1
|
Breault É, Brouillette RL, Hébert TE, Sarret P, Besserer-Offroy É. Opioid Analgesics: Rise and Fall of Ligand Biased Signaling and Future Perspectives in the Quest for the Holy Grail. CNS Drugs 2025; 39:565-581. [PMID: 40169527 DOI: 10.1007/s40263-025-01172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 04/03/2025]
Abstract
Opioid analgesics have been used for more than 5000 years and remain the main pain medications prescribed today. Although morphine is considered the gold standard of pain relief, this selective µ-opioid receptor (MOP) agonist provides only moderate relief for many chronic pain conditions and produces a number of unwanted effects that can affect the patient's quality of life, prevent adherence to treatment or lead to addiction. In addition to the lack of progress in developing better analgesics, there have been no significant breakthroughs to date in combating the above-mentioned side effects. Fortunately, a better understanding of opioid pharmacology has given renewed hope for the development of better and safer pain medications. In this review, we describe how clinically approved opioids were initially characterized as biased ligands and what impact this approach might have on clinical practice. We also look at the preclinical and clinical development of biased MOP agonists, focusing on the history of oliceridine, the first specifically designed biased analgesic. In addition, we explore the discrepancies between ligands with low intrinsic efficacy and those with biased properties. Finally, we examine the rationale behind the development of biased ligands during the opioid crisis.
Collapse
Affiliation(s)
- Émile Breault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12è avenue nord, Sherbrooke, QC, J1H5N4, Canada
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Rebecca L Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12è avenue nord, Sherbrooke, QC, J1H5N4, Canada
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12è avenue nord, Sherbrooke, QC, J1H5N4, Canada.
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
- RECITAL International Partnership Lab, Université de Caen-Normandie & Université de Sherbrooke, Caen, France.
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12è avenue nord, Sherbrooke, QC, J1H5N4, Canada.
- RECITAL International Partnership Lab, Université de Caen-Normandie & Université de Sherbrooke, Caen, France.
- Université de Caen Normandie, INSERM U1086 - Anticipe, 3 avenue général Harris, BP 45026, 14076, Caen Cedex 5, France.
- Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France.
| |
Collapse
|
2
|
Solís KH, Romero-Ávila MT, Alcántara-Hernández R, García-Sáinz JA. The many facets of biased signaling: Mechanisms and possible therapeutic implications. Pharmacol Ther 2025; 272:108877. [PMID: 40383400 DOI: 10.1016/j.pharmthera.2025.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Receptor-mediated cell activation frequently results in a plethora of effects, and interestingly, not all agonists that act on a given receptor activate all of those actions to the same extent. Biased agonism refers to this fact, i.e., the possibility to activate only a part of the receptor's signaling capabilities. It is worth mentioning that Biased Signaling is an integral concept that includes the system (organisms, isolated tissues, or cells), the individual receptor studied, and the ligands. It should be remembered that the system's genetic expression profile defines the type, abundance, and cellular localization of proteins that participate in signaling. This short review will be focused on G protein receptors, but biased signaling occurs in many other receptor types. Biased signaling can be related to the G proteins and β-arrestins available. Similarly, enzymes that catalyze receptor posttranslational modifications, such as phosphorylation, acylation, or ubiquitination, can play a role. G protein-coupled receptor signaling occurs at the plasma membrane, but it is well-established that endosomal signaling is a functional reality. Therefore, paying attention to cellular elements that participate in receptor endosomal traffic and destination (recycling to the plasma membrane/ degradation) is pertinent. There is still much to be known about these bias mechanisms, which are essential for basic knowledge of receptor drug action and for treating many pathological entities.
Collapse
Affiliation(s)
- K Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria. Ap. Postal 70-600, Ciudad de México 04510. Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria. Ap. Postal 70-600, Ciudad de México 04510. Mexico.
| | - Rocío Alcántara-Hernández
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria. Ap. Postal 70-600, Ciudad de México 04510. Mexico.
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria. Ap. Postal 70-600, Ciudad de México 04510. Mexico.
| |
Collapse
|
3
|
Jiang M, Ding H, Huang Y, Lau CW, Guo Y, Luo J, Shih YT, Xia Y, Yao X, Chiu JJ, Wang L, Chien S, Huang Y. Endothelial Serotonin Receptor 1B Acts as a Mechanosensor to Drive Atherosclerosis. Circ Res 2025; 136:887-901. [PMID: 40071330 DOI: 10.1161/circresaha.124.325453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Atherosclerosis is characterized by the accumulation of fatty and fibrotic plaques, which preferentially develop at curvatures and branches along the arterial trees that are exposed to disturbed flow. However, the mechanisms by which endothelial cells sense disturbed flow are still unclear. METHODS The partial carotid ligation mouse model was used to investigate disturbed flow-induced atherogenesis. In vitro experiments were performed using the ibidi system to generate oscillatory shear stress and laminar shear stress. ApoE-/- mice with endothelium-specific knockout or overexpression of 5-HT1B (serotonin receptor 1B) were used to investigate the role of endothelial 5-HT1B in atherosclerosis. RNA sequencing analysis, immunofluorescence analysis, and molecular biological techniques were used to explore the role of 5-HT1B in mechanotransduction and endothelial activation. RESULTS The data showed that human endothelial cells express a high level of 5-HT1B, which is a serotonin receptor subtype. Endothelial 5-HT1B is upregulated in atherosclerotic areas of both humans and rodents and is increased by disturbed flow both in vivo and in vitro. Endothelium-specific overexpression of 5-HT1B exacerbates, whereas knockout or knockdown of 5-HT1B in endothelium inhibits disturbed flow-induced endothelial inflammation and atherogenesis in both male and female ApoE-/- mice. We reveal a previously unknown role of 5-HT1B as a mechanosensor in endothelial cells in response to mechanical stimuli. Upon activation by oscillatory shear stress, 5-HT1B recruits β-arrestin, orchestrates RhoA (ras homolog family member A), and then activates mechanosensitive YAP (yes-associated protein), thereby enhancing endothelial inflammation and monocyte infiltration. Pharmacological blockade of 5-HT1B suppresses endothelial activation and atherogenesis via inhibition of YAP. CONCLUSIONS Taken together, these results uncover that endothelial 5-HT1B acts as a mechanosensor for disturbed flow and contributes to atherogenesis. Inhibition of 5-HT1B could be a promising therapeutic strategy for atherosclerosis.
Collapse
MESH Headings
- Animals
- Humans
- Mechanotransduction, Cellular
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT1B/genetics
- Mice
- Male
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
- Endothelial Cells/metabolism
- Stress, Mechanical
- Cells, Cultured
- Female
- Human Umbilical Vein Endothelial Cells/metabolism
- Apolipoproteins E/genetics
- Mice, Knockout
- Disease Models, Animal
Collapse
Affiliation(s)
- Minchun Jiang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China (M.J.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Huanyu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Yuhong Huang
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Ying Guo
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (Y.G.)
| | - Jianfang Luo
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China (J.L.)
| | - Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (Y.-T.S., J.-J.C.)
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
| | - Jeng-Jiann Chiu
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (J.-J.C.)
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (Y.-T.S., J.-J.C.)
| | - Li Wang
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
| | - Shu Chien
- Departments of Bioengineering and Medicine, and Institute of Engineering in Medicine, University of California, San Diego, CA (S.C.)
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (M.J., H.D., C.W.L., Y.X., X.Y., Yu Huang)
- Department of Biomedical Sciences (Yuhong Huang, L.W., Yu Huang), City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre (Yu Huang), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
5
|
Fallon BS, Rondem KE, Mumby EJ, English JG. Biased Signaling in G Protein-Coupled Receptors: Understanding the Biological Relevance and Tools for Probing Functionally Selective Ligands. Biochemistry 2025; 64:1425-1436. [PMID: 40100969 DOI: 10.1021/acs.biochem.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biased signaling has transformed pharmacology by revealing that receptors, particularly G protein-coupled receptors (GPCRs), can activate specific intracellular pathways selectively rather than uniformly. This discovery enables the development of targeted therapeutics that minimize side effects by precisely modulating receptor activity. Functionally selective ligands, which preferentially activate distinct signaling branches, have become essential tools for exploring receptor mechanisms and uncovering the complexities of GPCR signaling. These ligands help clarify receptor function in various physiological and pathological contexts, offering profound implications for therapeutic innovation. GPCRs, which mediate a wide range of cellular responses through coupling to G proteins and arrestins, are key pharmacological targets, with nearly a third of FDA-approved drugs acting on them. Recent advancements in biosensor development, multiplex assay platforms, and deep mutational scanning methods are improving our ability to define GPCR signaling, allowing for a better understanding of biased signaling pathways.
