1
|
Kaul S, Cole NB, Bandola-Simon J, Lu Y, Tondini E, Walseng E, Roche PA. CD83 suppresses endogenous March-I-dependent MHC class II ubiquitination, endocytosis, and degradation. Proc Natl Acad Sci U S A 2025; 122:e2504077122. [PMID: 40397676 DOI: 10.1073/pnas.2504077122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/14/2025] [Indexed: 05/23/2025] Open
Abstract
MHC class II glycoproteins (MHC-II) bind peptides derived from exogenous antigens and dendritic cells (DCs) present these peptide MHC-II (pMHC-II) complexes to antigen-specific CD4 T cells during immune responses. The turnover of surface pMHC-II on antigen-presenting cells (APCs) is controlled by ubiquitin-mediated degradation of pMHC-II by the E3 ubiquitin ligase March-I. To study March-I protein expression, we have generated a mouse in which a V5 epitope-tag was knocked-in to the endogenous March-I gene, thereby allowing us to follow the fate of March-I using high-affinity anti-V5 antibodies. Quantitative analysis revealed that resting spleen DCs and B cells express only ~500 and 125 March-I molecules/cell, respectively. Endogenous March-I protein has a very short half-life in DCs and March-I mRNA, March-I protein, and MHC-II ubiquitination are rapidly terminated upon activation of both DCs and B cells. Like March-I, CD83 is a known regulator of MHC-II expression in APCs and we also show that CD83 suppresses endogenous March-I-dependent MHC-II ubiquitination, endocytosis, and degradation in mouse spleen DCs. Thus, our study reveals molecular mechanisms for both March-I- and CD83-dependent regulation of MHC-II expression in APCs.
Collapse
Affiliation(s)
- Sunil Kaul
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nelson B Cole
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Elena Tondini
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Even Walseng
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
2
|
Sosa-Luis SA, Almaraz-Arreortua A, Torres-Aguilar H. Mixed Leukocyte Reaction Using Human Plasmacytoid Dendritic Cells and CD4 + T Cells. Methods Mol Biol 2025; 2907:299-313. [PMID: 40100604 DOI: 10.1007/978-1-0716-4430-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Plasmacytoid dendritic cells (pDCs) are critical in antiviral immune responses and play a significant role in developing autoimmune diseases and transplant rejection. Despite their scarcity in peripheral blood, the accessibility of blood peripheral pDCs makes them a promising source for evaluating T-cell antigen-specific responses in viral infections and autoimmune diseases, as well as alloreactive stimulation in transplantation, including graft-versus-host disease. T-cell priming assays with pDCs have presented a significant challenge due to the low proliferation of T cells. This underscores the critical need for meticulous standardization of suitable conditions for cell purification and coculture in peripheral blood pDC-based mixed leukocyte reactions (MLRs) to ensure productive and quantitative results. This chapter presents a thorough methodology for isolating peripheral blood human pDCs and their application in an MLR assay to evaluate alloreactive T-cell responses using flow cytometry and the adjustments to analyze antigen-specific reactions.
Collapse
Affiliation(s)
- Sorely Adelina Sosa-Luis
- Clinical and Basic Immunology Research Department of Biochemical Sciences Faculty, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Alexia Almaraz-Arreortua
- Clinical and Basic Immunology Research Department of Biochemical Sciences Faculty, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Honorio Torres-Aguilar
- Clinical and Basic Immunology Research Department of Biochemical Sciences Faculty, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
3
|
Koucký V, Syding LA, Plačková K, Pavelková L, Fialová A. Assessment of pDCs functional capacity upon exposure to tumor-derived soluble factors. Methods Cell Biol 2024; 189:85-96. [PMID: 39393888 DOI: 10.1016/bs.mcb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) are a minority subset of dendritic cells that despite their tiny quantity play an important role in the immune system, especially in antiviral immunity. They are known mostly as the major producers of type I IFN, which they secrete upon stimulation of endosomal Toll-like receptors 7 and 9 with viral RNA and DNA. However, the functionality of pDCs is more complex, as they were shown to be also involved in autoimmunity, inflammation, and cancer. In the context of the tumor microenvironment, pDCs mostly show substantial functional defects and thus contribute to establishing immunosuppressive micromilieu. Indeed, tumor-infiltrating pDCs were shown to be predominantly pro-tumorigenic, with reduced ability to produce IFNα and capacity to prime regulatory T cells via the ICOS/ICOS-L pathway. Here we describe in detail a method to assess the functional capacity of pDCs upon exposure to tumor-derived cell culture supernatants. The same technique can be implemented with minimal variations to test any soluble factor's impact on pDC phenotype and function.
Collapse
Affiliation(s)
- Vladimír Koucký
- Sotio, Prague, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, Prague, Czech Republic
| | | | - Klára Plačková
- Sotio, Prague, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, Prague, Czech Republic
| | - Lucie Pavelková
- Sotio, Prague, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, Prague, Czech Republic
| | | |
Collapse
|
4
|
Sosa-Luis SA, Ríos-Ríos WJ, Almaraz-Arreortua A, Romero-Tlalolini MA, Aguilar-Ruiz SR, Valle-Ríos R, Sánchez-Torres C, Torres-Aguilar H. Human plasmacytoid dendritic cells express the functional purinergic halo (CD39/CD73). Purinergic Signal 2024; 20:73-82. [PMID: 37055675 PMCID: PMC10828132 DOI: 10.1007/s11302-023-09940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specialized DC subset mainly associated with sensing viral pathogens and high-type I interferon (IFN-I) release in response to toll-like receptor (TLR)-7 and TLR-9 signaling. Currently, pDC contribution to inflammatory responses is extensively described; nevertheless, their regulatory mechanisms require further investigation. CD39 and CD73 are ectoenzymes driving a shift from an ATP-proinflammatory milieu to an anti-inflammatory environment by converting ATP to adenosine. Although the regulatory function of the purinergic halo CD39/CD73 has been reported in some immune cells like regulatory T cells and conventional DCs, its presence in pDCs has not been examined. In this study, we uncover for the first time the expression and functionality of the purinergic halo in human blood pDCs. In healthy donors, CD39 was expressed in the cell surface of 14.0 ± 12.5% pDCs under steady-state conditions, while CD73 showed an intracellular location and was only expressed in 8.0 ± 2.2% of pDCs. Nevertheless, pDCs stimulation with a TLR-7 agonist (R848) induced increased surface expression of both molecules (43.3 ± 23.7% and 18.6 ± 9.3%, respectively), as well as high IFN-α secretion. Furthermore, exogenous ATP addition to R848-activated pDCs significantly increased adenosine generation. This effect was attributable to the superior CD73 expression and activity because blocking CD73 reduced adenosine production and improved pDC allostimulatory capabilities on CD4 + T cells. The functional expression of the purinergic halo in human pDCs described in this work opens new areas to investigate its participation in the regulatory pDC mechanisms in health and disease.
Collapse
Affiliation(s)
- S A Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. Instituto Politécnico Nacional 2508. Col. San Pedro Zacatenco, C.P. 07360, Mexico City, México
| | - W J Ríos-Ríos
- Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma "Benito Juárez" de Oaxaca, Av. Universidad S/N Ex-Hacienda Cinco Señores, C.P. 68120, Oaxaca de Juárez, Oaxaca, México
| | - A Almaraz-Arreortua
- Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma "Benito Juárez" de Oaxaca, Av. Universidad S/N Ex-Hacienda Cinco Señores, C.P. 68120, Oaxaca de Juárez, Oaxaca, México
| | - M A Romero-Tlalolini
- CONACYT-UABJO, Faculty of Medicine and Surgery, Ex Hacienda de Aguilera S/N, Sur, 68020 San Felipe del Agua, Oaxaca de Juárez, Oaxaca, México
| | - S R Aguilar-Ruiz
- Molecular Immunology Research Department, Faculty of Medicine and Surgery, Universidad Autónoma "Benito Juárez" de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, 68020 San Felipe del Agua, Oaxaca, México
| | - R Valle-Ríos
- Research Division, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), C.P. 04360, Mexico City, Mexico
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Inmunología Y Proteómica, C.P. 06720, Mexico City, Mexico
| | - C Sánchez-Torres
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. Instituto Politécnico Nacional 2508. Col. San Pedro Zacatenco, C.P. 07360, Mexico City, México
| | - H Torres-Aguilar
- Clinical Immunology Research Department, Faculty of Biochemical Sciences, Universidad Autónoma "Benito Juárez" de Oaxaca, Av. Universidad S/N Ex-Hacienda Cinco Señores, C.P. 68120, Oaxaca de Juárez, Oaxaca, México.
