1
|
Natama HM, Salkeld J, Somé A, Soremekun S, Diallo S, Traoré O, Rouamba T, Ouédraogo F, Ouédraogo E, Daboné KCS, Koné NA, Compaoré ZMJ, Kafando M, Bonko MDA, Konaté F, Sorgho H, Nielsen CM, Pipini D, Diouf A, King LDW, Shaligram U, Long CA, Cho JS, Lawrie AM, Skinner K, Roberts R, Miura K, Bradley J, Silk SE, Draper SJ, Tinto H, Minassian AM. Safety and efficacy of the blood-stage malaria vaccine RH5.1/Matrix-M in Burkina Faso: interim results of a double-blind, randomised, controlled, phase 2b trial in children. THE LANCET. INFECTIOUS DISEASES 2025; 25:495-506. [PMID: 39672183 DOI: 10.1016/s1473-3099(24)00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Two pre-erythrocytic vaccines (R21/Matrix-M and RTS,S/AS01) are now approved for Plasmodium falciparum malaria. However, neither induces blood-stage immunity against parasites that break through from the liver. RH5.1/Matrix-M, a blood-stage P falciparum malaria vaccine candidate, was highly immunogenic in Tanzanian adults and children. We therefore assessed the safety and efficacy of RH5.1/Matrix-M in Burkinabe children. METHODS In this double-blind, randomised, controlled, phase 2b trial, RH5.1/Matrix-M was given to children aged 5-17 months in Nanoro, Burkina Faso, a seasonal malaria transmission setting. Children received either three intramuscular vaccinations with 10 μg RH5.1 protein with 50 μg Matrix-M adjuvant or three doses of rabies control vaccine, Rabivax-S, given either in a delayed third-dose (0, 1, and 5 month) regimen (first cohort) or a 0, 1, and 2 month regimen (second cohort). Vaccinations were completed part way through the malaria season. Children were randomly assigned 2:1 within each cohort to receive RH5.1/Matrix-M or Rabivax-S. Participants were assigned according to a random allocation list generated by an independent statistician using block randomisation with variable block sizes. Participants, their families, and the study teams were masked to group allocation; only pharmacists who prepared the vaccines were unmasked. Vaccine safety, immunogenicity, and efficacy were evaluated. The coprimary outcomes assessed were: first, the safety and reactogenicity of RH5.1/Matrix-M; and second, the protective efficacy of RH5.1/Matrix-M against clinical malaria (measured as time to first episode of clinical malaria, using a Cox regression model) from 14 days to 6 months after the third vaccination in the per-protocol sample. This ongoing trial is registered with ClinicalTrials.gov (NCT05790889). FINDINGS From April 6 to 13 and July 3 to 7, 2023, 412 children aged 5-17 months were screened, and 51 were excluded. A total of 361 children were enrolled in this study. In the first cohort, 119 were assigned to the RH5.1/Matrix-M delayed third-dose group, and 62 to the equivalent rabies control group. The second cohort included 120 children in the monthly RH5.1/Matrix-M group and 60 in the equivalent rabies control group. The final vaccination was administered to all groups from Sept 4 to 21, 2023. RH5.1/Matrix-M in both cohorts had a favourable safety profile and was well tolerated. Most adverse events were mild, with the most common being local swelling and fever. No serious adverse events were reported. Comparing the RH5.1/Matrix-M delayed third-dose regimen with the pooled control groups resulted in a vaccine efficacy of 55% (95% CI 20 to 75%; p=0·0071). The same analysis showed a vaccine efficacy of 40% (-3 to 65%; p=0·066) when comparing the monthly regimen with the pooled control groups. Participants vaccinated with RH5.1/Matrix-M in both cohorts showed high concentrations of anti-RH5.1 serum IgG antibodies 14 days after the third vaccination, and the purified IgG showed high levels of in vitro growth inhibition activity against P falciparum; these responses were higher in patients who received the RH5.1/Matrix-M vaccine delayed third-dose regimen, as opposed to monthly regimen (growth inhibition activity 79·0% [SD 14·3] vs 74·2% [SD 15·9]; p=0·016). INTERPRETATION RH5.1/Matrix-M appears safe and highly immunogenic in African children and shows promising efficacy against clinical malaria when given in a delayed third-dose regimen. This trial is ongoing to further monitor efficacy over time. FUNDING The European and Developing Countries Clinical Trials Partnership, the UK Medical Research Council, the National Institute for Health and Care Research Oxford Biomedical Research Centre, the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, the US Agency for International Development, and the Wellcome Trust.
Collapse
Affiliation(s)
- Hamtandi M Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Jo Salkeld
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Seyi Soremekun
- London School of Hygiene and Tropical Medicine, London, UK
| | - Salou Diallo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Ousmane Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Toussaint Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Florence Ouédraogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Edouard Ouédraogo
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - K Carine Sonia Daboné
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Nadine A Koné
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Z Michael John Compaoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Miguel Kafando
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Massa Dit Achille Bonko
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Fabé Konaté
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Carolyn M Nielsen
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Dimitra Pipini
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Lloyd D W King
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jee-Sun Cho
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - Katherine Skinner
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Rachel Roberts
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - John Bradley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Sarah E Silk
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Angela M Minassian
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Ilani P, Nyarko PB, Camara A, Amenga-Etego LN, Aniweh Y. PfRH5 vaccine; from the bench to the vial. NPJ Vaccines 2025; 10:82. [PMID: 40274841 PMCID: PMC12022022 DOI: 10.1038/s41541-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
The search for potent malaria vaccine candidate has seen several twists and turns. Here, we provide a perspective on the current state of PfRH5-based malaria vaccine development, the progress, existing challenges, and future research directions. We discuss the clinical trials in endemic regions, immune correlates of protection, prospects of integrating PfRH5 into multi-antigen vaccine strategies and considerations on the onward development/deployment of PfRH5 vaccine from the laboratory to endemic communities.
Collapse
Affiliation(s)
- Philip Ilani
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Prince B Nyarko
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Laboratory of Pathogens and Host Immunity (LPHI), CNRS, University of Montpellier, Montpellier, France
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain
| | - Abdouramane Camara
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
3
|
Sallam M, Al-Khatib AO, Al-Mahzoum KS, Abdelaziz DH, Sallam M. Current Developments in Malaria Vaccination: A Concise Review on Implementation, Challenges, and Future Directions. Clin Pharmacol 2025; 17:29-47. [PMID: 40191019 PMCID: PMC11971972 DOI: 10.2147/cpaa.s513282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Malaria remains a persistent challenge in global health, disproportionately affecting populations in endemic regions (eg, sub-Saharan Africa). Despite decades of international collaborative efforts, malaria continues to claim hundreds of thousands of lives each year, with young children and pregnant women enduring the heaviest burden. This concise review aimed to provide an up-to-date assessment of malaria vaccines progress, challenges, and future directions. Methods A PubMed/MEDLINE search (2015-2024) was conducted to identify studies on malaria vaccine development, implementation barriers, efficacy, and vaccination hesitancy. Clinical trials, reviews, and global health reports were included based on relevance to the review aims. No strict inclusion criteria were applied, and selection was guided by key review themes and policy relevance. Results The introduction of pre-erythrocytic malaria vaccines (RTS,S/AS01 and R21/Matrix-M), represents an important milestone in malaria control efforts with promising results from the erythrocytic vaccine RH5.1/Matrix-M in recent clinical trials. However, the approval of these vaccines is accompanied by significant challenges such as the limited efficacy, the complexity of multi-dose regimens, and numerous barriers to widespread implementation in resource-limited settings. The review identified the complex challenges to broad malaria vaccination coverage, including logistical barriers, healthcare infrastructure effect, financial limitations, malaria vaccine hesitancy, among other obstacles in malaria-endemic regions. Promising developments in malaria vaccination, such as next-generation candidates (eg, mRNA-based vaccines), hold the potential to offer improved efficacy, longer-lasting protection, and greater scalability. There is a critical need to integrate malaria vaccination efforts with established malaria control interventions (eg, insecticide-treated bed nets, vector control strategies, and anti-malarial drugs). Conclusion Achieving sustained control of malaria morbidity and mortality will require strong global collaboration, sufficient funding, and continuous efforts to address inequities in access and delivery of malaria control measures including the malaria vaccines.
Collapse
Affiliation(s)
- Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Arwa Omar Al-Khatib
- Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Doaa H Abdelaziz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Clinical Pharmacy, the National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Mohammed Sallam
- Department of Pharmacy, Mediclinic Parkview Hospital, Mediclinic Middle East, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Reiling L, Persson KEM, McCallum FJ, Gicheru N, Kinyanjui SM, Chitnis CE, Fowkes FJI, Marsh K, Beeson JG. Plasmodium falciparum reticulocyte-binding homologues are targets of human inhibitory antibodies and play a role in immune evasion. Front Immunol 2025; 16:1532451. [PMID: 40201183 PMCID: PMC11975925 DOI: 10.3389/fimmu.2025.1532451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Antibodies targeting the blood-stage of Plasmodium falciparum play a critical role in naturally acquired immunity to malaria by limiting blood-stage parasitemia. One mode of action of antibodies is the direct inhibition of merozoite invasion of erythrocytes through targeting invasion ligands. However, evasion of inhibitory antibodies may be mediated in P. falciparum by switching between various ligand-mediated merozoite invasion pathways. Here, we investigated the potential roles of invasion ligands PfRH1, PfRH2a and PfRH2b in immune evasion through phenotypic variation, and their importance as targets of human invasion-inhibitory antibodies. Methods Serum samples from malaria-exposed children and adults in Kenya were examined for their ability to inhibit P. falciparum invasion, using parasites with disrupted pfrh1, pfrh2a or pfrh2b genes. Results and Discussion The loss of PfRH1 and PfRH2b substantially impacted on susceptibility to inhibitory antibodies, suggesting that variation in the use of these ligands contributes to immune evasion. The effect was less prominent with loss of PfRH2a. Differential inhibition of the knockout and parental lines points to PfRH1 and PfRH2b as targets of acquired growth inhibitory antibodies whereas PfRH2a appeared to be a minor target. There was limited relatedness of the inhibitory responses between different isolates or compared to parasites with deletions of erythrocyte-binding antigens. This further suggests that there is a substantial amount of antigenic diversity in invasion pathways to facilitate immune evasion. These findings provide evidence that PfRH1 and PfRH2b are significant targets of inhibitory antibodies and variation in their expression may facilitate immune evasion. Targeting of multiple invasion ligands in vaccine design is likely to be required to achieve potent inhibitory antibodies and protective efficacy against malaria.