Collapse
Affiliation(s)
- Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Elizabeth J Mumby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| |
Collapse
|
6
|
Georgakis MK, Malik R, Bounkari OE, Hasbani NR, Li J, Huffman JE, Shakt G, Tack RWP, Kimball TN, Asare Y, Morrison AC, Tsao NL, Judy R, Mitchell BD, Xu H, Montasser ME, Do R, Kenny EE, Loos RJF, Terry JG, Carr JJ, Bis JC, Psaty BM, Longstreth WT, Young KA, Lutz SM, Cho MH, Broome J, Khan AT, Wang FF, Heard-Costa N, Seshadri S, Vasan RS, Palmer ND, Freedman BI, Bowden DW, Yanek LR, Kral BG, Becker LC, Peyser PA, Bielak LF, Ammous F, Carson AP, Hall ME, Raffield LM, Rich SS, Post WS, Tracy RP, Taylor KD, Guo X, Mahaney MC, Curran JE, Blangero J, Clarke SL, Haessler JW, Hu Y, Assimes TL, Kooperberg C, Bernhagen J, Anderson CD, Damrauer SM, Zand R, Rotter JI, de Vries PS, Dichgans M. Rare damaging CCR2 variants are associated with lower lifetime cardiovascular risk. Genome Med 2025; 17:27. [PMID: 40119478 PMCID: PMC11929344 DOI: 10.1186/s13073-025-01456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Previous work has shown a role of CCL2, a key chemokine governing monocyte trafficking, in atherosclerosis. However, it remains unknown whether targeting CCR2, the cognate receptor of CCL2, provides protection against human atherosclerotic cardiovascular disease. METHODS Computationally predicted damaging or loss-of-function (REVEL > 0.5) variants within CCR2 were detected in whole-exome-sequencing data from 454,775 UK Biobank participants and tested for association with cardiovascular endpoints in gene-burden tests. Given the key role of CCR2 in monocyte mobilization, variants associated with lower monocyte count were prioritized for experimental validation. The response to CCL2 of human cells transfected with these variants was tested in migration and cAMP assays. Validated damaging variants were tested for association with cardiovascular endpoints, atherosclerosis burden, and vascular risk factors. Significant associations were replicated in six independent datasets (n = 1,062,595). RESULTS Carriers of 45 predicted damaging or loss-of-function CCR2 variants (n = 787 individuals) were at lower risk of myocardial infarction and coronary artery disease. One of these variants (M249K, n = 585, 0.15% of European ancestry individuals) was associated with lower monocyte count and with both decreased downstream signaling and chemoattraction in response to CCL2. While M249K showed no association with conventional vascular risk factors, it was consistently associated with a lower risk of myocardial infarction (odds ratio [OR]: 0.66, 95% confidence interval [CI]: 0.54-0.81, p = 6.1 × 10-5) and coronary artery disease (OR: 0.74, 95%CI: 0.63-0.87, p = 2.9 × 10-4) in the UK Biobank and in six replication cohorts. In a phenome-wide association study, there was no evidence of a higher risk of infections among M249K carriers. CONCLUSIONS Carriers of an experimentally confirmed damaging CCR2 variant are at a lower lifetime risk of myocardial infarction and coronary artery disease without carrying a higher risk of infections. Our findings provide genetic support for the translational potential of CCR2-targeting as an atheroprotective approach.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Omar El Bounkari
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
| | | | - Gabrielle Shakt
- Department of Surgery, Perelman School of Medicineat Theaq , University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Reinier W P Tack
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tamara N Kimball
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yaw Asare
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Noah L Tsao
- Department of Surgery, Perelman School of Medicineat Theaq , University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Renae Judy
- Department of Surgery, Perelman School of Medicineat Theaq , University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - May E Montasser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Jeffrey Carr
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - W T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon M Lutz
- Department of Population Medicine, PRecisiOn Medicine Translational Research (PROMoTeR) Center, Harvard Pilgrim Health Careand, Harvard Medical School , Boston, MA, USA
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Alyna T Khan
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nancy Heard-Costa
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Boston University and National Heart, Blood Institute'S Framingham Heart Study, Lung, and Framingham, MA, USA
| | - Sudha Seshadri
- Bigg'S Institute for Alzheimer'S Disease and Neurodegenerative Disorders, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ramachandran S Vasan
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Boston University and National Heart, Blood Institute'S Framingham Heart Study, Lung, and Framingham, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian G Kral
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Wendy S Post
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Russel P Tracy
- Departments of Pathology & Laboratory Medicine, and Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael C Mahaney
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Shoa L Clarke
- Department of Medicine (Division of Cardiovascular Medicine), Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jeffrey W Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Themistocles L Assimes
- Department of Medicine (Division of Cardiovascular Medicine), Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHK, Munich), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christopher D Anderson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicineat Theaq , University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicineat the , University of Pennsylvania, Philadelphia, PA, USA
| | - Ramin Zand
- Department of Neurology, Pennsylvania State University, Hershey, PA, USA
- Department of Neurology, Neuroscience Institute, Geisinger Health System, Danville, PA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU), Feodor-Lynen-Str. 17, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany.
- German Centre for Cardiovascular Research (DZHK, Munich), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
7
|
Fan L, Wang S. Biased GPCR Signaling: Possible Mechanisms and Therapeutic Applications. Biochemistry 2025; 64:1180-1192. [PMID: 40016120 DOI: 10.1021/acs.biochem.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Biased signaling refers to the phenomenon where a ligand selectively activates specific downstream pathways of G protein-coupled receptors (GPCRs), such as the G protein-mediated pathway or the β-arrestin-mediated pathway. This mechanism can be influenced by receptor bias, ligand bias, system bias and spatial bias, all of which are shaped by the receptor's conformational distinctions and kinetics. Since GPCRs are the largest class of drug targets, signaling bias garnered significant attention for its potential to enhance therapeutic efficacy while minimizing side effects. Despite intensive investigation, a major challenge lies in translating in vitro ligand efficacy into in vivo biological responses due to the dynamic and multifaceted nature of the in vivo environment. This review delves into the current understanding of GPCR-biased signaling, examining the role of structural bias at the molecular level, the impact of kinetic context on system and observational bias, and the challenges of applying these insights in drug development. It further explores future directions for advancing biased signaling applications, offering valuable perspectives on how to bridge the gap between in vitro studies and in vivo therapeutic design, ultimately accelerating the development of viable, biased therapeutics.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Provasi D, Filizola M. Fine-Tuned Deep Transfer Learning Models for Large Screenings of Safer Drugs Targeting Class A GPCRs. Biochemistry 2025; 64:1328-1337. [PMID: 40056143 DOI: 10.1021/acs.biochem.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
G protein-coupled receptors (GPCRs) remain a focal point of research due to their critical roles in cell signaling and their prominence as drug targets. However, directly linking drug efficacy to the receptor-mediated activation of specific intracellular transducers and the resulting physiological outcomes remains challenging. It is unclear whether the enhanced therapeutic window of certain drugs─defined as the dose range that provides effective therapy with minimal side effects─stems from their low intrinsic efficacy across all signaling pathways or ligand bias, wherein specific transducer subtypes are preferentially activated in a given cellular system compared to a reference ligand. Accurately predicting safer compounds, through either low intrinsic efficacy or ligand bias, would greatly advance drug development. While AI models hold promise for such predictions, the development of deep learning models capable of reliably forecasting GPCR ligands with defined bioactivities remains challenging, largely due to the limited availability of high-quality data. To address this, we pretrained a model on receptor sequences and ligand data sets across all class A GPCRs and then refined it to predict low-efficacy compounds or biased agonists for individual class A GPCRs. This was achieved using transfer learning and a neural network incorporating natural language processing of target sequences and receptor mutation effects on signaling. These two fine-tuned models─one for low-efficacy agonists and one for biased agonists─are available on demand for each class A GPCR and enable virtual screening of large chemical libraries, thereby facilitating the discovery of compounds with potentially improved safety profiles.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
9
|
Zhang MY, Ao JY, Liu N, Chen T, Lu SY. Exploring the constitutive activation mechanism of the class A orphan GPR20. Acta Pharmacol Sin 2025; 46:500-511. [PMID: 39256608 PMCID: PMC11747167 DOI: 10.1038/s41401-024-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.
Collapse
Affiliation(s)
- Ming-Yang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Institute of Hepatobiliary and Pancreatic Surgery, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China.