| |
Collapse
|
5
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
6
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
7
|
Arroyo Hornero R, Idoyaga J. Plasmacytoid dendritic cells: A dendritic cell in disguise. Mol Immunol 2023; 159:38-45. [PMID: 37269733 PMCID: PMC10625168 DOI: 10.1016/j.molimm.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Since their discovery, the identity of plasmacytoid dendritic cells (pDCs) has been at the center of a continuous dispute in the field, and their classification as dendritic cells (DCs) has been recently re-challenged. pDCs are different enough from the rest of the DC family members to be considered a lineage of cells on their own. Unlike the exclusive myeloid ontogeny of cDCs, pDCs may have dual origin developing from myeloid and lymphoid progenitors. Moreover, pDCs have the unique ability to quickly secrete abundant levels of type I interferon (IFN-I) in response to viral infections. In addition, pDCs undergo a differentiation process after pathogen recognition that allows them to activate T cells, a feature that has been shown to be independent of presumed contaminating cells. Here, we aim to provide an overview of the historic and current understanding of pDCs and argue that their classification as either lymphoid or myeloid may be an oversimplification. Instead, we propose that the capacity of pDCs to link the innate and adaptive immune response by directly sensing pathogens and activating adaptive immune responses justify their inclusion within the DC network.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- Microbiology & Immunology Department, and Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Microbiology & Immunology Department, and Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Bandola-Simon J, Roche PA. Regulation of MHC class II and CD86 expression by March-I in immunity and disease. Curr Opin Immunol 2023; 82:102325. [PMID: 37075597 PMCID: PMC10330218 DOI: 10.1016/j.coi.2023.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/21/2023]
Abstract
The expression of MHC-II and CD86 on the surface of antigen-presenting cells (APCs) must be tightly regulated to foster antigen-specific CD4 T-cell activation and to prevent autoimmunity. Surface expression of these proteins is regulated by their dynamic ubiquitination by the E3 ubiquitin ligase March-I. March-I promotes turnover of peptide-MHC-II complexes on resting APCs and termination of March-I expression promotes MHC-II and CD86 surface stability. In this review, we will highlight recent studies examining March-I function in both normal and pathological conditions.
Collapse
Affiliation(s)
- Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA.
| |
Collapse
|
9
|
Jimenez-Leon MR, Gasca-Capote C, Tarancon-Diez L, Dominguez-Molina B, Lopez-Verdugo M, Ritraj R, Gallego I, Alvarez-Rios AI, Vitalle J, Bachiller S, Camacho-Sojo MI, Perez-Gomez A, Espinosa N, Roca-Oporto C, Rafii-El-Idrissi Benhnia M, Gutierrez-Valencia A, Lopez-Cortes LF, Ruiz-Mateos E. Toll-like receptor agonists enhance HIV-specific T cell response mediated by plasmacytoid dendritic cells in diverse HIV-1 disease progression phenotypes. EBioMedicine 2023; 91:104549. [PMID: 37018973 PMCID: PMC10106920 DOI: 10.1016/j.ebiom.2023.104549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Plasmacytoid dendritic cells (pDCs) sense viral and bacterial products through Toll-like receptor (TLR)-7 and -9 and translate this sensing into Interferon-α (IFN-α) production and T-cell activation. The understanding of the mechanisms involved in pDCs stimulation may contribute to HIV-cure immunotherapeutic strategies. The objective of the present study was to characterize the immunomodulatory effects of TLR agonist stimulations in several HIV-1 disease progression phenotypes and in non HIV-1 infected donors. METHODS pDCs, CD4 and CD8 T-cells were isolated from 450 ml of whole blood from non HIV-1 infected donors, immune responders (IR), immune non responders (INR), viremic (VIR) and elite controller (EC) participants. pDCs were stimulated overnight with AT-2, CpG-A, CpG-C and GS-9620 or no stimuli. After that, pDCs were co-cultured with autologous CD4 or CD8 T-cells and with/without HIV-1 (Gag peptide pool) or SEB (Staphylococcal Enterotoxin B). Cytokine array, gene expression and deep immunophenotyping were assayed. FINDINGS pDCs showed an increase of activation markers levels, interferon related genes, HIV-1 restriction factors and cytokines levels after TLR stimulation in the different HIV-disease progression phenotypes. This pDC activation was prominent with CpG-C and GS-9620 and induced an increase of HIV-specific T-cell response even in VIR and INR comparable with EC. This HIV-1 specific T-cell response was associated with the upregulation of HIV-1 restriction factors and IFN-α production by pDC. INTERPRETATION These results shed light on the mechanisms associated with TLR-specific pDCs stimulation associated with the induction of a T-cell mediated antiviral response which is essential for HIV-1 eradication strategies. FUNDING This work was supported by Gilead fellowship program, the Instituto de Salud Carlos III (Fondo Europeo de Desarrollo Regional, FEDER, "a way to make Europe") and the Red Temática de Investigación Cooperativa en SIDA and by the Spanish National Research Council (CSIC).
Collapse
|
10
|
Hamid B, Ebner F, Bechtold L, Kundik A, Rausch S, Hartmann S. Ascaris suum excretory/secretory products differentially modulate porcine dendritic cell subsets. Front Immunol 2022; 13:1012717. [DOI: 10.3389/fimmu.2022.1012717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Helminths produce excretory/secretory products (E/S) which can modulate the immune responses of their hosts. Dendritic cells (DC) are essential for initiating the host T cell response and are thus potential targets for modulation by helminth E/S. Here we study immunomodulation of porcine peripheral blood DC subsets following ex vivo stimulation with E/S from Ascaris suum, a common helminth of pigs with considerable public health and economic importance. Our data showed that the relative frequencies of DC subsets in porcine blood differ, with plasmacytoid DC (pDC) being the most prominent in healthy 6-month-old pigs. pDC are an important cytokine source, and we found that A. suum E/S suppressed production of the type 1 cytokines IL-12p40 and TNF-α by this subset following toll-like receptor (TLR) ligation. In contrast, conventional DC (cDC) are more efficient antigen presenters, and the expression of CD80/86, costimulatory molecules essential for efficient antigen presentation, were modulated differentially by A. suum E/S between cDC subsets. CD80/86 expression by type 1 cDC (cDC1) following TLR ligation was greatly suppressed by the addition of A. suum E/S, while CD80/86 expression by type 2 cDC (cDC2) was upregulated by A. suum E/S. Further, we found that IFN-γ production by natural killer (NK) cells following IL-12 and IL-18 stimulation was suppressed by A. suum E/S. Finally, in the presence of E/S, IFN-γ production by CD4+ T cells co-cultured with autologous blood-derived DC was significantly impaired. Together, these data provide a coherent picture regarding the regulation of type 1 responses by A. suum E/S. Responsiveness of pDC and cDC1 to microbial ligands is reduced in the presence of E/S, effector functions of Th1 cells are impaired, and cytokine-driven IFN-γ release by NK cells is limited.
Collapse
|
11
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
12
|
Hasan A, Al-Ozairi E, Hassan NYM, Ali S, Ahmad R, Al-Shatti N, Alshemmari S, Al-Mulla F. Fatal COVID-19 is Associated with Reduced HLA-DR, CD123 or CD11c Expression on Circulating Dendritic Cells. J Inflamm Res 2022; 15:5665-5675. [PMID: 36238761 PMCID: PMC9553279 DOI: 10.2147/jir.s360207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose Severe coronavirus disease 2019 (COVID-19) is linked to insufficient control of viral replication and excessive inflammation driven by an unbalanced immune response. Plasmacytoid dendritic cells (pDCs) are specialized in the rapid production of interferons in response to viral infections, and can also prime and activate T-cells. Conventional DCs (cDCs) are critical for the elimination of viral infections owing to their specialized ability to prime and activate T cells. We assessed the frequency and phenotype of pDCs and cDCs in survivors and non-survivors of COVID-19. Patients and methods Patients with COVID-19 were enrolled, and 22 were included in this study. Peripheral whole blood was obtained during the 2nd week of illness, stained with antibodies specific for lineage markers, human leukocyte antigen-DR isotype (HLA-DR), CD11c, and CD123, and analyzed by flow cytometry. Patients were followed-up during hospital admission and grouped into survivors (n=17) and non-survivors (n=5) of COVID-19. Results The ratio of pDCs to pre-cDCs was significantly lower (P=0.0005) in non-survivors compared to survivors. The frequency of pDCs was significantly higher than cDC2-like cells (P=0.0002) and pre-cDCs (P<0.0001) in survivors but not in non-survivors. HLA-DR expression level on pDCs and cDC2-like cells was lower in non-survivors compared to survivors (P=0.02 and P=0.058, respectively), and HLA-DR was inversely correlated with disease severity rating (pDCs: r= –0.47, P=0.027; cDC2-like cells: r= –0.45, P=0.037). CD123 expression level on pDCs was significantly lower (P=0.038) in non-survivors compared to survivors, and CD123 was inversely correlated with disease severity rating (r=–0.5, P=0.016). CD11c expression level on cDC2-like cells was significantly lower (P=0.03) in non-survivors compared to survivors, and CD11c was inversely correlated with disease severity rating (r=–0.47, P=0.025). Conclusion A lower frequency of pDCs compared to other circulating DCs, and lower expression levels of HLA-DR, CD123 or CD11c on DCs is associated with fatal COVID-19.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait,Correspondence: Amal Hasan, Department of Immunology and Microbiology; Dasman Diabetes Institute, Dasman, Kuwait, Tel +965 2224 2999 Ext. 4312, Fax +965 2249 2406, Email