Collapse
Affiliation(s)
- Linda Reiling
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Kristina E. M. Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - Fiona J. McCallum
- Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, QLD, Australia
| | - Nimmo Gicheru
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Samson M. Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chetan E. Chitnis
- Department of Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Freya J. I. Fowkes
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Kevin Marsh
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - James G. Beeson
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Melbourne, VIC, Australia
- School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Lopez-Perez M, Seidu Z, Larsen MD, Wang W, Nouta J, Wuhrer M, Vidarsson G, Ofori MF, Hviid L. Acquisition of Fc-afucosylation of PfEMP1-specific IgG is age-dependent and associated with clinical protection against malaria. Nat Commun 2025; 16:237. [PMID: 39747065 PMCID: PMC11696684 DOI: 10.1038/s41467-024-55543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Protective immunity to malaria depends on acquisition of parasite-specific antibodies, with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) being one of the most important target antigens. The effector functions of PfEMP1-specific IgG include inhibition of infected erythrocyte (IE) sequestration and opsonization of IEs for cell-mediated destruction. IgG glycosylation modulates antibody functionality, with increased affinity to FcγRIIIa for IgG lacking fucose in the Fc region (Fc-afucosylation). We report here that selective Fc-afucosylation of PfEMP1-specific IgG1 increases with age in P. falciparum-exposed children and is associated with reduced risk of anemia, independent of the IgG levels. A similar association was found for children having PfEMP1-specific IgG1 inducing multiple effector functions against IEs, particularly those associated with antibody-dependent cellular cytotoxicity (ADCC) by NK cells. Our findings provide new insights regarding protective immunity to P. falciparum malaria and highlight the importance of cell-mediated destruction of IgG-opsonized IEs.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Zakaria Seidu
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Zakaria Seidu, Department of Biochemistry and Molecular Biology, Faculty of Biosciences, University for Development Studies, Nyankpala, Ghana
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
6
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Thiam LG, McHugh K, Ba A, Li R, Guo Y, Pouye MN, Cisse A, Pipini D, Diallo F, Sene SD, Patel SD, Thiam A, Sadio BD, Mbengue A, Vigan-Womas I, Sheng Z, Shapiro L, Draper SJ, Bei AK. Vaccine-induced human monoclonal antibodies to PfRH5 show broadly neutralizing activity against P. falciparum clinical isolates. NPJ Vaccines 2024; 9:198. [PMID: 39448626 PMCID: PMC11502735 DOI: 10.1038/s41541-024-00986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Vaccines to the Plasmodium falciparum reticulocyte binding-like protein homologue 5 (PfRH5) target the blood-stage of the parasite life cycle. PfRH5 has the potential to trigger the production of strain-transcendent antibodies and has proven its efficacy both in pre-clinical and early clinical studies. Vaccine-induced monoclonal antibodies (mAbs) to PfRH5 showed promising outcomes against cultured P. falciparum laboratory strains from distinct geographic areas. Here, we assessed the functional impact of vaccine-induced anti-PfRH5 mAbs on more genetically diverse P. falciparum clinical isolates. We used mAbs previously isolated from single B cells of UK adult PfRH5 vaccinees and used ex-vivo growth inhibition activity (GIA) assays to assess their efficacy against P. falciparum clinical isolates. Next-generation sequencing (NGS) was used to assess the breadth of genetic diversity in P. falciparum clinical isolates and to infer the genotype/phenotype relationship involved in antibody susceptibility. We showed a dose-dependent inhibition of clinical isolates with three main GIA groups: high, medium and low. Except for one isolate, our data show no significant differences in the mAb GIA profile between P. falciparum clinical isolates and the 3D7 reference strain, which harbors the vaccine allele. We also observed an additive relationship for mAb combinations, whereby the combination of GIA-low and GIA-medium antibodies resulted in increased GIA, having important implications for the contribution of specific clones within polyclonal IgG responses. While our NGS analysis showed the occurrence of novel mutations in the pfrh5 gene, these mutations were predicted to have little or no functional impact on the antigen structure or recognition by known mAbs. Our present findings complement earlier reports on the strain transcendent potential of anti-PfRH5 mAbs and constitute, to our knowledge, the first report on the susceptibility of P. falciparum clinical isolates from natural infections to vaccine-induced human mAbs to PfRH5.
Collapse
Affiliation(s)
- Laty G Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Kirsty McHugh
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Rebecca Li
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mariama N Pouye
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Awa Cisse
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Dimitra Pipini
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Fatoumata Diallo
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Seynabou D Sene
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Saurabh D Patel
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bacary D Sadio
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Inés Vigan-Womas
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Biochemistry and Biophysics, Columbia University, New York, NY, USA
| | - Simon J Draper
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amy K Bei
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
8
|
Silk SE, Kalinga WF, Salkeld J, Mtaka IM, Ahmed S, Milando F, Diouf A, Bundi CK, Balige N, Hassan O, Mkindi CG, Rwezaula S, Athumani T, Mswata S, Lilolime NS, Simon B, Msami H, Mohamed M, David DM, Mohammed L, Nyaulingo G, Mwalimu B, Juma O, Mwamlima TG, Sasamalo IA, Mkumbange RP, Kamage JJ, Barrett JR, King LDW, Hou MM, Pulido D, Carnrot C, Lawrie AM, Cowan RE, Nugent FL, Roberts R, Cho JS, Long CA, Nielsen CM, Miura K, Draper SJ, Olotu AI, Minassian AM. Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:1105-1117. [PMID: 38880111 DOI: 10.1016/s1473-3099(24)00312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. METHODS We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18-45 years) and children (aged 5-17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 μg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 μg RH5.1 at 0 and 1 month and 10 μg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 μg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 μg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 μg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. FINDINGS Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per μg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 μg/mL (95% CI 13·4-15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 μg/mL [IQR 511-1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81-94]). INTERPRETATION The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5-17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. FUNDING The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust.
Collapse
Affiliation(s)
- Sarah E Silk
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Wilmina F Kalinga
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jo Salkeld
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ivanny M Mtaka
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Saumu Ahmed
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Florence Milando
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Caroline K Bundi
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine, KEMRI-Wellcome Trust Research Programme and Accredited Research Centre, Open University, Kilifi, Kenya
| | - Neema Balige
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Omar Hassan
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Catherine G Mkindi
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Thabit Athumani
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Sarah Mswata
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Nasoro S Lilolime
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Beatus Simon
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hania Msami
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Mohamed Mohamed
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Damiano M David
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Latipha Mohammed
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Gloria Nyaulingo
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Bakari Mwalimu
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Omary Juma
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Tunu G Mwamlima
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ibrahim A Sasamalo
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Rose P Mkumbange
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Janeth J Kamage
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jordan R Barrett
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lloyd D W King
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mimi M Hou
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - David Pulido
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | | | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - Rachel E Cowan
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Fay L Nugent
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Rachel Roberts
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jee-Sun Cho
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Carolyn M Nielsen
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Simon J Draper
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Angela M Minassian
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery and the NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Barrett JR, Pipini D, Wright ND, Cooper AJR, Gorini G, Quinkert D, Lias AM, Davies H, Rigby CA, Aleshnick M, Williams BG, Bradshaw WJ, Paterson NG, Martinson T, Kirtley P, Picard L, Wiggins CD, Donnellan FR, King LDW, Wang LT, Popplewell JF, Silk SE, de Ruiter Swain J, Skinner K, Kotraiah V, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Minassian AM, Lauffenburger DA, Miura K, Long CA, Wilder BK, Koekemoer L, Tan J, Nielsen CM, McHugh K, Draper SJ. Analysis of the diverse antigenic landscape of the malaria protein RH5 identifies a potent vaccine-induced human public antibody clonotype. Cell 2024; 187:4964-4980.e21. [PMID: 39059380 PMCID: PMC11380582 DOI: 10.1016/j.cell.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.
Collapse
Affiliation(s)
- Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Dimitra Pipini
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Nathan D Wright
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | - Giacomo Gorini
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Barnabas G Williams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - William J Bradshaw
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Neil G Paterson
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Thomas Martinson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Luc Picard
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Francesca R Donnellan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Lawrence T Wang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | | | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jed de Ruiter Swain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | | | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
10
|
Wang LT, Cooper AJR, Farrell B, Miura K, Diouf A, Müller-Sienerth N, Crosnier C, Purser L, Kirtley PJ, Maciuszek M, Barrett JR, McHugh K, Ogwang R, Tucker C, Li S, Doumbo S, Doumtabe D, Pyo CW, Skinner J, Nielsen CM, Silk SE, Kayentao K, Ongoiba A, Zhao M, Nguyen DC, Lee FEH, Minassian AM, Geraghty DE, Traore B, Seder RA, Wilder BK, Crompton PD, Wright GJ, Long CA, Draper SJ, Higgins MK, Tan J. Natural malaria infection elicits rare but potent neutralizing antibodies to the blood-stage antigen RH5. Cell 2024; 187:4981-4995.e14. [PMID: 39059381 PMCID: PMC11383431 DOI: 10.1016/j.cell.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.
Collapse
Affiliation(s)
- Lawrence T Wang
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Medical Scientist Training Program, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Brendan Farrell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | - Cécile Crosnier
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Lauren Purser
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Payton J Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Maciej Maciuszek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Rodney Ogwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Point G, BP 1805 Bamako, Mali
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, UK
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
11
|
Shilts J, Wright GJ. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Annu Rev Biomed Data Sci 2024; 7:155-177. [PMID: 38723658 DOI: 10.1146/annurev-biodatasci-102523-103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Proteins on the surfaces of cells serve as physical connection points to bridge one cell with another, enabling direct communication between cells and cohesive structure. As biomedical research makes the leap from characterizing individual cells toward understanding the multicellular organization of the human body, the binding interactions between molecules on the surfaces of cells are foundational both for computational models and for clinical efforts to exploit these influential receptor pathways. To achieve this grander vision, we must assemble the full interactome of ways surface proteins can link together. This review investigates how close we are to knowing the human cell surface protein interactome. We summarize the current state of databases and systematic technologies to assemble surface protein interactomes, while highlighting substantial gaps that remain. We aim for this to serve as a road map for eventually building a more robust picture of the human cell surface protein interactome.
Collapse
Affiliation(s)
- Jarrod Shilts
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom;
- School of the Biological Sciences, University of Cambridge, Cambridge, United Kingdom;
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom;
| |
Collapse
|
12
|
Björnsson KH, Bassi MR, Knudsen AS, Aves KL, Morella Roig È, Sander AF, Barfod L. Leveraging Immunofocusing and Virus-like Particle Display to Enhance Antibody Responses to the Malaria Blood-Stage Invasion Complex Antigen PfCyRPA. Vaccines (Basel) 2024; 12:859. [PMID: 39203985 PMCID: PMC11359962 DOI: 10.3390/vaccines12080859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
A vaccine protecting against malaria caused by Plasmodium falciparum is urgently needed. The blood-stage invasion complex PCRCR consists of the five malarial proteins PfPTRAMP, PfCSS, PfRipr, PfCyRPA, and PfRH5. As each subcomponent represents an essential and highly conserved antigen, PCRCR is considered a promising vaccine target. Furthermore, antibodies targeting the complex can block red blood cell invasion by the malaria parasite. However, extremely high titers of neutralizing antibodies are needed for this invasion-blocking effect, and a vaccine based on soluble PfRH5 protein has proven insufficient in inducing a protective response in a clinical trial. Here, we present the results of two approaches to increase the neutralizing antibody titers: (A) immunofocusing and (B) increasing the immunogenicity of the antigen via multivalent display on capsid virus-like particles (cVLPs). The immunofocusing strategies included vaccinating with peptides capable of binding the invasion-blocking anti-PfCyRPA monoclonal antibody CyP1.9, as well as removing non-neutralizing epitopes of PfCyRPA through truncation. Vaccination with PfCyRPA coupled to the AP205 cVLP induced nearly two-fold higher IgG responses compared to vaccinating with soluble PfCyRPA protein. Immunofocusing using a linear peptide greatly increased the neutralizing capacity of the anti-PfCyRPA antibodies. However, significantly lower total anti-PfCyRPA titers were achieved using this strategy. Our results underline the potential of a cVLP-based malaria vaccine including full-length PfCyRPA, which could be combined with other leading malaria vaccine antigens presented on cVLPs.