| | - Shao-Yong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Wei Y, Wang Z, Xue K, Niu X, Ma L, Han S, Wen B, Zhang Y, Chen H, Cheng J. Key regions aberrantly connected within cerebello-thalamo-cortical circuit and their genetic mechanism in schizophrenia: an fMRI meta-analysis and transcriptome study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:8. [PMID: 39837842 PMCID: PMC11751454 DOI: 10.1038/s41537-025-00558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Recent studies have showed aberrant connectivity of cerebello-thalamo-cortical circuit (CTCC) in schizophrenia (SCZ), which might be a heritable trait. However, these individual studies vary greatly in their methods and findings, and important areas within CTCC and related genetic mechanism are unclear. We searched for consistent regions of circuit dysfunction using a functional magnetic resonance imaging (fMRI) meta-analysis, followed by meta-regression and functional annotation analysis. Gene annotation analysis was performed to identify genes over-expressed in these regions by using the Allen Human Brain Atlas, followed by a set of gene functional feature analyses. 19 studies (1333 patients and 1174 healthy controls) were included in this meta-analysis. SCZ was characterized by hyperconnectivity of the auditory network, visual system, and sensorimotor areas, and hypoconnectivity of the frontal gyrus, cerebellum, thalamus, and caudate nucleus, which were significantly linked to age, sex, duration of illness, and the severity of symptoms and functionally enriched in domains involving self, sensory, action, and social. 2922 genes were significantly over-expressed in these regions, which were enriched for important molecular functions, biological processes, and cellular components of the neurons/cells in the brain as well as SCZ and other mental diseases. These genes were specially expressed in the brain tissue, in the neurons of the cerebellum, subcortex and cortex and during nearly all developmental stages, and constructed a protein-protein interaction network supported by 85 hub genes with functional significance. These findings suggest key regions aberrantly connected within CTCC in SCZ, which may indicate the neural substrate of "cognitive dysmetria" and be a consequence of complex interactions from a wide range of genes with diverse functional features.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ziyu Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Longyao Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huafu Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Borah MP, Trakroo D, Soni N, Kumari P, Baidya M. Exploring Bias in GPCR Signaling and its Implication in Drug Development: A One-Sided Affair. Biochemistry 2025; 64:1-14. [PMID: 39613476 DOI: 10.1021/acs.biochem.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in regulating numerous physiological processes through their interactions with two key effectors: G proteins and β-arrestins (βarrs). This makes them crucial targets for therapeutic drug development. Interestingly, the evolving concept of biased signaling where ligands selectively activate either the G proteins or the βarrs has not only refined our understanding of segregation of physiological responses downstream of GPCRs but has also revolutionized drug discovery, offering the potential for treatments with enhanced efficacy and minimal side effects. This Review explores the mechanisms behind biased agonism, exploring it through various lenses, including ligand, receptor, cellular systems, location, and tissue-specific biases. It also offers structural insights into both orthosteric and allosteric ligand-binding pockets, structural rearrangements associated with the loops, and how ligand-engineering can contribute to biased signaling. Moreover, we also discuss the unique conformational signature in an intrinsically biased GPCR, which currently remains relatively less explored and adds a new dimension in biased signaling. Lastly, we address the translational challenges and practical considerations in characterizing bias, emphasizing its therapeutic potential and the latest advancements in drug development. By designing ligands that target specific signaling pathways, biased signaling presents a transformative approach to creating safer and more effective therapies. This Review focuses on our current understanding of GPCR-biased signaling, discussing potential mechanisms that lead to bias, the effect of bias on GPCR structures at a molecular level, recent advancements, and its profound potential to drive innovation in drug discovery.
Collapse
Affiliation(s)
- Madhurjya Protim Borah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181221, India
| | - Deepika Trakroo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181221, India
| | - Neeraj Soni
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181221, India
| | - Punita Kumari
- Indian Institute of Science Education and Research Bhopal (IISERB), Department of Biological Sciences, Bhopal, Madhya Pradesh 462066, India
| | - Mithu Baidya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, Jammu and Kashmir 181221, India
| |
Collapse
|
12
|
Kumari P, Dvorácskó S, Enos MD, Ramesh K, Lim D, Hassan SA, Kunos G, Cinar R, Iyer MR, Rosenbaum DM. Structural mechanism of CB 1R binding to peripheral and biased inverse agonists. Nat Commun 2024; 15:10694. [PMID: 39695122 PMCID: PMC11655885 DOI: 10.1038/s41467-024-54206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024] Open
Abstract
The cannabinoid receptor 1 (CB1R) regulates synaptic transmission in the central nervous system, but also has important roles in the peripheral organs controlling cellular metabolism. While earlier generations of brain penetrant CB1R antagonists advanced to the clinic for their effective treatment of obesity, such molecules were ultimately shown to exhibit negative effects on central reward pathways that thwarted their further therapeutic development. The peripherally restricted CB1R inverse agonists MRI-1867 and MRI-1891 represent a new generation of compounds that retain the metabolic benefits of CB1R inhibitors while sparing the negative psychiatric effects. To understand the mechanism of binding and inhibition of CB1R by peripherally restricted antagonists, we developed a nanobody/fusion protein strategy for high-resolution cryo-EM structure determination of the GPCR inactive state, and used this method to determine structures of CB1R bound to either MRI-1867 or MRI-1891. These structures reveal how these compounds retain high affinity and specificity for CB1R's hydrophobic orthosteric site despite incorporating polar functionalities that lead to peripheral restriction. Further, the structure of the MRI-1891 complex along with accompanying molecular dynamics simulations shows how differential engagement with transmembrane helices and the proximal N-terminus can propagate through the receptor to contribute to biased inhibition of β-arrestin signaling.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Szabolcs Dvorácskó
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Laboratory of Biomolecular Structure and Pharmacology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Michael D Enos
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karthik Ramesh
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darrix Lim
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Provasi D, Filizola M. Fine-Tuned Deep Transfer Learning Models for Large Screenings of Safer Drugs Targeting Class A GPCRs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627102. [PMID: 39713468 PMCID: PMC11661127 DOI: 10.1101/2024.12.07.627102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
G protein-coupled receptors (GPCRs) remain a focal point of research due to their critical roles in cell signaling and their prominence as drug targets. However, directly linking drug efficacy to receptor-mediated activation of specific intracellular transducers and the resulting physiological outcomes remains challenging. It is unclear whether the enhanced therapeutic window of certain drugs - defined as the dose range that provides effective therapy with minimal side effects - stems from their low intrinsic efficacy across all signaling pathways or ligand bias, wherein specific transducer subtypes are preferentially activated in a given cellular system compared to a reference ligand. Accurately predicting safer compounds, whether through low intrinsic efficacy or ligand bias, would greatly advance drug development. While AI models hold promise for such predictions, the development of deep learning models capable of reliably forecasting GPCR ligands with defined bioactivities remains challenging, largely due to the limited availability of high-quality data. To address this, we pre-trained a model on receptor sequences and ligand datasets across all class A GPCRs, and then refined it to predict low-efficacy compounds or biased agonists for individual class A GPCRs. This was achieved using transfer learning and a neural network incorporating natural language processing of target sequences and receptor mutation effects on signaling. These two fine-tuned models-one for low-efficacy agonists and one for biased agonists-are available on demand for each class A GPCR and enable virtual screening of large chemical libraries, thereby facilitating the discovery of compounds with potentially improved safety profiles.
Collapse
|
14
|
Dai HC, Ji RL, Tao YX. SHU9119 and MBP10 are biased ligands at the human melanocortin-4 receptor. Biochem Pharmacol 2024; 228:116325. [PMID: 38815629 DOI: 10.1016/j.bcp.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The melanocortin-4 receptor (MC4R), a G protein-coupled receptor, is critically involved in regulating energy homeostasis as well as modulation of reproduction and sexual function. Two peptide antagonists (SHU9119 and MBP10) were derived from the endogenous agonist α-melanocyte stimulating hormone. But their pharmacology at human MC4R is not fully understood. Herein, we performed detailed pharmacological studies of SHU9119 and MBP10 on wild-type (WT) and six naturally occurring constitutively active MC4Rs. Both ligands had no or negligible agonist activity in Gαs-cAMP signaling on WT MC4R, but stimulated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation on WT and mutant MC4Rs. Mechanistic studies revealed that SHU9119 and MBP10 stimulated ERK1/2 signaling of MC4R by different mechanisms, with SHU9119-stimulated ERK1/2 signaling mediated by phosphatidylinositol 3-kinase (PI3K) and MBP10-initiated ERK1/2 activation through PI3K and β-arrestin. In summary, our studies demonstrated that SHU9119 and MBP10 were biased ligands for MC4R, preferentially activating ERK1/2 signaling through different mechanisms. SHU9119 acted as a biased ligand and MBP10 behaved as a biased allosteric modulator.
Collapse
Affiliation(s)
- Han-Chuan Dai
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
15
|
Gedam M, Zheng H. Complement C3aR signaling: Immune and metabolic modulation and its impact on Alzheimer's disease. Eur J Immunol 2024; 54:e2350815. [PMID: 38778507 PMCID: PMC11305912 DOI: 10.1002/eji.202350815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. Despite its widespread prevalence, our comprehension of the intricate mechanisms governing the pathogenesis of the disease remains incomplete, posing a challenge for the development of efficient therapies. Pathologically characterized by the presence of amyloid β plaques and neurofibrillary tau tangles, AD is also accompanied by the hyperactivation of glial cells and the immune system. The complement cascade, the evolutionarily conserved innate immune pathway, has emerged as a significant contributor to AD. This review focuses on one of the complement components, the C3a receptor (C3aR), covering its structure, ligand-receptor interaction, intracellular signaling and its functional consequences. Drawing insights from cellular and AD mouse model studies, we present the multifaceted role of complement C3aR signaling in AD and attempt to convey to the readers that C3aR acts as a crucial immune and metabolic modulator to influence AD pathogenesis. Building on this framework, the objective of this review is to inform future research endeavors and facilitate the development of therapeutic strategies for this challenging condition.