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait,Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Nosiba Y M Hassan
- Department of Internal Medicine, Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Shamsha Ali
- Special Services Facility, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Nada Al-Shatti
- Immunology & HLA Laboratory, Kuwait Cancer Control Center, Ministry of Health, Kuwait City, Kuwait
| | - Salem Alshemmari
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,Department of Hematology, Kuwait Cancer Control Center, Ministry of Health, Kuwait City, Kuwit
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
13
|
Wiśnicki K, Donizy P, Remiorz A, Janczak D, Krajewska M, Banasik M. Significance of Indoleamine 2,3-Dioxygenase Expression in the Immunological Response of Kidney Graft Recipients. Diagnostics (Basel) 2022; 12:2353. [PMID: 36292041 PMCID: PMC9600090 DOI: 10.3390/diagnostics12102353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney transplantation is unquestionably the most advantageous and preferred treatment when patients with end-stage renal disease are considered. It does have a substantially positive influence on both the quality and expectancy of their lives. Thus, it is quintessential to extend the survival rate of kidney grafts. On account of T-cell-focused treatment, this is being exponentially achieved. The kynurenine pathway, as an immunosuppressive apparatus, and indoleamine 2,3-dioxygenase (IDO1), as its main regulator, are yet to be exhaustively explored. This review presents the recognised role of IDO1 and its influence on the kynurenine pathway, with emphasis on immunosuppression in kidney transplant protection.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agata Remiorz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
14
|
Doan TA, Forward T, Tamburini BAJ. Trafficking and retention of protein antigens across systems and immune cell types. Cell Mol Life Sci 2022; 79:275. [PMID: 35505125 PMCID: PMC9063628 DOI: 10.1007/s00018-022-04303-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022]
Abstract
In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses (human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recognition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and retention is necessary to understand the type and magnitude of the immune response and essential for the development of novel vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA.,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA. .,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
15
|
Liu H, Wilson KR, Firth AM, Macri C, Schriek P, Blum AB, Villar J, Wormald S, Shambrook M, Xu B, Lim HJ, McWilliam HEG, Hill AF, Edgington-Mitchell LE, Caminschi I, Lahoud MH, Segura E, Herold MJ, Villadangos JA, Mintern JD. Ubiquitin-like protein 3 (UBL3) is required for MARCH ubiquitination of major histocompatibility complex class II and CD86. Nat Commun 2022; 13:1934. [PMID: 35411049 PMCID: PMC9001657 DOI: 10.1038/s41467-022-29524-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
The MARCH E3 ubiquitin (Ub) ligase MARCH1 regulates trafficking of major histocompatibility complex class II (MHC II) and CD86, molecules of critical importance to immunity. Here we show, using a genome-wide CRISPR knockout screen, that ubiquitin-like protein 3 (UBL3) is a necessary component of ubiquitination-mediated trafficking of these molecules in mice and in humans. Ubl3-deficient mice have elevated MHC II and CD86 expression on the surface of professional and atypical antigen presenting cells. UBL3 also regulates MHC II and CD86 in human dendritic cells (DCs) and macrophages. UBL3 impacts ubiquitination of MARCH1 substrates, a mechanism that requires UBL3 plasma membrane anchoring via prenylation. Loss of UBL3 alters adaptive immunity with impaired development of thymic regulatory T cells, loss of conventional type 1 DCs, increased number of trogocytic marginal zone B cells, and defective in vivo MHC II and MHC I antigen presentation. In summary, we identify UBL3 as a conserved, critical factor in MARCH1-mediated ubiquitination with important roles in immune responses.
Collapse
Affiliation(s)
- Haiyin Liu
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Kayla R Wilson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Ashley M Firth
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Patrick Schriek
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005, Paris, France
| | - Samuel Wormald
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3010, Australia
| | - Mitch Shambrook
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Hui Jing Lim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamish E G McWilliam
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005, Paris, France
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
B cells masquerade as dendritic cells. Trends Immunol 2022; 43:340-342. [DOI: 10.1016/j.it.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023]
|
17
|
Yang J, Liu X, Cheng Y, Zhang J, Ji F, Ling Z. Roles of Plasmacytoid Dendritic Cells in Gastric Cancer. Front Oncol 2022; 12:818314. [PMID: 35311157 PMCID: PMC8927765 DOI: 10.3389/fonc.2022.818314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common neoplasm and the third most deadly cancer in humans worldwide. Helicobacter pylori infection is the most important causative factor of gastric carcinogenesis, and activates host innate and adaptive immune responses. As key constituents of the tumor immune microenvironment, plasmacytoid dendritic cells (pDCs) are increasingly attracting attention owing to their potential roles in immunosuppression. We recently reported that pDCs have vital roles in the development of immunosuppression in GC. Clarifying the contribution of pDCs to the development and progression of GC may lead to improvements in cancer therapy. In this review, we summarize current knowledge regarding immune modulation in GC, especially the roles of pDCs in GC carcinogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingchen Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
18
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
19
|
Trained immunity in type 2 immune responses. Mucosal Immunol 2022; 15:1158-1169. [PMID: 36065058 PMCID: PMC9705254 DOI: 10.1038/s41385-022-00557-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immunological memory of innate immune cells, also termed "trained immunity", allows for cross-protection against distinct pathogens, but may also drive chronic inflammation. Recent studies have shown that memory responses associated with type 2 immunity do not solely rely on adaptive immune cells, such as T- and B cells, but also involve the innate immune system and epithelial cells. Memory responses have been described for monocytes, macrophages and airway epithelial cells of asthmatic patients as well as for macrophages and group 2 innate lymphoid cells (ILC2) from allergen-sensitized or helminth-infected mice. The metabolic and epigenetic mechanisms that mediate allergen- or helminth-induced reprogramming of innate immune cells are only beginning to be uncovered. Trained immunity has been implicated in helminth-driven immune regulation and allergen-specific immunotherapy, suggesting its exploitation in future therapies. Here, we discuss recent advances and key remaining questions regarding the mechanisms and functions of trained type 2 immunity in infection and inflammation.
Collapse
|
20
|
Zurmühl N, Schmitt A, Formentini U, Weiss J, Appel H, Debatin KM, Fabricius D. Differential uptake of three clinically relevant allergens by human plasmacytoid dendritic cells. Clin Mol Allergy 2021; 19:23. [PMID: 34789269 PMCID: PMC8597288 DOI: 10.1186/s12948-021-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background Human plasmacytoid dendritic cells (pDC) have a dual role as interferon-producing and antigen-presenting cells. Their relevance for allergic diseases is controversial. and the impact of pDC on allergic immune responses is poorly understood. Methods This in vitro study on human pDC isolated from peripheral blood was designed to compare side by side the uptake of three clinically relevant representative allergens: fluorochrome-labeled house dust mite Der p 1, Bee venom extract from Apis mellifera (Api) and the food allergen OVA analyzed flow cytometry and confocal microscopy. Results We found that the internalization and its regulation by TLR9 ligation was significantly different between allergens in terms of time course and strength of uptake. Api and OVA uptake in pDC of healthy subjects was faster and reached higher levels than Der p 1 uptake. CpG ODN 2006 suppressed OVA uptake and to a lesser extent Der p 1, while Api internalization was not affected. All allergens colocalized with LAMP1 and EEA1, with Api being internalized particularly fast and reaching highest intracellular levels in pDC. Of note, we could not determine any specific differences in antigen uptake in allergic compared with healthy subjects. Conclusions To our knowledge this is the first study that directly compares uptake regulation of clinically relevant inhalative, injective and food allergens in pDC. Our findings may help to explain differences in the onset and severity of allergic reactions as well as in the efficiency of AIT. Supplementary Information The online version contains supplementary material available at 10.1186/s12948-021-00163-8.
Collapse
Affiliation(s)
- Noelle Zurmühl
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Anna Schmitt
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Ulrike Formentini
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Johannes Weiss
- Department of Dermatology and Allergic Diseases, University Medical Center Ulm, Ulm, Germany
| | - Heike Appel
- Department of Otolaryngology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics, University Medical Center Ulm, Eythstr. 24, 89075, Ulm, Germany.