Collapse
Affiliation(s)
- Kasper H. Björnsson
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Maria R. Bassi
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Anne S. Knudsen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Kara-Lee Aves
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Èlia Morella Roig
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Adam F. Sander
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
- AdaptVac, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Lea Barfod
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| |
Collapse
|
13
|
Oboh MA, Morenikeji OB, Ojurongbe O, Thomas BN. Transcriptomic analyses of differentially expressed human genes, micro RNAs and long-non-coding RNAs in severe, symptomatic and asymptomatic malaria infection. Sci Rep 2024; 14:16901. [PMID: 39043812 PMCID: PMC11266512 DOI: 10.1038/s41598-024-67663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Malaria transmission and endemicity in Africa remains hugely disproportionate compared to the rest of the world. The complex life cycle of P. falciparum (Pf) between the vertebrate human host and the anopheline vector results in differential expression of genes within and between hosts. An in-depth understanding of Pf interaction with various human genes through regulatory elements will pave way for identification of newer tools in the arsenal for malaria control. Therefore, the regulatory elements (REs) involved in the over- or under-expression of various host immune genes hold the key to elucidating alternative control measures that can be applied for disease surveillance, prompt diagnosis and treatment. We carried out an RNAseq analysis to identify differentially expressed genes and network elucidation of non-coding RNAs and target genes associated with immune response in individuals with different clinical outcomes. Raw RNAseq datasets, retrieved for analyses include individuals with severe (Gambia-20), symptomatic (Burkina Faso-15), asymptomatic (Mali-16) malaria as well as uninfected controls (Tanzania-20; Mali-36). Of the total 107 datasets retrieved, we identified 5534 differentially expressed genes (DEGs) among disease and control groups. A peculiar pattern of DEGs was observed, with individuals presenting with severe/symptomatic malaria having the highest and most diverse upregulated genes, while a reverse phenomenon was recorded among asymptomatic and uninfected individuals. In addition, we identified 141 differentially expressed micro RNA (miRNA), of which 78 and 63 were upregulated and downregulated respectively. Interactome analysis revealed a moderate interaction between DEGs and miRNAs. Of all identified miRNA, five were unique (hsa-mir-32, hsa-mir-25, hsa-mir-221, hsa-mir-29 and hsa-mir-148) because of their connectivity to several genes, including hsa-mir-221 connected to 16 genes. Six-hundred and eight differentially expressed long non coding RNA (lncRNA) were also identified, including SLC7A11, LINC01524 among the upregulated ones. Our study provides important insight into host immune genes undergoing differential expression under different malaria conditions. It also identified unique miRNAs and lncRNAs that modify and/or regulate the expression of various immune genes. These regulatory elements we surmise, have the potential to serve a diagnostic purpose in discriminating between individuals with severe/symptomatic malaria and those with asymptomatic infection or uninfected, following further clinical validation from field isolates.
Collapse
Affiliation(s)
- Mary A Oboh
- Department of Biomedical Sciences, Rochester Institute of Technology, 153 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh Bradford, Bradford, PA, USA
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, 153 Lomb Memorial Drive, Rochester, NY, 14623, USA.
| |
Collapse
|
14
|
King LDW, Pulido D, Barrett JR, Davies H, Quinkert D, Lias AM, Silk SE, Pattinson DJ, Diouf A, Williams BG, McHugh K, Rodrigues A, Rigby CA, Strazza V, Suurbaar J, Rees-Spear C, Dabbs RA, Ishizuka AS, Zhou Y, Gupta G, Jin J, Li Y, Carnrot C, Minassian AM, Campeotto I, Fleishman SJ, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Long CA, Miura K, Ashfield R, Skinner K, Howarth MR, Biswas S, Draper SJ. Preclinical development of a stabilized RH5 virus-like particle vaccine that induces improved antimalarial antibodies. Cell Rep Med 2024; 5:101654. [PMID: 39019011 PMCID: PMC11293324 DOI: 10.1016/j.xcrm.2024.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.
Collapse
Affiliation(s)
- Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Barnabas G Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Ana Rodrigues
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Veronica Strazza
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Jonathan Suurbaar
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG 54, Ghana
| | - Chloe Rees-Spear
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; London School of Hygiene and Tropical Medicine, WC1E 7HT London, UK
| | - Rebecca A Dabbs
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Andrew S Ishizuka
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Yu Zhou
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Gaurav Gupta
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Yuanyuan Li
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | | | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ivan Campeotto
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Rebecca Ashfield
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
15
|
Williams BG, King LDW, Pulido D, Quinkert D, Lias AM, Silk SE, Ragotte RJ, Davies H, Barrett JR, McHugh K, Rigby CA, Alanine DGW, Barfod L, Shea MW, Cowley LA, Dabbs RA, Pattinson DJ, Douglas AD, Lyth OR, Illingworth JJ, Jin J, Carnrot C, Kotraiah V, Christen JM, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Skinner K, Miura K, Long CA, Higgins MK, Draper SJ. Development of an improved blood-stage malaria vaccine targeting the essential RH5-CyRPA-RIPR invasion complex. Nat Commun 2024; 15:4857. [PMID: 38849365 PMCID: PMC11161584 DOI: 10.1038/s41467-024-48721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.
Collapse
Affiliation(s)
- Barnabas G Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Robert J Ragotte
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
| | - Daniel G W Alanine
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Lea Barfod
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Michael W Shea
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Li An Cowley
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Rebecca A Dabbs
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Alexander D Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Oliver R Lyth
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Joseph J Illingworth
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | | | | | | | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
- Latham BioPharm Group, Elkridge, MD, USA
| | | | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | | | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK.
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
16
|
Takashima E, Otsuki H, Morita M, Ito D, Nagaoka H, Yuguchi T, Hassan I, Tsuboi T. The Need for Novel Asexual Blood-Stage Malaria Vaccine Candidates for Plasmodium falciparum. Biomolecules 2024; 14:100. [PMID: 38254700 PMCID: PMC10813614 DOI: 10.3390/biom14010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
17
|
Farrell B, Alam N, Hart MN, Jamwal A, Ragotte RJ, Walters-Morgan H, Draper SJ, Knuepfer E, Higgins MK. The PfRCR complex bridges malaria parasite and erythrocyte during invasion. Nature 2024; 625:578-584. [PMID: 38123677 PMCID: PMC10794152 DOI: 10.1038/s41586-023-06856-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.
Collapse
Affiliation(s)
- Brendan Farrell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Nawsad Alam
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Abhishek Jamwal
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Robert J Ragotte
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hannah Walters-Morgan
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Naung MT, Martin E, Wong W, Razook Z, Utama D, Guy AJ, Harrison ST, Cowman AF, Lin E, Kiniboro B, Laman M, Mueller I, Barry AE. Reticulocyte Binding Protein Homologue 5 is a target of balancing selection in the Plasmodium falciparum population of Papua New Guinea. FRONTIERS IN PARASITOLOGY 2023; 2:1288867. [PMID: 39816834 PMCID: PMC11731791 DOI: 10.3389/fpara.2023.1288867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2025]
Abstract
Plasmodium falciparum Reticulocyte Binding Protein Homologue (RH5), a leading malaria vaccine candidate, is essential for erythrocyte invasion by the parasite, interacting with the human host receptor, basigin. RH5 has a small number of polymorphisms relative to other blood-stage antigens, and in vitro studies have shown that vaccine-induced antibodies raised against RH5 are strain-transcending, however most studies investigating RH5 diversity have been done in Africa. Understanding the genetic diversity and evolution of malaria antigens in other regions is important for their validation as vaccine candidates. In this study the rh5 gene was sequenced in 677 samples from a longitudinal cohort of Papua New Guinean (PNG) children aged 1-3 years. Of 677 samples successfully sequenced, 566 were identified as independent infections (i.e. one of each pair of identical sequences within hosts were removed). A total of 14 non-synonymous polymorphisms were identified, eight that are 'common' in the population (minor allele frequency > 1%), with 44 haplotypes ranging in frequency from 1% to 21%. Modeling of common SNPs to the cryo-EM structure of the RH5/CyRPA/RIPR complex mapped them to the Basigin binding site and near the contact point of CyRPA. Tajima's D analyses of the corresponding nucleotide sequences produced positive values indicating potential hotspots of balancing selection. We attempted to confirm whether these signals were due to immune selection by measuring the rate of polymorphism between independent infections within the same host, and the association with clinical symptoms, however, no such associations were identified. Together these results suggest that while there is evidence of balancing selection driving RH5 diversity in the PNG P. falciparum population, immune escape was not observed within the cohort of young children. Limited immunity and therefore low selective pressure may explain this result, alternatively other evolutionary forces may contribute to balancing selection at the RH5-BSG binding interface in PNG.
Collapse
Affiliation(s)
- Myo T. Naung
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Carlton, VIC, Australia
- Centre for Innovation in Infectious Diseases and Immunology Research (CIIDIR), Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, Australia
- Disease Elimination and Maternal and Child Health, Burnet Institute, Melbourne, VIC, Australia
| | - Elijah Martin
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Wilson Wong
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Carlton, VIC, Australia
| | - Zahra Razook
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Digjaya Utama
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Carlton, VIC, Australia
| | - Andrew J. Guy
- Bioscience and Food Technology, RMIT University, Melbourne, VIC, Australia
| | - Shannon Takala Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alan F. Cowman
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Carlton, VIC, Australia
| | - Enmoore Lin
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Benson Kiniboro
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Carlton, VIC, Australia
- Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Alyssa E. Barry
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Carlton, VIC, Australia
- Centre for Innovation in Infectious Diseases and Immunology Research (CIIDIR), Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, Australia
- Disease Elimination and Maternal and Child Health, Burnet Institute, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Silk SE, Kalinga WF, Mtaka IM, Lilolime NS, Mpina M, Milando F, Ahmed S, Diouf A, Mkwepu F, Simon B, Athumani T, Rashid M, Mohammed L, Lweno O, Ali AM, Nyaulingo G, Mwalimu B, Mswata S, Mwamlima TG, Barrett JR, Wang LT, Themistocleous Y, King LDW, Hodgson SH, Payne RO, Nielsen CM, Lawrie AM, Nugent FL, Cho JS, Long CA, Miura K, Draper SJ, Minassian AM, Olotu AI. Superior antibody immunogenicity of a viral-vectored RH5 blood-stage malaria vaccine in Tanzanian infants as compared to adults. MED 2023; 4:668-686.e7. [PMID: 37572659 DOI: 10.1016/j.medj.2023.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. METHODS A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18-35 years), young children (1-6 years), and infants (6-11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. FINDINGS Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. CONCLUSIONS The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. FUNDING Medical Research Council, London, UK.