Collapse
Affiliation(s)
- Manasee Gedam
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Zheng
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Hu S, Wang D, Liu W, Wang Y, Chen J, Cai X. Apelin receptor dimer: Classification, future prospects, and pathophysiological perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167257. [PMID: 38795836 DOI: 10.1016/j.bbadis.2024.167257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Yixiang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China.
| |
Collapse
|
17
|
Wei W, Smrcka AV. Internalized β2-Adrenergic Receptors Oppose PLC-Dependent Hypertrophic Signaling. Circ Res 2024; 135:e24-e38. [PMID: 38813686 PMCID: PMC11223973 DOI: 10.1161/circresaha.123.323201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to β-adrenergic receptor (β-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. β1-AR (β1-adrenergic receptor) and β2-ARs (β2-adrenergic receptor) are the 2 major subtypes of β-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of β1-ARs drives detrimental cardiac remodeling while β2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through β2-ARs remain unclear. METHODS β2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of β2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS Here, we show that β2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for β2-AR-mediated phospholipase C inhibition requires internalization of β2-AR, activation of Gi and Gβγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-β1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS This reveals a mechanism for β2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of β2-AR signaling on the development of heart failure.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
18
|
Healy LD, Fernández JA, Aiolfi R, Mosnier LO, Griffin JH. An orthosteric/allosteric bivalent peptide agonist comprising covalently linked protease-activated receptor-derived peptides mimics in vitro and in vivo activities of activated protein C. J Thromb Haemost 2024; 22:2039-2051. [PMID: 38670314 PMCID: PMC11610403 DOI: 10.1016/j.jtha.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Activated protein C (APC) has anticoagulant and cytoprotective cell-signaling activities, which often require protease-activated receptor (PAR) 1 and PAR3 and PAR cleavages at noncanonical sites (R46-N47 and R41-G42, respectively). Some PAR1-derived (P1) peptides and PAR3-derived (P3) peptides, eg, P1-47-66 and P3-42-65, mimic APC's cell signaling. In anti-inflammatory assays, these 2 peptides at low concentrations synergistically attenuate cellular inflammation. OBJECTIVES To determine whether a P1 peptide covalently linked to a P3 peptide mimics APC's anti-inflammatory and endothelial barrier stabilization activities. METHODS Anti-inflammatory assays employed stimulated THP-1 cells and caspase-1 measurements. Cultured human EA.hy926 or murine aortic endothelial cells (ECs) exposed to thrombin were monitored for transendothelial electrical resistance. Bivalent covalently linked P1:P3 peptides were studied for APC-like activities. RESULTS In anti-inflammatory assays, P1-47-55 was as active as P1-47-66 and some P3 peptides (eg, P3-44-54 and P3-51-65) were as active as P3-42-65. The bivalent P1:P3 peptide comprising P1-47-55-(Gly[10 residues])-P3-51-65 (designated "G10 peptide") was more potently anti-inflammatory than the P1 or P3 peptide alone. In transendothelial electrical resistance studies of thrombin-challenged ECs, P1-47-55 and the G10 peptide mimicked APC's protective actions. In dose-response studies, the G10 peptide was more potent than the P1-47-55 peptide. In murine EC studies, the murine PAR-sequence-derived G10 peptide mimicked murine APC's activity. Anti-PAR1 and anti-PAR3 antibodies, but not anti-endothelial protein C receptor antibodies, abated G10's cytoprotection, showing that G10's actions involve PAR1:PAR3. G10 significantly increased survival in murine endotoxemia. CONCLUSION The PAR-sequence-derived G10 peptide is a bivalent agonist that mimics APC's cytoprotective, anti-inflammatory, and endothelial barrier-stabilizing actions and APC's protection against endotoxemic mortality.
Collapse
Affiliation(s)
- Laura D Healy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - José A Fernández
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Roberto Aiolfi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laurent O Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
19
|
Cabrero-de Las Heras S, Hernández-Yagüe X, González A, Losa F, Soler G, Bugés C, Baraibar I, Esteve A, Pardo-Cea MÁ, Ree AH, Martínez-Bosch N, Nieva M, Musulén E, Meltzer S, Lobato T, Vendrell-Ayats C, Queralt C, Navarro P, Montagut C, Grau-Leal F, Camacho D, Legido R, Mulet-Margalef N, Martínez-Balibrea E. Changes In Serum CXCL13 Levels Are Associated With Outcomes of Colorectal Cancer Patients Undergoing First-Line Oxaliplatin-Based Treatment. Biomed Pharmacother 2024; 176:116857. [PMID: 38850664 DOI: 10.1016/j.biopha.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Metastatic colorectal cancer (mCRC) currently lacks reliable biomarkers for precision medicine, particularly for chemotherapy-based treatments. This study examines the behavior of 11 CXC chemokines in the blood of 104 mCRC patients undergoing first-line oxaliplatin-based treatment to pinpoint predictive and prognostic markers. Serum samples were collected before treatment, at response evaluation (EVAR), and at disease progression or last follow-up. Chemokines were assessed in all samples using a Luminex® custom panel. CXCL13 levels increased at EVAR in responders, while in non-responders it decreased. Increasing levels of CXCL13 at EVAR, independently correlated with improved progression-free survival (PFS) and overall survival (OS). Nanostring® analysis in primary tumor samples showed CXCL13 gene expression's positive correlation not only with gene profiles related to an immunogenic tumor microenvironment, increased B cells and T cells (mainly CD8+) but also with extended OS. In silico analysis using RNAseq data from liver metastases treated or not with neoadjuvant oxaliplatin-based combinations, and deconvolution analysis using the MCP-counter algorithm, confirmed CXCL13 gene expression's association with increased immune infiltration, improved OS, and Tertiary Lymphoid Structures (TLSs) gene signatures, especially in neoadjuvant-treated patients. CXCL13 analysis in serum from 36 oxaliplatin-treated patients from the METIMMOX study control arm, reported similar findings. In conclusion, the increase of CXCL13 levels in peripheral blood and its association with the formation of TLSs within the metastatic lesions, emerges as a potential biomarker indicative of the therapeutic efficacy in mCRC patients undergoing oxaliplatin-based treatment.
Collapse
Affiliation(s)
- Sara Cabrero-de Las Heras
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain; ProCURE program, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruit camí de les escoles s/n, Badalona 08916, Spain
| | - Xavier Hernández-Yagüe
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Avinguda de França, s/n, Girona 17007, Spain; Precision Oncology Group (OncoGIR-Pro), Girona BiomedicaI Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Carrer del Dr. Castany, s/n, Salt, Girona 17190, Spain
| | - Andrea González
- Medical Oncology Service, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruti, camí de les escoles s/n, Badalona 08916, Spain; Badalona-Applied Research Group in Oncology (B-ARGO), Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain
| | - Ferran Losa
- Medical Oncology Service, Hospital Sant Joan Despí - Moisès Broggi, C. d'Oriol Martorell, 12, Sant Joan Despí 08970, Spain; Medical Oncology Service, Catalan Institute of Oncology, Gran Vía de l'Hospitalet 199-203, L'Hospitalet de Llobregat 08908, Spain
| | - Gemma Soler
- Medical Oncology Service, Catalan Institute of Oncology, Gran Vía de l'Hospitalet 199-203, L'Hospitalet de Llobregat 08908, Spain
| | - Cristina Bugés
- Medical Oncology Service, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruti, camí de les escoles s/n, Badalona 08916, Spain; Badalona-Applied Research Group in Oncology (B-ARGO), Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain
| | - Iosune Baraibar
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer de Natzaret, 115-117, Barcelona 08035, Spain; Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Pg. de la Vall d'Hebron, 119, Barcelona 08035, Spain
| | - Anna Esteve
- Medical Oncology Service, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruti, camí de les escoles s/n, Badalona 08916, Spain; Badalona-Applied Research Group in Oncology (B-ARGO), Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain; Research Management Unit (UGR), Catalan Institute of Oncology, Gran Vía de l'Hospitalet 199-203, L'Hospitalet de Llobregat 08908, Spain
| | - Miguel Ángel Pardo-Cea
- ProCURE Program, Catalan Institute of Oncology, Gran Vía de l'Hospitalet 199-203, L'Hospitalet de Llobregat 08908, Spain; Oncobell Program, Bellvitge Institute for Biomedical Research (IDIBELL), Gran Vía de l'Hospitalet 199-203, L'Hospitalet del Llobregat 08908, Spain
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, Lørenskog 1478, Norway; University of Oslo, Problemveien 11, Oslo 0313, Norway
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Unidad Asociada IIBB-CSIC, C/ del Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Maria Nieva
- Medical Oncology Department, Hospital del Mar Research Institute, Pg. Marítim de la Barceloneta, 25, 29, Barcelona 08003, Spain
| | - Eva Musulén
- Hospital Universitari General de Catalunya-Grupo Quironsalud, Carrer de Pedro i Pons, 1, Sant Cugat del Vallès 08195, Spain; Institut de Recerca contra la Leucèmia Josep Carreras, Campus Can Ruti, Carretera de Can Ruti, camí de les escoles s/n, Badalona 08916, Spain
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, Lørenskog 1478, Norway
| | - Tania Lobato
- Medical Oncology Service, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruti, camí de les escoles s/n, Badalona 08916, Spain
| | - Carla Vendrell-Ayats
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain; ProCURE program, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruit camí de les escoles s/n, Badalona 08916, Spain
| | - Cristina Queralt
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain; ProCURE program, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruit camí de les escoles s/n, Badalona 08916, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Unidad Asociada IIBB-CSIC, C/ del Dr. Aiguader, 88, Barcelona 08003, Spain; Instituto de Investigaciones Biomédicas de Barcelona -Centro Superior de Investigaciones Científicas (IIBB-CSIC), C/ del Rosselló, 161, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), C/ del Rosselló, 149, Barcelona 08036, Spain
| | - Clara Montagut
- Medical Oncology Department, Hospital del Mar Research Institute, Pg. Marítim de la Barceloneta, 25, 29, Barcelona 08003, Spain; CIBERONC, Universitat Pompeu Fabra, Passeig Maritim 25-29, Barcelona 08003, Spain
| | - Ferran Grau-Leal
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain; ProCURE program, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruit camí de les escoles s/n, Badalona 08916, Spain
| | - David Camacho
- Unidad de Enfermería Clinica de Cirugia. Hospital Sant Joan Despí - Moisès Broggi, C. d'Oriol Martorell, 12, Sant Joan Despí 08970, Spain
| | - Raquel Legido
- Medical Oncology Service, Catalan Institute of Oncology, Gran Vía de l'Hospitalet 199-203, L'Hospitalet de Llobregat 08908, Spain
| | - Núria Mulet-Margalef
- Medical Oncology Service, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruti, camí de les escoles s/n, Badalona 08916, Spain; Badalona-Applied Research Group in Oncology (B-ARGO), Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain
| | - Eva Martínez-Balibrea
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruit, camí de les escoles s/n, Badalona 08916, Spain; ProCURE program, Catalan Institute of Oncology, Campus Can Ruti, Carretera de Can Ruit camí de les escoles s/n, Badalona 08916, Spain.
