), loaded with both curcumin (CUR) and quercetin (QSR), and then its performance compared with nanocarriers carrying the drugs separately. The study also aimed to investigate the cytotoxic effects of these nanocarriers on HeLa cancer cells. To achieve this, GO was synthesized using a modified version of Hummer's method and subsequently functionalized with PVP. Drug loading onto the GO and GO–PVP nanocarriers was achieved through hydrophobic interactions. Furthermore, the ability of the nanocarriers to accommodate a single drug or a combination of drugs was examined. In our study, combined system shows higher drug loading, that is, 28.1% of QSR and 24.34% of CUR onto GO–PVP–QSR–CUR nanocarrier in comparison to single drug nanocarrier systems GO–PVP–QSR and GO–PVP–CUR which loaded 22.5% of QSR and 18.73% of CUR, respectively. Notably, the synthesized nanocarrier exhibited a pH‐sensitive drug release pattern. These results collectively suggest that GO–PVP–CUR–QSR displayed significantly higher cytotoxicity against HeLa cancer cells compared to both single‐drug nanocarrier systems at the specified concentrations. In addition, future pre‐clinical and clinical studies to evaluate the safety and efficacy of GO–PVP–CUR–QSR for cancer treatment are strongly recommended.Highlights
Developed nanocarrier based on polyvinylpyrrolidone functionalized GO (GO–PVP).
The GO–PVP nanocarrier was loaded with both curcumin (CUR) and quercetin (QSR).
GO–PVP displays a higher loading capacity for both QSR and CUR compared to GO.
QSR‐ and CUR‐loaded GO–PVP nanocarriers exhibited higher cytotoxic effects.
Collapse
Affiliation(s)
- Anita Rana
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
- Institute of Macromolecular Chemistry Academy of Science of the Czech Republic Prague 6 Czech Republic
| | - Monika Matiyani
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
- Institute of Macromolecular Chemistry Academy of Science of the Czech Republic Prague 6 Czech Republic
| | - Pushpa Bhakuni Negi
- Department of Chemistry Graphic Era Hill University, Bhimtal Campus Nainital India
| | - Himani Tiwari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| | - Kamal Garwal
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| | - Souvik Basak
- Department of Pharmaceutical Chemistry Dr. B.C. Roy College of Pharmacy & Allied Health Sciences Durgapur India
| | - Nanda Gopal Sahoo
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| |
Collapse
|
44
|
Revathi S, Altemimi AB, Sutikno S, Cacciola F. Phytochemical screening along with in vitro antioxidant, antibacterial and anticancer activity of Senna auriculata (L.) bark extracts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39189785 DOI: 10.1080/09603123.2024.2395446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
This study aimed to evaluate the phytochemical content and biological properties of Senna auriculata (L.) Roxb. Four extracts-acetone, methanol, ethanol, and chloroform-were tested for antioxidant potential, enzymatic activity (peroxidase and polyphenol oxidase), antimicrobial, and anticancer effects. GC-MS analysis identified 34 bioactive compounds. The acetone extract exhibited the highest total alkaloid (5.8%), phenolic (752.78 ± 2.25 mg GAE/g), and flavonoid (285.78 ± 1.25 mg QE/g) content, along with the highest antioxidant (1489.42 ± 4.35 mg AAE/g) and enzyme activities. All extracts inhibited both Gram-positive and negative bacteria, with the acetone extract showing superior inhibition against S. aureus and B. subtilis. Additionally, the acetone and methanol extracts demonstrated anticancer effects on MDA-MB-231 breast cancer cells. These findings suggest that Senna auriculata has potential as a therapeutic agent for various diseases.
Collapse
Affiliation(s)
- Seemaisamy Revathi
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Sutikno Sutikno
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| |
Collapse
|
45
|
Mert NM, Erdogan B, Yelekçi K. Repurposing of known drugs from multiple libraries to identify novel and potential selective inhibitors of HDAC6 via in silico approach and molecular modeling. Heliyon 2024; 10:e35020. [PMID: 39157373 PMCID: PMC11328036 DOI: 10.1016/j.heliyon.2024.e35020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Histone deacetylase 6 (HDAC6, Class IIb) is a promising target for anticancer drugs. So far, few nonselective HDAC inhibitors have received regulatory approval as anticancer agents. However, they are associated with cell toxicity. Thus, isoform-selective inhibitors may be desirable. Here, we conducted structure-based virtual screening of multiple libraries containing a total of 2,250,135 compounds against HDAC6. The top hits with good docking scores and potential selectivity over HDAC10 (Class IIb) were submitted to 100 ns molecular dynamics simulation to monitor their dynamic behaviors and stability in the binding pockets of these enzymes. Furthermore, the drug-likeness and ADMET properties of these hits were estimated computationally. Four diverse compounds from different sources, including NCI and ZINC databases (BDH33926500, CID667061, Cromolyn, and ZINC000103531486), show potential selectivity for HDAC6.