Collapse
Affiliation(s)
- Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Wilmina F Kalinga
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ivanny M Mtaka
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Nasoro S Lilolime
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Maximillian Mpina
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Florence Milando
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Saumu Ahmed
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Fatuma Mkwepu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Beatus Simon
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Thabit Athumani
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Mohammed Rashid
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Latipha Mohammed
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Omary Lweno
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Ali M Ali
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Gloria Nyaulingo
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Bakari Mwalimu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Mswata
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Tunu G Mwamlima
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Lawrence T Wang
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Yrene Themistocleous
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Susanne H Hodgson
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Ruth O Payne
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Fay L Nugent
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK
| | - Jee-Sun Cho
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, University of Oxford, Old Road Campus, Oxford OX3 7LE, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
20
|
Weiss GE, Ragotte RJ, Quinkert D, Lias AM, Dans MG, Boulet C, Looker O, Ventura OD, Williams BG, Crabb BS, Draper SJ, Gilson PR. The dual action of human antibodies specific to Plasmodium falciparum PfRH5 and PfCyRPA: Blocking invasion and inactivating extracellular merozoites. PLoS Pathog 2023; 19:e1011182. [PMID: 37713419 PMCID: PMC10529537 DOI: 10.1371/journal.ppat.1011182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/27/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the current leading blood-stage malaria vaccine candidate. PfRH5 functions as part of the pentameric PCRCR complex containing PTRAMP, CSS, PfCyRPA and PfRIPR, all of which are essential for infection of human red blood cells (RBCs). To trigger RBC invasion, PfRH5 engages with RBC protein basigin in a step termed the RH5-basigin binding stage. Although we know increasingly more about how antibodies specific for PfRH5 can block invasion, much less is known about how antibodies recognizing other members of the PCRCR complex can inhibit invasion. To address this, we performed live cell imaging using monoclonal antibodies (mAbs) which bind PfRH5 and PfCyRPA. We measured the degree and timing of the invasion inhibition, the stage at which it occurred, as well as subsequent events. We show that parasite invasion is blocked by individual mAbs, and the degree of inhibition is enhanced when combining a mAb specific for PfRH5 with one binding PfCyRPA. In addition to directly establishing the invasion-blocking capacity of the mAbs, we identified a secondary action of certain mAbs on extracellular parasites that had not yet invaded where the mAbs appeared to inactivate the parasites by triggering a developmental pathway normally only seen after successful invasion. These findings suggest that epitopes within the PfCyRPA-PfRH5 sub-complex that elicit these dual responses may be more effective immunogens than neighboring epitopes by both blocking parasites from invading and rapidly inactivating extracellular parasites. These two protective mechanisms, prevention of invasion and inactivation of uninvaded parasites, resulting from antibody to a single epitope indicate a possible route to the development of more effective vaccines.
Collapse
Affiliation(s)
- Greta E. Weiss
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Robert J. Ragotte
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Amelia M. Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Madeline G. Dans
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Coralie Boulet
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Oliver Looker
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Olivia D. Ventura
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Barnabas G. Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Brendan S. Crabb
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Paul R. Gilson
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Lappöhn CA, Maerz L, Stei R, Weber LG, Wolff MW. Optimization and validation of analytical affinity chromatography for the in-process monitoring and quantification of peptides containing a C-tag. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123899. [PMID: 37783047 DOI: 10.1016/j.jchromb.2023.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Antimicrobial peptides and proteins (AMPs) are promising alternatives to conventional antibiotics for the treatment of infections caused by multidrug-resistant bacteria. The production of recombinant AMPs is facilitated by platform technologies such as the C-tag, a sequence of four C-terminal amino acids that allows immunoaffinity capture and purification. However, the detection and quantification of such products throughout the manufacturing process is a significant challenge. We therefore used a design of experiments approach to optimize a novel high-throughput analytical immunoaffinity chromatography method for the accurate quantification of AMPs containing a C-tag, resulting in minimal analyte carryover (98.8 ± 0.1 % product elution). We then validated the method in accordance with International Conference on Harmonisation guideline Q2(R2). Validation confirmed that the method achieves high specificity, linearity, accuracy, and precision. We implemented in-process control and quantification throughout the manufacturing process, from cell lysis to the final purified product. We found that the lysate and acidic samples (pH < 2) can lead to deviations. However, following sample pretreatment, C-tag quantification reduced the error to ≤ 4 %, which is potentially superior to current non-specific quantification methods such as UV absorbance and colorimetry. Implementing this method for in-process control and quantification throughout the manufacturing process achieves the reliable assessment of product quantity and quality. This method also offers improvements over the product-specific enzyme-linked immunosorbent assay currently used for C-tagged products because it has a higher precision, accuracy and throughput, with a measurement time of 2.5 min per sample. Our analytical affinity chromatography method is therefore a valuable tool for the quantification of AMPs as part of a novel platform technology approach for C-tagged products.
Collapse
Affiliation(s)
- Carolin A Lappöhn
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Lea Maerz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Robin Stei
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Linus G Weber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
22
|
Nganyewo NN, Bojang F, Oriero EC, Drammeh NF, Ajibola O, Mbye H, Jawara AS, Corea S, Awandare GA, D'Alessandro U, Amenga-Etego LN, Amambua-Ngwa A. Recent increase in low complexity polygenomic infections and sialic acid-independent invasion pathways in Plasmodium falciparum from Western Gambia. Parasit Vectors 2023; 16:309. [PMID: 37653544 PMCID: PMC10472613 DOI: 10.1186/s13071-023-05929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The malaria parasite Plasmodium falciparum utilizes multiple alternative receptor-ligand interactions for the invasion of human erythrocytes. While some P. falciparum clones make use of sialic acid (SA) residues on the surface of the human glycophorin receptors to invade the erythrocyte, others use alternative receptors independent of sialic acid residues. We hypothesized that over the years, intensified malaria control interventions and declining prevalence in The Gambia have resulted in a selection of parasites with a dominant invasion pathways and ligand expression profiles. METHODS Blood samples were collected from 65 malaria-infected participants with uncomplicated malaria across 3 years (2015, 2016, and 2021). Genetic diversity was determined by genotyping the merozoite surface protein 2 (msp2) polymorphic gene of P. falciparum. Erythrocyte invasion phenotypes were determined using neuraminidase, trypsin, and chymotrypsin enzymes, known to cleave different receptors from the surface of the erythrocyte. Schizont-stage transcript levels were obtained for a panel of 6 P. falciparum invasion ligand genes (eba175, eba181, Rh2b, Rh4, Rh5, and clag2) using 48 successfully cultured isolates. RESULTS Though the allelic heterozygosity of msp2 repeat region decreased as expected with reduced transmission, there was an increase in infections with more than a single msp2 allelotype from 2015 to 2021. The invasion phenotypes of these isolates were mostly SA independent with a continuous increase from 2015 to 2021. Isolates from 2021 were highly inhibited by chymotrypsin treatment compared to isolates from 2015 and 2016. Higher invasion inhibition for 2021 isolates was further obtained following erythrocyte treatment with a combination of chymotrypsin and trypsin. The transcript levels of invasion ligand genes varied across years. However, levels of clag2, a rhoptry-associated protein, were higher in 2015 and 2016 isolates than in 2021 isolates, while Rh5 levels were higher in 2021 compared to other years. CONCLUSIONS Overall, these findings suggest increasing mixed infections with an increase in the use of sialic-acid independent invasion pathways by P. falciparum clinical isolates in the Western part of Gambia.
Collapse
Affiliation(s)
- Nora Nghochuzie Nganyewo
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Fatoumata Bojang
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Eniyou Cheryll Oriero
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Ndey Fatou Drammeh
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Olumide Ajibola
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Haddijatou Mbye
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Aminata Seedy Jawara
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Simon Corea
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Gordon Akanzuwine Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
23
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Miura K, Diouf A, Fay MP, Barrett JR, Payne RO, Olotu AI, Minassian AM, Silk SE, Draper SJ, Long CA. Assessment of precision in growth inhibition assay (GIA) using human anti-PfRH5 antibodies. Malar J 2023; 22:159. [PMID: 37208733 PMCID: PMC10196285 DOI: 10.1186/s12936-023-04591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND For blood-stage malaria vaccine development, the in vitro growth inhibition assay (GIA) has been widely used to evaluate functionality of vaccine-induced antibodies (Ab), and Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage antigen. However, precision, also called "error of assay (EoA)", in GIA readouts and the source of EoA has not been evaluated systematically. METHODS In the Main GIA experiment, 4 different cultures of P. falciparum 3D7 parasites were prepared with red blood cells (RBC) collected from 4 different donors. For each culture, 7 different anti-RH5 Ab (either monoclonal or polyclonal Ab) were tested by GIA at two concentrations on three different days (168 data points). To evaluate sources of EoA in % inhibition in GIA (%GIA), a linear model fit was conducted including donor (source of RBC) and day of GIA as independent variables. In addition, 180 human anti-RH5 polyclonal Ab were tested in a Clinical GIA experiment, where each Ab was tested at multiple concentrations in at least 3 independent GIAs using different RBCs (5,093 data points). The standard deviation (sd) in %GIA and in GIA50 (Ab concentration that gave 50%GIA) readouts, and impact of repeat assays on 95% confidence interval (95%CI) of these readouts was estimated. RESULTS The Main GIA experiment revealed that the RBC donor effect was much larger than the day effect, and an obvious donor effect was also observed in the Clinical GIA experiment. Both %GIA and log-transformed GIA50 data reasonably fit a constant sd model, and sd of %GIA and log-transformed GIA50 measurements were calculated as 7.54 and 0.206, respectively. Taking the average of three repeat assays (using three different RBCs) reduces the 95%CI width in %GIA or in GIA50 measurements by ~ half compared to a single assay. CONCLUSIONS The RBC donor effect (donor-to-donor variance on the same day) in GIA was much bigger than the day effect (day-to-day variance using the same donor's RBC) at least for the RH5 Ab evaluated in this study; thus, future GIA studies should consider the donor effect. In addition, the 95%CI for %GIA and GIA50 shown here help when comparing GIA results from different samples/groups/studies; therefore, this study supports future malaria blood-stage vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ruth O Payne
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|
25
|
El-Moamly AA, El-Sweify MA. Malaria vaccines: the 60-year journey of hope and final success-lessons learned and future prospects. Trop Med Health 2023; 51:29. [PMID: 37198702 DOI: 10.1186/s41182-023-00516-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The world has made great strides towards beating malaria, although about half of the world population is still exposed to the risk of contracting malaria. Developing an effective malaria vaccine was a huge challenge for medical science. In 2021 the World Health Organization (WHO) approved the first malaria vaccine, RTS,S/AS01 vaccine (Mosquirix™), for widespread use. This review highlights the history of development, and the different approaches and types of malaria vaccines, and the literature to date. It covers the developmental stages of RTS,S/AS01 and recommends steps for its deployment. The review explores other potential vaccine candidates and their status, and suggests options for their further development. It also recommends future roles for vaccines in eradicating malaria. Questions remain on how RTS,S vaccine will work in widespread use and how it can best be utilized to benefit vulnerable communities. CONCLUSION Malaria vaccines have been in development for almost 60 years. The RTS,S/AS01 vaccine has now been approved, but cannot be a stand-alone solution. Development should continue on promising candidates such as R21, PfSPZ and P. vivax vaccines. Multi-component vaccines may be a useful addition to other malaria control techniques in achieving eradication of malaria.