| |
Collapse
|
20
|
Murphy RE, Wang P, Ali S, Smith HR, Felsing DE, Chen H, Zhou J, Allen JA. Discovery of 3-((4-Benzylpyridin-2-yl)amino)benzamides as Potent GPR52 G Protein-Biased Agonists. J Med Chem 2024; 67:9709-9730. [PMID: 38788241 PMCID: PMC11441106 DOI: 10.1021/acs.jmedchem.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Orphan GPR52 is emerging as a promising neurotherapeutic target. Optimization of previously reported lead 4a employing an iterative drug design strategy led to the identification of a series of unique GPR52 agonists, such as 10a (PW0677), 15b (PW0729), and 24f (PW0866), with improved potency and efficacy. Intriguingly, compounds 10a and 24f showed greater bias for G protein/cAMP signaling and induced significantly less in vitro desensitization than parent compound 4a, indicating that reducing GPR52 β-arrestin activity with biased agonism results in sustained GPR52 activation. Further exploration of compounds 15b and 24f indicated improved potency and efficacy, and excellent target selectivity, but limited brain exposure warranting further optimization. These balanced and biased GPR52 agonists provide important pharmacological tools to study GPR52 activation, signaling bias, and therapeutic potential for neuropsychiatric and neurological diseases.
Collapse
Affiliation(s)
- Ryan E. Murphy
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Pingyuan Wang
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States; Present Address: Ocean University of China, Qingdao, Shangdong 266003, China
| | - Saghir Ali
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hudson R. Smith
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Daniel E. Felsing
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States; Present Address: Neurocrine Biosciences, San Diego, California 92130, United States
| | - Haiying Chen
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
21
|
Naser IH, Hamza AA, Alhili A, Faisal AN, Ali MS, Kadhim NA, Suliman M, Alshahrani MY, Alawadi A. Atypical chemokine receptor 4 (ACKR4/CCX-CKR): A comprehensive exploration across physiological and pathological landscapes in contemporary research. Cell Biochem Funct 2024; 42:e4009. [PMID: 38597217 DOI: 10.1002/cbf.4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Atypical chemokine receptor 4 (ACKR4), also known as CCX-CKR, is a member of the chemokine receptor family that lacks typical G protein signaling activity. Instead, ACKR4 functions as a scavenger receptor that can bind and internalize a wide range of chemokines, influencing their availability and activity in the body. ACKR4 is involved in various physiological processes, such as immune cell trafficking and the development of thymus, spleen, and lymph nodes. Moreover, ACKR4 has been implicated in several pathological conditions, including cancer, heart and lung diseases. In cancer, ACKR4 plays a complex role, acting as a tumor suppressor or promoter depending on the type of cancer and the stage of the disease. For instance, ACKR4 may inhibit the growth and metastasis of breast cancer, but it may also promote the progression of hepatocellular carcinoma and gastric cancer. In inflammatory situations, ACKR4 has been found to modulate the recruitment and activation of immune cells, contributing to the pathogenesis of diseases such as myocardial infraction and pulmonary sarcoidosis. The study of ACKR4 is still ongoing, and further research is needed to fully understand its role in different physiological and pathological contexts. Nonetheless, ACKR4 represents a promising target for the development of novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University College, Hillah, Babil, Iraq
| | - Asia Ali Hamza
- Department of Pharmaceutics, Faculty of pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
22
|
Kise R, Inoue A. GPCR signaling bias: an emerging framework for opioid drug development. J Biochem 2024; 175:367-376. [PMID: 38308136 DOI: 10.1093/jb/mvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Biased signaling, also known as functional selectivity, has emerged as an important concept in drug development targeting G-protein-coupled receptors (GPCRs). Drugs that provoke biased signaling are expected to offer an opportunity for enhanced therapeutic effectiveness with minimized side effects. Opioid analgesics, whilst exerting potent pain-relieving effects, have become a social problem owing to their serious side effects. For the development of safer pain medications, there has been extensive exploration of agonists with a distinct balance of G-protein and β-arrestin (βarr) signaling. Recently, several approaches based on protein-protein interactions have been developed to precisely evaluate individual signal pathways, paving the way for the comprehensive analysis of biased signals. In this review, we describe an overview of bias signaling in opioid receptors, especially the μ-opioid receptor (MOR), and how to evaluate signaling bias in the GPCR field. We also discuss future directions for rational drug development through the integration of diverse signal datasets.
Collapse
Affiliation(s)
- Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
23
|
Vanalken N, Boon K, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic Assessment of Human CCR7 Signalling Using NanoBRET Biosensors Points towards the Importance of the Cellular Context. BIOSENSORS 2024; 14:142. [PMID: 38534251 DOI: 10.3390/bios14030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited β-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.
Collapse
Affiliation(s)
- Nathan Vanalken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Katrijn Boon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
25
|
Jobe A, Vijayan R. Orphan G protein-coupled receptors: the ongoing search for a home. Front Pharmacol 2024; 15:1349097. [PMID: 38495099 PMCID: PMC10941346 DOI: 10.3389/fphar.2024.1349097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
26
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
27
|
Wang Y, Song X, Song Y, Fang K, Chang X. Investigating the cell membrane localization of PADI4 in breast cancer cells and inhibition of anti-PADI4 monoclonal antibody. J Cancer Res Clin Oncol 2023; 149:17253-17268. [PMID: 37804426 PMCID: PMC10657297 DOI: 10.1007/s00432-023-05433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Peptidyl arginine deiminase 4 (PADI4) is a post-translational modification enzymecan that converts arginine in protein into citrulline in the presence of calcium ions, which is called citrullination. PADI4 has been reported to be expressed in the cytoplasm and nucleus in a variety of malignant tumors. Based on the GeneCards database and our previous research, it is speculated that PADI4 may also be expressed on the cell membrane. This study aimed to confirm the membrane expression of PADI4 and the effect of anti-PADI4 antibodies on cell membrane PADI4. This may be another mechanism of action of anti-PADI4 monoclonal antibodies in the treatment of breast cancer. METHODS The subcellular localizations of PADI4 in MDA-MB-231 and MCF-7 breast cancer cells were determined by immunofluorescence, immunoelectron microscopy, and Western blot analysis. The tumor cells were treated with PADI4 antibody, and cell proliferation, migration, colony formation, apoptosis, glycolysis, and epithelial-mesenchymal transition (EMT) were measured as well as the expression of some essential tumor genes. RESULTS PADI4 was not only localized in the nucleus and cytoplasm of breast cancer cells but was also detected on the cell membrane. Following PADI4 antibody treatment, cell proliferation, migration, colony formation, EMT, and ATP production through glycolysis were decreased, and the mRNA expression of MYC proto-oncogene (MYC), FAT atypical cadherin 1 (FAT1), nuclear factor kappa B subunit 1 (NFκB), and tumor necrosis factor (TNF-α) in breast cancer cells was downregulated, while the mRNA expression of tumor protein p63 (TP63) was upregulated. CONCLUSIONS PADI4 is expressed on the cell membrane in breast cancer cells. Anti-PADI4 antibodies can affect the biological functions of cell membrane PADI4, including proliferation, migration, apoptosis, and glycolysis, thereby inhibiting tumor progression.
Collapse
Affiliation(s)
- Yan Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Xianqin Song
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Yu Song
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Burghi V, Paradis JS, Officer A, Adame-Garcia SR, Wu X, Matthees ESF, Barsi-Rhyne B, Ramms DJ, Clubb L, Acosta M, Tamayo P, Bouvier M, Inoue A, von Zastrow M, Hoffmann C, Gutkind JS. Gαs is dispensable for β-arrestin coupling but dictates GRK selectivity and is predominant for gene expression regulation by β2-adrenergic receptor. J Biol Chem 2023; 299:105293. [PMID: 37774973 PMCID: PMC10641165 DOI: 10.1016/j.jbc.2023.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
β-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether β-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., β-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate β-arrestins, thereby limiting the ability to distinguish G protein from β-arrestin-mediated signaling events. We used β2-adrenergic receptor (β2AR) and its β2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, β-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and β-arrestins in controlling gene expression. We found that Gαs is not required for β2AR and β-arrestin conformational changes, β-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in β-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of β2AR in wildtype and β-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing β-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of β2AR. Overall, our results support that Gs is essential for β2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas β-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.
