1
|
Lauzier AM, Douette É, Labrie A, Jubinville É, Goulet-Beaulieu V, Hamon F, Jean J. Comparison of sample pretreatments used to distinguish between infectious and non-infectious foodborne viruses by RT-qPCR. J Virol Methods 2025; 335:115130. [PMID: 39993658 DOI: 10.1016/j.jviromet.2025.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
To detect viruses such as hepatitis A virus (HAV) and human norovirus (HuNoV) in foods, RT-qPCR or other molecular methods are used, which cannot distinguish between infectious and non-infectious virions. Samples can be pretreated to limit detection to intact and presumably infectious virions. We compared propidium monoazide (PMA or PMAxx), platinum (IV) chloride (PtCl4), magnetic silica beads and centrifugal filter using HAV or HuNoV inactivated by heat, pulsed light, or sodium hypochlorite (NaOCl). PMAxx completely or nearly eliminated (3.96 ± 1.24 log gc) the RT-qPCR signal of HAV inactivated at 100°C for 10 min. Pretreatments could not reduce significantly RT-qPCR signal of HAV after pulsed light (0.74 ± 0.36 log gc) and NaOCl (0.24 ± 0.14 log gc) inactivation. Enzymatic treatments did not improve the results obtained with PMAxx. The exudate of raspberry, strawberry or oyster used as food matrices needed dilution by at least tenfold for PMAxx to to yield results comparable to virions without a food matrix. Overall, PMAxx shows good potential to discriminate between infectious and non-infectious despite some remaining limitations.
Collapse
Affiliation(s)
- Anne-Marie Lauzier
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Émilie Douette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Antoine Labrie
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Éric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | | | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada.
| |
Collapse
|
2
|
Vasuja P, Kunal. Virovory: control of viral pathogenesis by the protists and the way forward. Crit Rev Microbiol 2025:1-9. [PMID: 40255028 DOI: 10.1080/1040841x.2025.2493908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025]
Abstract
The interactions between viruses and protists have been crucially impacting the ecosystem. In recent studies, it has been found that the protists are not only able to consume, ingest or inactivate a variety of viruses, resulting in a reduction of the viral load, but instead, they can treat viruses as the exclusive source of nutrients, exhibiting "Virovory" (virus-only diet). These small protists can act as virosomes (organisms harnessing nutrients from the viruses) and utilize the viruses as the only source of nourishment, implying the protist to multiply and grow. The viral reduction was previously thought to be only because of the action of abiotic factors (temperature, ultraviolet light, chemicals, membrane adsorption, etc.). However, virovory suggests that organic material flow in microbial communities, the impact of viruses on the food web and, the role of protists in regulating viral populations are crucial factors in ecosystem dynamics. In this review, ingestion, digestion, and inactivation of a variety of viruses by protists are discussed. Several questions can be answered by further research on understanding the mechanisms behind the inactivation of viruses, the impact of reduced viral load on other microbial populations, and the large-scale employability of these little protists in removing pathogenic viruses from the environment.
Collapse
Affiliation(s)
- Pooja Vasuja
- Department of Life Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, India
| | - Kunal
- Department of Life Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, India
| |
Collapse
|
3
|
Lim S, Wu Y, Mitch WA. Transformation of cyclic amides and uracil-derived nitrogen heterocycles during chlorination. WATER RESEARCH 2025; 282:123639. [PMID: 40252404 DOI: 10.1016/j.watres.2025.123639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Nitrogen heterocycles are important structural components in biomolecules and anthropogenic chemicals, yet their transformation during chlorine disinfection remains poorly understood. This study investigated chlorination kinetics and product formation for six nitrogen heterocycles of increasing structural complexity, including cyclic amides (2-piperidone, glutarimide, 5,6-dihydrouracil) and uracil derivatives (uracil, uridine, and 1,3-dimethyluracil) to determine how structural variations influence reaction pathways. Apparent second-order rate constants varied widely from 9.2 × 10-3 M-1 s-1 (2-piperidone) to >103 M-1 s-1 (uracil, uridine), largely influenced by the nitrogen pKa values. Chlorination proceeded through initial N-chlorination, forming organic chloramides. While most organic chloramides were transient, that derived from 2-piperidone persisted for days under excess chlorine conditions. For saturated heterocyclic imides (glutarimide, 5,6-dihydrouracil), hydrolysis of the organic chloramides between the imide nitrogen and an adjacent acyl group rapidly formed ring-opened organic acids. Among uracil derivatives, chlorine added across the double bond. For uracil, the resulting 5-chlorouracil rapidly fragmented between the C-4 and C-5 position to release trichloroacetaldehyde at ∼100 % yield. Substitution at heterocyclic nitrogens in uridine and 1,3-dimethyluracil limited such fragmentation, forming more stable C-chlorinated heterocyclic or ring-opened products. The reaction patterns observed for these six nitrogen heterocycles were further validated using phthalimide and thymine, demonstrating the broader applicability of the identified reaction trends. These findings enhance our understanding of nitrogen heterocycle chlorination mechanisms and their implications for drinking water disinfection, offering insights into minimizing the formation of potentially harmful DBPs during chlorination.
Collapse
Affiliation(s)
- Sungeun Lim
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Yufei Wu
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States.
| |
Collapse
|
4
|
He Z, Wang D, Chen J, Hu X, Shuai D. Peroxide Disinfection of Vesicle-Cloaked Murine Norovirus Clusters: Vesicle Membranes Protect Viruses from Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6488-6501. [PMID: 40127176 DOI: 10.1021/acs.est.4c13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Vesicle-cloaked virus clusters, also known as viral vesicles, exhibit higher infectivity than free viruses and demonstrate persistence in the environment as well as resilience against disinfection. These emerging pathogens represent significant, yet often underestimated, health risks. Our study investigated peroxide disinfection of murine norovirus vesicles, a surrogate for human norovirus vesicles, and elucidated disinfection mechanisms. Peracetic acid, a neutral peroxide, rapidly inactivated murine norovirus vesicles. In contrast, negatively charged peroxides, i.e., peracetate and peroxymonosulfate, exhibited restricted effectiveness in inactivating murine noroviruses within vesicles. The largely intact viruses cloaked within vesicles remained infectious and retained their ability to replicate upon vesicle lysis triggered by mechanical forces, enzymatic activity, or chemical reactions following disinfection. Peroxides primarily targeted vesicle/viral proteins, particularly amino acid residues such as cysteine and methionine, without affecting the viral ORF2 gene fragment or vesicle structures. Disruption of viral internalization, rather than binding, plays a key role in infectivity loss. This work highlights the protective role of vesicle membranes and emphasizes the need for innovative disinfection approaches to effectively target viruses cloaked within vesicles.
Collapse
Affiliation(s)
- Zhenzhen He
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States
| | - Dongxue Wang
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia 30322, United States
| | - Jiahao Chen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States
| | - Xin Hu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia 30322, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
5
|
Tang J, Wang Y, Ma J, Chen Y, Chen M. Activation of peroxymonosulfate by sustainable biomass-based carbon nanotubes for controlling the spread of plant viruses in water environments. J Environ Sci (China) 2025; 149:99-112. [PMID: 39181682 DOI: 10.1016/j.jes.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/27/2024]
Abstract
With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.
Collapse
Affiliation(s)
- Jian Tang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yujie Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yujie Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400714, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
6
|
Sakudo A, Furusaki K, Onishi R, Onodera T, Yoshikawa Y. A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Microorganisms 2025; 13:507. [PMID: 40142400 PMCID: PMC11946018 DOI: 10.3390/microorganisms13030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
| | - Koichi Furusaki
- Mineral Activation Technical Research Center, Omuta 836-0041, Fukuoka, Japan
| | - Rumiko Onishi
- Santa Mineral Co., Ltd., Minato-ku 105-0013, Tokyo, Japan
| | - Takashi Onodera
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Research Center for Food Safety, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Yasuhiro Yoshikawa
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Institute of Environmental Microbiology, Kyowa Kako Co., Ltd., Machida 194-0035, Tokyo, Japan
| |
Collapse
|
7
|
Chen J, Madhiyan M, Moor KJ, Chen H, Shuai D. Kinetics and Mechanisms of Solar UVB Disinfection of Vesicle-Cloaked Murine Norovirus Clusters and Free Noroviruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2461-2472. [PMID: 39893675 DOI: 10.1021/acs.est.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Human norovirus, a major global cause of gastroenteritis, forms vesicle-cloaked virus clusters (known as viral vesicles), showing increased infectivity and persistence in aquatic environments. We investigated UVB disinfection, a key mechanism of solar disinfection commonly employed in developing countries, targeting murine norovirus vesicles and free murine noroviruses as surrogates for human noroviruses. At low viral concentrations of 109 gene copies per liter, viral infectivity loss as quantified by the integrated cell culture-reverse transcription-quantitative polymerase chain reaction (ICC-RT-qPCR) indicated that vesicles were 1.51 to 1.73 times more resistant to disinfection compared to free viruses. Virus inactivation was primarily due to protein damage as quantified by bicinchoninic acid and Western blot assays, and the damage of virus binding to host cells as quantified by RT-qPCR. Molecular simulations predicted that the oxidation of a tyrosine residue in the viral protein 1 prohibited binding. UVB irradiation of viral/vesicle proteins resulted in 1O2 formation as quantified by time-resolved phosphorescence, and for the first time, endogenous 1O2 was confirmed to contribute to virus inactivation by UVB. Our study recognizes the limitation of UVB disinfection of viral vesicles particularly in solar wastewater treatment and advocates for enhanced disinfection strategies to protect public health.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Monika Madhiyan
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Kyle J Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
| | - Hanning Chen
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
8
|
Shirataki H, Gudex L, Wickramasinghe SR. Modeling virus filtration: Materials, applications, and mechanism. iScience 2025; 28:111533. [PMID: 39807163 PMCID: PMC11728907 DOI: 10.1016/j.isci.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
While various methods are employed to ensure the virus safety of finished products, virus filtration (VF) stands out as the preferred method for virus removal and purification of a wide variety of products owing to its capability of separating product molecules with more than 90% recovery and no change in molecule characteristics. The modeling of the virus removal process for VF membranes is based on the principles of microfiltration (MF) and ultrafiltration (UF), but with modifications for the much narrower separation difference, which is less than 2-fold for the separation of product molecules and virus particles. In this review, we introduce the materials and application of VF highlighting the unique characteristics properties of VF membranes through the steps of invention and subsequent development. We examine the virus removal mechanism and filtration models for VF to reproduce and predict the filtration behavior and virus reduction.
