1
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Le Voyer T, Debray JC, Stolzenberg MC, Schmutz M, Pellé O, Becquard T, Rodrigo Riestra M, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Bretot C, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Mutations disrupting the kinase domain of IKKα lead to immunodeficiency and immune dysregulation in humans. J Exp Med 2025; 222:e20240843. [PMID: 39812688 PMCID: PMC11734625 DOI: 10.1084/jem.20240843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was unexpectedly partially impaired. Reintroducing wt CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of biallelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding, and suggesting IKKα's role in canonical NF-κB target gene expression in humans.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Boris Sorin
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charline Courteille
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Duong Ho-Nhat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Jean-Christophe Debray
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Olivier Pellé
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Thomas Becquard
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - María Rodrigo Riestra
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Laure Delage
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Marie Jeanpierre
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charlotte Boussard
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Camille Brunaud
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Aude Magérus
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charles Bretot
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - Victor Michel
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Camille Roux
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hopitaux de Paris (AP-HP), University Paris Cité, Paris, France
| | - Cécile Masson
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Aurélien Corneau
- UMS037, PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière CyPS, Sorbonne Université, Paris, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Véronique Baud
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alain Fischer
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Collège de France, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Cécile Boulanger
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| |
Collapse
|
2
|
García-García VA, Alameda JP, Fernández-Aceñero MJ, Navarro M, García-Escudero R, Page A, Mateo-Gallego R, Paramio JM, Ramírez Á, García-Fernández RA, Bravo A, Casanova ML. Nuclear versus cytoplasmic IKKα signaling in keratinocytes leads to opposite skin phenotypes and inflammatory responses, and a different predisposition to cancer. Oncogene 2025; 44:165-178. [PMID: 39511409 PMCID: PMC11725495 DOI: 10.1038/s41388-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
IKKα is known as an essential protein for skin homeostasis. However, the lack of suitable models to investigate its functions in the skin has led to IKKα being mistakenly considered as a suppressor of non-melanoma skin cancer (NMSC) development. In this study, using our previously generated transgenic mouse models expressing exogenous IKKα in the cytoplasm (C-IKKα mice) or in the nucleus (N-IKKα mice) of basal keratinocytes, we demonstrate that at each subcellular localization, IKKα differently regulates signaling pathways important for maintaining the balance between keratinocyte proliferation and differentiation, and for the cutaneous inflammatory response. In addition, each type of IKKα-transgenic mice shows different predisposition to the development of spontaneous NMSC. Specifically, N-IKKα mice display an atrophic epidermis with exacerbated terminal differentiation, signs of premature skin aging, premalignant lesions, and develop squamous cell carcinomas (SCCs). Conversely, C-IKKα mice, whose keratinocytes are nearly devoid of endogenous nuclear IKKα, do not develop skin SCCs, although they exhibit hyperplastic skin with deficiencies in terminal epidermal differentiation, chronic cutaneous inflammation, and constitutive activation of STAT-3 and NF-κB signaling pathways. Altogether, our data demonstrate that alterations in the localization of IKKα in the nucleus or cytoplasm of keratinocytes cause opposite skin changes and differentially predispose to the growth of skin SCCs.
Collapse
Affiliation(s)
- Verónica A García-García
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
| | - Josefa P Alameda
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | | | - Manuel Navarro
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Ramón García-Escudero
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Angustias Page
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Raúl Mateo-Gallego
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Ángel Ramírez
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Rosa A García-Fernández
- Department of Animal Medicine and Surgery, Facultad de Veterinaria, UCM, 28040, Madrid, Spain
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - M Llanos Casanova
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain.
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Nadal A, Cardesa A, Agaimy A, Almangush A, Franchi A, Hellquist H, Leivo I, Zidar N, Ferlito A. Massive parallel sequencing of head and neck conventional squamous cell carcinomas: A comprehensive review. Virchows Arch 2024; 485:965-976. [PMID: 39613893 DOI: 10.1007/s00428-024-03987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is a cause of significant mortality and morbidity. The epidemiology of this cancer varies worldwide due to either genetic differences in populations or differences in carcinogen exposure. The application of massive parallel sequencing-based techniques in HNSCC should provide a helpful understanding of the genetic alterations that eventually lead to HNSCC development and progression, and ideally, could be used for personalized therapy. In this review, the reader will find an overview of the mutational profile of conventional HNSCC according to published results on massive parallel sequencing data that confirm the pivotal role of TP53 and the frequent involvement of CDKN2A and PIK3CA. The reader will also find a more detailed description of the genes, such as NOTCH1 and FBXW7, that were not identified in HNSCCs before the development of these techniques, the differences that can be site-specific, such as the different mutational signatures that indicate specific carcinogens for various subsites of the head and neck, and finally, the actionability of these findings that should allow more personalized therapy for patients.
Collapse
Affiliation(s)
- Alfons Nadal
- Pathology Department, Department of Clinical Fundamentals, Universitat de Barcelona, IDIBAPS, Clínic Barcelona, Barcelona, Spain.
| | | | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| | - Alessandro Franchi
- Section of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Henrik Hellquist
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku University Central Hospital, 20521, Turku, Finland
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
4
|
Cildir G, Aba U, Pehlivan D, Tvorogov D, Warnock NI, Ipsir C, Arik E, Kok CH, Bozkurt C, Tekeoglu S, Inal G, Cesur M, Kucukosmanoglu E, Karahan I, Savas B, Balci D, Yaman A, Demirbaş ND, Tezcan I, Haskologlu S, Dogu F, Ikinciogulları A, Keskin O, Tumes DJ, Erman B. Defective kinase activity of IKKα leads to combined immunodeficiency and disruption of immune tolerance in humans. Nat Commun 2024; 15:9944. [PMID: 39550372 PMCID: PMC11569180 DOI: 10.1038/s41467-024-54345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
IKKα is a multifunctional serine/threonine kinase that controls various biological processes, either dependent on or independent of its kinase activity. However, the importance of the kinase function of IKKα in human physiology remains unknown since no biallelic variants disrupting its kinase activity have been reported. In this study, we present a homozygous germline missense variant in the kinase domain of IKKα, which is present in three children from two Turkish families. This variant, referred to as IKKαG167R, is in the activation segment of the kinase domain and affects the conserved (DF/LG) motif responsible for coordinating magnesium atoms for ATP binding. As a result, IKKαG167R abolishes the kinase activity of IKKα, leading to impaired activation of the non-canonical NF-κB pathway. Patients carrying IKKαG167R exhibit a range of immune system abnormalities, including the absence of secondary lymphoid organs, hypogammaglobulinemia and limited diversity of T and B cell receptors with evidence of autoreactivity. Overall, our findings indicate that, unlike a nonsense IKKα variant that results in early embryonic lethality in humans, the deficiency of IKKα's kinase activity is compatible with human life. However, it significantly disrupts the homeostasis of the immune system, underscoring the essential and non-redundant kinase function of IKKα in humans.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Umran Aba
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Nicholas I Warnock
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Canberk Ipsir
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Elif Arik
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Chung Hoow Kok
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Gaye Inal
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Mahmut Cesur
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ercan Kucukosmanoglu
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ibrahim Karahan
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Berna Savas
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Deniz Balci
- Department of General Surgery and Organ Transplantation, Bahcesehir University School of Medicine, Istanbul, Türkiye
| | - Ayhan Yaman
- Pediatric Intensive Care Unit, Department of Pediatrics, Istinye University, Bahcesehir Liv Hospital, Istanbul, Türkiye
| | - Nazli Deveci Demirbaş
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ilhan Tezcan
- Department of Paediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| | - Sule Haskologlu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Figen Dogu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Aydan Ikinciogulları
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ozlem Keskin
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye.
| | - Damon J Tumes
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| | - Baran Erman
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye.
- Institute of Child Health, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
5
|
Nanakorn Z, Kawai T, Tassanakajon A. Cytokine-like-Vago-mediated antiviral response in Penaeus monodon via IKK-NF-κB signaling pathway. iScience 2024; 27:110161. [PMID: 38974974 PMCID: PMC11226982 DOI: 10.1016/j.isci.2024.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/15/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Interferon (IFN) system is the primary mechanism of innate antiviral defense in immune response. To date, limited studies of IFN system were conducted in crustaceans. Previous report in Penaeus monodon demonstrated the interconnection of cytokine-like molecule Vago and inhibitor of kappa B kinase-nuclear factor κB (IKK-NF-κB) cascade against white spot syndrome virus (WSSV). This study further identified five different PmVago isoforms. Upon immune stimulation, PmVagos expressed against shrimp pathogens. PmVago1, PmVago4, and PmVago5 highly responded to WSSV, whereas, PmVago1 and PmVago4 RNAi exhibited a rapid mortality with elevated WSSV replication. Suppression of PmVago1 and PmVago4 negatively affected proPO system, genes in signal transduction, and AMPs. WSSV infection additionally induced PmVaog4 granule accumulation and cellular translocation to the area of cell membrane. More importantly, PmVago1 and PmVago4 promoters were stimulated by PmIKK overexpression; meanwhile, they further activated Dorsal and Relish promoter activities. These results suggested the possible roles of the cytokine-like PmVago via IKK-NF-κB cascade against WSSV infection.