Collapse
Affiliation(s)
- Naz Mina Mert
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Cibali, Istanbul, Turkey
| | - Buse Erdogan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Cibali, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083, Cibali, Istanbul, Turkey
| |
Collapse
|
46
|
Delenko J, Xue X, Chatterjee PK, Hyman N, Shih AJ, Adelson RP, Safaric Tepes P, Gregersen PK, Metz CN. Quercetin enhances decidualization through AKT-ERK-p53 signaling and supports a role for senescence in endometriosis. Reprod Biol Endocrinol 2024; 22:100. [PMID: 39118090 PMCID: PMC11308242 DOI: 10.1186/s12958-024-01265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Patients with endometriosis suffer with chronic pelvic pain and infertility, and from the lack of pharmacologic therapies that consistently halt disease progression. Differences in the endometrium of patients with endometriosis vs. unaffected controls are well-documented. Specifically, shed endometrial tissues (delivered to the pelvic cavity via retrograde menstruation) reveal that a subset of stromal cells exhibiting pro-inflammatory, pro-fibrotic, and pro-senescence-like phenotypes is enhanced in endometriosis patients compared to controls. Additionally, cultured biopsy-derived endometrial stromal cells from endometriosis patients exhibit impaired decidualization, a defined differentiation process required for human embryo implantation and pregnancy. Quercetin, a senolytic agent, shows therapeutic potential for pulmonary fibrosis, a disorder attributed to senescent pulmonary fibroblasts. In rodent models of endometriosis, quercetin shows promise, and quercetin improves decidualization in vitro. However, the exact mechanisms are not completely understood. Therefore, we investigated the effects of quercetin on menstrual effluent-derived endometrial stromal cells from endometriosis patients and unaffected controls to define the signaling pathways underlying quercetin's effects on endometrial stromal cells. METHODS Menstrual effluent-derived endometrial stromal cells were collected and cultured from unaffected controls and endometriosis patients and then, low passage cells were treated with quercetin (25 µM) under basal or standard decidualization conditions. Decidualization responses were analyzed by measuring the production of IGFBP1 and PRL. Also, the effects of quercetin on intracellular cAMP levels and cellular oxidative stress responses were measured. Phosphokinase arrays, western blotting, and flow cytometry methods were performed to define the effects of quercetin on various signaling pathways and the potential mechanistic roles of quercetin. RESULTS Quercetin significantly promotes decidualization of control- and endometriosis-endometrial stromal cells. Quercetin substantially reduces the phosphorylation of multiple signaling molecules in the AKT and ERK1/2 pathways, while enhancing the phosphorylation of p53 and total p53 levels. Furthermore, p53 inhibition blocks decidualization while p53 activation promotes decidualization. Finally, we provide evidence that quercetin increases apoptosis of endometrial stromal cells with a senescent-like phenotype. CONCLUSIONS These data provide insight into the mechanisms of action of quercetin on endometrial stromal cells and warrant future clinical trials to test quercetin and other senolytics for treating endometriosis.
Collapse
Affiliation(s)
- Julia Delenko
- The Donald and Barbara Zucker School of Medicine, Hempstead, NY, 11549, USA
| | - Xiangying Xue
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Prodyot K Chatterjee
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Nathaniel Hyman
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Andrew J Shih
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Robert P Adelson
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Polona Safaric Tepes
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Peter K Gregersen
- The Donald and Barbara Zucker School of Medicine, Hempstead, NY, 11549, USA.
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
| | - Christine N Metz
- The Donald and Barbara Zucker School of Medicine, Hempstead, NY, 11549, USA.