Collapse
Affiliation(s)
| | - Linda Gudex
- Science & Technology, Asahi Kasei Bioprocess America, Glenview, IL 60026, USA
| | - Sumith Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Alja'fari J, Sharvelle S, Branch A, Pecson B, Jahne M, Olivieri A, Arabi M, Garland JL, Gonzalez R. Assessing human-source microbial contamination of stormwater in the U.S. WATER RESEARCH 2025; 268:122640. [PMID: 39471764 PMCID: PMC11783576 DOI: 10.1016/j.watres.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Stormwater capture and use (SCU) projects have the potential to provide a significant portion of municipal water demand. However, uncertainty about the degree of microbial contamination in stormwater and the required treatment is a barrier for implementation of SCU projects. Stormwater runoff could become contaminated with human fecal matter in areas with deteriorating infrastructure where raw wastewater exfiltrates from sewer networks to stormwater collection networks, homeless encampments exist, or sanitary sewer overflows (SSOs) occur. Estimation of human fecal contamination can inform selection of stormwater treatment targets. This study investigates stormwater microbial contamination originating from human fecal matter using observed detections and concentrations of human microbial source tracking (MST) markers and potentially human-infectious pathogens (PHIPs). First, a systematic review complied measurements of human MST markers in wet and dry weather stormwater flows and influent wastewater. In addition, measurements of viral pathogens (e.g., adenoviruses, norovirus GI+GII, and enteroviruses) and protozoan pathogens (e.g., Giardia lamblia and Cryptosporidium parvum) in wet weather flows and influent wastewater were assessed. Human MST marker and PHIP data were statistically analyzed and applied to estimate a human fecal contamination analog (HFCA) which is an estimate of the amount of human fecal matter based on relative concentrations of microbial contaminants in stormwater compared to municipal wastewater. Human MST-based HFCAs in wet and dry weather flows ranged from <10-7.0 to 10-1.5 (median = 10-4.5) and 10-12 to 10-2.6 (median = 10-7.0), respectively. PHIP-based HFCAs in wet weather flows ranged from ∼10-8 to 10-0.14. Estimates of human MST-based HFCAs are more reliable than PHIP-based HFCAs because the current PHIP datasets are generally limited by the number of data points, percent detection, variability observed within the statistical distributions, and the geographical span of sampling locations. The use of human MST-based HFCAs is recommended to guide the selection of stormwater treatment process trains that are protective of public health based on the intended end use. Application of HFCA 10-1 (i.e., sewage dilution 10-1) remains a reasonable conservative estimate of human fecal contamination in stormwater to inform selection of pathogen log reduction targets based on the data presently available.
Collapse
Affiliation(s)
- Jumana Alja'fari
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA.
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, 700 Meridian Avenue, Fort Collins, CO 80523, USA
| | - Amos Branch
- Carollo Engineers, Inc., 2795 Mitchell Dr, Walnut Creek, CA 94598, USA
| | - Brian Pecson
- Trussell Technologies, 1939 Harrison Street, Oakland, CA 94612, USA
| | - Michael Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Adam Olivieri
- Environmental and Public Health Engineering, Inc., 1410 Jackson Street, Oakland, CA 94612, USA
| | - Mazdak Arabi
- Department of Civil and Environmental Engineering, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521, USA
| | - Jay L Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Raul Gonzalez
- H(2)O Molecular, 6746 Edinburgh Court, San Diego, CA 92120, USA
| |
Collapse
|
10
|
Zhang Y, Hossain MI, Yeo D, Niu T, Hwang S, Yoon D, Lim DJ, Wang Z, Jung S, Kwon H, Choi C. Impact of storage temperature and ultraviolet irradiation on rotavirus survival on food matrices. Food Res Int 2025; 200:115454. [PMID: 39779111 DOI: 10.1016/j.foodres.2024.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
This study investigated the survival of human rotavirus (HRV) on fresh beef, chicken, and lettuce stored at various temperatures, as well as the effect of UV-C exposure on HRV viability on these food surfaces. At 20 °C, the survival rate of three HRV strains (WA, 89-12C2, and DS-1) on beef, chicken, and lettuce decreased within 3 days, with the most significant reduction observed on beef. When stored at 4 °C, a significant reduction in HRV viability was observed by day 7, with the greatest decrease observed on beef, followed by chicken and lettuce. Conversely, storage at -20 °C for up to 28 days did not significantly reduce HRV viability on any of the food surfaces. Exposure to UV-C irradiation at a dosage of 100 mJ/cm2 reduced the viral titers on beef and chicken surfaces by approximately 1 log10 PFU/mL, while those on the surfaces of lettuce were more than 4 log10 PFU/mL. These findings indicate that HRV strains exhibit strong viability on beef, chicken, and lettuce surfaces, enduring extended periods at low temperatures, but display varying susceptibility to UV-C irradiation. Due to the persistence of HRV on contaminated food, implementing effective measures to prevent food contamination is crucial. The findings of this study contribute to the development of a robust sanitation strategy utilizing UV-C to mitigate foodborne HRV transmission.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Md Iqbal Hossain
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Daseul Yeo
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Teng Niu
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Seongwon Hwang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Danbi Yoon
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Dong Jae Lim
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Zhaoqi Wang
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Soontag Jung
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Hyojin Kwon
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, 4726, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
11
|
Gómez-Gómez C, Ramos-Barbero MD, Sala-Comorera L, Morales-Cortes S, Vique G, García-Aljaro C, Muniesa M. Persistence of crAssBcn phages in conditions of natural inactivation and disinfection process and their potential role as human source tracking markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177450. [PMID: 39536863 DOI: 10.1016/j.scitotenv.2024.177450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Due to their abundance in the human gut, human specificity, and global distribution, some crAss-like phages, including the original p-crAssphage, have been proposed as indicators of human fecal pollution suitable for microbial source tracking (MST). The prevalence of crAss-like phages in water, and consequently their usefulness as MST indicators, is determined by their ability to survive various inactivation and disinfection processes. Recently, we isolated new crAss-like phages (named crAssBcn phages) capable of infecting Bacteroides intestinalis and exhibiting a wide geographical distribution. Here, we assessed the infectivity and DNA integrity of three crAssBcn phages (ΦCrAssBcn6, 10, and 15) and ΦCrAss001, the first crAss-like phage isolated, at different pHs and temperatures, after UV and chlorine treatments, and under natural conditions. Their bacterial host, B. intestinalis and a siphovirus Bacteroides-infecting phage GA17-A were used as controls. Infectious crAssBcn phages remained stable for a month at 4, 22, and 37 °C, and at pH 7, but inactivated when exposed to pH 3. Infective crAssBcn phages decreased by 5 log10 after treatment with 10 ppm of chlorine for 1 min and after UV treatment at a fluence of 5.94 mJ/cm2. However, heat treatment at 60 and 70 °C resulted in only a moderate decrease (<1 log10 and almost 3 log10 units of reduction, respectively). Experiments under natural conditions in outdoor mesocosms revealed that inactivation rates for crAssBcn phages, as for the other microorganisms, were higher in summer (up to 6 log10) than in winter (<4 log10), suggesting a higher incidence of inactivation factors, such as sunlight and temperature, in the warmer months. B. intestinalis was significantly more prone to inactivation than phages in most conditions except for the irradiation treatment. In contrast, crAssBcn phage DNA remained stable, with minimal reduction under most of the tested conditions, except in the summer mesocosm and UV assays.
Collapse
Affiliation(s)
- Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maria Dolores Ramos-Barbero
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Laura Sala-Comorera
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Sara Morales-Cortes
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Gloria Vique
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
12
|
Romeo MA, Specchiarello E, Mija C, Zulian V, Francalancia M, Maggi F, Garbuglia AR, Lapa D. Heat Treatment as a Safe-Handling Procedure for Rift Valley Fever Virus. Pathogens 2024; 13:1089. [PMID: 39770349 PMCID: PMC11676096 DOI: 10.3390/pathogens13121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Rift Valley Fever virus (RVFV) is a mosquito-borne virus with high pathogenic potential in ruminants and humans. Due to its high potential for spreading, it is considered a priority pathogen, and it is included in the Bluepoint list of the World Health Organization (WHO). Given the high pathogenic potential of the virus, it is crucial to develop a rapid heat-mediated inactivation protocol to create a safer working environment, particularly in medical facilities that lack a biosafety level 3 laboratory required for direct handling of RVFV. Our results reveal the broad tissue tropism of RVFV, showing the virus's capacity for replication in various cell lines. In terms of the thermal stability of RVFV, our findings showed that a 70 °C heat treatment did not fully inactivate the virus within 15 min. However, when exposed to 80 °C and 95 °C, the virus was completely inactivated after 15 min and 5 min, respectively. Additionally, our results indicated that heat-treatment only slightly decreased the integrity of the RVFV genome whether there is a high or low number of viral RNA copies. Overall, the study established a straightforward protocol for heat inactivation that may be beneficial in handling clinical and research samples of RVFV.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Eliana Specchiarello
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Cosmina Mija
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Massimo Francalancia
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospedalieri (IFO), 00144 Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Disease “Lazzaro Spallanzani”—IRCCS, 00149 Rome, Italy
| |
Collapse
|
13
|
Kadji FMN, Shimizu M, Kotani K, Kishimoto M, Hiraoka Y. Chemical and Heat Treatment for Viral Inactivation in Porcine-Derived Gelatin. BMC Biotechnol 2024; 24:99. [PMID: 39639270 PMCID: PMC11619659 DOI: 10.1186/s12896-024-00922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND It is mandatory to demonstrate the removal or inactivation of potential viral contaminants in the manufacturing processes of pharmaceuticals derived from biomaterials. Porcine-derived gelatin is used in various medical fields, including regenerative medicine, tissue engineering, and medical devices. However, the steps of virus inactivation in the gelatin manufacturing process are poorly defined. In this study we evaluated virus inactivation in two steps of the gelatin manufacturing process. METHODS Pig skin (4.5 g), including solid pieces as intermediate products, was spiked with model viruses, including CPV (canine parvovirus), BAV (bovine adenovirus), BPIV3 (bovine parainfluenza type 3), PRV (pseudorabies virus), BReoV3 (bovine reovirus type 3), and PPV (porcine parvovirus), and underwent chemical treatment with alkaline ethanol or heat treatment at 62 °C followed by inoculation in relevant cell cultures. Viral titers in the samples were calculated based on the Behrens-Kärber method. RESULTS Model viruses were inactivated at different rates; however, effective inactivation of all model viruses was demonstrated by an LRV (log reduction value) over 4 by both chemical and heat treatment, and chemical treatment demonstrated rapid inactivation compared to heat treatment. CONCLUSION The chemical and heat treatment steps exhibited meaningful viral inactivation capacity. They are integrated parts in the extraction and manufacturing process of porcine-derived gelatin, ensuring virus safety for use in medical applications.