Collapse
Affiliation(s)
- Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Voyer TL, Debray JC, Stolzenberg MC, Pellé O, Becquard T, Riestra MR, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Compound heterozygous mutations in the kinase domain of IKKα lead to immunodeficiency and immune dysregulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307356. [PMID: 38798321 PMCID: PMC11118628 DOI: 10.1101/2024.05.17.24307356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
IKKα, encoded by CHUK , is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. Absence of IKKα cause fetal encasement syndrome in human, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and cause combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was partially impaired. Reintroducing wild-type CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of bi-allelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding and suggesting IKKα's role in canonical NF-κB target gene expression in human.
Collapse
|
7
|
Fernández-Lázaro D, Sanz B, Seco-Calvo J. The Mechanisms of Regulated Cell Death: Structural and Functional Proteomic Pathways Induced or Inhibited by a Specific Protein-A Narrative Review. Proteomes 2024; 12:3. [PMID: 38250814 PMCID: PMC10801515 DOI: 10.3390/proteomes12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body's tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. A multitude of protein mediators of PCD have been identified and signals have been found to utilize common pathways elucidating the proteins involved. This narrative review focuses on caspase-dependent and caspase-independent PCD pathways. Included are studies of caspase-dependent PCD such as Anoikis, Catastrophe Mitotic, Pyroptosis, Emperitosis, Parthanatos and Cornification, and Caspase-Independent PCD as Wallerian Degeneration, Ferroptosis, Paraptosis, Entosis, Methuosis, and Extracellular Trap Abnormal Condition (ETosis), as well as neutrophil extracellular trap abnormal condition (NETosis) and Eosinophil Extracellular Trap Abnormal Condition (EETosis). Understanding PCD from those reported in this review could shed substantial light on the processes of biological homeostasis. In addition, identifying specific proteins involved in these processes is mandatory to identify molecular biomarkers, as well as therapeutic targets. This knowledge could provide the ability to modulate the PCD response and could lead to new therapeutic interventions in a wide range of diseases.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
| | - Begoña Sanz
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jesús Seco-Calvo
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, 27071 León, Spain
| |
Collapse
|
8
|
Selvarajah K, Tan JJ, Shaharuddin B. Corneal Epithelial Development and the Role of Induced Pluripotent Stem Cells for Regeneration. Curr Stem Cell Res Ther 2024; 19:292-306. [PMID: 36915985 DOI: 10.2174/1574888x18666230313094121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.
Collapse
Affiliation(s)
- Komathi Selvarajah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Jun Jie Tan
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Bakiah Shaharuddin
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| |
Collapse
|
9
|
Zhou R, Wang Q, Zeng S, Liang Y, Wang D. METTL14-mediated N6-methyladenosine modification of Col17a1/Itgα6/Itgβ4 governs epidermal homeostasis. J Dermatol Sci 2023; 112:138-147. [PMID: 37951776 DOI: 10.1016/j.jdermsci.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant and reversible modification occurring in eukaryotic mRNAs, however, its functions in mammalian epidermal development are still not fully elucidated. OBJECTIVE To explore the role of METTL14 (Methyltransferase like 14), one of the m6A methyltransferases, in maintaining epidermal homeostasis. METHODS We constructed mice with Mettl14-inactivation in the epidermal basal cells. The phenotype was explored by H&E staining and immunofluorescence staining. To explore the underlying mechanisms, we performed RNA-seq, Ribosome profiling and MeRIP-seq on wild-type and Mettl14-inactivation epidermal keratinocytes. Moreover, HaCaT cells were used for in vitro validation. RESULTS Inactivation of Mettl14 in murine epidermis led to transient thicker epidermis and exhaustion of the epidermal stem cell pool. Interestingly, we found that the mRNA of type XVII collagen (Col17a1), integrin β4 (Itgβ4) and α6 (Itgα6) had m6A modifications, and the proteins expression were decreased in Mettl14-inactivated epidermis. Furthermore, in epidermis-specific Mettl4-inactivated mice, the epidermis was detached from the dermis and presented a phenotype similar to junctional epidermolysis bullosa (JEB), which may result from hemidesmosomes damage (decrease of COL17A1, ITGB4 and ITGA6). Knockdown of Mettl14 in HaCaT cells impaired the self-renewal and decreased the protein level of COL17A1, ITGB4 and ITGA6 and Itgβ4 knockdown inhibited colony formation. CONCLUSION Our study highlighted the role of METTL14 in the maintenance of epidermal homeostasis and identified its critical role through m6A-mediated translational inhibition of Col17a1, Itgβ4 and Itgα6. Our study suggested that METTL14 may be a potential therapeutic target for the treatment of hemidesmosomes-deficient diseases, such as JEB.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Jin SP, Suh JH, Kim CE, Oh IG, Seo EY, Kim MK, Yoon KN, Chung JH. Functionally similar genes exhibit comparable/similar time-course expression kinetics in the UV-induced photoaged mouse model. PLoS One 2023; 18:e0290358. [PMID: 37943888 PMCID: PMC10635544 DOI: 10.1371/journal.pone.0290358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/07/2023] [Indexed: 11/12/2023] Open
Abstract
Skin photoaging induced by ultraviolet (UV) irradiation contributes to the formation of thick and coarse wrinkles. Humans are exposed to UV light throughout their lives. Therefore, it is crucial to determine the time-sequential effects of UV on the skin. In this study, we irradiated the mouse back skin with UV light for eight weeks and observed the changes in gene expressions via microarray analysis every week. There were more downregulated genes (514) than upregulated genes (123). The downregulated genes had more functional diversity than the upregulated genes. Additionally, the number of downregulated genes did not increase in a time-dependent manner. Instead, time-dependent kinetic patterns were observed. Interestingly, each kinetic cluster harbored functionally enriched gene sets. Since collagen changes in the dermis are considered to be a major cause of photoaging, we hypothesized that other gene sets contributing to photoaging would exhibit kinetics similar to those of the collagen-regulatory genes identified in this study. Accordingly, co-expression network analysis was conducted using 11 well-known collagen-regulatory seed genes to predict genes with similar kinetics. We ranked all downregulated genes from 1 to 504 based on their expression levels, and the top 50 genes were suggested to be involved in the photoaging process. Additionally, to validate and support our identified top 50 gene lists, we demonstrated that the genes (FN1, CCDC80, PRELP, and TGFBR3) we discovered are downregulated by UV irradiation in cultured human fibroblasts, leading to decreased collagen levels, which is indicative of photoaging processes. Overall, this study demonstrated the time-sequential genetic changes in chronically UV-irradiated skin and proposed 50 genes that are involved in the mechanisms of photoaging.
Collapse
Affiliation(s)
- Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Dermatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Joong Heon Suh
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Dermatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Chang-Eop Kim
- Department of Physiology, Department of Physiology, Gachon University College of Korean Medicine, Seongnam, Republic of Korea
| | - Inn Gyung Oh
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Dermatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Eun Young Seo
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Dermatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Dermatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kyeong-No Yoon
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Dermatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Dermatology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Seoul National University Graduate School, Seoul, Republic of Korea
| |
Collapse
|
11
|
Tagoe H, Hassan S, Bliss E, Youssef G, Heywood W, Mills K, Harper JI, O'Shaughnessy RFL. Chronic activation of Toll-like receptor 2 induces an ichthyotic skin phenotype. Br J Dermatol 2023; 189:91-102. [PMID: 36972303 DOI: 10.1093/bjd/ljad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Ichthyosis defines a group of chronic conditions that manifest phenotypically as a thick layer of scales, often affecting the entire skin. While the gene mutations that lead to ichthyosis are well documented, the actual signalling mechanisms that lead to scaling are poorly characterized; however, recent publications suggest that common mechanisms are active in ichthyotic tissue and in analogous models of ichthyosis. OBJECTIVES To determine common mechanisms of hyperkeratosis that may be easily targeted with small-molecule inhibitors. METHODS We combined gene expression analysis of gene-specific short hairpin RNA (shRNA) knockdowns in rat epidermal keratinocytes (REKs) of two genes mutated in autosomal recessive congenital ichthyosis (ARCI), Tgm1 and Alox12b, and proteomic analysis of skin scale from patients with ARCI, as well as RNA sequencing data from rat epidermal keratinocytes treated with the Toll-like receptor 2 (TLR2) agonist Pam3CSK4. RESULTS We identified common activation of the TLR2 pathway. Exogenous TLR2 activation led to increased expression of important cornified envelope genes and, in organotypic culture, caused hyperkeratosis. Conversely, blockade of TLR2 signalling in keratinocytes from patients with ichthyosis and our shRNA models reduced the expression of keratin 1, a structural protein overexpressed in ichthyosis scale. A time course of TLR2 activation in REKs revealed that although there was rapid initial activation of innate immune pathways, this was rapidly superseded by widespread upregulation of epidermal differentiation-related proteins. Both nuclear factor kappa B phosphorylation and GATA3 upregulation was associated with this switch, and GATA3 overexpression was sufficient to increase keratin 1 expression. CONCLUSIONS Taken together, these data define a dual role for TLR2 activation during epidermal barrier repair that may be a useful therapeutic modality in treating diseases of epidermal barrier dysfunction.