Collapse
Affiliation(s)
- Amal A El-Moamly
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed A El-Sweify
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Fotoran WL, Silva JRD, Glitz C, Ferreira LCDS, Wunderlich G. Establishment of an Antiplasmodial Vaccine Based on PfRH5-Encoding RNA Replicons Stabilized by Cationic Liposomes. Pharmaceutics 2023; 15:pharmaceutics15041223. [PMID: 37111706 PMCID: PMC10145066 DOI: 10.3390/pharmaceutics15041223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Nucleic acid-based vaccines have been studied for the past four decades, but the approval of the first messenger RNA (mRNA) vaccines during the COVID-19 pandemic opened renewed perspectives for the development of similar vaccines against different infectious diseases. Presently available mRNA vaccines are based on non-replicative mRNA, which contains modified nucleosides encased in lipid vesicles, allowing for entry into the host cell cytoplasm, and reducing inflammatory reactions. An alternative immunization strategy employs self-amplifying mRNA (samRNA) derived from alphaviruses, but lacks viral structural genes. Once incorporated into ionizable lipid shells, these vaccines lead to enhanced gene expression, and lower mRNA doses are required to induce protective immune responses. In the present study, we tested a samRNA vaccine formulation based on the SP6 Venezuelan equine encephalitis (VEE) vector incorporated into cationic liposomes (dimethyldioctadecyl ammonium bromide and a cholesterol derivative). Three vaccines were generated that encoded two reporter genes (GFP and nanoLuc) and the Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5). METHODS Transfection assays were performed using Vero and HEK293T cells, and the mice were immunized via the intradermal route using a tattooing device. RESULTS The liposome-replicon complexes showed high transfection efficiencies with in vitro cultured cells, whereas tattooing immunization with GFP-encoding replicons demonstrated gene expression in mouse skin up to 48 h after immunization. Mice immunized with liposomal PfRH5-encoding RNA replicons elicited antibodies that recognized the native protein expressed in P. falciparum schizont extracts, and inhibited the growth of the parasite in vitro. CONCLUSION Intradermal delivery of cationic lipid-encapsulated samRNA constructs is a feasible approach for developing future malaria vaccines.
Collapse
Affiliation(s)
- Wesley L Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, SP, Brazil
| | - Jamile Ramos da Silva
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, SP, Brazil
| | - Christiane Glitz
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms University of Münster, 48149 Münster, Germany
| | - Luís Carlos de Souza Ferreira
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, SP, Brazil
- Scientific Platform Pasteur-USP, University of São Paulo, Avenida Lucio Martins Rodrigues 370, São Paulo 05508-020, SP, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
27
|
Malaria Vaccines. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
28
|
Healer J, Thompson JK, Mackwell KL, Browne CD, Seager BA, Ngo A, Lowes KN, Silk SE, Pulido D, King LDW, Christen JM, Noe AR, Kotraiah V, Masendycz PJ, Rajagopalan R, Lucas L, Stanford MM, Soisson L, Diggs C, Miller R, Youll S, Wycherley K, Draper SJ, Cowman AF. RH5.1-CyRPA-Ripr antigen combination vaccine shows little improvement over RH5.1 in a preclinical setting. Front Cell Infect Microbiol 2022; 12:1049065. [PMID: 36605129 PMCID: PMC9807911 DOI: 10.3389/fcimb.2022.1049065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background RH5 is the leading vaccine candidate for the Plasmodium falciparum blood stage and has shown impact on parasite growth in the blood in a human clinical trial. RH5 binds to Ripr and CyRPA at the apical end of the invasive merozoite form, and this complex, designated RCR, is essential for entry into human erythrocytes. RH5 has advanced to human clinical trials, and the impact on parasite growth in the blood was encouraging but modest. This study assessed the potential of a protein-in-adjuvant blood stage malaria vaccine based on a combination of RH5, Ripr and CyRPA to provide improved neutralizing activity against P. falciparum in vitro. Methods Mice were immunized with the individual RCR antigens to down select the best performing adjuvant formulation and rats were immunized with the individual RCR antigens to select the correct antigen dose. A second cohort of rats were immunized with single, double and triple antigen combinations to assess immunogenicity and parasite neutralizing activity in growth inhibition assays. Results The DPX® platform was identified as the best performing formulation in potentiating P. falciparum inhibitory antibody responses to these antigens. The three antigens derived from RH5, Ripr and CyRPA proteins formulated with DPX induced highly inhibitory parasite neutralising antibodies. Notably, RH5 either as a single antigen or in combination with Ripr and/or CyRPA, induced inhibitory antibodies that outperformed CyRPA, Ripr. Conclusion An RCR combination vaccine may not induce substantially improved protective immunity as compared with RH5 as a single immunogen in a clinical setting and leaves the development pathway open for other antigens to be combined with RH5 as a next generation malaria vaccine.
Collapse
Affiliation(s)
- Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer K. Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Karen L. Mackwell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Benjamin A. Seager
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Anna Ngo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kym N. Lowes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Sarah E. Silk
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Pulido
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lloyd D. W. King
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Amy R. Noe
- Leidos Life Sciences, Frederick, MD, United States
| | | | - Paul J. Masendycz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | | | | | - Lorraine Soisson
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Carter Diggs
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Robin Miller
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Susan Youll
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Kaye Wycherley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Alan F. Cowman,
| |
Collapse
|
29
|
Duffy PE. Current approaches to malaria vaccines. Curr Opin Microbiol 2022; 70:102227. [PMID: 36343566 PMCID: PMC11127243 DOI: 10.1016/j.mib.2022.102227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The complex Plasmodium life cycle offers different vaccine approaches with distinct parasitological and clinical effects. The approaches and their rationales were established decades ago: vaccines targeting pre-erythrocytic (sporozoite and liver-stage) parasites prevent infection, those to blood-stage parasites reduce disease, and those to sexual-stage parasites or mosquito vector reduce transmission and eliminate malaria through herd immunity. The pre-erythrocytic RTS,S vaccine (Mosquirix, GlaskoSmithKline (GSK)), recommended by WHO in 2021, reduces clinical malaria in children. Knowledge of parasite biology, host-parasite interactions, and immune mechanisms is informing new concepts to improve on RTS,S and to target other parasite stages. This review emphasizes vaccine approaches and candidates currently in the clinic or likely to enter clinical testing soon.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Mangou K, Moore AJ, Thiam LG, Ba A, Orfanó A, Desamours I, Ndegwa DN, Goodwin J, Guo Y, Sheng Z, Patel SD, Diallo F, Sene SD, Pouye MN, Faye AT, Thiam A, Nunez V, Diagne CT, Sadio BD, Shapiro L, Faye O, Mbengue A, Bei AK. Structure-guided insights into potential function of novel genetic variants in the malaria vaccine candidate PfRh5. Sci Rep 2022; 12:19403. [PMID: 36371450 PMCID: PMC9653458 DOI: 10.1038/s41598-022-23929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The recent stall in the global reduction of malaria deaths has made the development of a highly effective vaccine essential. A major challenge to developing an efficacious vaccine is the extensive diversity of Plasmodium falciparum antigens. While genetic diversity plays a major role in immune evasion and is a barrier to the development of both natural and vaccine-induced protective immunity, it has been under-prioritized in the evaluation of malaria vaccine candidates. This study uses genomic approaches to evaluate genetic diversity in next generation malaria vaccine candidate PfRh5. We used targeted deep amplicon sequencing to identify non-synonymous Single Nucleotide Polymorphisms (SNPs) in PfRh5 (Reticulocyte-Binding Protein Homologue 5) in 189 P. falciparum positive samples from Southern Senegal and identified 74 novel SNPs. We evaluated the population prevalence of these SNPs as well as the frequency in individual samples and found that only a single SNP, C203Y, was present at every site. Many SNPs were unique to the individual sampled, with over 90% of SNPs being found in just one infected individual. In addition to population prevalence, we assessed individual level SNP frequencies which revealed that some SNPs were dominant (frequency of greater than 25% in a polygenomic sample) whereas most were rare, present at 2% or less of total reads mapped to the reference at the given position. Structural modeling uncovered 3 novel SNPs occurring under epitopes bound by inhibitory monoclonal antibodies, potentially impacting immune evasion, while other SNPs were predicted to impact PfRh5 structure or interactions with the receptor or binding partners. Our data demonstrate that PfRh5 exhibits greater genetic diversity than previously described, with the caveat that most of the uncovered SNPs are at a low overall frequency in the individual and prevalence in the population. The structural studies reveal that novel SNPs could have functional implications on PfRh5 receptor binding, complex formation, or immune evasion, supporting continued efforts to validate PfRh5 as an effective malaria vaccine target and development of a PfRh5 vaccine.
Collapse
Affiliation(s)
- Khadidiatou Mangou
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Adam J Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alessandra Orfanó
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Ife Desamours
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Duncan Ndungu Ndegwa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- University of Embu, Embu, Kenya
| | - Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Saurabh D Patel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Fatoumata Diallo
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Seynabou D Sene
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mariama N Pouye
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Awa Thioub Faye
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Vanessa Nunez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Cheikh Tidiane Diagne
- MIVEGEC (Infectious Diseases and Vector: Ecology, Genetics, Evolution and Control), University of Montpelier, IRD, CNRS, Montpellier, France
| | | | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Biochemistry and Biophysics, Columbia University, New York, NY, USA
| | - Ousmane Faye
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|
31
|
Takashima E, Nagaoka H, Correia R, Alves PM, Roldão A, Christensen D, Guderian JA, Fukushima A, Viebig NK, Depraetere H, Tsuboi T. A novel asexual blood-stage malaria vaccine candidate: PfRipr5 formulated with human-use adjuvants induces potent growth inhibitory antibodies. Front Immunol 2022; 13:1002430. [PMID: 36389677 PMCID: PMC9647036 DOI: 10.3389/fimmu.2022.1002430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2023] Open
Abstract
PfRipr is a highly conserved asexual-blood stage malaria vaccine candidate against Plasmodium falciparum. PfRipr5, a protein fragment of PfRipr inducing the most potent inhibitory antibodies, is a promising candidate for the development of next-generation malaria vaccines, requiring validation of its potential when formulated with adjuvants already approved for human use. In this study, PfRipr5 antigen was efficiently produced in a tank bioreactor using insect High Five cells and the baculovirus expression vector system; purified PfRipr5 was thermally stable in its monomeric form, had high purity and binding capacity to functional monoclonal anti-PfRipr antibody. The formulation of purified PfRipr5 with Alhydrogel®, GLA-SE or CAF®01 adjuvants accepted for human use showed acceptable compatibility. Rabbits immunized with these formulations induced comparable levels of anti-PfRipr5 antibodies, and significantly higher than the control group immunized with PfRipr5 alone. To investigate the efficacy of the antibodies, we used an in vitro parasite growth inhibition assay (GIA). The highest average GIA activity amongst all groups was attained with antibodies induced by immunization with PfRipr5 formulated with CAF®01. Overall, this study validates the potential of adjuvanted PfRipr5 as an asexual blood-stage malaria vaccine candidate, with PfRipr5/CAF®01 being a promising formulation for subsequent pre-clinical and clinical development.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ricardo Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut (SSI), Copenhagen, Denmark
| | | | | | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Hilde Depraetere
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
32
|
Thiam LG, Mangou K, Ba A, Mbengue A, Bei AK. Leveraging genome editing to functionally evaluate Plasmodium diversity. Trends Parasitol 2022; 38:558-571. [PMID: 35469746 DOI: 10.1016/j.pt.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The ambitious goal of malaria elimination requires an in-depth understanding of the parasite's biology to counter the growing threat of antimalarial resistance and immune evasion. Timely assessment of the functional impact of antigenic diversity in the early stages of vaccine development will be critical for achieving the goal of malaria control, elimination, and ultimately eradication. Recent advances in targeted genome editing enabled the functional validation of resistance-associated markers in Plasmodium falciparum, the deadliest malaria-causing pathogen and strain-specific immune neutralization. This review explores recent advances made in leveraging genome editing to aid the functional evaluation of Plasmodium diversity and highlights how these techniques can assist in prioritizing both therapeutic and vaccine candidates.