Collapse
Affiliation(s)
| | - Maiko Shimizu
- Biomedical Department, R&D Center, Nitta Gelatin Inc, 2-22, Futamata, Yao City, Osaka, 581-0024, Japan
| | - Kazuki Kotani
- Biomedical Department, R&D Center, Nitta Gelatin Inc, 2-22, Futamata, Yao City, Osaka, 581-0024, Japan
| | - Masanori Kishimoto
- Biomedical Department, R&D Center, Nitta Gelatin Inc, 2-22, Futamata, Yao City, Osaka, 581-0024, Japan
| | - Yosuke Hiraoka
- Biomedical Department, R&D Center, Nitta Gelatin Inc, 2-22, Futamata, Yao City, Osaka, 581-0024, Japan
| |
Collapse
|
14
|
Yang W, Cai C, Wang S, Wang X, Dai X. Unveiling the inactivation mechanisms of different viruses in sludge anaerobic digestion based on factors identification and damage analysis. BIORESOURCE TECHNOLOGY 2024; 413:131541. [PMID: 39341425 DOI: 10.1016/j.biortech.2024.131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Despite anaerobic digestion having potential for pathogen reduction in sewage sludge, the behaviors of viruses as the primary health concern are rarely studied. This study investigated the inactivation kinetics and mechanisms of four typical virus surrogates with different structures in mesophilic (MAD) and thermophilic (TAD) anaerobic digestion of sludge. Virus inactivation in MAD was virus-type-dependent correspondingly to different function loss. Temperature drove the faster inactivation proceeding for enveloped Phi6, while temperature and ammonia were the critical inactivation factors for nonenveloped MS2, causing genome degradation and protein functional damage. Interaction with sludge solids played critical role in DNA viruses T4 and Phix174 inactivation via inducing host binding function damage. By comparison, TAD enhanced viral protein denaturation, bringing efficient inactivation with reducing heterogeneity among nonenveloped viruses. These insights into unique virus behaviors in anaerobic digestion systems can provide guidance for developing more effective disinfection protocols and improving sludge biosafety.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Hamilton AN, Maes F, Reyes GYC, Almeida G, Li D, Uyttendaele M, Gibson KE. Machine Learning and Imputation to Characterize Human Norovirus Genotype Susceptibility to Sodium Hypochlorite. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:492-505. [PMID: 39259473 PMCID: PMC11525273 DOI: 10.1007/s12560-024-09613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Human norovirus (HuNoV) is the leading cause of foodborne illness in the developed world and a major contributor to gastroenteritis globally. Its low infectious dose and environmental persistence necessitate effective disinfection protocols. Sodium hypochlorite (NaOCl) bleach is a widely used disinfectant for controlling HuNoV transmission via contaminated fomites. This study aimed to evaluate the susceptibility of HuNoV genotypes (n = 11) from genogroups I, II, and IV to NaOCl in suspension. HuNoV was incubated for 1 and 5 min in diethyl pyrocarbonate (DEPC) treated water containing 50 ppm, 100 ppm, or 150 ppm NaOCl, buffered to maintain a pH between 7.0 and 7.5. Neutralization was achieved by a tenfold dilution into 100% fetal bovine serum. RNase pre-treatment followed by RT-qPCR was used to distinguish between infectious and non-infectious HuNoV. Statistical methods, including imputation, machine learning, and generalized linear models, were applied to process and analyze the data. Results showed that NaOCl reduced viral loads across all genotypes, though efficacy varied. Genotypes GI.1, GII.4 New Orleans, and GII.4 Sydney were the least susceptible, while GII.6 and GII.13 were the most susceptible. All NaOCl concentrations above 0 ppm were statistically indistinguishable, and exposure duration did not significantly affect HuNoV reduction, suggesting rapid inactivation at effective concentrations. For instance, some genotypes were completely inactivated within 1 min, rendering extended exposure unnecessary, while other genotypes maintained the initial concentration at both 1 and 5 min, indicating a need for longer contact times. These findings underscore the critical role of HuNoV genotype selection in testing disinfection protocols and optimizing NaOCl concentrations. Understanding HuNoV susceptibility to NaOCl bleach informs better disinfection strategies, aiding public health and food safety authorities in reducing HuNoV transmission and outbreaks.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Flor Maes
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- BESTMIX® Software, Vlaanderen, Maldegem, Belgium
| | - Génesis Yosbeth Chávez Reyes
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Steuben Foods Inc., Bozeman, Montana, United States
| | - Giselle Almeida
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Arkansas Children's Hospital, Little Rock, Arkansas, United States
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore (NUS), Singapore, 117542, Singapore
| | - Mieke Uyttendaele
- Food Microbiology and Food Preservation Research Unit, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
16
|
Kwon H, Lim DJ, Choi C. Prevention of foodborne viruses and pathogens in fresh produce and root vegetables. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:219-285. [PMID: 40023562 DOI: 10.1016/bs.afnr.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Every year, 1 in 10 people suffers from food poisoning, and in recent years, the highest number of foodborne outbreaks has been attributed to roots/underground vegetables and fresh produce. Major pathogens include as Escherichia coli, Salmonella enterica, Listeria monocytogenes, Human Norovirus, Hepatitis A virus and Cyclospora. The primary sources of contamination for agriculture products stem from uncontrolled exposure to soil, water, and animal waste. Contamination can occur in various ways during food cultivation, harvesting, processing, and distribution. Mechanical washing and disinfection are primarily employed as practices to control biological contaminants such as bacteria, viruses, and parasites. Current practices may encounter challenges such as microbial resistance to disinfectants or antibiotics, and the cleaning effectiveness could be compromised due to the internalization of bacteria and viruses into some plants. High-pressure processing, pulse electric fields, and cold plasma are environmentally friendly technologies, albeit with associated costs. Low-temperature sterilization technologies capable of controlling biological contaminants, such as bacteria and viruses, play a crucial role in preventing food safety issues. Compared to conventional cleaning methods, these technologies are effective in controlling microorganisms that are strongly attached to the food surface or internalized due to damage. Periodic surveillance is essential to ensure the overall microbiological safety of fresh produce and root vegetables.
Collapse
Affiliation(s)
- Hyojin Kwon
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Dong Jae Lim
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
17
|
Gerba CP, Boone S, Nims RW, Maillard JY, Sattar SA, Rubino JR, McKinney J, Ijaz MK. Mechanisms of action of microbicides commonly used in infection prevention and control. Microbiol Mol Biol Rev 2024; 88:e0020522. [PMID: 38958456 PMCID: PMC11426018 DOI: 10.1128/mmbr.00205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
SUMMARYUnderstanding how commonly used chemical microbicides affect pathogenic microorganisms is important for formulation of microbicides. This review focuses on the mechanism(s) of action of chemical microbicides commonly used in infection prevention and control. Contrary to the typical site-specific mode of action of antibiotics, microbicides often act via multiple targets, causing rapid and irreversible damage to microbes. In the case of viruses, the envelope or protein capsid is usually the primary structural target, resulting in loss of envelope integrity or denaturation of proteins in the capsid, causing loss of the receptor-binding domain for host cell receptors, and/or breakdown of other viral proteins or nucleic acids. However, for certain virucidal microbicides, the nucleic acid may be a significant site of action. The region of primary damage to the protein or nucleic acid is site-specific and may vary with the virus type. Due to their greater complexity and metabolism, bacteria and fungi offer more targets. The rapid and irreversible damage to microbes may result from solubilization of lipid components and denaturation of enzymes involved in the transport of nutrients. Formulation of microbicidal actives that attack multiple sites on microbes, or control of the pH, addition of preservatives or potentiators, and so on, can increase the spectrum of action against pathogens and reduce both the concentrations and times needed to achieve microbicidal activity against the target pathogens.
Collapse
Affiliation(s)
- Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Stephanie Boone
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | | | - Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Syed A Sattar
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Julie McKinney
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| | - M Khalid Ijaz
- Global Research and Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, New Jersey, USA
| |
Collapse
|
18
|
Chaplin M, Leung K, Szczuka A, Hansen B, Rockey NC, Henderson JB, Wigginton KR. Linear Mixed Model of Virus Disinfection by Free Chlorine to Harmonize Data Collected across Broad Environmental Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12260-12271. [PMID: 38923944 PMCID: PMC11238732 DOI: 10.1021/acs.est.4c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Despite the critical importance of virus disinfection by chlorine, our fundamental understanding of the relative susceptibility of different viruses to chlorine and robust quantitative relationships between virus disinfection rate constants and environmental parameters remains limited. We conducted a systematic review of virus inactivation by free chlorine and used the resulting data set to develop a linear mixed model that estimates chlorine inactivation rate constants for viruses based on experimental conditions. 570 data points were collected in our systematic review, representing 82 viruses over a broad range of environmental conditions. The harmonized inactivation rate constants under reference conditions (pH = 7.53, T = 20 °C, [Cl-] < 50 mM) spanned 5 orders of magnitude, ranging from 0.0196 to 1150 L mg-1 min-1, and uncovered important trends between viruses. Whereas common surrogate bacteriophage MS2 does not serve as a conservative chlorine disinfection surrogate for many human viruses, CVB5 was one of the most resistant viruses in the data set. The model quantifies the role of pH, temperature, and chloride levels across viruses, and an online tool allows users to estimate rate constants for viruses and conditions of interest. Results from the model identified potential shortcomings in current U.S. EPA drinking water disinfection requirements.
Collapse
Affiliation(s)
- Mira Chaplin
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| | - Kaming Leung
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| | - Aleksandra Szczuka
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| | - Brianna Hansen
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| | - Nicole C. Rockey
- Civil
and Environmental Engineering, Duke University, Durham, North Carolina, 27708, United States
| | - James B. Henderson
- Department
of Internal Medicine, University of Michigan
Medical School, NCRC Bldg. 16 #471C, 2800 Plymouth Rd., Ann
Arbor, Michigan 48109-2138, United States
| | - Krista R. Wigginton
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| |
Collapse
|
19
|
Jia J, Minella M, Ruiz MC, Decker J, Li D, Gonçalves NPF, Prevot AB, Lin T, Giannakis S. Small concentrations, big results: μM addition of photoactive iron oxides with PMS, PDS, or H 2O 2, leads to enhanced removal of viruses at near-neutral pH. WATER RESEARCH 2024; 258:121760. [PMID: 38795547 DOI: 10.1016/j.watres.2024.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
The photo-Fenton process is effective for pathogen removal, and its low-cost versions can be applied in resource-poor contexts. Herein, a photo-Fenton-like system was proposed using low concentrations of iron oxides (hematite and magnetite) and persulfates (peroxymonosulfate - PMS, and peroxydisulfate - PDS), which exhibited excellent inactivation performance towards MS2 bacteriophages. In the presence of bacteria, MS2 inactivation was inhibited in H2O2 and PDS systems but promoted in PMS-involved systems. The inactivation efficacy of all the proposed systems for mixed bacteria and viruses was greater than that of the sole bacteria, showing potential practical applications. The inactivation performance of humic acid-incorporated iron oxides mediating photo-Fenton-like processes was also studied; except for the PMS-involved system, the inactivation efficacy of the H2O2- and PDS-involved systems was inhibited, but the PDS-involved system was still acceptable (< 2 h). Reactive species exploration experiments indicated that ·OH was the main radical in the H2O2 and PDS systems, whereas 1O2 played a key role in the PMS-involved system. In summary, hematite- and magnetite-mediated persulfate-assisted photo-Fenton-like systems at low concentrations can be used as alternatives to the photo-Fenton process for virus inactivation in sunny areas, providing more possibilities for point-of-use drinking water treatment in developing countries.