Collapse
Affiliation(s)
- Hephzi Tagoe
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, UK
- Livingstone Skin Research Centre
| | - Sakinah Hassan
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, UK
- Livingstone Skin Research Centre
| | | | - Gehad Youssef
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, UK
- Livingstone Skin Research Centre
| | | | | | - John I Harper
- Livingstone Skin Research Centre
- Department of Immunobiology and Dermatology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Cui HS, Joo SY, Lee SY, Cho YS, Kim DH, Seo CH. Effect of Hypertrophic Scar Fibroblast-Derived Exosomes on Keratinocytes of Normal Human Skin. Int J Mol Sci 2023; 24:ijms24076132. [PMID: 37047109 PMCID: PMC10094451 DOI: 10.3390/ijms24076132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/16/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Epidermal keratinocytes are highly activated, hyper-proliferated, and abnormally differentiated in the post-burn hypertrophic scar (HTS); however, the effects of scar fibroblasts (SFs) on keratinocytes through cell-cell interaction in HTS remain unknown. Here, we investigated the effects of HTSF-derived exosomes on the proliferation and differentiation of normal human keratinocytes (NHKs) compared with normal fibroblasts (NFs) and their possible mechanism to provide a reference for clinical intervention of HTS. Fibroblasts were isolated and cultured from HTS and normal skin. Both HTSF-exosomes and NF-exosomes were extracted via a column-based method from the cell culture supernatant. NHKs were treated for 24 or 48 h with 100 μg/mL of cell-derived exosomes. The expression of proliferation markers (Ki-67 and keratin 14), activation markers (keratins 6, 16, and 17), differentiation markers (keratins 1 and 10), apoptosis factors (Bax, Bcl2, caspase 14, and ASK1), proliferation/differentiation regulators (p21 and p27), and epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin, and vimentin) was investigated. Compared with NF-exosomes, HTSF-exosomes altered the molecular pattern of proliferation, activation, differentiation, and apoptosis, proliferation/differentiation regulators of NHKs, and EMT markers differently. In conclusion, our findings indicate that HTSF-derived exosomes may play a role in the epidermal pathological development of HTS.
Collapse
Affiliation(s)
- Hui Song Cui
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Seung Yeol Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Soonchunhyang University Hospital, Bucheon 14158, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Dong Hyun Kim
- Department of Rehabilitation Medicine, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 05355, Republic of Korea
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| |
Collapse
|
13
|
Chuang HC, Tsai MH, Lin YT, Chou MH, Yang KL, Chien CY. Systemic and Local Effects Among Patients With Betel Quid-Related Oral Cancer. Technol Cancer Res Treat 2022; 21:15330338221146870. [PMID: 36575633 PMCID: PMC9806389 DOI: 10.1177/15330338221146870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The major predisposing factors of developing oral cancer include smoking, alcohol drinking, and betel quid chewing. Betel quid chewing could cause the abrasion and damage of oral mucosa by crude fibers, chemical insults by additive slaked lime, and arecoline from areca nut. These would lead to the local consequence of oral submucosal fibrosis, which is regarded clinically as a precancer lesion and a major cause of trismus. In addition, the components and additives in betel quid contain chemical toxins and carcinogens, which would further affect the oral mucosa and gradually develop a malignancy. Following literature review, aside from having a greater total tumor burden and more local diseases in the oral cavity and digestive tract, patients with betel quid-related oral cancer also have more systemic diseases from metabolic syndrome, hypertension, cardiovascular disease, type II diabetes mellitus, and obesity than those without this habit. In conclusion, those patients who have the history of smoking, alcohol drinking, and betel quid chewing would present much more unique clinical characteristics than those who only have a history of smoking and alcohol drinking. More attention should therefore be paid to pretreatment evaluation, treatment strategy, and posttreatment follow-up among betel quid chewers.
Collapse
Affiliation(s)
- Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan,Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung , Taiwan,Center for mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hsien Tsai
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan,Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung , Taiwan
| | - Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan,Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung , Taiwan
| | - Ming-Huei Chou
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung , Taiwan,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan,Center for General Education, Cheng-Shiu University, Kaohsiung, Taiwan
| | - Kun-Lin Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan,Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung , Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan,Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung , Taiwan,Chang Gung Molecular Medicine Research Center, Taiwan ,Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Taiwan,Chih-Yen Chien, Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Yi YW, You KS, Han S, Ha IJ, Park JS, Lee SG, Seong YS. Inhibition of IκB Kinase Is a Potential Therapeutic Strategy to Circumvent Resistance to Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:5215. [PMID: 36358633 PMCID: PMC9654813 DOI: 10.3390/cancers14215215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 03/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) remains as an intractable malignancy with limited therapeutic targets. High expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis of TNBC; however, EGFR targeting has failed with unfavorable clinical outcomes. Here, we performed a combinatorial screening of fifty-five protein kinase inhibitors with the EGFR inhibitor gefitinib in the TNBC cell line MDA-MB-231 and identified the IκB kinase (IKK) inhibitor IKK16 as a sensitizer of gefitinib. Cell viability and clonogenic survival assays were performed to evaluate the antiproliferative effects of the gefitinib and IKK16 (Gefitinib + IKK16) combination in TNBC cell lines. Western blot analyses were also performed to reveal the potential mode of action of this combination. In addition, next-generation sequencing (NGS) analysis was performed in Gefitinib+IKK16-treated cells. The Gefitinib+IKK16 treatment synergistically reduced cell viability and colony formation of TNBC cell lines such as HS578T, MDA-MB-231, and MDA-MB-468. This combination downregulated p-STAT3, p-AKT, p-mTOR, p-GSK3β, and p-RPS6. In addition, p-NF-κB and the total NF-κB were also regulated by this combination. Furthermore, NGS analysis revealed that NF-κB/RELA targets including CCL2, CXCL8, EDN1, IL-1β, IL-6, and SERPINE1 were further reduced and several potential tumor suppressors, such as FABP3, FADS2, FDFT1, SEMA6A, and PCK2, were synergistically induced by the Gefitinib-+IKK16 treatment. Taken together, we identified the IKK/NF-κB pathway as a potential target in combination of EGFR inhibition for treating TNBC.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| |
Collapse
|
15
|
Bainter W, Lougaris V, Wallace JG, Badran Y, Hoyos-Bachiloglu R, Peters Z, Wilkie H, Das M, Janssen E, Beano A, Farhat KB, Kam C, Bercich L, Incardona P, Villanacci V, Bondioni MP, Meini A, Baronio M, Abarzua P, Parolini S, Tabellini G, Maio S, Schmidt B, Goldsmith JD, Murphy G, Hollander G, Plebani A, Chou J, Geha RS. Combined immunodeficiency with autoimmunity caused by a homozygous missense mutation in inhibitor of nuclear factor 𝛋B kinase alpha (IKKα). Sci Immunol 2021; 6:eabf6723. [PMID: 34533979 DOI: 10.1126/sciimmunol.abf6723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vassilios Lougaris
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jacqueline G Wallace
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yousef Badran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Zachary Peters
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazel Wilkie
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdallah Beano
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Khaoula Ben Farhat
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luisa Bercich
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Incardona
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maria Pia Bondioni
- Department of Pediatric Radiology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonella Meini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Phammela Abarzua
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Silvia Parolini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Giovanna Tabellini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Maio
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Birgitta Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georg Hollander
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Paediatric Immunology, Department of Biomedicine, University of Basel, University Children's Hospital Basel, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alessandro Plebani
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Serpen JY, Armenti ST, Prasov L. Immunogenetics of the Ocular Anterior Segment: Lessons from Inherited Disorders. J Ophthalmol 2021; 2021:6691291. [PMID: 34258050 PMCID: PMC8257379 DOI: 10.1155/2021/6691291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune and autoinflammatory diseases cause morbidity in multiple organ systems including the ocular anterior segment. Genetic disorders of the innate and adaptive immune system present an avenue to study more common inflammatory disorders and host-pathogen interactions. Many of these Mendelian disorders have ophthalmic manifestations. In this review, we highlight the ophthalmic and molecular features of disorders of the innate immune system. A comprehensive literature review was performed using PubMed and the Online Mendelian Inheritance in Man databases spanning 1973-2020 with a focus on three specific categories of genetic disorders: RIG-I-like receptors and downstream signaling, inflammasomes, and RNA processing disorders. Tissue expression, clinical associations, and animal and functional studies were reviewed for each of these genes. These genes have broad roles in cellular physiology and may be implicated in more common conditions with interferon upregulation including systemic lupus erythematosus and type 1 diabetes. This review contributes to our understanding of rare inherited conditions with ocular involvement and has implications for further characterizing the effect of perturbations in integral molecular pathways.