Collapse
Affiliation(s)
- Valeria Burghi
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Justine S Paradis
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Adam Officer
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Sendi Rafael Adame-Garcia
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Edda S F Matthees
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Benjamin Barsi-Rhyne
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Dana J Ramms
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Lauren Clubb
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Monica Acosta
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mark von Zastrow
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
29
|
Guven B, Onay-Besikci A. Past and present of beta arrestins: A new perspective on insulin secretion and effect. Eur J Pharmacol 2023; 956:175952. [PMID: 37541367 DOI: 10.1016/j.ejphar.2023.175952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Beta arrestins had been known as intracellular adaptors that uncouple and inactivate the G protein-coupled receptors that they interact with. Their roles as signal initiators for some receptors have recently been recognized. SCOPE OF REVIEW In this review, we focused on their role in mediating metabolic modulation primarily in relation to insulin signaling. Commenced by the upstream receptor, they seem to act like intracellular hubs that divert the metabolic profile of the cell. The amount of metabolic substrates in circulation and their usage/deposition by tissues are controlled by the contribution of all systems in the organism. This control is enabled by the release of hormones such as insulin, glucagon and glucagon-like peptide-1. Intriguingly, some ligands -either agonists or antagonists-of different classes of receptors have preferential properties mediated by β arrestins. This is not surprizing considering that substrate supply and usage should parallel physiological function such as hormone release or muscle contraction. MAJOR CONCLUSIONS Available data indicate that β arrestins conduct the regulatory role in insulin secretion and action. They may be good candidates to target when the upstream signal demands the function that may compromise the cell. An example is carvedilol that is protective by preventing the stimulatory effects of excessive catecholamines, stimulates mitochondrial function and has preferential clinical outcomes in metabolic disorders.
Collapse
Affiliation(s)
- Berna Guven
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey.
| |
Collapse
|
30
|
Senapati S, Park PSH. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies. CHEM REC 2023; 23:e202300113. [PMID: 37265335 PMCID: PMC10908267 DOI: 10.1002/tcr.202300113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) present in the rod outer segment (ROS) of photoreceptor cells that initiates the phototransduction cascade required for scotopic vision. Due to the remarkable advancements in technological tools, the chemistry of rhodopsin has begun to unravel especially over the past few decades, but mostly at the ensemble scale. Atomic force microscopy (AFM) is a tool capable of providing critical information from a single-molecule point of view. In this regard, to bolster our understanding of rhodopsin at the nanoscale level, AFM-based imaging, force spectroscopy, and nano-indentation techniques were employed on ROS disc membranes containing rhodopsin, isolated from vertebrate species both in normal and diseased states. These AFM studies on samples from native retinal tissue have provided fundamental insights into the structure and function of rhodopsin under normal and dysfunctional states. We review here the findings from these AFM studies that provide important insights on the supramolecular organization of rhodopsin within the membrane and factors that contribute to this organization, the molecular interactions stabilizing the structure of the receptor and factors that can modify those interactions, and the mechanism underlying constitutive activity in the receptor that can cause disease.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA 560116, India
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Wu Z, Han Z, Tao L, Sun X, Su J, Hu J, Li C. Dynamic Insights into the Self-Activation Pathway and Allosteric Regulation of the Orphan G-Protein-Coupled Receptor GPR52. J Chem Inf Model 2023; 63:5847-5862. [PMID: 37651308 DOI: 10.1021/acs.jcim.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Within over 800 members of G-protein-coupled receptors, there are numerous orphan receptors whose endogenous ligands are largely unknown, providing many opportunities for novel drug discovery. However, the lack of an in-depth understanding of the intrinsic working mechanism for orphan receptors severely limits the related rational drug design. The G-protein-coupled receptor 52 (GPR52) is a unique orphan receptor that constitutively increases cellular 5'-cyclic adenosine monophosphate (cAMP) levels without binding any exogenous agonists and has been identified as a promising therapeutic target for central nervous system disorders. Although recent structural biology studies have provided snapshots of both active and inactive states of GPR52, the mechanism of the conformational transition between these states remains unclear. Here, an acceptable self-activation pathway for GPR52 was proposed through 6 μs Gaussian accelerated molecular dynamics (GaMD) simulations, in which the receptor spontaneously transitions from the active state to that matching the inactive crystal structure. According to the three intermediate states of the receptor obtained by constructing a reweighted potential of mean force, how the allosteric regulation occurs between the extracellular orthosteric binding pocket and the intracellular G-protein-binding site is revealed. Combined with the independent gradient model, several important microswitch residues and the allosteric communication pathway that directly links the two regions are both identified. Transfer entropy calculations not only reveal the complex allosteric signaling within GPR52 but also confirm the unique role of ECL2 in allosteric regulation, which is mutually validated with the results of GaMD simulations. Overall, this work elucidates the allosteric mechanism of GPR52 at the atomic level, providing the most detailed information to date on the self-activation of the orphan receptor.
Collapse
Affiliation(s)
- Zhixiang Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lianci Tao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xiaohan Sun
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jingjie Su
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
32
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
33
|
Ji RL, Liu T, Hou ZS, Wen HS, Tao YX. Divergent Pharmacology and Biased Signaling of the Four Melanocortin-4 Receptor Isoforms in Rainbow Trout ( Oncorhynchus mykiss). Biomolecules 2023; 13:1248. [PMID: 37627313 PMCID: PMC10452266 DOI: 10.3390/biom13081248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is essential for the modulation of energy balance and reproduction in both fish and mammals. Rainbow trout (Oncorhynchus mykiss) has been extensively studied in various fields and provides a unique opportunity to investigate divergent physiological roles of paralogues. Herein we identified four trout mc4r (mc4ra1, mc4ra2, mc4rb1, and mc4rb2) genes. Four trout Mc4rs (omMc4rs) were homologous to those of teleost and mammalian MC4Rs. Multiple sequence alignments, a phylogenetic tree, chromosomal synteny analyses, and pharmacological studies showed that trout mc4r genes may have undergone different evolutionary processes. All four trout Mc4rs bound to two peptide agonists and elevated intracellular cAMP levels dose-dependently. High basal cAMP levels were observed at two omMc4rs, which were decreased by Agouti-related peptide. Only omMc4rb2 was constitutively active in the ERK1/2 signaling pathway. Ipsen 5i, ML00253764, and MCL0020 were biased allosteric modulators of omMc4rb1 with selective activation upon ERK1/2 signaling. ML00253764 behaved as an allosteric agonist in Gs-cAMP signaling of omMc4rb2. This study will lay the foundation for future physiological studies of various mc4r paralogs and reveal the evolution of MC4R in vertebrates.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Ting Liu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Hai-Shen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| |
Collapse
|
34
|
Kapolka NJ, Roth BL. Built-in functional selectivity in neurons is mediated by the neuronal protein, GINIP. Mol Cell 2023; 83:2392-2394. [PMID: 37478823 DOI: 10.1016/j.molcel.2023.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
In this issue of Molecular Cell, Park et al.1 comprehensively profile how neurons utilize the Gα inhibitory interacting protein, GINIP, to modulate neurotransmission at a systems level through bias of downstream G protein-coupled receptor (GPCR) signaling.
Collapse
Affiliation(s)
- Nicholas J Kapolka
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Ramadas N, Sparkenbaugh EM. The APC-EPCR-PAR1 axis in sickle cell disease. Front Med (Lausanne) 2023; 10:1141020. [PMID: 37497271 PMCID: PMC10366386 DOI: 10.3389/fmed.2023.1141020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Sickle Cell Disease (SCD) is a group of inherited hemoglobinopathies. Sickle cell anemia (SCA) is caused by a homozygous mutation in the β-globin generating sickle hemoglobin (HbS). Deoxygenation leads to pathologic polymerization of HbS and sickling of erythrocytes. The two predominant pathologies of SCD are hemolytic anemia and vaso-occlusive episodes (VOE), along with sequelae of complications including acute chest syndrome, hepatopathy, nephropathy, pulmonary hypertension, venous thromboembolism, and stroke. SCD is associated with endothelial activation due to the release of danger-associated molecular patterns (DAMPs) such as heme, recurrent ischemia-reperfusion injury, and chronic thrombin generation and inflammation. Endothelial cell activation is mediated, in part, by thrombin-dependent activation of protease-activated receptor 1 (PAR1), a G protein coupled receptor that plays a role in platelet activation, endothelial permeability, inflammation, and cytotoxicity. PAR1 can also be activated by activated protein C (APC), which promotes endothelial barrier protection and cytoprotective signaling. Notably, the APC system is dysregulated in SCD. This mini-review will discuss activation of PAR1 by APC and thrombin, the APC-EPCR-PAR1 axis, and their potential roles in SCD.