Collapse
Affiliation(s)
- Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Khadidiatou Mangou
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amy K Bei
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| |
Collapse
|
33
|
Nacer A, Kivi G, Pert R, Juronen E, Holenya P, Aliprandini E, Amino R, Silvie O, Quinkert D, Le Duff Y, Hurley M, Reimer U, Tover A, Draper SJ, Gilbert S, Ho MM, Bowyer PW. Expanding the Malaria Antibody Toolkit: Development and Characterisation of Plasmodium falciparum RH5, CyRPA, and CSP Recombinant Human Monoclonal Antibodies. Front Cell Infect Microbiol 2022; 12:901253. [PMID: 35782147 PMCID: PMC9243361 DOI: 10.3389/fcimb.2022.901253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria, an infection caused by apicomplexan parasites of the genus Plasmodium, continues to exact a significant toll on public health with over 200 million cases world-wide, and annual deaths in excess of 600,000. Considerable progress has been made to reduce malaria burden in endemic countries in the last two decades. However, parasite and mosquito resistance to frontline chemotherapies and insecticides, respectively, highlights the continuing need for the development of safe and effective vaccines. Here we describe the development of recombinant human antibodies to three target proteins from Plasmodium falciparum: reticulocyte binding protein homologue 5 (PfRH5), cysteine-rich protective antigen (PfCyRPA), and circumsporozoite protein (PfCSP). All three proteins are key targets in the development of vaccines for blood-stage or pre-erythrocytic stage infections. We have developed potent anti-PfRH5, PfCyRPA and PfCSP monoclonal antibodies that will prove useful tools for the standardisation of assays in preclinical research and the assessment of these antigens in clinical trials. We have generated some very potent anti-PfRH5 and anti-PfCyRPA antibodies with some clones >200 times more potent than the polyclonal anti-AMA-1 antibodies used for the evaluation of blood stage antigens. While the monoclonal and polyclonal antibodies are not directly comparable, the data provide evidence that these new antibodies are very good at blocking invasion. These antibodies will therefore provide a valuable resource and have potential as biological standards to help harmonise pre-clinical malaria research.
Collapse
Affiliation(s)
- Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Gaily Kivi
- Icosagen Cell Factory OÜ, Tartumaa, Estonia
| | - Raini Pert
- Icosagen Cell Factory OÜ, Tartumaa, Estonia
| | | | - Pavlo Holenya
- Research and Development, JPT Peptide Technologies GmbH, Berlin, Germany
| | | | - Rogerio Amino
- Malaria Infection & Immunity Unit, Institut Pasteur, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Yann Le Duff
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Matthew Hurley
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Ulf Reimer
- Research and Development, JPT Peptide Technologies GmbH, Berlin, Germany
| | | | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Gilbert
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Mei Mei Ho
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| | - Paul W. Bowyer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, United Kingdom
| |
Collapse
|
34
|
Roberts AJ, Ong HB, Clare S, Brandt C, Harcourt K, Franssen SU, Cotton JA, Müller-Sienerth N, Wright GJ. Systematic identification of genes encoding cell surface and secreted proteins that are essential for in vitro growth and infection in Leishmania donovani. PLoS Pathog 2022; 18:e1010364. [PMID: 35202447 PMCID: PMC8903277 DOI: 10.1371/journal.ppat.1010364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease. Leishmaniasis is a parasitic infectious disease that is responsible for many tens of thousands of human deaths per year, primarily in impoverished parts of the world. Although there are drugs to treat this parasite infection, resistance is emerging and there are no approved human vaccines. Extracellular parasite proteins can make good vaccine targets because they are directly accessible to host antibodies; however, not all parasite surface proteins can elicit protective immune responses. With the goal of identifying new vaccine targets, we selected over 90 genes that encode parasite cell surface and secreted proteins and used the latest CRISPR gene editing technology to individually target them. Using these mutant parasites, we identified four genes required for parasite growth in the laboratory. We expressed two of the proteins as subunit vaccines and a preclinical infection model was used to determine if they could elicit protective immune responses. We found that two of our candidates were able to confer significant levels of protection in a murine model of visceral leishmaniasis. Our study will contribute to the search for a highly effective vaccine against visceral leishmaniasis to improve the lives of people living in some of the poorest regions on the planet.
Collapse
Affiliation(s)
- Adam J. Roberts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Han B. Ong
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Simon Clare
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Cordelia Brandt
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Katherine Harcourt
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Susanne U. Franssen
- Parasite Genomics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - James A. Cotton
- Parasite Genomics, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Nicole Müller-Sienerth
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. Nat Commun 2022; 13:933. [PMID: 35177602 PMCID: PMC8854392 DOI: 10.1038/s41467-022-28601-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 01/01/2023] Open
Abstract
Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets. Antibodies can have synergistic effects, but mechanisms are not well understood. Here, Ragotte et al. identify three antibodies that bind neighbouring epitopes on CyRPA, a malaria vaccine candidate, and show that lateral interactions between the antibodies slow dissociation and inhibit parasite growth synergistically.
Collapse
|
36
|
Voinson M, Nunn CL, Goldberg A. Primate malarias as a model for cross-species parasite transmission. eLife 2022; 11:e69628. [PMID: 35086643 PMCID: PMC8798051 DOI: 10.7554/elife.69628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Parasites regularly switch into new host species, representing a disease burden and conservation risk to the hosts. The distribution of these parasites also gives insight into characteristics of ecological networks and genetic mechanisms of host-parasite interactions. Some parasites are shared across many species, whereas others tend to be restricted to hosts from a single species. Understanding the mechanisms producing this distribution of host specificity can enable more effective interventions and potentially identify genetic targets for vaccines or therapies. As ecological connections between human and local animal populations increase, the risk to human and wildlife health from novel parasites also increases. Which of these parasites will fizzle out and which have the potential to become widespread in humans? We consider the case of primate malarias, caused by Plasmodium parasites, to investigate the interacting ecological and evolutionary mechanisms that put human and nonhuman primates at risk for infection. Plasmodium host switching from nonhuman primates to humans led to ancient introductions of the most common malaria-causing agents in humans today, and new parasite switching is a growing threat, especially in Asia and South America. Based on a wild host-Plasmodium occurrence database, we highlight geographic areas of concern and potential areas to target further sampling. We also discuss methodological developments that will facilitate clinical and field-based interventions to improve human and wildlife health based on this eco-evolutionary perspective.
Collapse
Affiliation(s)
- Marina Voinson
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke Global Health, Duke UniversityDurhamUnited States
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| |
Collapse
|
37
|
Bjerkan L, Visweswaran GRR, Gudjonsson A, Labbé GM, Quinkert D, Pattinson DJ, Spång HCL, Draper SJ, Bogen B, Braathen R. APC-Targeted DNA Vaccination Against Reticulocyte-Binding Protein Homolog 5 Induces Plasmodium falciparum-Specific Neutralizing Antibodies and T Cell Responses. Front Immunol 2021; 12:720550. [PMID: 34733274 PMCID: PMC8558525 DOI: 10.3389/fimmu.2021.720550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
Targeted delivery of antigen to antigen presenting cells (APCs) is an efficient way to induce robust antigen-specific immune responses. Here, we present a novel DNA vaccine that targets the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5), a leading blood-stage antigen of the human malaria pathogen, to APCs. The vaccine is designed as bivalent homodimers where each chain is composed of an amino-terminal single chain fragment variable (scFv) targeting unit specific for major histocompatibility complex class II (MHCII) expressed on APCs, and a carboxyl-terminal antigenic unit genetically linked by the dimerization unit. This vaccine format, named “Vaccibody”, has previously been successfully applied for antigens from other infectious diseases including influenza and HIV, as well as for tumor antigens. Recently, the crystal structure and key functional antibody epitopes for the truncated version of PfRH5 (PfRH5ΔNL) were characterized, suggesting PfRH5ΔNL to be a promising candidate for next-generation PfRH5 vaccine design. In this study, we explored the APC-targeting strategy for a PfRH5ΔNL-containing DNA vaccine. BALB/c mice immunized with the targeted vaccine induced higher PfRH5-specific IgG1 antibody responses than those vaccinated with a non-targeted vaccine or antigen alone. The APC-targeted vaccine also efficiently induced rapid IFN-γ and IL-4 T cell responses. Furthermore, the vaccine-induced PfRH5-specific IgG showed inhibition of growth of the P. falciparum 3D7 clone parasite in vitro. Finally, sera obtained after vaccination with this targeted vaccine competed for the same epitopes as PfRH5-specific mAbs from vaccinated humans. Robust humoral responses were also induced by a similar P. vivax Duffy-binding protein (PvDBP)-containing targeted DNA vaccine. Our data highlight a novel targeted vaccine platform for the development of vaccines against blood-stage malaria.
Collapse
Affiliation(s)
- Louise Bjerkan
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Arnar Gudjonsson
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Doris Quinkert
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Heidi C L Spång
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Bjarne Bogen
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ranveig Braathen
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
38
|
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) Elicits Detectable Levels of Invasion-Inhibitory Antibodies during Natural Infection in Humans. Infect Immun 2021; 90:e0037721. [PMID: 34694918 DOI: 10.1128/iai.00377-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is a conserved component of an essential erythrocyte invasion complex (RH5/Ripr/CyRPA) and a target of potent cross-strain parasite-neutralizing antibodies. While, naturally acquired human RH5 antibodies have been functionally characterized, there are no similar reports on CyRPA. Thus, we analyzed the parasite neutralizing activity of naturally acquired human CyRPA antibodies. In this regard, CyRPA human antibodies were measured and purified from malaria infected sera obtained from central India and analyzed for their parasite neutralizing activity in in vitro growth inhibition assays (GIA). We report that despite being susceptible to antibody, CyRPA being a highly conserved antigen does not appear to be under substantial immune selection pressure as a very low acquisition of anti-CyRPA antibodies was reported in malaria-exposed Indians. We demonstrate for the first time that the low amounts of natural CyRPA antibodies exhibited functional parasite-neutralizing activity and that a CyRPA based vaccine formulation induces highly potent antibodies in rabbits. Importantly, the vaccine induced CyRPA antibodies exhibited a robust IC50 of 21.96 μg/ml that is comparable to IC50 of antibodies against the leading blood stage vaccine candidate, RH5. Our data support CyRPA as a unique vaccine target that is highly susceptible to immune attack but highly conserved compared to other leading candidates such as MSP-1, AMA-1, further substantiating its promise as a leading blood-stage vaccine candidate.