Collapse
Affiliation(s)
- Jasmine Y. Serpen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen T. Armenti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Liao Y, Hua Y, Li Y, Zhang C, Yu W, Guo P, Zou K, Li W, Sun Y, Wang R, Zuo Y, Sui S, Tian C, Hao J, Chen M, Hu S, Chen M, Long Q, Wang X, Zou L, Xie F, Guo W, Deng W. CRSP8 promotes thyroid cancer progression by antagonizing IKKα-induced cell differentiation. Cell Death Differ 2021; 28:1347-1363. [PMID: 33162555 PMCID: PMC8027816 DOI: 10.1038/s41418-020-00656-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
CRSP8 plays an important role in recruiting mediators to genes through direct interaction with various DNA-bound transactivators. In this study, we uncovered the unique function of CRSP8 in suppressing thyroid cancer differentiation and promoting thyroid cancer progression via targeting IKKα signaling. CRSP8 was highly expressed in human thyroid cancer cells and tissues, especially in anaplastic thyroid cancer (ATC). Knockdown of CRSP8 suppressed cell growth, migration, invasion, stemness, and induced apoptosis and differentiation in ATC cells, while its overexpression displayed opposite effects in differentiated thyroid cancer (DTC) cells. Mechanistically, CRSP8 downregulated IKKα expression by binding to the IKKα promoter region (-257 to -143) to negatively regulate its transcription. Knockdown or overexpression of IKKα significantly reversed the expression changes of the differentiation and EMT-related markers and cell growth changes mediated by CRSP8 knockdown or overexpression in ATC or DTC cells. The in vivo study also validated that CRSP8 knockdown inhibited the growth of thyroid cancer by upregulating IKKα signaling in a mouse model of human ATC. Furthermore, we found that CRSP8 regulated the sensitivity of thyroid cancer cells to chemotherapeutics, including cisplatin and epirubicin. Collectively, our results demonstrated that CRSP8 functioned as a modulator of IKKα signaling and a suppressor of thyroid cancer differentiation, suggesting a potential therapeutic strategy for ATC by targeting CRSP8/IKKα pathway.
Collapse
Affiliation(s)
- Yina Liao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijun Hua
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wendan Yu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kun Zou
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenyang Li
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yao Sun
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ruozhu Wang
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yan Zuo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Silei Sui
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijuan Zou
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
18
|
PKCα/ERK/C7ORF41 axis regulates epidermal keratinocyte differentiation through the IKKα nuclear translocation. Biochem J 2021; 478:839-854. [PMID: 33528492 DOI: 10.1042/bcj20200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Aberrant differentiation of keratinocytes disrupts the skin barrier and causes a series of skin diseases. However, the molecular basis of keratinocyte differentiation is still poorly understood. In the present study, we examined the expression of C7ORF41 using tissue microarrays by immunohistochemistry and found that C7ORF41 is specifically expressed in the basal layers of skin epithelium and its expression is gradually decreased during keratinocytes differentiation. Importantly, we corroborated the pivotal role of C7ORF41 during keratinocyte differentiation by C7ORF41 knockdown or overexpression in TPA-induced Hacat keratinocytes. Mechanismly, we first demonstrated that C7ORF41 inhibited keratinocyte differentiation mainly through formatting a complex with IKKα in the cytoplasm, which thus blocked the nuclear translocation of IKKα. Furthermore, we also demonstrated that inhibiting the PKCα/ERK signaling pathway reversed the reduction in C7ORF41 in TPA-induced keratinocytes, indicating that C7ORF41 expression could be regulated by upstream PKCα/ERK signaling pathway during keratinocyte differentiation. Collectively, our study uncovers a novel regulatory network PKCα/ERK/C7ORF41/IKKα during keratinocyte differentiation, which provides potential therapeutic targets for skin diseases.
Collapse
|
19
|
Sequeira I, Rashid M, Tomás IM, Williams MJ, Graham TA, Adams DJ, Vigilante A, Watt FM. Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology. Nat Commun 2020; 11:5671. [PMID: 33168804 PMCID: PMC7652942 DOI: 10.1038/s41467-020-19401-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/06/2020] [Indexed: 01/10/2023] Open
Abstract
To establish whether 4-nitroquinoline N-oxide-induced carcinogenesis mirrors the heterogeneity of human oral squamous cell carcinoma (OSCC), we have performed genomic analysis of mouse tongue lesions. The mutational signatures of human and mouse OSCC overlap extensively. Mutational burden is higher in moderate dysplasias and invasive SCCs than in hyperplasias and mild dysplasias, although mutations in p53, Notch1 and Fat1 occur in early lesions. Laminin-α3 mutations are associated with tumour invasiveness and Notch1 mutant tumours have an increased immune infiltrate. Computational modelling of clonal dynamics indicates that high genetic heterogeneity may be a feature of those mild dysplasias that are likely to progress to more aggressive tumours. These studies provide a foundation for exploring OSCC evolution, heterogeneity and progression.
Collapse
Affiliation(s)
- Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Mamunur Rashid
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inês M Tomás
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Marc J Williams
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Trevor A Graham
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alessandra Vigilante
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
20
|
Abstract
As one of the most common forms of cancer, lung cancers present as a collection of different histological subtypes. These subtypes are characterized by distinct sets of driver mutations and phenotypic appearance, and they often show varying degrees of heterogenicity, aggressiveness, and response/resistance to therapy. Intriguingly, lung cancers are also capable of showing features of multiple subtypes or converting from one subtype to another. The intertumoral and intratumoral heterogeneity of lung cancers as well as incidences of subtype transdifferentiation raise the question of to what extent the tumor characteristics are dictated by the cell of origin rather than the acquired driver lesions. We provide here an overview of the studies in experimental mouse models that try to address this question. These studies convincingly show that both the cell of origin and the genetic driver lesions play a critical role in shaping the phenotypes of lung tumors. However, they also illustrate that there is far from a direct one-to-one relationship between the cell of origin and the cancer subtype, as most epithelial cells can be reprogrammed toward diverse lung cancer fates when exposed to the appropriate set of driver mutations.
Collapse
Affiliation(s)
- Giustina Ferone
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
21
|
Tilstam PV, Soppert J, Hemmers C, Harlacher E, Döring Y, van der Vorst EP, Schulte C, Alampour-Rajabi S, Theelen W, Asare Y, de Winther MP, Lawrence T, Bernhagen J, Schober A, Zernecke A, Jankowski J, Weber C, Noels H. Non-activatable mutant of inhibitor of kappa B kinase α (IKKα) exerts vascular site-specific effects on atherosclerosis in Apoe-deficient mice. Atherosclerosis 2020; 292:23-30. [DOI: 10.1016/j.atherosclerosis.2019.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
|
22
|
Dinçer T, Boz Er AB, Er İ, Toraman B, Yildiz G, Kalay E. RIPK4 suppresses the TGF-β1 signaling pathway in HaCaT cells. Cell Biol Int 2019; 44:848-860. [PMID: 31825120 DOI: 10.1002/cbin.11282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Receptor-interacting serine/threonine kinase 4 (RIPK4) and transforming growth factor-β 1 (TGF-β1) play critical roles in the development and maintenance of the epidermis. A negative correlation between the expression patterns of RIPK4 and TGF-β signaling during epidermal homeostasis-related events and suppression of RIPK4 expression by TGF-β1 in keratinocyte cell lines suggest the presence of a negative regulatory loop between the two factors. So far, RIPK4 has been shown to regulate nuclear factor-κB (NF-κB), protein kinase C (PKC), wingless-type MMTV integration site family (Wnt), and (mitogen-activated protein kinase) MAPK signaling pathways. In this study, we examined the effect of RIPK4 on the canonical Smad-mediated TGF-β1 signaling pathway by using the immortalized human keratinocyte HaCaT cell line. According to our results, RIPK4 inhibits intracellular Smad-mediated TGF-β1 signaling events through suppression of TGF-β1-induced Smad2/3 phosphorylation, which is reflected in the upcoming intracellular events including Smad2/3-Smad4 interaction, nuclear localization, and TGF-β1-induced gene expression. Moreover, the kinase activity of RIPK4 is required for this process. The in vitro wound-scratch assay demonstrated that RIPK4 suppressed TGF-β1-mediated wound healing through blocking TGF-β1-induced cell migration. In conclusion, our results showed the antagonistic effect of RIPK4 on TGF-β1 signaling in keratinocytes for the first time and have the potential to contribute to the understanding and treatment of skin diseases associated with aberrant TGF-β1 signaling.
Collapse
Affiliation(s)
- Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Asiye Büşra Boz Er
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - İdris Er
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Bayram Toraman
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ersan Kalay
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
23
|
Chavdoula E, Habiel DM, Roupakia E, Markopoulos GS, Vasilaki E, Kokkalis A, Polyzos AP, Boleti H, Thanos D, Klinakis A, Kolettas E, Marcu KB. CHUK/IKK-α loss in lung epithelial cells enhances NSCLC growth associated with HIF up-regulation. Life Sci Alliance 2019; 2:2/6/e201900460. [PMID: 31792060 PMCID: PMC6892436 DOI: 10.26508/lsa.201900460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
IKKα is an NSCLC suppressor and its loss in mouse AT-II lung epithelial cells or in human NSCLC lines increased urethane-induced adenoma growth and xenograft burdens, respectively. IKKα loss can up-regulate HIF-1α, enhancing tumor growth under hypoxia. Through the progressive accumulation of genetic and epigenetic alterations in cellular physiology, non–small-cell lung cancer (NSCLC) evolves in distinct steps involving mutually exclusive oncogenic mutations in K-Ras or EGFR along with inactivating mutations in the p53 tumor suppressor. Herein, we show two independent in vivo lung cancer models in which CHUK/IKK-α acts as a major NSCLC tumor suppressor. In a novel transgenic mouse strain, wherein IKKα ablation is induced by tamoxifen (Tmx) solely in alveolar type II (AT-II) lung epithelial cells, IKKα loss increases the number and size of lung adenomas in response to the chemical carcinogen urethane, whereas IKK-β instead acts as a tumor promoter in this same context. IKKα knockdown in three independent human NSCLC lines (independent of K-Ras or p53 status) enhances their growth as tumor xenografts in immune-compromised mice. Bioinformatics analysis of whole transcriptome profiling followed by quantitative protein and targeted gene expression validation experiments reveals that IKKα loss can result in the up-regulation of activated HIF-1-α protein to enhance NSCLC tumor growth under hypoxic conditions in vivo.