Collapse
Affiliation(s)
- Nirupama Ramadas
- Department of Medicine, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erica M. Sparkenbaugh
- Department of Medicine, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
36
|
Wei W, Smrcka AV. Internalized β2-Adrenergic Receptors Inhibit Subcellular Phospholipase C-Dependent Cardiac Hypertrophic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544153. [PMID: 37333278 PMCID: PMC10274790 DOI: 10.1101/2023.06.07.544153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to β-adrenergic receptor (β-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. β1-AR and β2-ARs are the two major subtypes of β-ARs present in the human heart, however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of β1ARs drives detrimental cardiac remodeling while β2AR signaling is protective. The underlying molecular mechanisms for cardiac protection through β2ARs remain unclear. Here we show that β2-AR protects against hypertrophy through inhibition of PLCε signaling at the Golgi apparatus. The mechanism for β2AR-mediated PLC inhibition requires internalization of β2AR, activation of Gi and Gβγ subunit signaling at endosomes and ERK activation. This pathway inhibits both angiotensin II and Golgi-β1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD and HDAC5 phosphorylation and protection against cardiac hypertrophy. This reveals a mechanism for β2-AR antagonism of the PLCε pathway that may contribute to the known protective effects of β2-AR signaling on the development of heart failure.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
37
|
Akbarzadeh R, Müller A, Humrich JY, Riemekasten G. When natural antibodies become pathogenic: autoantibodies targeted against G protein-coupled receptors in the pathogenesis of systemic sclerosis. Front Immunol 2023; 14:1213804. [PMID: 37359516 PMCID: PMC10285309 DOI: 10.3389/fimmu.2023.1213804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem connective tissue, and autoimmune disease with the highest case-specific mortality and complications among rheumatic diseases. It is characterized by complex and variable features such as autoimmunity and inflammation, vasculopathy, and fibrosis, which pose challenges in understanding the pathogenesis of the disease. Among the large variety of autoantibodies (Abs) present in the sera of patients suffering from SSc, functionally active Abs against G protein-coupled receptors (GPCRs), the most abundant integral membrane proteins, have drawn much attention over the last decades. These Abs play an essential role in regulating the immune system, and their functions are dysregulated in diverse pathological conditions. Emerging evidence indicates that functional Abs targeting GPCRs, such as angiotensin II type 1 receptor (AT1R) and the endothelin-1 type A receptor (ETAR), are altered in SSc. These Abs are part of a network with several GPCR Abs, such as those directed to the chemokine receptors or coagulative thrombin receptors. In this review, we summarize the effects of Abs against GPCRs in SSc pathologies. Extending the knowledge on pathophysiological roles of Abs against GPCRs could provide insights into a better understanding of GPCR contribution to SSc pathogenesis and therefore help in developing potential therapeutic strategies that intervene with pathological functions of these receptors.
Collapse
|
38
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 PMCID: PMC10062691 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
39
|
Zhang D, Liu Y, Zaidi SA, Xu L, Zhan Y, Chen A, Guo J, Huang X, Roth BL, Katritch V, Cherezov V, Zhang H. Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists. EMBO J 2023; 42:e112940. [PMID: 37038975 PMCID: PMC10233375 DOI: 10.15252/embj.2022112940] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
The peptide hormone angiotensin II regulates blood pressure mainly through the type 1 angiotensin II receptor AT1 R and its downstream signaling proteins Gq and β-arrestin. AT1 R blockers, clinically used as antihypertensive drugs, inhibit both signaling pathways, whereas AT1 R β-arrestin-biased agonists have shown great potential for the treatment of acute heart failure. Here, we present a cryo-electron microscopy (cryo-EM) structure of the human AT1 R in complex with a balanced agonist, Sar1 -AngII, and Gq protein at 2.9 Å resolution. This structure, together with extensive functional assays and computational modeling, reveals the molecular mechanisms for AT1 R signaling modulation and suggests that a major hydrogen bond network (MHN) inside the receptor serves as a key regulator of AT1 R signal transduction from the ligand-binding pocket to both Gq and β-arrestin pathways. Specifically, we found that the MHN mutations N1113.35 A and N2947.45 A induce biased signaling to Gq and β-arrestin, respectively. These insights should facilitate AT1 R structure-based drug discovery for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongqi Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yongfeng Liu
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP)University of North Carolina School of MedicineChapel HillNCUSA
| | - Saheem A Zaidi
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Lingyi Xu
- Department of BiophysicsZhejiang University School of MedicineHangzhouChina
- Department of Neurology of the Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuting Zhan
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Anqi Chen
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Jiangtao Guo
- Department of BiophysicsZhejiang University School of MedicineHangzhouChina
- Department of Neurology of the Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xi‐Ping Huang
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP)University of North Carolina School of MedicineChapel HillNCUSA
| | - Bryan L Roth
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP)University of North Carolina School of MedicineChapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Vsevolod Katritch
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of Chemistry, Bridge InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Vadim Cherezov
- Department of Chemistry, Bridge InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Haitao Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
40
|
Erdélyi LS, Hunyady L, Balla A. V2 vasopressin receptor mutations: future personalized therapy based on individual molecular biology. Front Endocrinol (Lausanne) 2023; 14:1173601. [PMID: 37293495 PMCID: PMC10244717 DOI: 10.3389/fendo.2023.1173601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
The diluting and concentrating function of the kidney plays a crucial role in regulating the water homeostasis of the body. This function is regulated by the antidiuretic hormone, arginine vasopressin through the type 2 vasopressin receptor (V2R), allowing the body to adapt to periods of water load or water restriction. Loss-of-function mutations of the V2R cause X-linked nephrogenic diabetes insipidus (XNDI), which is characterized by polyuria, polydipsia, and hyposthenuria. Gain-of-function mutations of the V2R lead to nephrogenic syndrome of inappropriate antidiuresis disease (NSIAD), which results in hyponatremia. Various mechanisms may be responsible for the impaired receptor functions, and this review provides an overview of recent findings about the potential therapeutic interventions in the light of the current experimental data.
Collapse
Affiliation(s)
- László Sándor Erdélyi
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
41
|
Olejarz-Maciej A, Mogilski S, Karcz T, Werner T, Kamińska K, Kupczyk J, Honkisz-Orzechowska E, Latacz G, Stark H, Kieć-Kononowicz K, Łażewska D. Trisubstituted 1,3,5-Triazines as Histamine H 4 Receptor Antagonists with Promising Activity In Vivo. Molecules 2023; 28:molecules28104199. [PMID: 37241939 DOI: 10.3390/molecules28104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.
Collapse
Affiliation(s)
- Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tobias Werner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kamińska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Jarosław Kupczyk
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
42
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
43
|
Théroux L, Van Den Hauwe R, Trân K, Fournier J, Desgagné M, Meneboo N, Lavallée A, Fröhlich U, Côté J, Hollanders C, Longpré JM, Murza A, Marsault E, Sarret P, Boudreault PL, Ballet S. Signaling Modulation via Minimal C-Terminal Modifications of Apelin-13. ACS Pharmacol Transl Sci 2023; 6:290-305. [PMID: 36798478 PMCID: PMC9926529 DOI: 10.1021/acsptsci.2c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 01/27/2023]
Abstract
Apelin is an endogenous peptide that is involved in many diseases such as cardiovascular diseases, obesity, and cancer, which has made it an attractive target for drug discovery. Herein, we explore the penultimate and final sequence positions of [Pyr1]-apelin-13 (Ape13) via C-terminal N α-alkylated amide bonds and the introduction of positive charges, potentially targeting the allosteric sodium pocket, by assessing the binding affinity and signaling profiles at the apelin receptor (APJ). Synthetic analogues modified within this segment of Ape13 showed high affinity (K i 0.12-0.17 nM vs Ape13 K i 0.7 nM), potent Gαi1 activation (EC50 Gαi1 0.4-0.9 nM vs Ape13 EC50 1.1 nM), partial agonist behavior disfavoring β-arrestin 2 recruitment for positively charged ligands (e.g., 49 (SBL-AP-058), EC50 β-arr2 275 nM, E max 54%) and high plasma stability for N-alkyl ligands (t 1/2 > 7 h vs Ape13 t 1/2 0.5 h). Combining the benefits of the N α-alkylated amide bond with the guanidino substitution in a constrained ligand led to 63 (SBL-AP-049), which displayed increased plasma stability (t 1/2 5.3 h) and strong reduction of β-arrestin 2 signaling with partial maximal efficacy (EC50 β-arr 864 nM, E max 48%), significantly reducing the hypotensive effect in vivo.