| |
Collapse
|
21
|
Oleszycka E, Rodgers AM, Xu L, Moynagh PN. Dendritic Cell-Specific Role for Pellino2 as a Mediator of TLR9 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2021; 207:2325-2336. [PMID: 34588221 PMCID: PMC8525870 DOI: 10.4049/jimmunol.2100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Ubiquitination regulates immune signaling, and multiple E3 ubiquitin ligases have been studied in the context of their role in immunity. Despite this progress, the physiological roles of the Pellino E3 ubiquitin ligases, especially Pellino2, in immune regulation remain largely unknown. Accordingly, this study aimed to elucidate the role of Pellino2 in murine dendritic cells (DCs). In this study, we reveal a critical role of Pellino2 in regulation of the proinflammatory response following TLR9 stimulation. Pellino2-deficient murine DCs show impaired secretion of IL-6 and IL-12. Loss of Pellino2 does not affect TLR9-induced activation of NF-κB or MAPKs, pathways that drive expression of IL-6 and IL-12. Furthermore, DCs from Pellino2-deficient mice show impaired production of type I IFN following endosomal TLR9 activation, and it partly mediates a feed-forward loop of IFN-β that promotes IL-12 production in DCs. We also observe that Pellino2 in murine DCs is downregulated following TLR9 stimulation, and its overexpression induces upregulation of both IFN-β and IL-12, demonstrating the sufficiency of Pellino2 in driving these responses. This suggests that Pellino2 is critical for executing TLR9 signaling, with its expression being tightly regulated to prevent excessive inflammatory response. Overall, this study highlights a (to our knowledge) novel role for Pellino2 in regulating DC functions and further supports important roles for Pellino proteins in mediating and controlling immunity. Pellino2 mediates TLR9-induced cytokine production in dendritic cells. Pellino2 does not play a role in TLR9 signaling in macrophages. Pellino2 is a limiting factor for TLR9 signaling in dendritic cells.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Aoife M Rodgers
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Linan Xu
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Paul N Moynagh
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and .,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Wilson KR, Jenika D, Blum AB, Macri C, Xu B, Liu H, Schriek P, Schienstock D, Francis L, Makota FV, Ishido S, Mueller SN, Lahoud MH, Caminschi I, Edgington-Mitchell LE, Villadangos JA, Mintern JD. MHC Class II Ubiquitination Regulates Dendritic Cell Function and Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:2255-2264. [PMID: 34599081 DOI: 10.4049/jimmunol.2001426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC II) Ag presentation by dendritic cells (DCs) is critical for CD4+ T cell immunity. Cell surface levels of MHC II loaded with peptide is controlled by ubiquitination. In this study, we have examined how MHC II ubiquitination impacts immunity using MHC IIKRKI/KI mice expressing mutant MHC II molecules that are unable to be ubiquitinated. Numbers of conventional DC (cDC) 1, cDC2 and plasmacytoid DCs were significantly reduced in MHC IIKRKI/KI spleen, with the remaining MHC IIKRKI/KI DCs expressing an altered surface phenotype. Whereas Ag uptake, endosomal pH, and cathepsin protease activity were unaltered, MHC IIKRKI/KI cDC1 produced increased inflammatory cytokines and possessed defects in Ag proteolysis. Immunization of MHC IIKRKI/KI mice identified impairments in MHC II and MHC class I presentation of soluble, cell-associated and/or DC-targeted OVA via mAb specific for DC surface receptor Clec9A (anti-Clec9A-OVA mAb). Reduced T cell responses and impaired CTL killing was observed in MHC IIKRKI/KI mice following immunization with cell-associated and anti-Clec9A-OVA. Immunization of MHC IIKRKI/KI mice failed to elicit follicular Th cell responses and generated barely detectable Ab to anti-Clec9A mAb-targeted Ag. In summary, MHC II ubiquitination in DCs impacts the homeostasis, phenotype, cytokine production, and Ag proteolysis by DCs with consequences for Ag presentation and T cell and Ab-mediated immunity.
Collapse
Affiliation(s)
- Kayla R Wilson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Haiyin Liu
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Schriek
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Lauren Francis
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - F Victor Makota
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, NY; and.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia; .,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
23
|
Castellanos CA, Ren X, Gonzalez SL, Li HK, Schroeder AW, Liang HE, Laidlaw BJ, Hu D, Mak AC, Eng C, Rodríguez-Santana JR, LeNoir M, Yan Q, Celedón JC, Burchard EG, Zamvil SS, Ishido S, Locksley RM, Cyster JG, Huang X, Shin JS. Lymph node-resident dendritic cells drive T H2 cell development involving MARCH1. Sci Immunol 2021; 6:eabh0707. [PMID: 34652961 PMCID: PMC8736284 DOI: 10.1126/sciimmunol.abh0707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 T helper (TH2) cells are protective against parasitic worm infections but also aggravate allergic inflammation. Although the role of dendritic cells (DCs) in TH2 cell differentiation is well established, the underlying mechanisms are largely unknown. Here, we show that DC induction of TH2 cells depends on membrane-associated RING-CH-1 (MARCH1) ubiquitin ligase. The pro-TH2 effect of MARCH1 relied on lymph node (LN)–resident DCs, which triggered T cell receptor (TCR) signaling and induced GATA-3 expression from naïve CD4+ T cells independent of tissue-driven migratory DCs. Mice with mutations in the ubiquitin acceptor sites of MHCII and CD86, the two substrates of MARCH1, failed to develop TH2 cells. These findings suggest that TH2 cell development depends on ubiquitin-mediated clearance of antigen-presenting and costimulatory molecules by LN-resident DCs and consequent control of TCR signaling.
Collapse
Affiliation(s)
- Carlos A. Castellanos
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xin Ren
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven Lomeli Gonzalez
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hong Kun Li
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew W. Schroeder
- Department of Pulmonology, Genomics CoLabs, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J. Laidlaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Angel C.Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott S. Zamvil
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Richard M. Locksley
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaozhu Huang
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
24
|
Zhang W, An EK, Hwang J, Jin JO. Mice Plasmacytoid Dendritic Cells Were Activated by Lipopolysaccharides Through Toll-Like Receptor 4/Myeloid Differentiation Factor 2. Front Immunol 2021; 12:727161. [PMID: 34603298 PMCID: PMC8481683 DOI: 10.3389/fimmu.2021.727161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are known to respond to viral infections. However, the activation of pDCs by bacterial components such as lipopolysaccharides (LPS) has not been well studied. Here, we found that pDCs, conventional dendritic cells (cDCs), and B cells express high levels of toll-like receptor 4 (TLR4), a receptor for LPS. Moreover, LPS could effectively bind to not only cDCs but also pDCs and B cells. Intraperitoneal administration of LPS promoted activation of splenic pDCs and cDCs. LPS treatment led to upregulation of interferon regulatory factor 7 (IRF7) and induced production of interferon-alpha (IFN-α) in splenic pDCs. Furthermore, LPS-dependent upregulation of co-stimulatory molecules in pDCs did not require the assistance of other immune cells, such as cDCs. However, the production levels of IFN-α were decreased in cDC-depleted splenocytes, indicating that cDCs may contribute to the enhancement of IFN-α production in pDCs. Finally, we showed that activation of pDCs by LPS requires the TLR4 and myeloid differentiation factor 2 (MD2) signaling pathways. Thus, these results demonstrate that the gram-negative component LPS can directly stimulate pDCs via TLR4/MD2 stimulation in mice.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
25
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
26
|
Webb LM, Phythian-Adams AT, Costain AH, Brown SL, Lundie RJ, Forde-Thomas J, Cook PC, Jackson-Jones LH, Marley AK, Smits HH, Hoffmann KF, Tait Wojno ED, MacDonald AS. Plasmacytoid Dendritic Cells Facilitate Th Cell Cytokine Responses throughout Schistosoma mansoni Infection. Immunohorizons 2021; 5:721-732. [PMID: 34462311 PMCID: PMC8881908 DOI: 10.4049/immunohorizons.2100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are potent producers of type I IFN (IFN-I) during viral infection and respond to IFN-I in a positive feedback loop that promotes their function. IFN-I shapes dendritic cell responses during helminth infection, impacting their ability to support Th2 responses. However, the role of pDCs in type 2 inflammation is unclear. Previous studies have shown that pDCs are dispensable for hepatic or splenic Th2 responses during the early stages of murine infection with the trematode Schistosoma mansoni at the onset of parasite egg laying. However, during S. mansoni infection, an ongoing Th2 response against mature parasite eggs is required to protect the liver and intestine from acute damage and how pDCs participate in immune responses to eggs and adult worms in various tissues beyond acute infection remains unclear. We now show that pDCs are required for optimal Th2 cytokine production in response to S. mansoni eggs in the intestinal-draining mesenteric lymph nodes throughout infection and for egg-specific IFN-γ at later time points of infection. Further, pDC depletion at chronic stages of infection led to increased hepatic and splenic pathology as well as abrogated Th2 cell cytokine production and activation in the liver. In vitro, mesenteric lymph node pDCs supported Th2 cell responses from infection-experienced CD4+ T cells, a process dependent on pDC IFN-I responsiveness, yet independent of Ag. Together, these data highlight a previously unappreciated role for pDCs and IFN-I in maintaining and reinforcing type 2 immunity in the lymph nodes and inflamed tissue during helminth infection.
Collapse
Affiliation(s)
- Lauren M Webb
- Department of Immunology, University of Washington, Seattle, WA;
| | | | - Alice H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Lucy H Jackson-Jones
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom; and
| | - Angela K Marley
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
27
|
Trenker R, Wu X, Nguyen JV, Wilcox S, Rubin AF, Call ME, Call MJ. Human and viral membrane-associated E3 ubiquitin ligases MARCH1 and MIR2 recognize different features of CD86 to downregulate surface expression. J Biol Chem 2021; 297:100900. [PMID: 34157285 PMCID: PMC8319528 DOI: 10.1016/j.jbc.2021.100900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Immune-stimulatory ligands, such as major histocompatibility complex molecules and the T-cell costimulatory ligand CD86, are central to productive immunity. Endogenous mammalian membrane-associated RING-CHs (MARCH) act on these and other targets to regulate antigen presentation and activation of adaptive immunity, whereas virus-encoded homologs target the same molecules to evade immune responses. Substrate specificity is encoded in or near the membrane-embedded domains of MARCHs and the proteins they regulate, but the exact sequences that distinguish substrates from nonsubstrates are poorly understood. Here, we examined the requirements for recognition of the costimulatory ligand CD86 by two different MARCH-family proteins, human MARCH1 and Kaposi's sarcoma herpesvirus modulator of immune recognition 2 (MIR2), using deep mutational scanning. We identified a highly specific recognition surface in the hydrophobic core of the CD86 transmembrane (TM) domain (TMD) that is required for recognition by MARCH1 and prominently features a proline at position 254. In contrast, MIR2 requires no specific sequences in the CD86 TMD but relies primarily on an aspartic acid at position 244 in the CD86 extracellular juxtamembrane region. Surprisingly, MIR2 recognized CD86 with a TMD composed entirely of valine, whereas many different single amino acid substitutions in the context of the native TM sequence conferred MIR2 resistance. These results show that the human and viral proteins evolved completely different recognition modes for the same substrate. That some TM sequences are incompatible with MIR2 activity, even when no specific recognition motif is required, suggests a more complicated mechanism of immune modulation via CD86 than was previously appreciated.