Collapse
Affiliation(s)
- Evangelia Chavdoula
- Biomedical Research Foundation Academy of Athens, Athens, Greece.,Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece
| | | | - Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece
| | - Eleni Vasilaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonis Kokkalis
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Department of Microbiology and Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece .,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece
| | - Kenneth B Marcu
- Biomedical Research Foundation Academy of Athens, Athens, Greece .,Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece.,Departments of Biochemistry and Cell Biology and Pathology, Stony Brook University, Stony Brook, NY, USA.,Department of Biological Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
24
|
Chiricosta L, Silvestro S, Pizzicannella J, Diomede F, Bramanti P, Trubiani O, Mazzon E. Transcriptomic Analysis of Stem Cells Treated with Moringin or Cannabidiol: Analogies and Differences in Inflammation Pathways. Int J Mol Sci 2019; 20:ijms20236039. [PMID: 31801206 PMCID: PMC6929002 DOI: 10.3390/ijms20236039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation is a common feature of many neurodegenerative diseases. The treatment of stem cells as a therapeutic approach to repair damage in the central nervous system represents a valid alternative. In this study, using Next-Generation Sequencing (NGS) technology, we analyzed the transcriptomic profile of human Gingival Mesenchymal Stem Cells (hGMSCs) treated with Moringin [4-(α-l-ramanosyloxy)-benzyl isothiocyanate] (hGMSCs-MOR) or with Cannabidiol (hGMSCs-CBD) at dose of 0.5 or 5 µM, respectively. Moreover, we compared their transcriptomic profiles in order to evaluate analogies and differences in pro- and anti-inflammatory pathways. The hGMSCs-MOR selectively downregulate TNF-α signaling from the beginning, reducing the expression of TNF-α receptor while hGMSCs-CBD limit its activity after the process started. The treatment with CBD downregulates the pro-inflammatory pathway mediated by the IL-1 family, including its receptor while MOR is less efficient. Furthermore, both the treatments are efficient in the IL-6 signaling. In particular, CBD reduces the effect of the pro-inflammatory JAK/STAT pathway while MOR enhances the pro-survival PI3K/AKT/mTOR. In addition, both hGMSCs-MOR and hGMSCs-CBD improve the anti-inflammatory activity enhancing the TGF-β pathway.
Collapse
Affiliation(s)
- Luigi Chiricosta
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (L.C.); (S.S.); (P.B.)
| | - Serena Silvestro
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (L.C.); (S.S.); (P.B.)
| | - Jacopo Pizzicannella
- Azienda Sanitaria Locale 02 Lanciano-Vasto-Chieti, “Ss. Annunziata” Hospital, 66100 Chieti, Italy
| | - Francesca Diomede
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Università “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Placido Bramanti
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (L.C.); (S.S.); (P.B.)
| | - Oriana Trubiani
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Università “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Emanuela Mazzon
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (L.C.); (S.S.); (P.B.)
- Correspondence: ; Tel.: +39-090-60-12-8172
| |
Collapse
|
25
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
26
|
Otkur W, Wang F, Liu W, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Persistent IKKα phosphorylation induced apoptosis in UVB and Poly I:C co-treated HaCaT cells plausibly through pro-apoptotic p73 and abrogation of IκBα. Mol Immunol 2018; 104:69-78. [PMID: 30445257 DOI: 10.1016/j.molimm.2018.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/19/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Toll-like receptor 3 (TLR3), a member of pattern recognition receptors, is reported to initiate skin inflammation by recognizing double-strand RNA (dsRNA) released from UVB-irradiated cells. Recently, we have discovered the NF-κB pathway activated by TLR3 is involved in apoptosis of UVB-Poly I:C-treated HaCaT cells. The real culprit for apoptosis has not been precisely identified since the system of NF-κB pathway is complex. In this study, we silenced main transcriptional factors in NF-κB family, RelA, RelB and c-Rel, but to our surprise the results show that none of them participate in apoptosis induction in UVB-Poly I:C-treated HaCaT cells. Therefore, we moved to investigate the apoptosis-associated molecules in the upstream of NF-κB pathway. We firstly checked the expression of IκBα, an NF-κB inhibitor. UVB (4.8 mJ/cm2) and Poly I:C (0.3 μg/mL) co-treatment decreased IκBα expression level in a time-dependent manner. Silencing IκBα with siRNA further enhanced UVB-Poly I:C-induced cell death. We then investigated IκB kinase (IKK) complex that contributes to the degradation of IκBα. IKK is composed of IKKα, IKKβ and NEMO. Treatment with IKK-16, an IKKα/β inhibitor, significantly diminished UVB-Poly I:C-induced IκBα degradation and thus apoptosis. Silencing either IKKα or NEMO but not IKKβ with corresponding siRNA inhibited apoptosis. Tumor repressor p73, a homologue of p53, is reported to mediate IKKα-induced apoptosis in DNA damage response. Silencing p73 reduced cell apoptosis in UVB-Poly I:C-treated HaCaT cells. In summary, UVB and Poly I:C co-treatment activates IKKα and NEMO, which diminishes anti-apoptotic IκBα, resulting in enhancement of apoptosis through p73. The findings partially clarify the possible molecular mechanism of pro-apoptotic NF-κB pathway activated by TLR3 in the fate of UVB-irradiated epidermis.
Collapse
Affiliation(s)
- Wuxiyar Otkur
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fang Wang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education & Primary Care, Kyoto Prefectural University of Medicine, Kajiicho 465, Kamikyo-ku, Kyoto City, Kyoto, 602-8566, Japan
| | - Satoshi Onodera
- Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo, 194-8543, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
27
|
Abstract
Biology is dynamic. Timescales range from frenetic sub-second ion fluxes and enzymatic reactions to the glacial millions of years of evolutionary change. Falling somewhere in the middle of this range are the processes we usually study in development: cell division and differentiation, gene expression, cell-cell signalling, and morphogenesis. But what sets the tempo and manages the order of developmental events? Are the order and tempo different between species? How is the sequence of multiple events coordinated? Here, we discuss the importance of time for developing embryos, highlighting the necessity for global as well as cell-autonomous control. New reagents and tools in imaging and genomic engineering, combined with in vitro culture, are beginning to offer fresh perspectives and molecular insight into the origin and mechanisms of developmental time.
Collapse
Affiliation(s)
- Miki Ebisuya
- RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
28
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
29
|
Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L. NF-κB Members Left Home: NF-κB-Independent Roles in Cancer. Biomedicines 2017; 5:biomedicines5020026. [PMID: 28587092 PMCID: PMC5489812 DOI: 10.3390/biomedicines5020026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) has been long considered a master regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been linked with carcinogenesis in many types of cancer. In recent years, the study of NF-κB members in NF-κB unrelated pathways provided novel attractive targets for cancer therapy, specifically linked to particular pathologic responses. Here we review specific functions of IκB kinase complexes (IKKs) and IκBs, which have distinctly tumor promoting or suppressing activities in cancer. Understanding how these proteins are regulated in a tumor-related context will provide new opportunities for drug development.
Collapse
Affiliation(s)
- Carlota Colomer
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Laura Marruecos
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Vert
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Lluis Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| |
Collapse
|
30
|
Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu CP, Yang WE, Su CW, Chuang CY, Li WH, Chung WH, Yang SF. Exome Sequencing of Oral Squamous Cell Carcinoma Reveals Molecular Subgroups and Novel Therapeutic Opportunities. Am J Cancer Res 2017; 7:1088-1099. [PMID: 28435450 PMCID: PMC5399578 DOI: 10.7150/thno.18551] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), an epithelial malignancy affecting a variety of subsites in the oral cavity, is prevalent in Asia. The survival rate of OSCC patients has not improved over the past decades due to its heterogeneous etiology, genetic aberrations, and treatment outcomes. Improvement in therapeutic strategies and tailored treatment options is an unmet need. To unveil the mutational spectrum, whole-exome sequencing of 120 OSCC from male individuals in Taiwan was conducted. Analyzing the contributions of the five mutational signatures extracted from the dataset of somatic variations identified four groups of tumors that were significantly associated with demographic and clinical features. In addition, known (TP53, FAT1, EPHA2, CDKN2A, NOTCH1, CASP8, HRAS, RASA1, and PIK3CA) and novel (CHUK and ELAVL1) genes that were significantly and frequently mutated in OSCC were discovered. Further analyses of gene alteration status with clinical parameters revealed that the tumors of the tongue were enriched with copy-number alterations in several gene clusters containing CCND1 and MAP4K2. Through defining the catalog of targetable genomic alterations, 58% of the tumors were found to carry at least one aberrant event potentially targeted by US Food and Drug Administration (FDA)-approved agents. Strikingly, if targeting the p53-cell cycle pathway (TP53 and CCND1) by the drugs studied in phase I-III clinical trials, those possibly actionable tumors are predominantly located in the tongue, suggesting a better prediction of sensitivity to current targeted therapies. Our work revealed molecular OSCC subgroups that reflect etiological and prognostic correlation as well as defined the landscape of major altered events in the coding regions of OSCC genomes. These findings provide clues for the design of clinical trials for targeted therapies and stratification of OSCC patients with differential therapeutic efficacy.