Collapse
Affiliation(s)
- Jialin Jia
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China; Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Mercedes Cid Ruiz
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Jeremie Decker
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Nuno P F Gonçalves
- CICECO - Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125 Turin, Italy
| | | | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040, Madrid, Spain.
| |
Collapse
|
20
|
Hadi M, Kheiri R, Baghban M, Sayahi A, Nasseri S, Alimohammadi M, Khastoo H, Aminabad MS, Vaghefi KA, Vakili B, Tashauoei H, Borji SH, Iravani E. The occurrence of SARS-CoV-2 in Tehran's municipal wastewater: performance of treatment systems and feasibility of wastewater-based epidemiology. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:281-293. [PMID: 38887767 PMCID: PMC11180145 DOI: 10.1007/s40201-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 06/20/2024]
Abstract
Analyzing municipal wastewater for the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) helps to evaluate the efficacy of treatment systems in mitigating virus-related health risks. This research investigates wastewater treatment plants' (WWTPs) performance in the reduction of SARS-CoV-2 from municipal wastewater in Tehran, Iran. SARS-CoV-2 RNA was measured within sewers, at the inlets, and after the primary and secondary treatment stages of three main WWTPs. Within sewers, the average virus titer stood at 58,600 gc/L, while at WWTP inlets, it measured 38,136 gc/L. A substantial 67% reduction in virus titer was observed at the inlets, accompanied by a 2-log reduction post-primary treatment. Remarkably, the biological treatment process resulted in complete virus elimination across all plants. Additionally, a notable positive correlation (r > 0.8) was observed between temperature and virus titer in wastewater. Using wastewater-based epidemiology (WBE) technique and the estimated SARS-CoV-2 RNA shedding rates, the infection prevalence among populations served by WWTPs found to be between 0.128% to 0.577%. In conclusion, this research not only advances our understanding of SARS-CoV-2 dynamics within wastewater treatment systems but also provides practical insights for enhancing treatment efficiency and implementing the feasibility of WBE strategies in Tehran. These implications contribute to the broader efforts to protect public health and mitigate the impact of future viral outbreaks. Graphical abstract
Collapse
Affiliation(s)
- Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Roohollah Kheiri
- Water Quality Control Office, Alborz Province Water and Wastewater Company, Karaj, Iran
| | - Mahtab Baghban
- Reference Laboratory of Water and Wastewater, Tehran Province Water and Wastewater Company, Tehran, Iran
| | - Ahmad Sayahi
- Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran
| | - Simin Nasseri
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Khastoo
- Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran
| | - Mehri Solaimany Aminabad
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Kooshiar Azam Vaghefi
- Manager of Water Quality Control Bureau, National Water and Wastewater Engineering Company, Tehran, Iran
| | - Behnam Vakili
- Office of Improvement on Wastewater Operation Procedures, National Water and Wastewater Engineering Company, Tehran, Iran
| | - Hamidreza Tashauoei
- Department of Environmental Health Engineering, School of Health, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Saeedeh Hemmati Borji
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Iravani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Rindhe S, Khan A, Priyadarshi R, Chatli M, Wagh R, Kumbhar V, Wankar A, Rhim JW. Application of bacteriophages in biopolymer-based functional food packaging films. Compr Rev Food Sci Food Saf 2024; 23:e13333. [PMID: 38571439 DOI: 10.1111/1541-4337.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Recently, food spoilage caused by pathogens has been increasing. Therefore, applying control strategies is essential. Bacteriophages can potentially reduce this problem due to their host specificity, ability to inhibit bacterial growth, and extend the shelf life of food. When bacteriophages are applied directly to food, their antibacterial activity is lost. In this regard, bacteriophage-loaded biopolymers offer an excellent option to improve food safety by extending their shelf life. Applying bacteriophages in food preservation requires comprehensive and structured information on their isolation, culturing, storage, and encapsulation in biopolymers for active food packaging applications. This review focuses on using bacteriophages in food packaging and preservation. It discusses the methods for phage application on food, their use for polymer formulation and functionalization, and their effect in enhancing food matrix properties to obtain maximum antibacterial activity in food model systems.
Collapse
Affiliation(s)
- Sandeep Rindhe
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Manish Chatli
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Goats (CIRG), Makhdoom, India
| | - Rajesh Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary Animal Sciences University, Ludhiana, India
| | - Vishal Kumbhar
- Department of Animal Husbandry, State Government, Maharashtra, India
| | - Alok Wankar
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Ma JX, Wang X, Pan YR, Wang ZY, Guo X, Liu J, Ren NQ, Butler D. Data-driven systematic analysis of waterborne viruses and health risks during the wastewater reclamation process. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100328. [PMID: 37965045 PMCID: PMC10641159 DOI: 10.1016/j.ese.2023.100328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023]
Abstract
Waterborne viral epidemics are a major threat to public health. Increasing interest in wastewater reclamation highlights the importance of understanding the health risks associated with potential microbial hazards, particularly for reused water in direct contact with humans. This study focused on identifying viral epidemic patterns in municipal wastewater reused for recreational applications based on long-term, spatially explicit global literature data during 2000-2021, and modelled human health risks from multiple exposure pathways using a well-established quantitative microbial risk assessment methodology. Global median viral loads in municipal wastewater ranged from 7.92 × 104 to 1.4 × 106 GC L-1 in the following ascending order: human adenovirus (HAdV), norovirus (NoV) GII, enterovirus (EV), NoV GI, rotavirus (RV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following secondary or tertiary wastewater treatment, NoV GI, NoV GII, EV, and RV showed a relatively higher and more stable log reduction value with medians all above 0.8 (84%), whereas SARS-CoV-2 and HAdV showed a relatively lower reduction, with medians ranging from 0.33 (53%) to 0.55 (72%). A subsequent disinfection process effectively enhanced viral removal to over 0.89-log (87%). The predicted event probability of virus-related gastrointestinal illness and acute febrile respiratory illnesses in reclaimed recreational water exceeded the World Health Organization recommended recreational risk benchmark (5% and 1.9%, respectively). Overall, our results provided insights on health risks associated with reusing wastewater for recreational purposes and highlighted the need for establishing a regulatory framework ensuring the safety management of reclaimed waters.
Collapse
Affiliation(s)
- Jia-Xin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Yi-Rong Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Yue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xuesong Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - David Butler
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| |
Collapse
|
23
|
Nema RK, Singh AK, Nagar J, Prajapati B, Sikenis M, Singh S, Diwan V, Singh P, Tiwari R, Mishra PK. Investigating the Presence of Rotavirus in Wastewater Samples of Bhopal Region, India, by Utilizing Droplet Digital Polymerase Chain Reaction. Cureus 2024; 16:e58882. [PMID: 38800300 PMCID: PMC11116745 DOI: 10.7759/cureus.58882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Rotavirus-induced viral gastroenteritis outbreaks result in over two million hospitalizations globally yearly. Wastewater-based epidemiology (WBE) has emerged as a crucial tool for detecting and monitoring viral outbreaks. The adoption of WBE has been instrumental in the early detection and surveillance of such viral outbreaks, providing a non-invasive method to assess public health. OBJECTIVE This study aims to utilize droplet digital polymerase chain reaction (ddPCR) technology to detect and quantify Rotavirus in wastewater samples collected from the Bhopal region of India, thereby contributing to the understanding and management of viral gastroenteritis outbreaks through environmental surveillance. METHODS In this study, we used ddPCR to detect and quantify Rotavirus in wastewater samples collected from the Bhopal region of India. We monitored its viral presence in municipal sewage treatment plants bi-weekly using an advanced ddPCR assay. Targeting the rotavirus non-structural protein 3 (NSP-3) region with custom primers and TaqMan probes, we detected virus concentration employing polyethylene glycol (PEG). Following RNA isolation, complementary DNA (cDNA) synthesis, and ddPCR analysis, our novel method eliminated standard curve dependence, propelling virus research and treatment forward. RESULTS Out of the 42 samples collected, a 16.60% positivity rate was observed, indicating a moderate presence of Rotavirus in Bhopal. The wastewater treatment plants (WWTP) attached to a hospital exhibited a 42.85% positivity rate, indicating the need for targeted monitoring. Leveraging ddPCR, precise quantification of rotavirus concentrations (ranging from 0.75 to 28.9 copies/µL) facilitated understanding and supported effective remediation. CONCLUSIONS This study emphasizes the importance of vigilant wastewater surveillance, especially in WWTPs with higher rotavirus prevalence. The significance of ddPCR in comparison to conventional and real-time PCR lies in its superior sensitivity and specificity in detecting and quantifying positive samples. Furthermore, it can identify positive samples even in the smallest quantities without the need for a standard curve to evaluate. This makes ddPCR a valuable tool for accurate and precise detection and quantification of samples.
Collapse
Affiliation(s)
- Ram K Nema
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Ashutosh K Singh
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Juhi Nagar
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Bhavna Prajapati
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Mudra Sikenis
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Pushpendra Singh
- Division of Microbial Genomics, Indian Council of Medical Research (ICMR) - National Institute for Research in Tribal Health, Jabalpur, IND
| | - Rajnarayan Tiwari
- Division of Epidemiology and Public Health, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Pradyumna K Mishra
- Division of Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| |
Collapse
|
24
|
Zarei Mahmoudabadi T, Pasdar P, Eslami H. Exposure risks to SARS-CoV-2 (COVID-19) in wastewater treatment plants: a review. SUSTAINABLE WATER RESOURCES MANAGEMENT 2024; 10:85. [DOI: 10.1007/s40899-024-01065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025]
|
25
|
Torii S, Gouttenoire J, Kumar K, Antanasijevic A, Kohn T. Influence of Amino Acid Substitutions in Capsid Proteins of Coxsackievirus B5 on Free Chlorine and Thermal Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5279-5289. [PMID: 38488515 PMCID: PMC10976892 DOI: 10.1021/acs.est.3c10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division
of Gastroenterology and Hepatology, Lausanne
University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Kiruthika Kumar
- Virology
and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aleksandar Antanasijevic
- Virology
and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Heffron J, Samsami M, Juedemann S, Lavin J, Tavakoli Nick S, Kieke BA, Mayer BK. Mitigation of viruses of concern and bacteriophage surrogates via common unit processes for water reuse: A meta-analysis. WATER RESEARCH 2024; 252:121242. [PMID: 38342066 DOI: 10.1016/j.watres.2024.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Water reuse is a growing global reality. In regulating water reuse, viruses have come to the fore as key pathogens due to high shedding rates, low infectious doses, and resilience to traditional wastewater treatments. To demonstrate the high log reductions required by emerging water reuse regulations, cost and practicality necessitate surrogates for viruses for use as challenge organisms in unit process evaluation and monitoring. Bacteriophage surrogates that are mitigated to the same or lesser extent than viruses of concern are routinely used for individual unit process testing. However, the behavior of these surrogates over a multi-barrier treatment train typical of water reuse has not been well-established. Toward this aim, we performed a meta-analysis of log reductions of common bacteriophage surrogates for five treatment processes typical of water reuse treatment trains: advanced oxidation processes, chlorination, membrane filtration, ozonation, and ultraviolet (UV) disinfection. Robust linear regression was applied to identify a range of doses consistent with a given log reduction of bacteriophages and viruses of concern for each treatment process. The results were used to determine relative conservatism of surrogates. We found that no one bacteriophage was a representative or conservative surrogate for viruses of concern across all multi-barrier treatments (encompassing multiple mechanisms of virus mitigation). Rather, a suite of bacteriophage surrogates provides both a representative range of inactivation and information about the effectiveness of individual processes within a treatment train. Based on the abundance of available data and diversity of virus treatability using these five key water reuse treatment processes, bacteriophages MS2, phiX174, and Qbeta were recommended as a core suite of surrogates for virus challenge testing.