Collapse
|
39
|
Afucosylated Plasmodium falciparum-specific IgG is induced by infection but not by subunit vaccination. Nat Commun 2021; 12:5838. [PMID: 34611164 PMCID: PMC8492741 DOI: 10.1038/s41467-021-26118-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/11/2021] [Indexed: 01/02/2023] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate receptor- and tissue-specific sequestration of infected erythrocytes (IEs) in malaria. Antibody responses are a central component of naturally acquired malaria immunity. PfEMP1-specific IgG likely protects by inhibiting IE sequestration and through IgG-Fc Receptor (FcγR) mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to FcγRIIIa is up to 40-fold higher than fucosylated IgG, resulting in enhanced antibody-dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we show that naturally acquired PfEMP1-specific IgG is strongly afucosylated in a stable and exposure-dependent manner, and efficiently induces FcγRIIIa-dependent natural killer (NK) cell degranulation. In contrast, immunization with a subunit PfEMP1 (VAR2CSA) vaccine results in fully fucosylated specific IgG. These results have implications for understanding protective natural- and vaccine-induced immunity to malaria. Here, Larsen et al. describe differences in Fc fucosylation of P. falciparum PfEMP1-specific IgG produced in response to natural infection versus VAR2CSA-type subunit vaccination, which leads to differences in the ability to induce FcγRIIIa-dependent natural killer cell degranulation.
Collapse
|
40
|
Larsen MD, Lopez-Perez M, Dickson EK, Ampomah P, Tuikue Ndam N, Nouta J, Koeleman CAM, Ederveen ALH, Mordmüller B, Salanti A, Nielsen MA, Massougbodji A, van der Schoot CE, Ofori MF, Wuhrer M, Hviid L, Vidarsson G. Afucosylated Plasmodium falciparum-specific IgG is induced by infection but not by subunit vaccination. Nat Commun 2021. [PMID: 34611164 DOI: 10.1101/2021.04.23.441082v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate receptor- and tissue-specific sequestration of infected erythrocytes (IEs) in malaria. Antibody responses are a central component of naturally acquired malaria immunity. PfEMP1-specific IgG likely protects by inhibiting IE sequestration and through IgG-Fc Receptor (FcγR) mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to FcγRIIIa is up to 40-fold higher than fucosylated IgG, resulting in enhanced antibody-dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we show that naturally acquired PfEMP1-specific IgG is strongly afucosylated in a stable and exposure-dependent manner, and efficiently induces FcγRIIIa-dependent natural killer (NK) cell degranulation. In contrast, immunization with a subunit PfEMP1 (VAR2CSA) vaccine results in fully fucosylated specific IgG. These results have implications for understanding protective natural- and vaccine-induced immunity to malaria.
Collapse
Affiliation(s)
- Mads Delbo Larsen
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuel Kakra Dickson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Paulina Ampomah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Agertoug Nielsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Godomey, Benin
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Centre for Medical Parasitology, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands. .,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Michelow IC, Park S, Tsai SW, Rayta B, Pasaje CFA, Nelson S, Early AM, Frosch AP, Ayodo G, Raj DK, Nixon CE, Nixon CP, Pond-Tor S, Friedman JF, Fried M, Duffy PE, Le Roch KG, Niles JC, Kurtis JD. A newly characterized malaria antigen on erythrocyte and merozoite surfaces induces parasite inhibitory antibodies. J Exp Med 2021; 218:e20200170. [PMID: 34342640 PMCID: PMC8340565 DOI: 10.1084/jem.20200170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
We previously identified a Plasmodium falciparum (Pf) protein of unknown function encoded by a single-copy gene, PF3D7_1134300, as a target of antibodies in plasma of Tanzanian children in a whole-proteome differential screen. Here we characterize this protein as a blood-stage antigen that localizes to the surface membranes of both parasitized erythrocytes and merozoites, hence its designation as Pf erythrocyte membrane and merozoite antigen 1 (PfEMMA1). Mouse anti-PfEMMA1 antisera and affinity-purified human anti-PfEMMA1 antibodies inhibited growth of P. falciparum strains by up to 68% in growth inhibition assays. Following challenge with uniformly fatal Plasmodium berghei (Pb) ANKA, up to 40% of mice immunized with recombinant PbEMMA1 self-cured, and median survival of lethally infected mice was up to 2.6-fold longer than controls (21 vs. 8 d, P = 0.005). Furthermore, high levels of naturally acquired human anti-PfEMMA1 antibodies were associated with a 46% decrease in parasitemia over 2.5 yr of follow-up of Tanzanian children. Together, these findings suggest that antibodies to PfEMMA1 mediate protection against malaria.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Child, Preschool
- Erythrocyte Membrane/parasitology
- Female
- Host-Parasite Interactions/physiology
- Humans
- Infant
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/mortality
- Malaria, Falciparum/parasitology
- Merozoites/immunology
- Merozoites/metabolism
- Mice, Inbred BALB C
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Plasmodium falciparum/physiology
- Polymorphism, Single Nucleotide
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Tanzania
- Mice
Collapse
Affiliation(s)
- Ian C. Michelow
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Sangshin Park
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Graduate School of Urban Public Health & Department of Urban Big Data Convergence, University of Seoul, Seoul, Republic of Korea
| | - Shu-Whei Tsai
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Bonnie Rayta
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | | | - Sara Nelson
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Angela M. Early
- Infectious Disease and Microbiome Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Anne P. Frosch
- Department of Medicine, Hennepin Healthcare Research Institute, University of Minnesota, Minneapolis, MN
| | - George Ayodo
- Kenya Medical Research Institute, Centre of Global Health Research, Kisumu, Kenya
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Dipak K. Raj
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Christina E. Nixon
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Christian P. Nixon
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Jennifer F. Friedman
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, University of California, Riverside, Riverside, CA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jonathan D. Kurtis
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
42
|
Raghuwanshi AS, Kumar A, Raghuwanshi N, Singh SK, Singh AK, Tripathi U, Kaviraj S, Singh S. Development of a process for large scale production of PfRH5 in E. coli expression system. Int J Biol Macromol 2021; 188:169-179. [PMID: 34364940 DOI: 10.1016/j.ijbiomac.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The Plasmodium falciparum reticulocyte binding protein homologue 5 (PfRH5) has recently shown great promise to be developed as a vaccine candidate to prevent blood-stage malaria. However, because of its molecular complexity, most previous efforts were focused on expressing PfRH5 in its native and soluble form. Here, we describe the E. coli expression of full-length PfRH5 as inclusion bodies (IBs), followed by its high cell density fermentation at 1, 5 and 30 L scale. Denatured full-length PfRH5 was purified using a two-step chromatography process before being refolded using design of experiments (DoE). Refolded PfRH5 was further purified using size exclusion chromatography (SEC), recovering high purity antigen with an overall yield of 102 mg/L from fermentation cell harvest. Purified PfRH5 was further characterized using orthogonal analytical methods, and a short-term stability study revealed -80 °C as an optimum storage temperature. Moreover, refolded, and purified PfRH5, when formulated with adjuvant Glucopyranosyl A lipid stable emulsion (GLA-SE), elicited high antibody titers in BALB/c mice, proving its potential to neutralize the blood-stage malarial parasite. Here, we establish an E. coli-based process platform for the large-scale cGMP production of full-length PfRH5, enabling global malaria vaccine development efforts.
Collapse
Affiliation(s)
- Arjun Singh Raghuwanshi
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Ankit Kumar
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Shravan Kumar Singh
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Avinash Kumar Singh
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Umanath Tripathi
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Swarnendu Kaviraj
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India
| | - Sanjay Singh
- Vaccine Formulation and Research Center, Gennova Biopharmaceuticals Limited, Pune 411057, Maharashtra, India.
| |
Collapse
|
43
|
Abstract
Almost 20 years have passed since the first reference genome assemblies were published for Plasmodium falciparum, the deadliest malaria parasite, and Anopheles gambiae, the most important mosquito vector of malaria in sub-Saharan Africa. Reference genomes now exist for all human malaria parasites and nearly half of the ~40 important vectors around the world. As a foundation for genetic diversity studies, these reference genomes have helped advance our understanding of basic disease biology and drug and insecticide resistance, and have informed vaccine development efforts. Population genomic data are increasingly being used to guide our understanding of malaria epidemiology, for example by assessing connectivity between populations and the efficacy of parasite and vector interventions. The potential value of these applications to malaria control strategies, together with the increasing diversity of genomic data types and contexts in which data are being generated, raise both opportunities and challenges in the field. This Review discusses advances in malaria genomics and explores how population genomic data could be harnessed to further support global disease control efforts.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.
| | - Aimee R Taylor
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bronwyn L MacInnis
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
44
|
Ndegwa DN, Kundu P, Hostetler JB, Marin-Menendez A, Sanderson T, Mwikali K, Verzier LH, Coyle R, Adjalley S, Rayner JC. Using Plasmodium knowlesi as a model for screening Plasmodium vivax blood-stage malaria vaccine targets reveals new candidates. PLoS Pathog 2021; 17:e1008864. [PMID: 34197567 PMCID: PMC8279373 DOI: 10.1371/journal.ppat.1008864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 07/14/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.