Collapse
|
31
|
Lisse TS, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci 2017; 130:975-988. [PMID: 28122935 PMCID: PMC5358334 DOI: 10.1242/jcs.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Although the functions of H2O2 in epidermal wound repair are conserved throughout evolution, the underlying signaling mechanisms are largely unknown. In this study we used human keratinocytes (HEK001) to investigate H2O2-dependent wound repair mechanisms. Scratch wounding led to H2O2 production in two or three cell layers at the wound margin within ∼30 min and subsequent cysteine modification of proteins via sulfenylation. Intriguingly, exogenous H2O2 treatment resulted in preferential sulfenylation of keratinocytes that adopted a migratory phenotype and detached from neighboring cells, suggesting that one of the primary functions of H2O2 is to stimulate signaling factors involved in cell migration. Based on previous findings that revealed epidermal growth factor receptor (EGFR) involvement in H2O2-dependent cell migration, we analyzed oxidation of a candidate upstream target, the inhibitor of κB kinase α (IKKα; encoded by CHUK), as a mechanism of action. We show that IKKα is sulfenylated at a conserved cysteine residue in the kinase domain, which correlates with de-repression of EGF promoter activity and increased EGF expression. Thus, this indicates that IKKα promotes migration through dynamic interactions with the EGF promoter depending on the redox state within cells. Summary: This study provides a newly identified mechanism by which H2O2-dependent oxidation of the inhibitor of κB kinase α and de-repression of epidermal growth factor promoter activity stimulates keratinocyte migration.
Collapse
Affiliation(s)
- Thomas S Lisse
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA .,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| |
Collapse
|
32
|
Alameda JP, Gaspar M, Ramírez Á, Navarro M, Page A, Suárez-Cabrera C, Fernández MG, Mérida JR, Paramio JM, García-Fernández RA, Fernández-Aceñero MJ, Casanova ML. Deciphering the role of nuclear and cytoplasmic IKKα in skin cancer. Oncotarget 2016; 7:29531-29547. [PMID: 27121058 PMCID: PMC5045415 DOI: 10.18632/oncotarget.8792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Nonmelanoma skin cancers (NMSC) are the most common human malignancies. IKKα is an essential protein for skin development and is also involved in the genesis and progression of NMSC, through mechanisms not fully understood. While different studies show that IKKα protects against skin cancer, others indicate that it promotes NMSC. To resolve this controversy we have generated two models of transgenic mice expressing the IKKα protein in the nucleus (N-IKKα mice) or the cytoplasm (C-IKKα mice) of keratinocytes. Chemical skin carcinogenesis experiments show that tumors developed by both types of transgenic mice exhibit histological and molecular characteristics that make them more prone to progression and invasion than those developed by Control mice. However, the mechanisms through which IKKα promotes skin tumors are different depending on its subcellular localization; while IKKα of cytoplasmic localization increases EGFR, MMP-9 and VEGF-A activities in tumors, nuclear IKKα causes tumor progression through regulation of c-Myc, Maspin and Integrin-α6 expression. Additionally, we have found that N-IKKα skin tumors mimic the characteristics associated to aggressive human skin tumors with high risk to metastasize. Our results show that IKKα has different non-overlapping roles in the nucleus or cytoplasm of keratinocytes, and provide new targets for intervention in human NMSC progression.
Collapse
Affiliation(s)
- Josefa P. Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Molecular Oncology, Institute of Biomedical Investigation University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Miriam Gaspar
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Molecular Oncology, Institute of Biomedical Investigation University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Molecular Oncology, Institute of Biomedical Investigation University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Molecular Oncology, Institute of Biomedical Investigation University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Molecular Oncology, Institute of Biomedical Investigation University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - M. Guadalupe Fernández
- Department of Human Anatomy and Embriology, Facultad de Medicina, UCM, 28040 Madrid, Spain
| | - Jose R. Mérida
- Department of Human Anatomy and Embriology, Facultad de Medicina, UCM, 28040 Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Molecular Oncology, Institute of Biomedical Investigation University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | | | | | - M. Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Molecular Oncology, Institute of Biomedical Investigation University Hospital “12 de Octubre”, 28041 Madrid, Spain
| |
Collapse
|
33
|
The role of barrier genes in epidermal malignancy. Oncogene 2016; 35:5705-5712. [PMID: 27041586 DOI: 10.1038/onc.2016.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/24/2022]
Abstract
The outermost layer of the mammalian skin, the epidermis, forms a protective barrier against pathogenic microbes and tissue dehydration. This barrier is formed and maintained by complex genetic networks that connect cellular differentiation processes, enzymatic activities and cellular junctions. Disruption in these networks affects the balance between keratinocyte proliferation and differentiation resulting in barrier function impairment, epidermal hyperproliferation and in some cases, squamous cell carcinoma (SCC). Recent studies in wound-induced inflammation-mediated cancers in mice have identified dysregulation of core barrier components as tumor drivers. We therefore propose a hypothesis in which loss of key barrier genes, induce barrier dysfunction, and promote inflammation-driven epidermal hyperplasia and carcinogenesis over time. This emerging vision suggests that under specific genetic circumstances, localized barrier impairment could be considered as a hallmark of initiating lesions in epidermal SCC.
Collapse
|
34
|
Joly S, Rhea L, Volk P, Moreland JG, Dunnwald M. Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock. PLoS One 2016; 11:e0152385. [PMID: 27035130 PMCID: PMC4817988 DOI: 10.1371/journal.pone.0152385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/14/2016] [Indexed: 01/26/2023] Open
Abstract
Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production.
Collapse
Affiliation(s)
- Sophie Joly
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Lindsey Rhea
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| | - Paige Volk
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| | - Jessica G. Moreland
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| | - Martine Dunnwald
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Jung KH, Zhang J, Zhou C, Shen H, Gagea M, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK, Beretta L. Differentiation therapy for hepatocellular carcinoma: Multifaceted effects of miR-148a on tumor growth and phenotype and liver fibrosis. Hepatology 2016; 63:864-79. [PMID: 26599259 PMCID: PMC4764447 DOI: 10.1002/hep.28367] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/21/2015] [Indexed: 12/25/2022]
Abstract
UNLABELLED The death rate from hepatocellular carcinoma (HCC) is increasing, and liver cancer is the second leading cause of cancer-related mortality worldwide. Most patients with HCC have underlying liver cirrhosis and compromised liver function, limiting treatment options. Cirrhosis is associated with cell dedifferentiation and expansion of hepatocholangiolar progenitor cells. We identified a microRNA signature associated with HCC and hepatocytic differentiation of progenitor cells. We further identified miR-148a as an inducer of hepatocytic differentiation that is down-regulated in HCC. MiR-148a-mimetic treatment in vivo suppressed tumor growth, reduced tumor malignancy and liver fibrosis, and prevented tumor development. These effects were associated with an increased differentiated phenotype and mediated by IκB kinase alpha/NUMB/NOTCH signaling. CONCLUSION miR-148a is an inhibitor of the IκB kinase alpha/NUMB/NOTCH pathway and an inducer of hepatocytic differentiation that when deregulated promotes HCC initiation and progression. Differentiation-targeted therapy may be a promising strategy to treat and prevent HCC.
Collapse
Affiliation(s)
- Kwang Hwa Jung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chong Zhou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics and the Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics and the Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anil K. Sood
- Department of Gynecologic and Reproductive Oncology and the Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
36
|
Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing. Sci Rep 2016; 6:20328. [PMID: 26846883 PMCID: PMC4742856 DOI: 10.1038/srep20328] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
Skin wounds need to be repaired rapidly after injury to restore proper skin barrier function. Hydrogen peroxide (H2O2) is a conserved signaling factor that has been shown to promote a variety of skin wound repair processes, including immune cell migration, angiogenesis and sensory axon repair. Despite growing research on H2O2 functions in wound repair, the downstream signaling pathways activated by this reactive oxygen species in the context of injury remain largely unknown. The goal of this study was to provide a comprehensive analysis of gene expression changes in the epidermis upon exposure to H2O2 concentrations known to promote wound repair. Comparative transcriptome analysis using RNA-seq data from larval zebrafish and previously reported microarray data from a human epidermal keratinocyte line shows that H2O2 activates conserved cell migration, adhesion, cytoprotective and anti-apoptotic programs in both zebrafish and human keratinocytes. Further assessment of expression characteristics and signaling pathways revealed the activation of three major H2O2–dependent pathways, EGF, FOXO1, and IKKα. This study expands on our current understanding of the clinical potential of low-level H2O2 for the promotion of epidermal wound repair and provides potential candidates in the treatment of wound healing deficits.