Collapse
Affiliation(s)
- Joe Heffron
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Dr., Marshfield, WI 54449, USA.
| | - Maryam Samsami
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Samantha Juedemann
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Jennifer Lavin
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Shadi Tavakoli Nick
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Burney A Kieke
- Marshfield Clinic Research Institute, Center for Clinical Epidemiology and Population Health, 1000 N Oak Ave., Marshfield, WI 54449, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| |
Collapse
|
27
|
Atrashkevich A, Alum A, Stirling R, Abbaszadegan M, Garcia-Segura S. Approaching easy water disinfection for all: Can in situ electrochlorination outperform conventional chlorination under realistic conditions? WATER RESEARCH 2024; 250:121014. [PMID: 38128307 DOI: 10.1016/j.watres.2023.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Electrochlorination has gained research interest for its potential application as decentralized water treatment. A number of studies have displayed promising efficiency for water disinfection. However, a comprehensive comparison of in situ electrodisinfection to existing disinfection techniques, particularly under realistic water composition and flow rates, still needs additional research efforts. The aim of this study is to evaluate in situ electrochlorination while comparing the treatment with conventional chemical chlorination for point-of-entry decentralized disinfection at the household level. An electrochemical flow cell reactor was operated in a single pass mode considering water flow and water consumption for a household of four family members. Disinfection efficiency assessment of both electrochemical and chemical chlorination was conducted using bacterial and viral surrogates, E. coli and MS2 bacteriophage. Furthermore, a techno-economic analysis was conducted, using the levelized cost of water, to compare two electrochemical chlorination scenarios (i.e., electrical grid energy use, and solar panel powered system) and benchmarked against the baseline treatment of chemical chlorination. The findings revealed increased inactivation efficiency of in situ electrochlorination over conventional chlorination (p-value < 0.05). The synergetic impact of radicals and chlorine, and/or contribution of high chlorine concentration at acidic pH near anode surface were identified as key factors that could enhance disinfection performance of in situ electrochlorination. The techno-economic analysis demonstrated that electrochemical treatment, when operated using renewable energy sources, is not only a more environmentally sustainable approach, but also emerges as a more economically feasible solution for decentralized water treatment application. The results highlight that in situ electrochlorination is a more advanced alternative to decentralized water chlorination. However, further fundamental research on products and by-products formation under various water matrices is required.
Collapse
Affiliation(s)
- Aksana Atrashkevich
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Tempe, AZ 85287-3005, USA
| | - Absar Alum
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Water and Environmental Technology Center, Arizona State University, Tempe, AZ 85281, USA
| | - Robert Stirling
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Tempe, AZ 85287-3005, USA
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Water and Environmental Technology Center, Arizona State University, Tempe, AZ 85281, USA
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Tempe, AZ 85287-3005, USA.
| |
Collapse
|
28
|
Luo H, Zhang S, Zhong L. Ultraviolet germicidal irradiation: A prediction model to estimate UV-C-induced infectivity loss in single-strand RNA viruses. ENVIRONMENTAL RESEARCH 2024; 241:117704. [PMID: 37984783 DOI: 10.1016/j.envres.2023.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet germicidal irradiation (UVGI) disinfection technology is effective in inactivating microorganisms. However, its performance can vary against different microorganisms due to their diverse structural and genomic features. Thus, rapid predictions of UV (254 nm) inactivation kinetics are essential, particularly for highly infectious emerging pathogens, such as SARS-CoV-2, during the extemporary COVID-19 pandemic. In this study, aiming at single-strand RNA (ssRNA) viruses, an improved genomic model was introduced to predict the UV inactivation kinetics of viral genomes using genome sequence data. First, the overall virus infectivity loss in an aqueous matrix was estimated as the sum of damage to both the entire genome and the protein capsid. Then, the "UV rate constant ratio of aerosol and liquid" was used to convert the UV rate constant for viruses in a liquid-based matrix to an airborne state. The prediction model underwent both quantitative and qualitative validation using experimental data from this study and the literature. Finally, with the goal of mitigating potential airborne transmission of ssRNA viruses in indoor environments, this paper summarizes existing in-duct UVGI system designs and evaluates their germicidal performance. The prediction model may serve as a preliminary tool to assess the effectiveness of a UVGI system for emerging or unculturable viruses or to estimate the required UV dose when designing such a system.
Collapse
Affiliation(s)
- Hao Luo
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G 1H9, Canada
| | - Shuce Zhang
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Lexuan Zhong
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
29
|
Yang L, Li L, Liu R, Xie C, Zhao J, Chang W, Chen L, Yan Y, Zhang N, Zhang W, Liu B, Yang L. Cationic fluorescent carbon dots with solution ultra-stability and its rapid/on-site sensing application for HClO. Talanta 2024; 267:125137. [PMID: 37666083 DOI: 10.1016/j.talanta.2023.125137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Carbon dots (CDs) as a remarkable fluorescent nanomaterial have the advantages of easy preparation, good photostability and high sensitivity. However, the poor aqueous solution stability of carbon dots largely limited their practical application due to the characteristic of easily forming precipitation for long time storage. Here, a kind of cationic fluorescent carbon dots CDs-P(Ph)3 was designed by introducing a cationic compound, (4-carboxybutyl) triphenyl phosphonium bromide, to construct an electrostatic shell outside the dots. Such electrostatic shell could highly improve carbon dots stability in an aqueous solution to make CDs-P(Ph)3 stable for long-term storage with negligible aggregation. Meanwhile, the sensitivity of CDs-P(Ph)3 for hypochlorous acid (HClO) was also enhanced on the basis of the electron-withdrawing effect of cationic substituents on the surface of carbon dots. The limit of detection of CDs-P(Ph)3 for HClO was as low as ∼0.32 μM. Additionally, the fluorescence of CDs-P(Ph)3 could be rapid quenched by HClO with a quenching efficiency of more than 80% within 30 s. The excellent stability of CDs-P(Ph)3 in an aqueous solution made it suitable for on-site detecting HClO in real samples, such as tap, well and lake water. Such designed fluorescent nanomaterial would provide a practical application pathway for optical sensing detection in environmental samples.
Collapse
Affiliation(s)
- Linlin Yang
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Renyong Liu
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Chenggen Xie
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Jun Zhao
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Wengui Chang
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Lijuan Chen
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Yehan Yan
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Ningning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Bianhua Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
30
|
Boone SA, Ijaz MK, Bright KR, Silva-Beltran NP, Nims RW, McKinney J, Gerba CP. Antiviral Natural Products, Their Mechanisms of Action and Potential Applications as Sanitizers and Disinfectants. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:265-280. [PMID: 37906416 DOI: 10.1007/s12560-023-09568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
Plant extracts, natural products and plant oils contain natural virucidal actives that can be used to replace active ingredients in commercial sanitizers and disinfectants. This review focuses on the virucidal mechanisms of natural substances that may exhibit potential for indoor air and fomite disinfection. Review of scientific studies indicates: (1) most natural product studies use crude extracts and do not isolate or identify exact active antiviral substances; (2) many natural product studies contain unclear explanations of virucidal mechanisms of action; (3) natural product evaluations of virucidal activity should include methods that validate efficacy under standardized disinfectant testing procedures (e.g., carrier tests on applicable surfaces or activity against aerosolized viruses, etc.). The development of natural product disinfectants requires a better understanding of the mechanisms of action (MOA), chemical profiles, compound specificities, activity spectra, and the chemical formulations required for maximum activity. Combinations of natural antiviral substances and possibly the addition of synthetic compounds might be needed to increase inactivation of a broader spectrum of viruses, thereby providing the required efficacy for surface and air disinfection.
Collapse
Affiliation(s)
- Stephanie A Boone
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Kelly R Bright
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | | | | | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
31
|
Wang J, Chen W, Wang T, Reid E, Krall C, Kim J, Zhang T, Xie X, Huang CH. Bacteria and Virus Inactivation: Relative Efficacy and Mechanisms of Peroxyacids and Chlor(am)ine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18710-18721. [PMID: 36995048 PMCID: PMC10690719 DOI: 10.1021/acs.est.2c09824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Peroxyacids (POAs) are a promising alternative to chlorine for reducing the formation of disinfection byproducts. However, their capacity for microbial inactivation and mechanisms of action require further investigation. We evaluated the efficacy of three POAs (performic acid (PFA), peracetic acid (PAA), and perpropionic acid (PPA)) and chlor(am)ine for inactivation of four representative microorganisms (Escherichia coli (Gram-negative bacteria), Staphylococcus epidermidis (Gram-positive bacteria), MS2 bacteriophage (nonenveloped virus), and Φ6 (enveloped virus)) and for reaction rates with biomolecules (amino acids and nucleotides). Bacterial inactivation efficacy (in anaerobic membrane bioreactor (AnMBR) effluent) followed the order of PFA > chlorine > PAA ≈ PPA. Fluorescence microscopic analysis indicated that free chlorine induced surface damage and cell lysis rapidly, whereas POAs led to intracellular oxidative stress through penetrating the intact cell membrane. However, POAs (50 μM) were less effective than chlorine at inactivating viruses, achieving only ∼1-log PFU removal for MS2 and Φ6 after 30 min of reaction in phosphate buffer without genome damage. Results suggest that POAs' unique interaction with bacteria and ineffective viral inactivation could be attributed to their selectivity toward cysteine and methionine through oxygen-transfer reactions and limited reactivity for other biomolecules. These mechanistic insights could inform the application of POAs in water and wastewater treatment.