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
| |
Collapse
|
47
|
Kurćubić VS, Stajić SB, Jakovljević V, Živković V, Stanišić N, Mašković PZ, Matejić V, Kurćubić LV. Contemporary Speculations and Insightful Thoughts on Buckwheat-A Functional Pseudocereal as a Smart Biologically Active Supplement. Foods 2024; 13:2491. [PMID: 39200418 PMCID: PMC11353853 DOI: 10.3390/foods13162491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Today, food scientists are interested in more rational use of crops that possess desirable nutritional properties, and buckwheat is one of the functional pseudocereals that represents a rich source of bioactive compounds (BACs) and nutrients, phytochemicals, antimicrobial (AM) agents and antioxidants (AOs), which can be effectively applied in the prevention of malnutrition and celiac disease and treatment of various important health problems. There is ample evidence of the high potential of buckwheat consumption in various forms (food, dietary supplements, home remedies or alone, or in synergy with pharmaceutical drugs) with concrete benefits for human health. Contamination as well as other side-effects of all the aforementioned forms for application in different ways in humans must be seriously considered. This review paper presents an overview of the most important recent research related to buckwheat bioactive compounds (BACs), highlighting their various functions and proven positive effects on human health.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia
| | - Slaviša B. Stajić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.J.); (V.Ž.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Vladimir Živković
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.J.); (V.Ž.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Nikola Stanišić
- Institute for Animal Husbandry, Belgrade-Zemun, Highway to Zagreb 16, 11000 Belgrade, Serbia;
| | - Pavle Z. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Vesna Matejić
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| |
Collapse
|
48
|
Goswami V, Das SM, Deep S. Quercetin-Loaded Nanocarriers as Effective Inhibitors for Copper Metal Ion-Induced γD-Crystallin Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16093-16102. [PMID: 39046313 DOI: 10.1021/acs.langmuir.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cataract is one of the leading causes of blindness worldwide. Till date, the only solution for cataracts is surgery, which is a resource-intensive solution. A much simpler solution is to find a potential drug that could inhibit aggregation. It is well established that nonamyloid aggregates of eye lens protein result in cataract. γD-Crystallin, a thermodynamically stable protein, is one of the most abundant proteins in the core of the eye lens and is found to aggregate under stress conditions, leading to the cataract. It has also been found that in cataractous lens, the concentration of metals like copper is elevated significantly as compared to healthy eye lens, suggesting their role in inducing aggregation. In our present study, aggregation of γD-Crystallin was carried out in the presence of Cu (II). Using techniques like turbidity assay, CD spectroscopy, ANS binding assay, and microscopic studies like TEM, it could be confirmed that protein aggregates in the presence of Cu (II) and the nature of aggregates is amorphous. Various polyphenols were tested to suppress aggregation of the protein. Quercetin was observed to be the most efficient. To overcome the problems associated with the delivery of polyphenols, such as solubility and bioavailability, quercetin was encapsulated in two types of nanocarriers. Their characterization was done using TEM, DLS, and other techniques. The potency of quercetin-loaded CS-TPP/CS-PLGA NPs as inhibitors of γD-Crystallin aggregation was confirmed by various experiments.
Collapse
Affiliation(s)
- Vishakha Goswami
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sony Moni Das
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
49
|
Ribeiro IC, de Moraes JVB, Mariotini-Moura C, Polêto MD, da Rocha Torres Pavione N, de Castro RB, Miranda IL, Sartori SK, Alves KLS, Bressan GC, de Souza Vasconcellos R, Meyer-Fernandes JR, Diaz-Muñoz G, Fietto JLR. Synthesis of new non-natural L-glycosidic flavonoid derivatives and their evaluation as inhibitors of Trypanosoma cruzi ecto-nucleoside triphosphate diphosphohydrolase 1 (TcNTPDase1). Purinergic Signal 2024; 20:399-419. [PMID: 37975950 PMCID: PMC11303637 DOI: 10.1007/s11302-023-09974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Trypanosoma cruzi is the pathogen of Chagas disease, a neglected tropical disease that affects more than 6 million people worldwide. There are no vaccines to prevent infection, and the therapeutic arsenal is very minimal and toxic. The unique E-NTPDase of T. cruzi (TcNTPDase1) plays essential roles in adhesion and infection and is a virulence factor. Quercetin is a flavonoid with antimicrobial, antiviral, and antitumor activities. Its potential as a partial inhibitor of NTPDases has also been demonstrated. In this work, we synthesized the non-natural L-glycoside derivatives of quercetin and evaluated them as inhibitors of recombinant TcNTPDase1 (rTcNTPDase1). These compounds, and quercetin and miquelianin, a natural quercetin derivative, were also tested. Compound 16 showed the most significant inhibitory effect (94%). Quercetin, miquelianin, and compound 14 showed inhibition close to 50%. We thoroughly investigated the inhibitory effect of 16. Our data suggested a competitive inhibition with a Ki of 8.39 μM (± 0.90). To better understand the interaction of compound 16 and rTcNTPDase1, we performed molecular dynamics simulations of the enzyme and docking analyses with the compounds. Our predictions show that compound 16 binds to the enzyme's catalytic site and interacts with important residues for NTPDase activity. As an inhibitor of a critical T. cruzi enzyme, (16) could be helpful as a starting point in the developing of a future treatment for Chagas disease. Furthermore, the discovery of (16) as an inhibitor of TcNTPDase1 may open new avenues in the study and development of new inhibitors of E-NTPDases.