Collapse
Affiliation(s)
- Raphael Trenker
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Xinyu Wu
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie V Nguyen
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stephen Wilcox
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Genomics Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alan F Rubin
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Melissa J Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
Liu J, Cheng Y, Zheng M, Yuan B, Wang Z, Li X, Yin J, Ye M, Song Y. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct Target Ther 2021; 6:28. [PMID: 33479196 PMCID: PMC7819986 DOI: 10.1038/s41392-020-00418-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system initiates robust immune responses to defend against invading pathogens or tumor cells and protect the body from damage, thus acting as a fortress of the body. However, excessive responses cause detrimental effects, such as inflammation and autoimmune diseases. To balance the immune responses and maintain immune homeostasis, there are immune checkpoints to terminate overwhelmed immune responses. Pathogens and tumor cells can also exploit immune checkpoint pathways to suppress immune responses, thus escaping immune surveillance. As a consequence, therapeutic antibodies that target immune checkpoints have made great breakthroughs, in particular for cancer treatment. While the overall efficacy of immune checkpoint blockade (ICB) is unsatisfactory since only a small group of patients benefited from ICB treatment. Hence, there is a strong need to search for other targets that improve the efficacy of ICB. Ubiquitination is a highly conserved process which participates in numerous biological activities, including innate and adaptive immunity. A growing body of evidence emphasizes the importance of ubiquitination and its reverse process, deubiquitination, on the regulation of immune responses, providing the rational of simultaneous targeting of immune checkpoints and ubiquitination/deubiquitination pathways to enhance the therapeutic efficacy. Our review will summarize the latest findings of ubiquitination/deubiquitination pathways for anti-tumor immunity, and discuss therapeutic significance of targeting ubiquitination/deubiquitination pathways in the future of immunotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Yicheng Cheng
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ming Zheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu, China
| | - Bingxiao Yuan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Xinying Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| |
Collapse
|
29
|
Psarras A, Antanaviciute A, Alase A, Carr I, Wittmann M, Emery P, Tsokos GC, Vital EM. TNF-α Regulates Human Plasmacytoid Dendritic Cells by Suppressing IFN-α Production and Enhancing T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2021; 206:785-796. [PMID: 33441439 PMCID: PMC7851743 DOI: 10.4049/jimmunol.1901358] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 11/25/2020] [Indexed: 12/29/2022]
Abstract
TNF downregulates IFN-α and TNF production by human pDCs. TNF downregulates IRF7 and NF-κB pathways and upregulates Ag processing in pDCs. TNF enhances Ag presentation and T cell activation properties in pDCs.
Human plasmacytoid dendritic cells (pDCs) play a vital role in modulating immune responses. They can produce massive amounts of type I IFNs in response to nucleic acids via TLRs, but they are also known to possess weak Ag-presenting properties inducing CD4+ T cell activation. Previous studies showed a cross-regulation between TNF-α and IFN-α, but many questions remain about the effect of TNF-α in regulating human pDCs. In this study, we showed that TNF-α significantly inhibited the secretion of IFN-α and TNF-α of TLR-stimulated pDCs. Instead, exogenous TNF-α promoted pDC maturation by upregulating costimulatory molecules and chemokine receptors such as CD80, CD86, HLA-DR, and CCR7. Additionally, RNA sequencing analysis showed that TNF-α inhibited IFN-α and TNF-α production by downregulating IRF7 and NF-κB pathways, while it promoted Ag processing and presentation pathways as well as T cell activation and differentiation. Indeed, TNF-α–treated pDCs induced in vitro higher CD4+ T cell proliferation and activation, enhancing the production of Th1 and Th17 cytokines. In conclusion, TNF-α favors pDC maturation by switching their main role as IFN-α–producing cells to a more conventional dendritic cell phenotype. The functional status of pDCs might therefore be strongly influenced by their overall inflammatory environment, and TNF-α might regulate IFN-α–mediated aspects of a range of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom.,Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - Agne Antanaviciute
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Adewonuola Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom
| | - Ian Carr
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom.,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS7 4SA, United Kingdom; .,National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, United Kingdom
| |
Collapse
|
30
|
Physiological substrates and ontogeny-specific expression of the ubiquitin ligases MARCH1 and MARCH8. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:218-228. [PMID: 35492398 PMCID: PMC9040089 DOI: 10.1016/j.crimmu.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
MARCH1 and MARCH8 are ubiquitin ligases that control the expression and trafficking of critical immunoreceptors. Understanding of their function is hampered by three major knowledge gaps: (i) it is unclear which cell types utilize these ligases; (ii) their level of redundancy is unknown; and (iii) most of their putative substrates have been described in cell lines, often overexpressing MARCH1 or MARCH8, and it is unclear which substrates are regulated by either ligase in vivo. Here we address these questions by systematically analyzing the immune cell repertoire of MARCH1- or MARCH8-deficient mice, and applying unbiased proteomic profiling of the plasma membrane of primary cells to identify MARCH1 and MARCH8 substrates. Only CD86 and MHC II were unequivocally identified as immunoreceptors regulated by MARCH1 and MARCH8, but each ligase carried out its function in different tissues. MARCH1 regulated MHC II and CD86 in professional and “atypical” antigen presenting cells of hematopoietic origin, including neutrophils, eosinophils and monocytes. MARCH8 only operated in non-hematopoietic cells, such as thymic and alveolar epithelial cells. Our results establish the tissue-specific functions of MARCH1 and MARCH8 in regulation of immune receptor expression and reveal that the range of cells constitutively endowed with antigen-presentation capacity is wider than generally appreciated.
Collapse
|
31
|
Zaidi Y, Aguilar EG, Troncoso M, Ilatovskaya DV, DeLeon-Pennell KY. Immune regulation of cardiac fibrosis post myocardial infarction. Cell Signal 2021; 77:109837. [PMID: 33207261 PMCID: PMC7720290 DOI: 10.1016/j.cellsig.2020.109837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
Pathological changes resulting from myocardial infarction (MI) include extracellular matrix alterations of the left ventricle, which can lead to cardiac stiffness and impair systolic and diastolic function. The signals released from necrotic tissue initiate the immune cascade, triggering an extensive inflammatory response followed by reparative fibrosis of the infarct area. Immune cells such as neutrophils, monocytes, macrophages, mast cells, T-cells, and dendritic cells play distinct roles in orchestrating this complex pathological condition, and regulate the balance between pro-fibrotic and anti-fibrotic responses. This review discusses how molecular signals between fibroblasts and immune cells mutually regulate fibrosis post-MI, and outlines the emerging pharmacological targets and therapies for modulating inflammation and cardiac fibrosis associated with MI.
Collapse
Affiliation(s)
- Yusra Zaidi
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Eslie G Aguilar
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Miguel Troncoso
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristine Y DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA; Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401, USA.
| |
Collapse
|
32
|
Mair F, Liechti T. Comprehensive Phenotyping of Human Dendritic Cells and Monocytes. Cytometry A 2020; 99:231-242. [PMID: 33200508 DOI: 10.1002/cyto.a.24269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Professional antigen-presenting cells (APCs), which include dendritic cells (DCs) and monocytes are essential for inducing and steering adaptive T-cell responses. Recent technological developments in single-cell analysis have significantly advanced our understanding of APC subset heterogeneity. To accurately resolve this functional diversity and to account for tissue-specific adaptation, novel phenotyping markers have been described more recently. While some of these largely overlap with traditionally used markers, more fine-grained phenotyping might be essential during inflammatory settings, where the traditional distinction between monocytes and dendritic cells has become blurred. Within this phenotype report, we provide a concise overview of traditional and recently described markers for the phenotyping of DCs and monocytes in the human system.
Collapse
Affiliation(s)
- Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Trained immunity and tolerance in innate lymphoid cells, monocytes, and dendritic cells during allergen-specific immunotherapy. J Allergy Clin Immunol 2020; 147:1865-1877. [PMID: 33039478 DOI: 10.1016/j.jaci.2020.08.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the efficacy of allergen-specific immunotherapy (AIT), the role of trained immunity and tolerance in this process has not been elucidated. OBJECTIVE Here, we have performed a comprehensive longitudinal analysis of the systemic innate immune cell repertoire during the course of AIT. METHODS Patients with allergy received standard preseasonal subcutaneous AIT with allergoids to birch and/or grass. Healthy controls were monitored without any intervention. Flow cytometry of innate lymphoid cell (ILC), natural killer cell, monocyte cell, and dendritic cell (DC) subsets was performed at baseline, 3 months (birch season), 6 months (grass seasons), and 12 months after the therapy in patients or at similar seasonal time points in controls. Additional analyses were performed in the third-year birch and grass season. RESULTS We observed a durable decrease in group 2 ILCs and an increase of group 1 ILCs after AIT, with dynamic changes in their composition. We found that an expansion of CD127+CD25++ clusters caused observed shifts in the heterogeneity of group 1 ILCs. In addition, we observed development of CD127+CD25++c-Kit+ group 3 ILC clusters. Moreover, we found an increase in the number of intermediate monocytes in parallel with a reduction in nonclassical monocytes during the first year after AIT. Classical and intermediate monocytes presented significant heterogeneity in patients with allergy, but AIT reduced the HLA-DR++ clusters. Finally, an increase in plasmacytoid DCs and CD141+ myeloid DCs was observed in individuals with allergy, whereas the number of CD1c+ myeloid DCs was reduced during the first year of AIT. CONCLUSION AIT induces changes in the composition and heterogeneity of circulating innate immune cells and brings them to the level observed in healthy individuals. Monitoring of ILCs, monocytes, and DCs during AIT might serve as a novel biomarker strategy.