Collapse
Affiliation(s)
- Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wensi Chen
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elliot Reid
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Caroline Krall
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tianqi Zhang
- School
of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique FÉdÉrale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xing Xie
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
32
|
Torii S, David SC, Larivé O, Cariti F, Kohn T. Observed Kinetics of Enterovirus Inactivation by Free Chlorine Are Host Cell-Dependent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18483-18490. [PMID: 36649532 DOI: 10.1021/acs.est.2c07048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Virucidal efficacies of disinfectants are typically assessed by infectivity assay utilizing a single type of host cell. Enteroviruses infect multiple host cells via various entry routes, and each entry route may be impaired differently by a given disinfectant. Yet, it is unknown how the choice of host cells affects the observed inactivation kinetics. Here, we evaluated the inactivation kinetics of echovirus 11 (E11) by free chlorine, ultraviolet (UV) irradiation, and heat, using three different host cells (BGMK, RD, and A549). Inactivation rates were independent of the host cell for treatment of E11 by UV or heat. Conversely, E11 inactivation by free chlorine occurred 2-fold faster when enumerated on BGMK cells compared with RD and A549 cells. Host cell-dependent inactivation kinetics by free chlorine were also observed for echovirus 7, 9, and 13, and coxsackievirus A9. E11 inactivation by free chlorine was partly caused by a loss in host cell attachment, which was most pronounced for BGMK cells. BGMK cells lack the attachment receptor CD55 and a key subunit of the uncoating receptor β2M, which may contribute to the differential inactivation kinetics for this cell type. Consequently, inactivation kinetics of enteroviruses should be assessed using host cells with different receptor profiles.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Shannon Christa David
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Odile Larivé
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Federica Cariti
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
33
|
Son JW, Han S, Hyun SW, Song MS, Ha SD. Synergistic effects of sequential treatment using disinfectant and e-beam for inactivation of hepatitis a virus on fresh vegetables. Food Res Int 2023; 173:113254. [PMID: 37803566 DOI: 10.1016/j.foodres.2023.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Hepatitis A virus (HAV) has adversely affected public health worldwide, causing an economic burden on many countries. Fresh vegetables are reported as a source of HAV infections during production, harvesting, and distribution, which cause the emergence of foodborne illnesses. Therefore, in this study, the synergistic effects of chemical (sodium hypochlorite [NaOCl] and chlorine dioxide [ClO2]) and physical (electron-beam [e-beam] irradiation) sequential treatment for HAV inactivation on fresh vegetables were investigated, and the physicochemical quality changes of vegetables were evaluated after each treatment. On bell pepper and cucumber sequentially treated with NaOCl (50-500 ppm) and e-beam (1-5 kGy), the HAV titer was reduced by 0.19-4.69 and 0.28-4.78 log10 TCID50/mL, respectively. Sequential treatment with ClO2 (10-250 ppm) and e-beam (1-5 kGy) reduced the HAV titer on bell pepper and cucumber by 0.41-4.78 and 0.26-4.80 log10 TCID50/mL, respectively. The sequential treatments steadily decreased the HAV titers on each food by a significant difference (p < 0.05) compared to the controls. The treatment combinations of 500 ppm NaOCl and 3 kGy (e-beam) on bell pepper and 150 ppm NaOCl and 1 kGy (e-beam) on cucumber provided maximum synergistic effects. It was also found that sequential treatment with 50 ppm ClO2 and 5 kGy (e-beam) on bell pepper and 10 ppm ClO2 and 5 kGy (e-beam) on cucumber most efficiently inactivated HAV. Additionally, bell pepper and cucumber showed no significant quality changes (p < 0.05) after the treatment. Therefore, the sequential treatment with NaOCl or ClO2 and e-beam is expected to effectively control HAV on fresh vegetables without changing the food quality compared to either treatment alone.
Collapse
Affiliation(s)
- Jeong Won Son
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Sangha Han
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Seok-Woo Hyun
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Min Su Song
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
34
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
35
|
Bernardy C, Malley J. Impacts of Surface Characteristics and Dew Point on the Blue-Light (BL 405) Inactivation of Viruses. Microorganisms 2023; 11:2638. [PMID: 38004651 PMCID: PMC10673487 DOI: 10.3390/microorganisms11112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The increased prevalence of multidrug-resistant organisms (MDROs), healthcare associated infections (HAIs), and the recent COVID-19 pandemic has caused the photoinactivation industry to explore alternative wavelengths. Blue light (BL405) has gained significant interest as it is much less harmful to the skin and eyes than traditional germicidal wavelengths; therefore, in theory, it can be used continuously with human exposure. At present, the viricidal effects of BL405 are largely unknown as the literature predominately addresses bacterial disinfection performed with this wavelength. This work provides novel findings to the industry, reporting on the virucidal effects of BL405 on surfaces. This research utilizes three surfaces: ceramic, PTFE, and stainless steel. The efficacy of BL405 inactivation varied by surface type, which was due to surface characteristics, such as the contact angle, porosity, zeta potential, and reflectivity. Additionally, the effect of the dew point on BL405 inactivation efficacy was determined. This research is the first to study the effects of the dew point on the virucidal effectiveness of BL405 surface inactivation. The effects of the dew point were significant for all surfaces and the control experiments. The high-dew-point conditions (18 °C) yielded higher levels of BL405 inactivation and viral degradation for the experiments and controls, respectively.
Collapse
Affiliation(s)
| | - James Malley
- Department of Civil and Environmental Engineering, College of Engineering & Physical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
36
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
37
|
Ashokkumar S, Kaushik NK, Han I, Uhm HS, Park JS, Cho GS, Oh YJ, Shin YO, Choi EH. Persistence of Coronavirus on Surface Materials and Its Control Measures Using Nonthermal Plasma and Other Agents. Int J Mol Sci 2023; 24:14106. [PMID: 37762409 PMCID: PMC10531613 DOI: 10.3390/ijms241814106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yung Oh Shin
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
38
|
Dunn FB, Silverman AI. Sunlight photolysis of SARS-CoV-2 N1 gene target in the water environment: considerations for the environmental surveillance of wastewater-impacted surface waters. JOURNAL OF WATER AND HEALTH 2023; 21:1228-1241. [PMID: 37756191 PMCID: wh_2023_091 DOI: 10.2166/wh.2023.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 has been used around the world to supplement clinical testing data for situational awareness of COVID-19 disease trends. Many regions of the world lack centralized wastewater collection and treatment infrastructure, which presents additional considerations for wastewater surveillance of SARS-CoV-2, including environmental decay of the RT-qPCR gene targets used for quantification of SARS-CoV-2 virions. Given the role of sunlight in the environmental decay of RNA, we evaluated sunlight photolysis kinetics of the N1 gene target in heat-inactivated SARS-CoV-2 with a solar simulator under laboratory conditions. Insignificant photolysis of the N1 target was observed in a photosensitizer-free matrix. Conversely, significant decay of the N1 target was observed in wastewater at a shallow depth (<1 cm). Given that sunlight irradiance is affected by several environmental factors, first-order decay rate models were used to evaluate the effect of water column depth, time of the year, and latitude on decay kinetics. Decay rate constants were found to decrease significantly with greater depth of the well-mixed water column, at high latitudes, and in the winter. Therefore, sunlight-mediated decay of the N1 gene target is likely to be minimal, and is unlikely to confound results from wastewater-based epidemiology programs utilizing wastewater-impacted surface waters.
Collapse
Affiliation(s)
- Fiona B Dunn
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA E-mail:
| | - Andrea I Silverman
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
39
|
Sun W, Jing Z, Zhao Z, Yin R, Santoro D, Mao T, Lu Z. Dose-Response Behavior of Pathogens and Surrogate Microorganisms across the Ultraviolet-C Spectrum: Inactivation Efficiencies, Action Spectra, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10891-10900. [PMID: 37343195 DOI: 10.1021/acs.est.3c00518] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The dose-response behavior of pathogens and inactivation mechanisms by UV-LEDs and excimer lamps remains unclear. This study used low-pressure (LP) UV lamps, UV-LEDs with different peak wavelengths, and a 222 nm krypton chlorine (KrCl) excimer lamp to inactivate six microorganisms and to investigate their UV sensitivities and electrical energy efficiencies. The 265 nm UV-LED had the highest inactivation rates (0.47-0.61 cm2/mJ) for all tested bacteria. The bacterial sensitivity strongly fitted the absorption curve of nucleic acids at wavelengths of 200-300 nm; however, indirect damage induced by reactive oxygen species (ROS) was the leading cause of bacterial inactivation under 222 nm UV irradiation. In addition, the guanine and cytosine (GC) content and cell wall constituents of bacteria affect inactivation efficiency. The inactivation rate constant of Phi6 (0.13 ± 0.002 cm2/mJ) at 222 nm due to lipid envelope damage was significantly higher than other UVC (0.006-0.035 cm2/mJ). To achieve 2log reduction, the LP UV lamp had the best electrical energy efficiency (required less energy, average 0.02 kWh/m3) followed by 222 nm KrCl excimer lamp (0.14 kWh/m3) and 285 nm UV-LED (0.49 kWh/m3).
Collapse
Affiliation(s)
- Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, PR China
| | | | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
- MW Technologies, Inc., London, Ontario L8N1E, Canada
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Bernhard GH, Madronich S, Lucas RM, Byrne SN, Schikowski T, Neale RE. Linkages between COVID-19, solar UV radiation, and the Montreal Protocol. Photochem Photobiol Sci 2023; 22:991-1009. [PMID: 36995652 PMCID: PMC10062285 DOI: 10.1007/s43630-023-00373-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 03/31/2023]
Abstract
There are several connections between coronavirus disease 2019 (COVID-19), solar UV radiation, and the Montreal Protocol. Exposure to ambient solar UV radiation inactivates SARS-CoV-2, the virus responsible for COVID-19. An action spectrum describing the wavelength dependence of the inactivation of SARS-CoV-2 by UV and visible radiation has recently been published. In contrast to action spectra that have been assumed in the past for estimating the effect of UV radiation on SARS-CoV-2, the new action spectrum has a large sensitivity in the UV-A (315-400 nm) range. If this "UV-A tail" is correct, solar UV radiation could be much more efficient in inactivating the virus responsible for COVID-19 than previously thought. Furthermore, the sensitivity of inactivation rates to the total column ozone would be reduced because ozone absorbs only a small amount of UV-A radiation. Using solar simulators, the times for inactivating SARS-CoV-2 have been determined by several groups; however, many measurements are affected by poorly defined experimental setups. The most reliable data suggest that 90% of viral particles embedded in saliva are inactivated within ~ 7 min by solar radiation for a solar zenith angle (SZA) of 16.5° and within ~ 13 min for a SZA of 63.4°. Slightly longer inactivation times were found for aerosolised virus particles. These times can become considerably longer during cloudy conditions or if virus particles are shielded from solar radiation. Many publications have provided evidence of an inverse relationship between ambient solar UV radiation and the incidence or severity of COVID-19, but the reasons for these negative correlations have not been unambiguously identified and could also be explained by confounders, such as ambient temperature, humidity, visible radiation, daylength, temporal changes in risk and disease management, and the proximity of people to other people. Meta-analyses of observational studies indicate inverse associations between serum 25-hydroxy vitamin D (25(OH)D) concentration and the risk of SARS-CoV-2 positivity or severity of COVID-19, although the quality of these studies is largely low. Mendelian randomisation studies have not found statistically significant evidence of a causal effect of 25(OH)D concentration on COVID-19 susceptibility or severity, but a potential link between vitamin D status and disease severity cannot be excluded as some randomised trials suggest that vitamin D supplementation is beneficial for people admitted to a hospital. Several studies indicate significant positive associations between air pollution and COVID-19 incidence and fatality rates. Conversely, well-established cohort studies indicate no association between long-term exposure to air pollution and infection with SARS-CoV-2. By limiting increases in UV radiation, the Montreal Protocol has also suppressed the inactivation rates of pathogens exposed to UV radiation. However, there is insufficient evidence to conclude that the expected larger inactivation rates without the Montreal Protocol would have had tangible consequences on the progress of the COVID-19 pandemic.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA.