Collapse
Affiliation(s)
- Isadora Cunha Ribeiro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Christiane Mariotini-Moura
- General Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Medicine and Nursing Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo Depolo Polêto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Raissa Barbosa de Castro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Izabel Luzia Miranda
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suélen Karine Sartori
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kryssia Lohayne Santos Alves
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Costa Bressan
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - José Roberto Meyer-Fernandes
- Laboratory of Cellular Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Health Sciences Center, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gaspar Diaz-Muñoz
- Exact Science Institute, Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Juliana Lopes Rangel Fietto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- General Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
50
|
Kozhantayeva A, Tursynova N, Kolpek A, Aibuldinov Y, Tursynova A, Mashan T, Mukazhanova Z, Ibrayeva M, Zeinuldina A, Nurlybayeva A, Iskakova Z, Tashenov Y. Phytochemical Profiling, Antioxidant and Antimicrobial Potentials of Ethanol and Ethyl Acetate Extracts of Chamaenerion latifolium L. Pharmaceuticals (Basel) 2024; 17:996. [PMID: 39204101 PMCID: PMC11357188 DOI: 10.3390/ph17080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
The study investigates the phytochemical profile, antioxidant capacity, and antimicrobial activities of ethanol (ChL-EtOH) and ethyl acetate (ChL-EtOAc) extracts from Chamaenerion latifolium L. (ChL) harvested in Kazakhstan. The ChL-EtOH extract exhibited higher total phenolic (267.48 ± 3.44 mg GAE/g DE) and flavonoid content (24.18 ± 1.06 mg QE/g DE) compared to ChL-EtOAc. HPLC-UV-ESI/MS identified key phenolic acids and flavonoids, including gallic acid, chlorogenic acid, and quercetin 3-glucoside. FT-IR analysis confirmed the presence of characteristic functional groups. Antioxidant assays revealed strong DPPH scavenging and FRAP activities, with ChL-EtOH showing superior results (IC50 = 21.31 ± 0.65 μg/mL and 18.13 ± 0.15 μg/mL, respectively). Additionally, ChL-EtOH displayed notable antimicrobial efficacy against Gram-positive and Gram-negative bacteria, as well as the fungal strain Candida albicans. These findings suggest that ethanol extraction is more efficient for isolating bioactive compounds from ChL, underscoring its potential for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Akmaral Kozhantayeva
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Nurgul Tursynova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
| | - Ainagul Kolpek
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Yelaman Aibuldinov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
| | - Arailym Tursynova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Togzhan Mashan
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Zhazira Mukazhanova
- Department of Chemistry, Graduate School of IT and Natural Sciences, East Kazakhstan University Named after S. Amanzholov, Ust-Kamenogorsk 010008, Kazakhstan;
| | - Manshuk Ibrayeva
- Faculty of Science and Technology, The Caspian University of Technology and Engineering Named after Sh.Yessenov, Aktau 130000, Kazakhstan;
| | - Aizhan Zeinuldina
- Department of General and Biological Chemistry, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| | - Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan;
| | - Zhanar Iskakova
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| | - Yerbolat Tashenov
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (N.T.); (Y.A.)
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Satpayev Street 2, Astana 010000, Kazakhstan; (A.K.); (A.T.); (T.M.)
| |
Collapse
|