Collapse
|
34
|
Zahran AM, Hetta HF, Mansour S, Saad ES, Rayan A. Reviving up dendritic cells can run cancer immune wheel in non-small cell lung cancer: a prospective two-arm study. Cancer Immunol Immunother 2020; 70:733-742. [PMID: 32918587 DOI: 10.1007/s00262-020-02704-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Lung cancer is the number one cause of cancer-related deaths. Dendritic cells (DCs) are heterogeneous components of innate immunity that play a crucial role in the anti-tumor T cell immunity and may represent a promising approach for tumor immunotherapy. In this study, we aimed to evaluate the frequency of the two major subsets of DCs; plasmacytoid dendritic cells (pDCs) and monocytic dendritic cells (mDCs) in non-small cell lung cancer (NCSLC) and correlating them with different clinicopathologic features and survival outcomes. PATIENTS AND METHODS This study was a case-controlled one, included 50 patients with denovo pathologically confirmed NSCLC and 20 healthy controls of comparable age and gender. After diagnosis and staging of patients, the frequency of DCs was evaluated using flow cytometry. RESULTS We unveiled significantly reduced levels of pDCs (P = 0.024), and mDCs (P = 0.013) in NSCLC patients compared to controls. Furthermore, there was a significant accumulation of pDCs in non-metastatic patients compared to metastatic ones (P < 0.0001), while there was no significant (P = 0.6) differences in mDCs, and mDCs/pDCs ratio (P = 0.9). There was a Significant negative correlation (r = - 0.3, P = 0.04) between OS and mDCs. On the other hand, there was a significantly higher OS with pDCs ≥ 0.82 compared to patients with pDCs < 0.82, log rank Ch2 = 12.128, P < 0.0001. CONCLUSION Despite the controversy about the prognostic role of pDCs not only in NSCLC but also in other solid tumors, our study sheds light on the possible prognostic impact of pDCs and mDCs on treatment outcomes of NSCLC patients.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0595, USA.
| | - Shimaa Mansour
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| | - Ereny S Saad
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
35
|
Liu H, Wilson KR, Schriek P, Macri C, Blum AB, Francis L, Heinlein M, Nataraja C, Harris J, Jones SA, Gray DHD, Villadangos JA, Mintern JD. Ubiquitination of MHC Class II Is Required for Development of Regulatory but Not Conventional CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1207-1216. [PMID: 32747505 DOI: 10.4049/jimmunol.1901328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC II) displays peptides at the cell surface, a process critical for CD4+ T cell development and priming. Ubiquitination is a mechanism that dictates surface MHC II with the attachment of a polyubiquitin chain to peptide-loaded MHC II, promoting its traffic away from the plasma membrane. In this study, we have examined how MHC II ubiquitination impacts the composition and function of both conventional CD4+ T cell and regulatory T cell (Treg) compartments. Responses were examined in two models of altered MHC II ubiquitination: MHCIIKRKI /KI mice that express a mutant MHC II unable to be ubiquitinated or mice that lack membrane-associated RING-CH 8 (MARCH8), the E3 ubiquitin ligase responsible for MHC II ubiquitination specifically in thymic epithelial cells. Conventional CD4+ T cell populations in thymus, blood, and spleen of MHCIIKRKI/KI and March8 -/- mice were largely unaltered. In MLRs, March8 -/-, but not MHCIIKRKI/KI, CD4+ T cells had reduced reactivity to both self- and allogeneic MHC II. Thymic Treg were significantly reduced in MHCIIKRKI/KI mice, but not March8 -/- mice, whereas splenic Treg were unaffected. Neither scenario provoked autoimmunity, with no evidence of immunohistopathology and normal levels of autoantibody. In summary, MHC II ubiquitination in specific APC types does not have a major impact on the conventional CD4+ T cell compartment but is important for Treg development.
Collapse
Affiliation(s)
- Haiyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Kayla R Wilson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Patrick Schriek
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Christophe Macri
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Lauren Francis
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Melanie Heinlein
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3013, Australia
| | - Champa Nataraja
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - James Harris
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - Sarah A Jones
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; and
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3013, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia;
| |
Collapse
|
36
|
van der Sluis RM, Egedal JH, Jakobsen MR. Plasmacytoid Dendritic Cells as Cell-Based Therapeutics: A Novel Immunotherapy to Treat Human Immunodeficiency Virus Infection? Front Cell Infect Microbiol 2020; 10:249. [PMID: 32528903 PMCID: PMC7264089 DOI: 10.3389/fcimb.2020.00249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in mediating innate and adaptive immune responses. Since their discovery in the late 1970's, DCs have been recognized as the most potent antigen-presenting cells (APCs). DCs have a superior capacity for acquiring, processing, and presenting antigens to T cells and they express costimulatory or coinhibitory molecules that determine immune activation or anergy. For these reasons, cell-based therapeutic approaches using DCs have been explored in cancer and infectious diseases but with limited success. In humans, DCs are divided into heterogeneous subsets with distinct characteristics. Two major subsets are CD11c+ myeloid (m)DCs and CD11c− plasmacytoid (p)DCs. pDCs are different from mDCs and play an essential role in the innate immune system via the production of type I interferons (IFN). However, pDCs are also able to take-up antigens and effectively cross present them. Given the rarity of pDCs in blood and technical difficulties in obtaining them from human blood samples, the understanding of human pDC biology and their potential in immunotherapeutic approaches (e.g. cell-based vaccines) is limited. However, due to the recent advancements in cell culturing systems that allow for the generation of functional pDCs from CD34+ hematopoietic stem and progenitor cells (HSPC), studying pDCs has become easier. In this mini-review, we hypothesize about the use of pDCs as a cell-based therapy to treat HIV by enhancing anti-HIV-immune responses of the adaptive immune system and enhancing the anti-viral responses of the innate immune system. Additionally, we discuss obstacles to overcome before this approach becomes clinically applicable.
Collapse
Affiliation(s)
- Renée M van der Sluis
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
37
|
Monti M, Consoli F, Vescovi R, Bugatti M, Vermi W. Human Plasmacytoid Dendritic Cells and Cutaneous Melanoma. Cells 2020; 9:E417. [PMID: 32054102 PMCID: PMC7072514 DOI: 10.3390/cells9020417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The prognosis of metastatic melanoma (MM) patients has remained poor for a long time. However, the recent introduction of effective target therapies (BRAF and MEK inhibitors for BRAFV600-mutated MM) and immunotherapies (anti-CTLA-4 and anti-PD-1) has significantly improved the survival of MM patients. Notably, all these responses are highly dependent on the fitness of the host immune system, including the innate compartment. Among immune cells involved in cancer immunity, properly activated plasmacytoid dendritic cells (pDCs) exert an important role, bridging the innate and adaptive immune responses and directly eliminating cancer cells. A distinctive feature of pDCs is the production of high amount of type I Interferon (I-IFN), through the Toll-like receptor (TLR) 7 and 9 signaling pathway activation. However, published data indicate that melanoma-associated escape mechanisms are in place to hijack pDC functions. We have recently reported that pDC recruitment is recurrent in the early phases of melanoma, but the entire pDC compartment collapses over melanoma progression. Here, we summarize recent advances on pDC biology and function within the context of melanoma immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Francesca Consoli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Medical Oncology, University of Brescia at ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.M.); (R.V.); (M.B.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
38
|
Abstract
Ubiquitination is a reversible process that controls the intracellular transport of many transmembrane molecules. Ubiquitination of MHC I, MHC II, and CD1a by different members of the MARCH family of E3 ubiquitin ligases is a key event in the regulation of the potent immunostimulatory properties of activated dendritic cells. We describe here methods to monitor and quantify the ubiquitination levels of these different antigen presentation molecules and its impact on their cell surface accumulation.