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - S N Byrne
- Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Sydney, Australia
| | - T Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - R E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- School of Public Health, University of Queensland, Brisbane, Australia.
| |
Collapse
|
41
|
Bernhard GH, Bais AF, Aucamp PJ, Klekociuk AR, Liley JB, McKenzie RL. Stratospheric ozone, UV radiation, and climate interactions. Photochem Photobiol Sci 2023; 22:937-989. [PMID: 37083996 PMCID: PMC10120513 DOI: 10.1007/s43630-023-00371-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 04/14/2023]
Abstract
This assessment provides a comprehensive update of the effects of changes in stratospheric ozone and other factors (aerosols, surface reflectivity, solar activity, and climate) on the intensity of ultraviolet (UV) radiation at the Earth's surface. The assessment is performed in the context of the Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments and Adjustments. Changes in UV radiation at low- and mid-latitudes (0-60°) during the last 25 years have generally been small (e.g., typically less than 4% per decade, increasing at some sites and decreasing at others) and were mostly driven by changes in cloud cover and atmospheric aerosol content, caused partly by climate change and partly by measures to control tropospheric pollution. Without the Montreal Protocol, erythemal (sunburning) UV irradiance at northern and southern latitudes of less than 50° would have increased by 10-20% between 1996 and 2020. For southern latitudes exceeding 50°, the UV Index (UVI) would have surged by between 25% (year-round at the southern tip of South America) and more than 100% (South Pole in spring). Variability of erythemal irradiance in Antarctica was very large during the last four years. In spring 2019, erythemal UV radiation was at the minimum of the historical (1991-2018) range at the South Pole, while near record-high values were observed in spring 2020, which were up to 80% above the historical mean. In the Arctic, some of the highest erythemal irradiances on record were measured in March and April 2020. For example in March 2020, the monthly average UVI over a site in the Canadian Arctic was up to 70% higher than the historical (2005-2019) average, often exceeding this mean by three standard deviations. Under the presumption that all countries will adhere to the Montreal Protocol in the future and that atmospheric aerosol concentrations remain constant, erythemal irradiance at mid-latitudes (30-60°) is projected to decrease between 2015 and 2090 by 2-5% in the north and by 4-6% in the south due to recovering ozone. Changes projected for the tropics are ≤ 3%. However, in industrial regions that are currently affected by air pollution, UV radiation will increase as measures to reduce air pollutants will gradually restore UV radiation intensities to those of a cleaner atmosphere. Since most substances controlled by the Montreal Protocol are also greenhouse gases, the phase-out of these substances may have avoided warming by 0.5-1.0 °C over mid-latitude regions of the continents, and by more than 1.0 °C in the Arctic; however, the uncertainty of these calculations is large. We also assess the effects of changes in stratospheric ozone on climate, focusing on the poleward shift of climate zones, and discuss the role of the small Antarctic ozone hole in 2019 on the devastating "Black Summer" fires in Australia. Additional topics include the assessment of advances in measuring and modeling of UV radiation; methods for determining personal UV exposure; the effect of solar radiation management (stratospheric aerosol injections) on UV radiation relevant for plants; and possible revisions to the vitamin D action spectrum, which describes the wavelength dependence of the synthesis of previtamin D3 in human skin upon exposure to UV radiation.
Collapse
Affiliation(s)
- G H Bernhard
- Biospherical Instruments Inc, San Diego, CA, USA.
| | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece.
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J B Liley
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| | - R L McKenzie
- National Institute of Water & Atmospheric Research, Lauder, New Zealand
| |
Collapse
|
42
|
Yu M, Gao R, Lv X, Sui M, Li T. Inactivation of phage phiX174 by UV 254 and free chlorine: Structure impairment and function loss. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117962. [PMID: 37086557 DOI: 10.1016/j.jenvman.2023.117962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Disinfection is widely applied in water and wastewater treatment to inactivate viruses. However, the inactivation mechanism associated with viral structural alteration during disinfection is still not clear. In this work, inactivation of bacteriophage phiX174 by ultraviolet radiation (UV254) and free chlorine (FC), two most commonly used disinfection processes, was studied at the molecular level to investigate the relationship between phiX174 genome impairment and virus inactivation, and the correlation between protein impairment and function loss. Double-layer agar technique, quantitative real-time polymerase chain reaction (qPCR), real-time reverse transcription-polymerase chain reaction (RT-qPCR), and liquid chromatography-tandem mass spectrometry techniques (LC-MS/MS), together with structure impairment and function experiments were implemented to quantitatively analyze the inactivation and damage to genome and proteins of phiX174. Results showed that UV254 and FC could effectively inactivate phiX174 at the practical doses (UV254 dose of 30 mJ/cm2, and FC of 1-3 mg/L) used in water treatment plants, accompanied with the damage to viral genome and proteins. Specifically, a UV254 irradiation dose of 9.6 mJ/cm2, and FC at an initial concentration of 1 mg/L at 4 min could lead to a 4-log10 inactivation. Nevertheless, the combination of these two methods at selected doses played no significant synergistic disinfection effect. During UV254 disinfection, the proportion of phiX174 with damaged genome was similar with that of the inactivated phiX174. In addition, UV254 and FC could disrupt proteins of phiX174 such as H protein, thereby hindering the physiological function associated with these proteins. With these findings, it is suggested that UV254 and FC disinfection could hinder the injection of the viral genome into host cells, thus resulting in the inactivation of phiX174. This work provides a comprehensive study of the inactivation mechanism of phiX174, which can enhance the applicability of UV254 and FC in water treatment plants, and facilitate the design and optimization of disinfection technologies for virus control in drinking water and wastewater worldwide to ensure the biosafety.
Collapse
Affiliation(s)
- Miao Yu
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Rui Gao
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xinyuan Lv
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Minghao Sui
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
43
|
Zhang S, Zheng M, Yang G, Zhang T, Magnuson JT, Chen H, Zheng C, Qiu W. Sunlight-mediated CaO 2 inactivation of pathogen indicator organisms in surface water system: Roles of reactive species, characterization of pathogen inactivation. WATER RESEARCH 2023; 233:119756. [PMID: 36842331 DOI: 10.1016/j.watres.2023.119756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
In the era of the current epidemic, it is urgent to control pathogens in sewage, eliminate the source of infection, and optimize the technology for killing pathogens. Combining calcium peroxide (CaO2) with sunlight is considered a potentially efficient, economical, and eco-friendly method for pathogen-contaminated water remediation. This paper evaluated the solar activating properties of CaO2 for inactivating pathogenic indicators and explored the roles of reactive species contributing to pathogen inactivation. Moreover, these reactive species' average steady-state concentrations and second-order reaction rate were tentatively explored, and mechanistic model for photoinactivation were establishment. Pathogen's inactivation was mainly attributed to direct photoinactivation (13∼50%) and exogenous indirect mechanisms with corresponding contributions of reactive species, i.e., OH- (14∼23%), 1O2 (12∼28%), •OH (20∼32%), O2•- (12∼16%), and H2O2 (6∼11%). Furthermore, cell membrane rupture and DNA damage were observed by transmission electron microscopy (TEM) and agarose gel electrophoresis (AGE) experiments. Among experiments on common aqueous constituents influencing photoinactivation, copper and iron ions were found to promote a pathogen-inactivating ability of the system, while fulvic acids (FA) and humic acid (HA) had the opposite effect. This study revealed the potential of CaO2/sunlight to inactivate pathogens and laid a foundation for its application in inactivating pathogens in surface water.
Collapse
Affiliation(s)
- Shuwen Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Zheng
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ge Yang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ting Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Honghong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
44
|
Shi JL, Mitch WA. Lysine and Arginine Reactivity and Transformation Products during Peptide Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5852-5860. [PMID: 36976858 DOI: 10.1021/acs.est.2c09556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorine reactions with peptide-bound amino acids form disinfection byproducts and contribute to pathogen inactivation by degrading protein structure and function. Peptide-bound lysine and arginine are two of the seven chlorine-reactive amino acids, but their reactions with chlorine are poorly characterized. Using N-acetylated lysine and arginine as models for peptide-bound amino acids and authentic small peptides, this study demonstrated conversion of the lysine side chain to mono- and dichloramines and the arginine side chain to mono-, di-, and trichloramines in ≤0.5 h. The lysine chloramines formed lysine nitrile and lysine aldehyde at ∼6% yield over ∼1 week. The arginine chloramines formed ornithine nitrile at ∼3% yield over ∼1 week but not the corresponding aldehyde. While researchers hypothesized that the protein aggregation observed during chlorination arises from covalent Schiff base cross-links between lysine aldehyde and lysine on different proteins, no evidence for Schiff base formation was observed. The rapid formation of chloramines and their slow decay indicate that they are more relevant than the aldehydes and nitriles to byproduct formation and pathogen inactivation over timescales relevant to drinking water distribution. Previous research has indicated that lysine chloramines are cytotoxic and genotoxic to human cells. The conversion of lysine and arginine cationic side chains to neutral chloramines should alter protein structure and function and enhance protein aggregation by hydrophobic interactions, contributing to pathogen inactivation.