Collapse
|
37
|
Wan X, Hou LJ, Zhang LY, Huang WJ, Liu L, Zhang Q, Hu B, Chen W, Chen X, Cao CC. IKKα is involved in kidney recovery and regeneration of acute ischemia/reperfusion injury in mice through IL10-producing regulatory T cells. Dis Model Mech 2015; 8:733-42. [PMID: 26035380 PMCID: PMC4486855 DOI: 10.1242/dmm.018200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/17/2015] [Indexed: 12/30/2022] Open
Abstract
The recovery phase after kidney ischemia/reperfusion (IR) injury is often associated with the suppression of inflammation and the proliferation of tubular epithelial cells (TECs). The duration of this phase is often determined by the suppression of inflammation and the proliferation of TECs. Several lines of evidence suggest that IκB kinase α (IKKα) not only promotes the production of anti-inflammatory factors and/or prevents the production of inflammatory factors, but also induces the accompanying cell differentiation and regeneration, and suppresses inflammation. We therefore hypothesized that IKKα could participate in the kidney repair after IR injury and have used a mouse model of acute kidney injury (AKI) to test this. We found that IKKα mediated the repair of the kidney via infiltrated regulatory T (Treg) cells, which can produce anti-inflammatory cytokine IL10, and that IKKα also increased the proliferation of the surviving TECs and suppressed of inflammation. In addition, the expression of indoleamine 2,3-dioxygenase (IDO) in TECs is consistent with the infiltration of IL10-producing Treg cells. We conclude that IKKα is involved in kidney recovery and regeneration through the Treg cells that can produce IL10, which might be a potential therapeutic target that can be used to promote kidney repair after IR injury.
Collapse
Affiliation(s)
- Xin Wan
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Li-Jun Hou
- Division of Neurosurgery, Department of Surgery and Shanghai Neurosurgical Institute, The Second Military Medical University, Changzheng Hospital, Shanghai 200003, China
| | - Li-Yuan Zhang
- Division of Nephrology, Department of Medicine, Affiliated Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang 222002, China
| | - Wen-Juan Huang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lin Liu
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qian Zhang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bo Hu
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wen Chen
- Division of Cardiovascular Surgery, Department of Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xin Chen
- Division of Cardiovascular Surgery, Department of Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chang-Chun Cao
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
38
|
Jiao J, Ishikawa TO, Dumlao DS, Norris PC, Magyar CE, Mikulec C, Catapang A, Dennis EA, Fischer SM, Herschman HR. Targeted deletion and lipidomic analysis identify epithelial cell COX-2 as a major driver of chemically induced skin cancer. Mol Cancer Res 2014; 12:1677-88. [PMID: 25063587 PMCID: PMC4233191 DOI: 10.1158/1541-7786.mcr-14-0397-t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA-induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type-specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2-expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type-specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses. IMPLICATIONS Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors.
Collapse
Affiliation(s)
- Jing Jiao
- Departments of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California. Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Tomo-O Ishikawa
- Departments of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California. Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Darren S Dumlao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California. Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Paul C Norris
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California. Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Clara E Magyar
- Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Carol Mikulec
- University of Texas MD Anderson Cancer Center, Science Park, Smithville, Texas
| | - Art Catapang
- Departments of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California. Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Edward A Dennis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California. Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Susan M Fischer
- University of Texas MD Anderson Cancer Center, Science Park, Smithville, Texas
| | - Harvey R Herschman
- Departments of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California. Biological Chemistry, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
39
|
Costanzo A, Pediconi N, Narcisi A, Guerrieri F, Belloni L, Fausti F, Botti E, Levrero M. TP63 and TP73 in cancer, an unresolved "family" puzzle of complexity, redundancy and hierarchy. FEBS Lett 2014; 588:2590-9. [PMID: 24983500 DOI: 10.1016/j.febslet.2014.06.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022]
Abstract
TP53 belongs to a small gene family that includes, in mammals, two additional paralogs, TP63 and TP73. The p63 and p73 proteins are structurally and functionally similar to p53 and their activity as transcription factors is regulated by a wide repertoire of shared and unique post-translational modifications and interactions with regulatory cofactors. p63 and p73 have important functions in embryonic development and differentiation but are also involved in tumor suppression. The biology of p63 and p73 is complex since both TP63 and TP73 genes are transcribed into a variety of different isoforms that give rise to proteins with antagonistic properties, the TA-isoforms that act as tumor-suppressors and DN-isoforms that behave as proto-oncogenes. The p53 family as a whole behaves as a signaling "network" that integrates developmental, metabolic and stress signals to control cell metabolism, differentiation, longevity, proliferation and death. Despite the progress of our knowledge, the unresolved puzzle of complexity, redundancy and hierarchy in the p53 family continues to represent a formidable challenge.
Collapse
Affiliation(s)
- Antonio Costanzo
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Natalia Pediconi
- Laboratory of Molecular Oncology, Department of Molecular Medicine, Sapienza University of Rome, Italy; Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy
| | - Alessandra Narcisi
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Francesca Guerrieri
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy
| | - Laura Belloni
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy
| | - Francesca Fausti
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Elisabetta Botti
- Dermatology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Italy
| | - Massimo Levrero
- Center for Life Nanosciences (CNLS) - IIT/Sapienza, Rome, Italy; Laboratory of Gene Expression, Department of Internal Medicine (DMISM), Sapienza University of Rome, Italy.
| |
Collapse
|
40
|
Genome-wide association study identifies three novel susceptibility loci for severe Acne vulgaris. Nat Commun 2014; 5:4020. [DOI: 10.1038/ncomms5020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/01/2014] [Indexed: 12/22/2022] Open
|
41
|
Kurita H, Schnekenburger M, Ovesen JL, Xia Y, Puga A. The Ah receptor recruits IKKα to its target binding motifs to phosphorylate serine-10 in histone H3 required for transcriptional activation. Toxicol Sci 2014; 139:121-32. [PMID: 24519526 DOI: 10.1093/toxsci/kfu027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) activation by xenobiotic ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is key to their toxicity. Following activation and nuclear translocation, AHR heterodimerizes with the AHR nuclear translocator (ARNT) and binds to AHR response elements (AhREs) in the enhancer of target genes, of which Cyp1a1 is the prototype. Previously, we showed that concomitant with AHR binding, histone H3 in the Cyp1a1 enhancer-promoter AhRE cluster became phosphorylated in serine-10 (H3S10), suggesting that the ligand-activated AHR recruited one or more kinases to the enhancer chromatin to phosphorylate this residue. To test this hypothesis, we used mouse hepatoma Hepa-1c1c7 cells and their c35 mutant derivative, lacking a functional AHR, to search for candidate kinases that would phosphorylate H3S10 in an AHR dependent manner. Using chromatin immunoprecipitation with antibodies to a comprehensive set of protein kinases, we identified three kinases, IκB kinase α (IKKα), mitogen and stress activated protein kinase 1 (MSK1), and mitogen and stress activated protein kinase 2 (MSK2), whose binding to the Cyp1a1 enhancer was significantly increased by TCDD in Hepa-1c1c7 cells and absent in control c35 cells. Complexes of AHR, ARNT, and IKKα could be coimmunoprecipitated from nuclei of TCDD treated Hepa-1c1c7 cells and shRNA-mediated IKKα knockdown inhibited both H3S10 phosphorylation in the Cyp1a1 enhancer and the induction of Cyp1a1, Aldh3a1, and Nqo1 in TCDD-treated cells. We conclude that AHR recruits IKKα to the promoter of its target genes and that AHR-mediated H3S10 phosphorylation is a key epigenetic requirement for induction of AHR targets. Given the role of H3S10ph in regulation of chromosome condensation, AHR-IKKα cross-talk may be a mediator of chromatin remodeling by environmental agents.
Collapse
Affiliation(s)
- Hisaka Kurita
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267
| | | | | | | | | |
Collapse
|
42
|
Hinz M, Scheidereit C. The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep 2013; 15:46-61. [PMID: 24375677 DOI: 10.1002/embr.201337983] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
43
|
Masse I, Barbollat-Boutrand L, Kharbili ME, Berthier-Vergnes O, Aubert D, Lamartine J. GATA3 inhibits proliferation and induces expression of both early and late differentiation markers in keratinocytes of the human epidermis. Arch Dermatol Res 2013; 306:201-8. [PMID: 24346062 DOI: 10.1007/s00403-013-1435-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/18/2013] [Accepted: 12/06/2013] [Indexed: 12/18/2022]
Abstract
GATA3 belongs to the GATA transcription factor family and is a crucial regulator of lymphocyte differentiation. More recently, GATA3 was shown to be involved in skin cell lineage determination, in morphogenesis and maintenance of hair follicle keratinocytes as well as in epidermal barrier formation in mouse. In human, the potential role of GATA3 in the regulation of interfollicular epidermal homeostasis was still poorly explored. We thus investigated whether GATA3 could play a role in the regulation of proliferation and/or differentiation processes in human primary keratinocytes. We silenced the expression of GATA3 by small interfering RNA in either proliferating or differentiated human primary keratinocytes and analyzed the effect on cell proliferation and differentiation. We showed that GATA3 inhibition increased cell number, BrdU incorporation and expression of the proliferation markers PCNA and Ki67, demonstrating that GATA3 can inhibit keratinocyte proliferation. Moreover, GATA3 seems to be able to induce keratinocyte differentiation since its silencing leads to a decrease of both early and late differentiation markers such as Keratins 1 and 10, Involucrin and Loricrin. Our results demonstrate that GATA3 transcription factor inhibits proliferation and induces differentiation of primary keratinocytes, which suggest that it may regulate human interfollicular epidermal renewal.