Collapse
|
39
|
DeVito NC, Plebanek MP, Theivanthiran B, Hanks BA. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Front Immunol 2019; 10:2876. [PMID: 31921140 PMCID: PMC6914818 DOI: 10.3389/fimmu.2019.02876] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
The vast majority of cancer-related deaths are due to metastasis, a process that requires evasion of the host immune system. In addition, a significant percentage of cancer patients do not benefit from our current immunotherapy arsenal due to either primary or secondary immunotherapy resistance. Importantly, select subsets of dendritic cells (DCs) have been shown to be indispensable for generating responses to checkpoint inhibitor immunotherapy. These observations are consistent with the critical role of DCs in antigen cross-presentation and the generation of effective anti-tumor immunity. Therefore, the evolution of efficient tumor-extrinsic mechanisms to modulate DCs is expected to be a potent strategy to escape immunosurveillance and various immunotherapy strategies. Despite this critical role, little is known regarding the methods by which cancers subvert DC function. Herein, we focus on those select mechanisms utilized by developing cancers to co-opt and tolerize local DC populations. We discuss the reported mechanisms utilized by cancers to induce DC tolerization in the tumor microenvironment, describing various parallels between the evolution of these mechanisms and the process of mesenchymal transformation involved in tumorigenesis and metastasis, and we highlight strategies to reverse these mechanisms in order to enhance the efficacy of the currently available checkpoint inhibitor immunotherapies.
Collapse
Affiliation(s)
- Nicholas C. DeVito
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Michael P. Plebanek
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Bala Theivanthiran
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Brent A. Hanks
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
40
|
Norling K, Bernasconi V, Agmo Hernández V, Parveen N, Edwards K, Lycke NY, Höök F, Bally M. Gel Phase 1,2-Distearoyl- sn-glycero-3-phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro. ACS Infect Dis 2019; 5:1867-1878. [PMID: 31498993 DOI: 10.1021/acsinfecdis.9b00189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipid-based nanoparticles have in recent years attracted increasing attention as pharmaceutical carriers. In particular, reports of them having inherent adjuvant properties combined with their ability to protect antigen from degradation make them suitable as vaccine vectors. However, the physicochemical profile of an ideal nanoparticle for vaccine delivery is still poorly defined. Here, we used an in vitro dendritic cell assay to assess the immunogenicity of a variety of liposome formulations as vaccine carriers and adjuvants. Using flow cytometry, we investigated liposome-assisted antigen presentation as well as the expression of relevant costimulatory molecules on the cell surface. Cytokine secretion was further evaluated with an enzyme-linked immunosorbent assay (ELISA). We show that liposomes can successfully enhance antigen presentation and maturation of dendritic cells, as compared to vaccine fusion protein (CTA1-3Eα-DD) administered alone. In particular, the lipid phase state of the membrane was found to greatly influence the vaccine antigen processing by dendritic cells. As compared to their fluid phase counterparts, gel phase liposomes were more efficient at improving antigen presentation. They were also superior at upregulating the costimulatory molecules CD80 and CD86 as well as increasing the release of the cytokines IL-6 and IL-1β. Taken together, we demonstrate that gel phase liposomes, while nonimmunogenic on their own, significantly enhance the antigen-presenting ability of dendritic cells and appear to be a promising way forward to improve vaccine immunogenicity.
Collapse
Affiliation(s)
- Karin Norling
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Víctor Agmo Hernández
- Department of Chemistry, BMC, Uppsala University, Box 599, 752 37 Uppsala, Sweden
- Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden
| | - Nagma Parveen
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Katarina Edwards
- Department of Chemistry, BMC, Uppsala University, Box 599, 752 37 Uppsala, Sweden
| | - Nils Y. Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Fredrik Höök
- Division of Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marta Bally
- Section of Virology, Department of Clinical Microbiology, Umeå University, 901 85 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85 Umeå, Sweden
| |
Collapse
|
41
|
Leylek R, Idoyaga J. The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:177-211. [PMID: 31759431 DOI: 10.1016/bs.ircmb.2019.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their identification as the natural interferon-producing cell two decades ago, plasmacytoid dendritic cells (pDCs) have been attributed diverse functions in the immune response. Their most well characterized function is innate, i.e., their rapid and robust production of type-I interferon (IFN-I) in response to viruses. However, pDCs have also been implicated in antigen presentation, activation of adaptive immune responses and immunoregulation. The mechanisms by which pDCs enact these diverse functions are poorly understood. One central debate is whether these functions are carried out by different pDC subpopulations or by plasticity in the pDC compartment. This chapter summarizes the latest reports regarding pDC function, heterogeneity, cell conversion and environmentally influenced plasticity, as well as the role of pDCs in infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
42
|
Gulubova M. Myeloid and Plasmacytoid Dendritic Cells and Cancer - New Insights. Open Access Maced J Med Sci 2019; 7:3324-3340. [PMID: 31949539 PMCID: PMC6953922 DOI: 10.3889/oamjms.2019.735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) use effective mechanisms to combat antigens and to bring about adaptive immune responses through their ability to stimulate näive T cells. At present, four major cell types are categorised as DCs: Classical or conventional (cDCs), Plasmacytoid (pDCs), Langerhans cells (LCs), and monocyte-derived DCs (Mo-DCs). It was suggested that pDCs, CD1c+ DCs and CD141+ DCs in humans are equivalent to mouse pDCs, CD11b+ DCs and CD8α+ DCs, respectively. Human CD141+ DCs compared to mouse CD8α+ DCs have remarkable functional and transcriptomic similarities. Characteristic markers, transcription factors, toll-like receptors, T helpers (Th) polarisation, cytokines, etc. of DCs are discussed in this review. Major histocompatibility complex (MHC) I and II antigen presentation, cross-presentation and Th polarisation are defined, and the dual role of DCs in the tumour is discussed. Human DCs are the main immune cells that orchestrate the immune response in the tumour microenvironment.
Collapse
Affiliation(s)
- Maya Gulubova
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
43
|
Heightened TLR7/9-Induced IL-10 and CXCL13 Production with Dysregulated NF-ҝB Activation in CD11c hiCD11b + Dendritic Cells in NZB/W F1 Mice. Int J Mol Sci 2019; 20:ijms20184639. [PMID: 31546763 PMCID: PMC6770860 DOI: 10.3390/ijms20184639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, multifactorial autoimmune disease that predominantly affects young females. Dysregulation of different immune cell populations leads to self-tolerance breakdown and subsequent multiple organ damage as the disease develops. Plasmacytoid dendritic cells (pDCs) are potent producers of type I interferon (IFN), while myeloid dendritic cells (mDCs) are more specialized in antigen presentations. We have previously reported that bone-marrow (BM)-derived pDCs from the murine lupus model New Zealand black/white F1 (BWF1) possess abnormalities. Therefore, this study continues to investigate what aberrant properties peripheral pDCs and mDCs possess in BWF1 and how they mediate SLE progression, by comparing their properties in pre-symptomatic and symptomatic mice. Results showed that CD11chiCD11b+ myeloid DCs expanded during the disease state with down-regulation of co-stimulatory molecules and major histocompatibility complex class II molecules (MHC II), but their capacity to stimulate T cells was not hampered. During the disease state, this subset of mDCs displayed heightened toll-like receptors 7 and 9 (TLR 7/9) responses with increased interleukin 10 (IL-10) and C-X-C motif chemokine ligand 13 (CXCL13) expressions. Moreover, the expressions of myeloid differentiation primary response 88 (Myd88) and nuclear factor kappa B subunit 1 (Nfkb1) were higher in CD11chiCD11b+ DCs at the disease stage, leading to higher nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation activity. In summary, we reported aberrant phenotypic properties with enhanced TLR7/9 responses of CD11chiCD11b+ DCs in SLE mediated by aberrant NF-κB signaling pathway. Our findings add additional and novel information to our current understanding of the role of DCs in lupus immunopathogenesis. Lastly, molecular candidates in the NF-κB pathway should be exploited for developing therapeutic targets for SLE.
Collapse
|
44
|
Liu H, Mintern JD, Villadangos JA. MARCH ligases in immunity. Curr Opin Immunol 2019; 58:38-43. [PMID: 31063934 DOI: 10.1016/j.coi.2019.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023]
Abstract
Membrane associated RING-CH (MARCH) ubiquitin ligases control the stability, trafficking and function of important immunoreceptors, including MHC molecules and costimulatory molecule CD86. Regulation of the critical antigen presenting molecule MHC II by MARCH1 and the control of MARCH1 expression by inflammatory stimuli is a key step in the function of antigen presenting cells. MHC II ubiquitination by MARCH8 and CD83 plays a critical role in T cell thymic selection. Recent studies reveal new immune functions of MARCH ligases in innate immunity, regulation of FcγR expression and Treg development. In addition, we review the importance of MARCH in immunomodulation at the host-pathogen interface. Both bacterial and viral pathogens manipulate MARCH function, while MARCH ligases act as an important host anti-viral defence mechanism. Here, we review the role of membrane-bound MARCH ligases in immune function and provide an update on new substrates and concepts. Understanding the increasingly complex roles of MARCH E3 ligases will be vital to develop therapeutic strategies for their regulation.
Collapse
Affiliation(s)
- Haiyin Liu
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jose A Villadangos
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia; The Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia.
| |
Collapse
|
45
|
Immunology of Plasmacytoid Dendritic Cells in Solid Tumors: A Brief Review. Cancers (Basel) 2019; 11:cancers11040470. [PMID: 30987228 PMCID: PMC6520684 DOI: 10.3390/cancers11040470] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
The immune response, both innate and adaptive, is a key player in cancer development and progression. Plasmacytoid dendritic cells (pDCs) are a subset of dendritic cells that play one of the central roles in the immune system. They are known mostly as the major IFN type I-producing cells upon stimulation of Toll-like receptors 7 and 9. However, based on current knowledge, the functionality of pDCs is very complex, as they have the ability to affect many other cell types. In the context of the tumor tissue, pDCs were mostly described to show substantial functional defects and therefore contribute to the establishement of immunosuppressive tumor microenvironment. Immunotherapeutic approaches have proven to be one of the most promising treatment strategies in the last decade. In view of this fact, it is crucial to map the complexity of the tumor microenvironment in detail, including less numerous cell types. This review focuses on pDCs in relation to solid tumors. We provide a summary of current data on the role of pDCs in different tumor types and suggest their possible clinical applications.