Collapse
Affiliation(s)
- Jiaming Lily Shi
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
45
|
Lauteri C, Ferri G, Piccinini A, Pennisi L, Vergara A. Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. Foods 2023; 12:foods12061212. [PMID: 36981137 PMCID: PMC10048265 DOI: 10.3390/foods12061212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
An efficient microbiological decontamination protocol is required to guarantee safe food products for the final consumer to avoid foodborne illnesses. Ultrasound and non-thermal technology combinations represent innovative methods adopted by the food industry for food preservation and safety. Ultrasound power is commonly used with a frequency between 20 and 100 kHz to obtain an “exploit cavitation effect”. Microbial inactivation via ultrasound derives from cell wall damage, the oxidation of intracellular amino acids and DNA changing material. As an inactivation method, it is evaluated alone and combined with other non-thermal technologies. The evidence shows that ultrasound is an important green technology that has a good decontamination effect and can improve the shelf-life of products. This review aims to describe the applicability of ultrasound in the food industry focusing on microbiological decontamination, reducing bacterial alterations caused by food spoilage strains and relative foodborne intoxication/infection.
Collapse
|
46
|
Zhou Z, Li M, Zhang Y, Kong L, Smith VF, Zhang M, Gulbrandson AJ, Waller GH, Lin F, Liu X, Durkin DP, Chen H, Shuai D. Fe-Fe Double-Atom Catalysts for Murine Coronavirus Disinfection: Nonradical Activation of Peroxides and Mechanisms of Virus Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3804-3816. [PMID: 36880272 PMCID: PMC9999944 DOI: 10.1021/acs.est.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Peroxides find broad applications for disinfecting environmental pathogens particularly in the COVID-19 pandemic; however, the extensive use of chemical disinfectants can threaten human health and ecosystems. To achieve robust and sustainable disinfection with minimal adverse impacts, we developed Fe single-atom and Fe-Fe double-atom catalysts for activating peroxymonosulfate (PMS). The Fe-Fe double-atom catalyst supported on sulfur-doped graphitic carbon nitride outperformed other catalysts for oxidation, and it activated PMS likely through a nonradical route of catalyst-mediated electron transfer. This Fe-Fe double-atom catalyst enhanced PMS disinfection kinetics for inactivating murine coronaviruses (i.e., murine hepatitis virus strain A59 (MHV-A59)) by 2.17-4.60 times when compared to PMS treatment alone in diverse environmental media including simulated saliva and freshwater. The molecular-level mechanism of MHV-A59 inactivation was also elucidated. Fe-Fe double-atom catalysis promoted the damage of not only viral proteins and genomes but also internalization, a key step of virus lifecycle in host cells, for enhancing the potency of PMS disinfection. For the first time, our study advances double-atom catalysis for environmental pathogen control and provides fundamental insights of murine coronavirus disinfection. Our work paves a new avenue of leveraging advanced materials for improving disinfection, sanitation, and hygiene practices and protecting public health.
Collapse
Affiliation(s)
- Zhe Zhou
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Mengqiao Li
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Yuxin Zhang
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lingchen Kong
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Virginia F. Smith
- Department
of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Mengyang Zhang
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Anders J. Gulbrandson
- Department
of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Gordon H. Waller
- Chemistry
Division, United States Naval Research Laboratory, Washington, District of
Columbia 20375, United States
| | - Feng Lin
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xitong Liu
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - David P. Durkin
- Department
of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Hanning Chen
- Texas
Advanced Computing Center, The University
of Texas at Austin, Austin, Texas 78758, United States
| | - Danmeng Shuai
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
47
|
Jütte M, Abdighahroudi MS, Waldminghaus T, Lackner S, V Lutze H. Bacterial inactivation processes in water disinfection - mechanistic aspects of primary and secondary oxidants - A critical review. WATER RESEARCH 2023; 231:119626. [PMID: 36709565 DOI: 10.1016/j.watres.2023.119626] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water disinfection during drinking water production is one of the most important processes to ensure safe drinking water, which is gaining even more importance due to the increasing impact of climate change. With specific reaction partners, chemical oxidants can form secondary oxidants, which can cause additional damage to bacteria. Cases in point are chlorine dioxide which forms free available chlorine (e.g., in the reaction with phenol) and ozone which can form hydroxyl radicals (e.g., during the reaction with natural organic matter). The present work reviews the complex interplay of all these reactive species which can occur in disinfection processes and their potential to affect disinfection processes. A quantitative overview of their disinfection strength based on inactivation kinetics and typical exposures is provided. By unifying the current data for different oxidants it was observable that cultivated wild strains (e.g., from wastewater treatment plants) are in general more resistant towards chemical oxidants compared to lab-cultivated strains from the same bacterium. Furthermore, it could be shown that for selective strains chlorine dioxide is the strongest disinfectant (highest maximum inactivation), however as a broadband disinfectant ozone showed the highest strength (highest average inactivation). Details in inactivation mechanisms regarding possible target structures and reaction mechanisms are provided. Thereby the formation of secondary oxidants and their role in inactivation of pathogens is decently discussed. Eventually, possible defense responses of bacteria and additional effects which can occur in vivo are discussed.
Collapse
Affiliation(s)
- Mischa Jütte
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Mohammad Sajjad Abdighahroudi
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Torsten Waldminghaus
- Technical University of Darmstadt, Centre for synthetic biology, Chair of molecular microbiology, Schnittspahnstraße 12, D-64287 Darmstadt, Germany
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of water and environmental biotechnology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Holger V Lutze
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141 Essen, Germany.
| |
Collapse
|
48
|
Gao Y, Sun Z, Guo Y, Qiang Z, Ben W. Virus inactivation by sequential ultraviolet-chlorine disinfection: Synergistic effect and mechanism. CHEMOSPHERE 2023; 314:137632. [PMID: 36565762 PMCID: PMC9770000 DOI: 10.1016/j.chemosphere.2022.137632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 outbreak has raised concerns about the efficacy of the disinfection process followed in water treatment plants in preventing the spread of viruses. Ultraviolet (UV) and chlorine multi-barrier disinfection processes are commonly used in water treatment plants; however, their effects on virus inactivation are still unclear. In this study, the effects of different disinfection processes (i.e., UV, free chlorine, and their combination) on waterborne viruses were analyzed using bacteriophage surrogates (i.e., MS2 and PR772) as alternative indicators. The results showed that the inactivation rates of PR772 by either UV or free chlorine disinfection were higher than those of MS2. PR772 was approximately 1.5 times more sensitive to UV disinfection and 8.4 times more sensitive to chlorine disinfection than MS2. Sequential UV-chlorine disinfection had a synergistic effect on virus inactivation, which was enhanced by an increase in the UV dose. As compared with single free chlorine disinfection, UV irradiation at 40 mJ cm-2 enhanced MS2 and PR772 inactivation significantly with a 2.7-fold (MS2) and a 1.7-fold (PR772) increase in the inactivation rate constants on subsequent chlorination in phosphate buffered saline. The synergistic effect was also observed in real wastewater samples, in which the MS2 inactivation rate increased 1.4-fold on subsequent chlorination following UV irradiation at 40 mJ cm-2. The mechanism of the synergistic effect of sequential UV-chlorine disinfection was determined via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, using MS2 as an indicator. The results showed that the synergistic effect was due to damage to MS2 surface proteins caused by previous UV disinfection, which enhanced the sensitivity of MS2 to chlorination. This study provides a feasible approach for the efficient inactivation of viruses in water supply and drainage.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Ying Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| |
Collapse
|
49
|
Musaazi IG, McLoughlin S, Murphy HM, Rose JB, Hofstra N, Tumwebaze IK, Verbyla ME. A systematic review and meta-analysis of pathogen reduction in onsite sanitation systems. WATER RESEARCH X 2023; 18:100171. [PMID: 37250291 PMCID: PMC10214292 DOI: 10.1016/j.wroa.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 05/31/2023]
Abstract
The safe management of fecal sludge from the 3.4 billion people worldwide that use onsite sanitation systems can greatly reduce the global infectious disease burden. However, there is limited knowledge about the role of design, operational, and environmental factors on pathogen survival in pit latrines, urine diverting desiccation toilets, and other types of onsite toilets. We conducted a systematic literature review and meta-analysis to characterize pathogen reduction rates in fecal sludge, feces, and human excreta with respect to pH, temperature, moisture content, and the use of additives for desiccation, alkalinization, or disinfection. A meta-analysis of 1,382 data points extracted from 243 experiments described in 26 articles revealed significant differences between the decay rates and T99 values of pathogens and indicators from different microbial groups. The overall median T99 values were 4.8 days, 29 days, >341 days, and 429 days for bacteria, viruses, protozoan (oo)cysts, and Ascaris eggs, respectively. As expected, higher pH values, higher temperatures, and the application of lime all significantly predicted greater pathogen reduction rates but the use of lime by itself was more effective for bacteria and viruses than for Ascaris eggs, unless urea was also added. In multiple lab-scale experiments, the application of urea with enough lime or ash to reach a pH of 10 - 12 and a sustained concentration of 2,000 - 6,000 mg/L of non-protonated NH3-N reduced Ascaris eggs more rapidly than without urea. In general, the storage of fecal sludge for 6 months adequately controls hazards from viruses and bacteria, but much longer storage times or alkaline treatment with urea and low moisture or heat is needed to control hazards from protozoa and helminths. More research is needed to demonstrate the efficacy of lime, ash, and urea in the field. More studies of protozoan pathogens are also needed, as very few qualifying experiments were found for this group.
Collapse
Affiliation(s)
- Isaac G. Musaazi
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Shane McLoughlin
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Heather M. Murphy
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Nynke Hofstra
- Water Systems and Global Change Group, Wageningen University, the Netherlands
| | - Innocent K. Tumwebaze
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Matthew E. Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| |
Collapse
|
50
|
Antiviral activity of nano-monocaprin against Phi6 as a surrogate for SARS-CoV-2. Int Microbiol 2022; 26:379-387. [PMID: 36422769 PMCID: PMC9685086 DOI: 10.1007/s10123-022-00300-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic involving SARS-CoV-2 has raised interest in using antimicrobial lipid formulations to inhibit viral entry into their host cells or to inactivate them. Lipids are a part of the innate defense mechanism against pathogens. Here, we evaluated the use of nano-monocaprin (NMC) in inhibiting enveloped (phi6) and unenveloped (MS2) bacteriophages. NMC was prepared using the sonochemistry technique. Size and morphology analysis revealed the formation of ~ 8.4 ± 0.2-nm NMC as measured by dynamic light scattering. We compared the antiviral activity of NMC with molecular monocaprin (MMC) at 0.5 mM and 2 mM concentrations against phi6, which we used as a surrogate for SARS-CoV-2. The synthesized NMC exhibited 50% higher antiviral activity against phi6 than MMC at pH 7 using plaque assay. NMC inactivated phi6 stronger at pH 4 than at pH 7. To determine if NMC is toxic to mammalian cells, we used MTS assay to assess its IC50 for HPDE and HeLa cell lines, which were ~ 203 and 221 µM, respectively. NMC may be used for prophylactic application either as a drop or spray since many viruses enter the human body through the mucosal lining of the nose, eyes, and lungs.
Collapse
|