Collapse
|
44
|
Ogawa K, Saeki N, Igura Y, Hayashi Y. Complementary expression and repulsive signaling suggest that EphB2 and ephrin-B1 are possibly involved in epithelial boundary formation at the squamocolumnar junction in the rodent stomach. Histochem Cell Biol 2013; 140:659-75. [PMID: 23881165 DOI: 10.1007/s00418-013-1129-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 12/22/2022]
Abstract
Eph receptors and ephrin ligands are cell-cell communication molecules with well-defined roles in cell adhesion, migration, and tissue boundary formation. However, their expression levels in the squamocolumnar epithelial junction region at the distal esophagus are completely unknown. We examined EphB2 and ephrin-B1 localization in the squamocolumnar epithelial junction region between the proximal and distal stomach of the rodents. Immunostaining showed complimentary expression patterns along the proximal-to-distal axis of the gastric epithelia across the junction: EphB2 expression was maximal around the epithelial junction and sharply decreased in the stratified squamous epithelium at a short distance from the junction, whereas ephrin-B1 was strongly expressed in the stratified squamous epithelium at a distance from the junction and sharply decreased toward the junction. These expression patterns suggest that EphB2/ephrin-B1 signaling occurs preferentially in the epithelia across the junction, where the receptor and ligand expression highly overlap. We also show that (1) EphB2 preferentially binds ephrin-B1, and (2) cell repulsion/lateral migration was induced in primary cultured gastric keratinocytes on ephrin-B1-Fc- and EphB2-Fc-coated surfaces. On the basis of these findings, we propose that EphB2 and ephrin-B1 are possibly involved in epithelial boundary formation at the squamocolumnar junction.
Collapse
Affiliation(s)
- Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan,
| | | | | | | |
Collapse
|
45
|
Abstract
The transcription factors NF-κB and IFN control important signaling cascades and mediate the expression of a number of important pro-inflammatory cytokines, adhesion molecules, growth factors and anti-apoptotic survival proteins. IκB kinase (IKK) and IKK-related kinases (IKKε and TBK1) are key regulators of these biological pathways and, as such, modulators of these enzymes may be useful in the treatment of inflammatory diseases and cancer. We have reviewed the most recent IKK patent literature (2008–2012), added publications of interest overlooked in previous patent reviews and identified all the players involved in small-molecule inhibitors of the IKKs. This will provide the reader with a decisive summary of the IKK arena, a field that has reached maturity over a decade of research.
Collapse
|
46
|
Cangkrama M, Ting SB, Darido C. Stem cells behind the barrier. Int J Mol Sci 2013; 14:13670-86. [PMID: 23812084 PMCID: PMC3742210 DOI: 10.3390/ijms140713670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells sustain the adult skin for a lifetime through self-renewal and the production of committed progenitors. These stem cells generate progeny that will undergo terminal differentiation leading to the development of a protective epidermal barrier. Whereas the molecular mechanisms that govern epidermal barrier repair and renewal have been extensively studied, pathways controlling stem cell differentiation remain poorly understood. Asymmetric cell divisions, small non-coding RNAs (microRNAs), chromatin remodeling complexes, and multiple differentiation factors tightly control the balance of stem and progenitor cell proliferation and differentiation, and disruption of this balance leads to skin diseases. In this review, we summarize and discuss current advances in our understanding of the mechanisms regulating epidermal stem and progenitor cell differentiation, and explore new relationships for maintenance of skin barrier function.
Collapse
Affiliation(s)
- Michael Cangkrama
- Epidermal Development Laboratory, Department of Medicine, Central Clinical School, Alfred Hospital and Monash University, Prahran VIC 3004, Australia; E-Mail:
| | - Stephen B. Ting
- Stem Cell Research Group, Australian Centre for Blood Diseases, Central Clinical School, Alfred Hospital and Monash University, Prahran VIC 3004, Australia; E-Mail:
| | - Charbel Darido
- Epidermal Development Laboratory, Department of Medicine, Central Clinical School, Alfred Hospital and Monash University, Prahran VIC 3004, Australia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-3-9903-0619
| |
Collapse
|
47
|
Mouse Genetic Models Reveal Surprising Functions of IkB Kinase Alpha in Skin Development and Skin Carcinogenesis. Cancers (Basel) 2013; 5:170-83. [PMID: 24216703 PMCID: PMC3730312 DOI: 10.3390/cancers5010170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 01/05/2023] Open
Abstract
Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside.
Collapse
|
48
|
Byg LM, Vidlund J, Vasiljevic N, Clausen D, Forslund O, Norrild B. NF-κB signalling is attenuated by the E7 protein from cutaneous human papillomaviruses. Virus Res 2012; 169:48-53. [DOI: 10.1016/j.virusres.2012.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 12/18/2022]
|
49
|
Cohen I, Birnbaum RY, Leibson K, Taube R, Sivan S, Birk OS. ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes. PLoS One 2012; 7:e42628. [PMID: 22936986 PMCID: PMC3427353 DOI: 10.1371/journal.pone.0042628] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/09/2012] [Indexed: 12/11/2022] Open
Abstract
Disrupted skin barrier due to altered keratinocyte differentiation is common in pathologic conditions such as atopic dermatitis, ichthyosis and psoriasis. However, the molecular cascades governing keratinocyte terminal differentiation are poorly understood. We have previously demonstrated that a dominant mutation in ZNF750 leads to a clinical phenotype reminiscent of psoriasis and seborrheic dermatitis. Here we show that ZNF750 is a nuclear protein bearing a functional C-terminal nuclear localization signal. ZNF750 was specifically expressed in the epidermal suprabasal layers and its expression was augmented during differentiation, both in human skin and in-vitro, peaking in the granular layer. Silencing of ZNF750 in Ca2+-induced HaCaT keratinocytes led to morphologically apparent arrest in the progression of late differentiation, as well as diminished apoptosis and sustained proliferation. ZNF750 knockdown cells presented with markedly reduced expression of epidermal late differentiation markers, including gene subsets of epidermal differentiation complex and skin barrier formation such as FLG, LOR, SPINK5, ALOX12B and DSG1, known to be mutated in various human skin diseases. Furthermore, overexpression of ZNF750 in undifferentiated cells induced terminal differentiation genes. Thus, ZNF750 is a regulator of keratinocyte terminal differentiation and with its downstream targets can serve in future elucidation of therapeutics for common diseases of skin barrier.
Collapse
Affiliation(s)
- Idan Cohen
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, Israel
- Department of Molecular Genetics and Virology, Ben-Gurion University, Beer-Sheva, Israel
| | - Ramon Y. Birnbaum
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Keren Leibson
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, Israel
- Department of Molecular Genetics and Virology, Ben-Gurion University, Beer-Sheva, Israel
| | - Ran Taube
- Department of Molecular Genetics and Virology, Ben-Gurion University, Beer-Sheva, Israel
| | - Sara Sivan
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, Israel
- Department of Molecular Genetics and Virology, Ben-Gurion University, Beer-Sheva, Israel
| | - Ohad S. Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, Israel
- Department of Molecular Genetics and Virology, Ben-Gurion University, Beer-Sheva, Israel
- Genetics Institute, Soroka Medical Center, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
50
|
Khoshnan A, Patterson PH. Elevated IKKα accelerates the differentiation of human neuronal progenitor cells and induces MeCP2-dependent BDNF expression. PLoS One 2012; 7:e41794. [PMID: 22848609 PMCID: PMC3407048 DOI: 10.1371/journal.pone.0041794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/25/2012] [Indexed: 12/11/2022] Open
Abstract
The IκB kinase α (IKKα) is implicated in the differentiation of epithelial and immune cells. We examined whether IKKα also plays a role in the differentiation and maturation of embryonic human neuronal progenitor cells (NPCs). We find that expression of an extra copy of IKKα (IKKα+) blocks self-renewal and accelerates the differentiation of NPCs. This coincides with reduced expression of the Repressor Element Silencing Transcription Factor/Neuron-Restrictive Silencing Factor (REST/NRSF), which is a prominent inhibitor of neurogenesis, and subsequent induction of the pro-differentiation non-coding RNA, miR-124a. However, the effects of IKKα on REST/NRSF and miR-124a expression are likely to be indirect. IKKα+ neurons display extensive neurite outgrowth and accumulate protein markers of neuronal maturation such as SCG10/stathmin-2, postsynaptic density 95 (PSD95), syntaxin, and methyl-CpG binding protein 2 (MeCP2). Interestingly, IKKα associates with MeCP2 in the nuclei of human neurons and can phosphorylate MeCP2 in vitro. Using chromatin immunoprecipitation assays, we find that IKKα is recruited to the exon-IV brain-derived neurotrophic factor (BDNF) promoter, which is a well-characterized target of MeCP2 activity. Moreover, IKKα induces the transcription of BDNF and knockdown expression of MeCP2 interferes with this event. These studies highlight a role for IKKα in accelerating the differentiation of human NPCs and identify IKKα as a potential regulator of MeCP2 function and BDNF expression.
Collapse
Affiliation(s)
- Ali Khoshnan
- Biology Division 216-76, California Institute of Technology, Pasadena, California, United States of America.
| | | |
Collapse
|