Collapse
Affiliation(s)
- Duncan N. Ndegwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| | - Jessica B. Hostetler
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lisa H. Verzier
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sophie Adjalley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| |
Collapse
|
45
|
Ndwiga L, Osoti V, Ochwedo KO, Wamae K, Bejon P, Rayner JC, Githinji G, Ochola-Oyier LI. The Plasmodium falciparum Rh5 invasion protein complex reveals an excess of rare variant mutations. Malar J 2021; 20:278. [PMID: 34162366 PMCID: PMC8220363 DOI: 10.1186/s12936-021-03815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The invasion of the red blood cells by Plasmodium falciparum merozoites involves the interplay of several proteins that are also targets for vaccine development. The proteins PfRh5-PfRipr-PfCyRPA-Pfp113 assemble into a complex at the apical end of the merozoite and are together essential for erythrocyte invasion. They have also been shown to induce neutralizing antibodies and appear to be less polymorphic than other invasion-associated proteins, making them high priority blood-stage vaccine candidates. Using available whole genome sequencing data (WGS) and new capillary sequencing data (CS), this study describes the genetic polymorphism in the Rh5 complex in P. falciparum isolates obtained from Kilifi, Kenya. METHODS 162 samples collected in 2013 and 2014 were genotyped by capillary sequencing (CS) and re-analysed WGS from 68 culture-adapted P. falciparum samples obtained from a drug trial conducted from 2005 to 2007. The frequency of polymorphisms in the merozoite invasion proteins, PfRh5, PfRipr, PfCyRPA and PfP113 were examined and where possible polymorphisms co-occurring in the same isolates. RESULTS From a total 70 variants, including 2 indels, 19 SNPs [27.1%] were identified by both CS and WGS, while an additional 15 [21.4%] and 36 [51.4%] SNPs were identified only by either CS or WGS, respectively. All the SNPs identified by CS were non-synonymous, whereas WGS identified 8 synonymous and 47 non-synonymous SNPs. CS identified indels in repeat regions in the p113 gene in codons 275 and 859 that were not identified in the WGS data. The minor allele frequencies of the SNPs ranged between 0.7 and 34.9% for WGS and 1.1-29.6% for CS. Collectively, 12 high frequency SNPs (> 5%) were identified: four in Rh5 codon 147, 148, 203 and 429, two in p113 at codons 7 and 267 and six in Ripr codons 190, 259, 524, 985, 1003 and 1039. CONCLUSION This study reveals that the majority of the polymorphisms are rare variants and confirms a low level of genetic polymorphisms in all proteins within the Rh5 complex.
Collapse
Affiliation(s)
- Leonard Ndwiga
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin Omondi Ochwedo
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | | |
Collapse
|
46
|
Willcox AC, Huber AS, Diouf A, Barrett JR, Silk SE, Pulido D, King LDW, Alanine DGW, Minassian AM, Diakite M, Draper SJ, Long CA, Miura K. Antibodies from malaria-exposed Malians generally interact additively or synergistically with human vaccine-induced RH5 antibodies. CELL REPORTS MEDICINE 2021; 2:100326. [PMID: 34337556 PMCID: PMC8324462 DOI: 10.1016/j.xcrm.2021.100326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
Reticulocyte-binding protein homolog 5 (RH5) is a leading Plasmodium falciparum blood-stage vaccine candidate. Another possible candidate, apical membrane antigen 1 (AMA1), was not efficacious in malaria-endemic populations, likely due to pre-existing antimalarial antibodies that interfered with the activity of vaccine-induced AMA1 antibodies, as judged by in vitro growth inhibition assay (GIA). To determine how pre-existing antibodies interact with vaccine-induced RH5 antibodies, we purify total and RH5-specific immunoglobulin Gs (IgGs) from malaria-exposed Malians and malaria-naive RH5 vaccinees. Infection-induced RH5 antibody titers are much lower than those induced by vaccination, and RH5-specific IgGs show differences in the binding site between the two populations. In GIA, Malian polyclonal IgGs show additive or synergistic interactions with RH5 human monoclonal antibodies and overall additive interactions with vaccine-induced polyclonal RH5 IgGs. These results suggest that pre-existing antibodies will interact favorably with vaccine-induced RH5 antibodies, in contrast to AMA1 antibodies. This study supports RH5 vaccine trials in malaria-endemic regions. RH5 IgG titers induced by infection are lower than those induced by RH5 vaccination Infection- and vaccine-induced RH5 IgGs have different specificity and avidity Infection- and vaccine-induced RH5 IgGs interact differently with RH5 mAbs Infection-induced IgGs generally do not reduce the activity of vaccine-induced IgGs
Collapse
Affiliation(s)
- Alexandra C Willcox
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alex S Huber
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jordan R Barrett
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Lloyd D W King
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Daniel G W Alanine
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Angela M Minassian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
47
|
Minassian AM, Silk SE, Barrett JR, Nielsen CM, Miura K, Diouf A, Loos C, Fallon JK, Michell AR, White MT, Edwards NJ, Poulton ID, Mitton CH, Payne RO, Marks M, Maxwell-Scott H, Querol-Rubiera A, Bisnauthsing K, Batra R, Ogrina T, Brendish NJ, Themistocleous Y, Rawlinson TA, Ellis KJ, Quinkert D, Baker M, Lopez Ramon R, Ramos Lopez F, Barfod L, Folegatti PM, Silman D, Datoo M, Taylor IJ, Jin J, Pulido D, Douglas AD, de Jongh WA, Smith R, Berrie E, Noe AR, Diggs CL, Soisson LA, Ashfield R, Faust SN, Goodman AL, Lawrie AM, Nugent FL, Alter G, Long CA, Draper SJ. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. MED 2021; 2:701-719.e19. [PMID: 34223402 PMCID: PMC8240500 DOI: 10.1016/j.medj.2021.03.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 μg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.
Collapse
Affiliation(s)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolin Loos
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ashlin R. Michell
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael T. White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Celia H. Mitton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Michael Marks
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Hector Maxwell-Scott
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Antonio Querol-Rubiera
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Tatiana Ogrina
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | | - Doris Quinkert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Daniel Silman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Mehreen Datoo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Iona J. Taylor
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Willem A. de Jongh
- ExpreSion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm 2970, Denmark
| | - Robert Smith
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | - Eleanor Berrie
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | | | | | | | | | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anna L. Goodman
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | | | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
48
|
Cai J, Chen S, Zhu F, Lu X, Liu T, Xu W. Whole-Killed Blood-Stage Vaccine: Is It Worthwhile to Further Develop It to Control Malaria? Front Microbiol 2021; 12:670775. [PMID: 33995336 PMCID: PMC8119638 DOI: 10.3389/fmicb.2021.670775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Major challenges have been encountered regarding the development of highly efficient subunit malaria vaccines, and so whole-parasite vaccines have regained attention in recent years. The whole-killed blood-stage vaccine (WKV) is advantageous as it can be easily manufactured and efficiently induced protective immunity against a blood-stage challenge, as well as inducing cross-stage protection against both the liver and sexual-stages. However, it necessitates a high dose of parasitized red blood cell (pRBC) lysate for immunization, and this raises concerns regarding its safety and low immunogenicity. Knowledge of the major components of WKV that can induce or evade the host immune response, and the development of appropriate human-compatible adjuvants will greatly help to optimize the WKV. Therefore, we argue that the further development of the WKV is worthwhile to control and potentially eradicate malaria worldwide.
Collapse
Affiliation(s)
- Jingjing Cai
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Suilin Chen
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Feng Zhu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Taiping Liu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Wenyue Xu
- College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| |
Collapse
|
49
|
Müller K, Gibbins MP, Roberts M, Reyes‐Sandoval A, Hill AVS, Draper SJ, Matuschewski K, Silvie O, Hafalla JCR. Low immunogenicity of malaria pre-erythrocytic stages can be overcome by vaccination. EMBO Mol Med 2021; 13:e13390. [PMID: 33709544 PMCID: PMC8033512 DOI: 10.15252/emmm.202013390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Immunogenicity is considered one important criterion for progression of candidate vaccines to further clinical evaluation. We tested this assumption in an infection and vaccination model for malaria pre-erythrocytic stages. We engineered Plasmodium berghei parasites that harbour a well-characterised epitope for stimulation of CD8+ T cells, either as an antigen in the sporozoite surface-expressed circumsporozoite protein or the parasitophorous vacuole membrane associated protein upregulated in sporozoites 4 (UIS4) expressed in exo-erythrocytic forms (EEFs). We show that the antigen origin results in profound differences in immunogenicity with a sporozoite antigen eliciting robust, superior antigen-specific CD8+ T-cell responses, whilst an EEF antigen evokes poor responses. Despite their contrasting immunogenic properties, both sporozoite and EEF antigens gain access to antigen presentation pathways in hepatocytes, as recognition and targeting by vaccine-induced effector CD8+ T cells results in high levels of protection when targeting either antigen. Our study is the first demonstration that poorly immunogenic EEF antigens do not preclude their susceptibility to antigen-specific CD8+ T-cell killing, which has wide-ranging implications on antigen prioritisation for next-generation pre-erythrocytic malaria vaccines.
Collapse
Affiliation(s)
- Katja Müller
- Parasitology UnitMax Planck Institute for Infection BiologyBerlinGermany
- Department of Molecular ParasitologyInstitute of BiologyHumboldt UniversityBerlinGermany
| | - Matthew P Gibbins
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
- Present address:
Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Mark Roberts
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Arturo Reyes‐Sandoval
- Jenner InstituteUniversity of OxfordOxfordUK
- Present address:
Instituto Politécnico NacionalIPN. Av. Luis Enrique Erro s/n, Unidad Adolfo López MateosMexico CityMexico
| | | | | | - Kai Matuschewski
- Parasitology UnitMax Planck Institute for Infection BiologyBerlinGermany
- Department of Molecular ParasitologyInstitute of BiologyHumboldt UniversityBerlinGermany
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies InfectieusesCIMI‐ParisParisFrance
| | - Julius Clemence R Hafalla
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
50
|
Flynn O, Dillane K, Lanza JS, Marshall JM, Jin J, Silk SE, Draper SJ, Moore AC. Low Adenovirus Vaccine Doses Administered to Skin Using Microneedle Patches Induce Better Functional Antibody Immunogenicity as Compared to Systemic Injection. Vaccines (Basel) 2021; 9:vaccines9030299. [PMID: 33810085 PMCID: PMC8005075 DOI: 10.3390/vaccines9030299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/02/2023] Open
Abstract
Adenovirus-based vaccines are demonstrating promising clinical potential for multiple infectious diseases, including COVID-19. However, the immunogenicity of the vector itself decreases its effectiveness as a boosting vaccine due to the induction of strong anti-vector neutralizing immunity. Here we determined how dissolvable microneedle patches (DMN) for skin immunization can overcome this issue, using a clinically-relevant adenovirus-based Plasmodium falciparum malaria vaccine, AdHu5–PfRH5, in mice. Incorporation of vaccine into patches significantly enhanced its thermostability compared to the liquid form. Conventional high dose repeated immunization by the intramuscular (IM) route induced low antigen-specific IgG titres and high anti-vector immunity. A low priming dose of vaccine, by the IM route, but more so using DMN patches, induced the most efficacious immune responses, assessed by parasite growth inhibitory activity (GIA) assays. Administration of low dose AdHu5–PfRH5 using patches to the skin, boosted by high dose IM, induced the highest antigen-specific serum IgG response after boosting, the greatest skewing of the antibody response towards the antigen and away from the vector, and the highest efficacy. This study therefore demonstrates that repeated use of the same adenovirus vaccine can be highly immunogenic towards the transgene if a low dose is used to prime the response. It also provides a method of stabilizing adenovirus vaccine, in easy-to-administer dissolvable microneedle patches, permitting storage and distribution out of cold chain.
Collapse
Affiliation(s)
- Olivia Flynn
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Kate Dillane
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Juliane Sousa Lanza
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
| | - Jennifer M. Marshall
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; (J.M.M.); (J.J.); (S.E.S.); (S.J.D.)
| | - Anne C. Moore
- School of Pharmacy, University College Cork, T12 XF62 Cork, Ireland; (O.F.); (K.D.); (J.S.L.)
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
- Correspondence:
| |
Collapse
|