Collapse
|
46
|
Use of Dendritic Cell Receptors as Targets for Enhancing Anti-Cancer Immune Responses. Cancers (Basel) 2019; 11:cancers11030418. [PMID: 30909630 PMCID: PMC6469018 DOI: 10.3390/cancers11030418] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
A successful anti-cancer vaccine construct depends on its ability to induce humoral and cellular immunity against a specific antigen. Targeting receptors of dendritic cells to promote the loading of cancer antigen through an antibody-mediated antigen uptake mechanism is a promising strategy in cancer immunotherapy. Researchers have been targeting different dendritic cell receptors such as Fc receptors (FcR), various C-type lectin-like receptors such as dendritic and thymic epithelial cell-205 (DEC-205), dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), and Dectin-1 to enhance the uptake process and subsequent presentation of antigen to T cells through major histocompatibility complex (MHC) molecules. In this review, we compare different subtypes of dendritic cells, current knowledge on some important receptors of dendritic cells, and recent articles on targeting those receptors for anti-cancer immune responses in mouse models.
Collapse
|
47
|
Won HY, Lee JY, Ryu D, Kim HT, Chang SY. The Role of Plasmacytoid Dendritic Cells in Gut Health. Immune Netw 2019; 19:e6. [PMID: 30838161 PMCID: PMC6399095 DOI: 10.4110/in.2019.19.e6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/09/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.
Collapse
Affiliation(s)
- Hye-Yeon Won
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Ju-Young Lee
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Dahye Ryu
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Hyung-Taek Kim
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Sun-Young Chang
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| |
Collapse
|
48
|
Hathaway-Schrader JD, Steinkamp HM, Chavez MB, Poulides NA, Kirkpatrick JE, Chew ME, Huang E, Alekseyenko AV, Aguirre JI, Novince CM. Antibiotic Perturbation of Gut Microbiota Dysregulates Osteoimmune Cross Talk in Postpubertal Skeletal Development. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:370-390. [PMID: 30660331 DOI: 10.1016/j.ajpath.2018.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
Commensal gut microbiota-host immune responses are experimentally delineated via gnotobiotic animal models or alternatively by antibiotic perturbation of gut microbiota. Osteoimmunology investigations in germ-free mice, revealing that gut microbiota immunomodulatory actions critically regulate physiologic skeletal development, highlight that antibiotic perturbation of gut microbiota may dysregulate normal osteoimmunological processes. We investigated the impact of antibiotic disruption of gut microbiota on osteoimmune response effects in postpubertal skeletal development. Sex-matched C57BL/6T mice were administered broad-spectrum antibiotics or vehicle-control from the age of 6 to 12 weeks. Antibiotic alterations in gut bacterial composition and skeletal morphology were sex dependent. Antibiotics did not influence osteoblastogenesis or endochondral bone formation, but notably enhanced osteoclastogenesis. Unchanged Tnf or Ccl3 expression in marrow and elevated tumor necrosis factor-α and chemokine (C-C motif) ligand 3 in serum indicated that the pro-osteoclastic effects of the antibiotics are driven by increased systemic inflammation. Antibiotic-induced broad changes in adaptive and innate immune cells in mesenteric lymph nodes and spleen demonstrated that the perturbation of gut microbiota drives a state of dysbiotic hyperimmune response at secondary lymphoid tissues draining local gut and systemic circulation. Antibiotics up-regulated the myeloid-derived suppressor cells, immature myeloid progenitor cells known for immunosuppressive properties in pathophysiologic inflammatory conditions. Myeloid-derived suppressor cell-mediated immunosuppression can be antigen specific. Therefore, antibiotic-induced broad suppression of major histocompatibility complex class II antigen presentation genes in bone marrow discerns that antibiotic perturbation of gut microbiota dysregulates critical osteoimmune cross talk.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Heidi M Steinkamp
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Michael B Chavez
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Nicole A Poulides
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Joy E Kirkpatrick
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Michael E Chew
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Emily Huang
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Department of Public Health Sciences, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Jose I Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Chad M Novince
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina.
| |
Collapse
|
49
|
Zhang Y, Tada T, Ozono S, Yao W, Tanaka M, Yamaoka S, Kishigami S, Fujita H, Tokunaga K. Membrane-associated RING-CH (MARCH) 1 and 2 are MARCH family members that inhibit HIV-1 infection. J Biol Chem 2019; 294:3397-3405. [PMID: 30630952 DOI: 10.1074/jbc.ac118.005907] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/08/2019] [Indexed: 11/06/2022] Open
Abstract
Membrane-associated RING-CH 8 (MARCH8) is one of 11 members of the MARCH family of RING finger E3 ubiquitin ligases and down-regulates several membrane proteins (e.g. major histocompatibility complex II [MHC-II], CD86, and transferrin receptor). We recently reported that MARCH8 also targets HIV-1 envelope glycoproteins and acts as an antiviral factor. However, it remains unclear whether other family members might have antiviral functions similar to those of MARCH8. Here we show that MARCH1 and MARCH2 are MARCH family members that reduce virion incorporation of envelope glycoproteins. Infectivity assays revealed that MARCH1 and MARCH2 dose-dependently suppress viral infection. Treatment with type I interferon enhanced endogenous expression levels of MARCH1 and MARCH2 in monocyte-derived macrophages. Expression of these proteins in virus-producing cells decreased the efficiency of viral entry and down-regulated HIV-1 envelope glycoproteins from the cell surface, resulting in reduced incorporation of envelope glycoproteins into virions, as observed in MARCH8 expression. With the demonstration that MARCH1 and MARCH2 are antiviral MARCH family members as presented here, these two proteins join a growing list of host factors that inhibit HIV-1 infection.
Collapse
Affiliation(s)
- Yanzhao Zhang
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takuya Tada
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Seiya Ozono
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,the Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Weitong Yao
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,the Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo 113-8519, and
| | - Michiko Tanaka
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shoji Yamaoka
- the Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo 113-8519, and
| | - Satoshi Kishigami
- the Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hideaki Fujita
- the Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Kenzo Tokunaga
- From the Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan,
| |
Collapse
|
50
|
Tan C, Byrne EFX, Ah-Cann C, Call MJ, Call ME. A serine in the first transmembrane domain of the human E3 ubiquitin ligase MARCH9 is critical for down-regulation of its protein substrates. J Biol Chem 2018; 294:2470-2485. [PMID: 30554144 DOI: 10.1074/jbc.ra118.004836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/05/2018] [Indexed: 01/29/2023] Open
Abstract
The membrane-associated RING-CH (MARCH) family of membrane-bound E3 ubiquitin ligases regulates the levels of cell-surface membrane proteins, many of which are involved in immune responses. Although their role in ubiquitin-dependent endocytosis and degradation of cell-surface proteins is extensively documented, the features of MARCH proteins and their substrates that drive the molecular recognition events leading to ubiquitin transfer remain poorly defined. In this study, we sought to determine the features of human MARCH9 that are required for regulating the surface levels of its substrate proteins. Consistent with previous studies of other MARCH proteins, we found that susceptibility to MARCH9 activity is encoded in the transmembrane (TM) domains of its substrates. Accordingly, substitutions at specific residues and motifs within MARCH9's TM domains resulted in varying degrees of functional impairment. Most notably, a single serine-to-alanine substitution in the first of its two TM domains rendered MARCH9 completely unable to alter the surface levels of two different substrates: the major histocompatibility class I molecule HLA-A2 and the T-cell co-receptor CD4. Solution NMR analysis of a MARCH9 fragment encompassing the two TM domains and extracellular connecting loop revealed that the residues contributing most to MARCH9 activity are located in the α-helical portions of TM1 and TM2 that are closest to the extracellular face of the lipid bilayer. This observation defines a key region required for substrate regulation. In summary, our biochemical and structural findings demonstrate that specific sequences in the α-helical MARCH9 TM domains make crucial contributions to its ability to down-regulate its protein substrates.
Collapse
Affiliation(s)
- Cyrus Tan
- From the Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Victoria, Australia.,the Department of Medical Biology, University of Melbourne, 3052 Parkville, Victoria, Australia
| | - Eamon F X Byrne
- the Department of Bioengineering, Stanford University, Stanford, California 94305, and
| | - Casey Ah-Cann
- the Department of Medical Biology, University of Melbourne, 3052 Parkville, Victoria, Australia.,the ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Victoria, Australia
| | - Melissa J Call
- From the Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Victoria, Australia, .,the Department of Medical Biology, University of Melbourne, 3052 Parkville, Victoria, Australia
| | - Matthew E Call
- From the Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 3052 Parkville, Victoria, Australia, .,the Department of Medical Biology, University of Melbourne, 3052 Parkville, Victoria, Australia
| |
Collapse
|