Collapse
Affiliation(s)
- Léa Théroux
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Robin Van Den Hauwe
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Kien Trân
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Justin Fournier
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Michael Desgagné
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathan Meneboo
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Alexis Lavallée
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Ulrike Fröhlich
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jérôme Côté
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Charlie Hollanders
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jean-Michel Longpré
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Alexandre Murza
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Eric Marsault
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Philippe Sarret
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département
de Pharmacologie-Physiologie, Faculté de Médecine et
des Sciences de la Santé, Université
de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut
de Pharmacologie de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
44
|
Liu D, Liang C, Huang B, Zhuang X, Cui W, Yang L, Yang Y, Zhang Y, Fu X, Zhang X, Du L, Gu W, Wang X, Yin C, Chai R, Chu B. Tryptophan Metabolism Acts as a New Anti-Ferroptotic Pathway to Mediate Tumor Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204006. [PMID: 36627132 PMCID: PMC9951368 DOI: 10.1002/advs.202204006] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Emerging evidence reveals that amino acid metabolism plays an important role in ferroptotic cell death. The conversion of methionine to cysteine is well known to protect tumour cells from ferroptosis upon cysteine starvation through transamination. However, whether amino acids-produced metabolites participate in ferroptosis independent of the cysteine pathway is largely unknown. Here, the authors show that the tryptophan metabolites serotonin (5-HT) and 3-hydroxyanthranilic acid (3-HA) remarkably facilitate tumour cells to escape from ferroptosis distinct from cysteine-mediated ferroptosis inhibition. Mechanistically, both 5-HT and 3-HA act as potent radical trapping antioxidants (RTA) to eliminate lipid peroxidation, thereby inhibiting ferroptotic cell death. Monoamine oxidase A (MAOA) markedly abrogates the protective effect of 5-HT via degrading 5-HT. Deficiency of MAOA renders cancer cells resistant to ferroptosis upon 5-HT treatment. Kynureninase (KYNU), which is essential for 3-HA production, confers cells resistant to ferroptotic cell death, whereas 3-hydroxyanthranilate 3,4-dioxygenase (HAAO) significantly blocks 3-HA mediated ferroptosis inhibition by consuming 3-HA. In addition, the expression level of HAAO is positively correlated with lipid peroxidation and clinical outcome. Together, the findings demonstrate that tryptophan metabolism works as a new anti-ferroptotic pathway to promote tumour growth, and targeting this pathway will be a promising therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Dong Liu
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Chun‐hui Liang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Bin Huang
- Institute for Cancer ResearchShenzhen Bay LaboratoryShenzhen518107China
| | - Xiao Zhuang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Weiwei Cui
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Li Yang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhou UniversityZhengzhouHenan450000China
| | - Yinghong Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yudan Zhang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Xiaolong Fu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhou UniversityZhengzhouHenan450000China
| | - Lutao Du
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandong250033China
| | - Wei Gu
- Institute for Cancer Geneticsand Department of Pathology and Cell BiologyHerbert Irving Comprehensive Cancer CenterCollege of Physicians and SurgeonsColumbia University1130 Nicholas AveNew YorkNY10032USA
| | - Xiangdong Wang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Chengqian Yin
- Institute for Cancer ResearchShenzhen Bay LaboratoryShenzhen518107China
| | - Renjie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610000China
| | - Bo Chu
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
45
|
Hu J, Sun X, Kang Z, Cheng J. Computational investigation of functional water molecules in GPCRs bound to G protein or arrestin. J Comput Aided Mol Des 2023; 37:91-105. [PMID: 36459325 DOI: 10.1007/s10822-022-00492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins constituting the largest family of drug targets. The activated GPCR binds either the heterotrimeric G proteins or arrestin through its activation cycle. Water molecules have been reported to play a role in GPCR activation. Nevertheless, reported studies are focused on the hydrophobic helical bundle region. How water molecules function in GPCR bound either G protein or arrestin is rarely studied. To address this issue, we carried out computational studies on water molecules in both GPCR/G protein complexes and GPCR/arrestin complexes. Using inhomogeneous fluid theory (IFT), we locate all possible hydration sites in GPCRs binding either to G protein or arrestin. We observe that the number of water molecules on the interaction surface between GPCRs and signal proteins are correlated with the insertion depths of the α5-helix from G-protein or "finger loop" from arrestin in GPCRs. In three out of the four simulation pairs, the interfaces of Rhodopsin, M2R and NTSR1 in the G protein-associated systems show more water-mediated hydrogen-bond networks when compared to these in arrestin-associated systems. This reflects that more functionally relevant water molecules may probably be attracted in G protein-associated structures than that in arrestin-associated structures. Moreover, we find the water-mediated interaction networks throughout the NPxxY region and the orthosteric pocket, which may be a key for GPCR activation. Reported studies show that non-biased agonist, which can trigger both GPCR-G protein and GPCR-arrestin activation signal, can result in pharmacologically toxicities. Our comprehensive studies of the hydration sites in GPCR/G protein complexes and GPCR/arrestin complexes may provide important insights in the design of G-protein biased agonists.
Collapse
Affiliation(s)
- Jiaqi Hu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xianqiang Sun
- AutoDrug Biotech Co. Ltd, No. 58 XiangKe Rd., Pudong New Area, Shanghai, China
| | - Zhengzhong Kang
- AutoDrug Biotech Co. Ltd, No. 58 XiangKe Rd., Pudong New Area, Shanghai, China.
| | - Jianxin Cheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China.
| |
Collapse
|
46
|
Wenk D, Khan S, Ignatchenko V, Hübner H, Gmeiner P, Weikert D, Pischetsrieder M, Kislinger T. Phosphoproteomic Analysis of Dopamine D2 Receptor Signaling Reveals Interplay of G Protein- and β-Arrestin-Mediated Effects. J Proteome Res 2023; 22:259-271. [PMID: 36508580 PMCID: PMC9831068 DOI: 10.1021/acs.jproteome.2c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leveraging biased signaling of G protein-coupled receptors has been proposed as a promising strategy for the development of drugs with higher specificity. However, the consequences of selectively targeting G protein- or β-arrestin-mediated signaling on cellular functions are not comprehensively understood. In this study, we utilized phosphoproteomics to gain a systematic overview of signaling induced by the four biased and balanced dopamine D2 receptor (D2R) ligands MS308, BM138, quinpirole, and sulpiride in an in vitro D2R transfection model. Quantification of 14,160 phosphosites revealed a low impact of the partial G protein agonist MS308 on cellular protein phosphorylation, as well as surprising similarities between the balanced agonist quinpirole and the inverse agonist sulpiride. Analysis of the temporal profiles of ligand-induced phosphorylation events showed a transient impact of the G protein-selective agonist MS308, whereas the β-arrestin-preferring agonist BM138 elicited a delayed, but more pronounced response. Functional enrichment analysis of ligand-impacted phosphoproteins and treatment-linked kinases confirmed multiple known functions of D2R signaling while also revealing novel effects, for example of MS308 on sterol regulatory element-binding protein-related gene expression. All raw data were deposited in MassIVE (MSV000089457).
Collapse
Affiliation(s)
- Deborah Wenk
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Shahbaz Khan
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Vladimir Ignatchenko
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Harald Hübner
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Dorothee Weikert
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Monika Pischetsrieder
- Food
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Thomas Kislinger
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada,Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada,
| |
Collapse
|
47
|
Drouillard D, Craig BT, Dwinell MB. Physiology of chemokines in the cancer microenvironment. Am J Physiol Cell Physiol 2023; 324:C167-C182. [PMID: 36317799 PMCID: PMC9829481 DOI: 10.1152/ajpcell.00151.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/07/2023]
Abstract
Chemokines are chemotactic cytokines whose canonical functions govern movement of receptor-expressing cells along chemical gradients. Chemokines are a physiological system that is finely tuned by ligand and receptor expression, ligand or receptor oligomerization, redundancy, expression of atypical receptors, and non-GPCR binding partners that cumulatively influence discrete pharmacological signaling responses and cellular functions. In cancer, chemokines play paradoxical roles in both the directed emigration of metastatic, receptor-expressing cancer cells out of the tumor as well as immigration of tumor-infiltrating immune cells that culminate in a tumor-unique immune microenvironment. In the age of precision oncology, strategies to effectively harness the power of immunotherapy requires consideration of chemokine gradients within the unique spatial topography and temporal influences with heterogeneous tumors. In this article, we review current literature on the diversity of chemokine ligands and their cellular receptors that detect and process chemotactic gradients and illustrate how differences between ligand recognition and receptor activation influence the signaling machinery that drives cellular movement into and out of the tumor microenvironment. Facets of chemokine physiology across discrete cancer immune phenotypes are contrasted to existing chemokine-centered therapies in cancer.
Collapse
Affiliation(s)
- Donovan Drouillard
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian T Craig
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
48
|
Nivedha AK, Lee S, Vaidehi N. Biased agonists differentially modulate the receptor conformation ensembles in Angiotensin II type 1 receptor. J Mol Graph Model 2023; 118:108365. [PMID: 36335829 PMCID: PMC9769363 DOI: 10.1016/j.jmgm.2022.108365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The structural features that contribute to the efficacy of biased agonists targeting G protein-coupled receptors (GPCRs) towards G proteins or β-arrestin (β-arr) signaling pathways is nebulous, although such knowledge is critical in designing biased ligands. The dynamics of the agonist-GPCR complex is one of the critical factors in determining agonist bias. Angiotensin II type I receptor (AT1R) is an ideal model system to study the molecular basis of bias since it has multiple β-arr2 and Gq protein biased agonists as well as experimentally solved three dimensional structures. Using Molecular Dynamics (MD) simulations for the Angiotensin II type I receptor (AT1R) bound to ten different agonists, we infer that the agonist bound receptor samples conformations with different relative weights, from both the inactive and active state ensembles of the receptor. This concept is perhaps extensible to other class A GPCRs. Such a weighted mixed ensemble recapitulates the inter-residue distance distributions measured for different agonists bound AT1R using DEER experiments. The ratio of the calculated relative strength of the allosteric communication to β-arr2 vs Gq coupling sites scale similarly to the experimentally measured bias factors. Analysis of the inter-residue distance distributions of the activation microswitches involved in class A GPCR activation suggests that β-arr2 biased agonists turn on different combination of microswitches with different relative strengths of activation. We put forth a model that activation microswitches behave like rheostats that tune the relative efficacy of the biased agonists toward the two signaling pathways. Finally, based on our data we propose that the agonist specific residue contacts in the binding site elicit a combinatorial response in the microswitches that in turn differentially modulate the receptor conformation ensembles resulting in differences in coupling to Gq and β-arrestin.
Collapse
Affiliation(s)
- Anita K Nivedha
- Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California, 91010, USA
| | - Sangbae Lee
- Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California, 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California, 91010, USA.
| |
Collapse
|
49
|
Wu Y, von Hauff IV, Jensen N, Rossner MJ, Wehr MC. Improved Split TEV GPCR β-arrestin-2 Recruitment Assays via Systematic Analysis of Signal Peptide and β-arrestin Binding Motif Variants. BIOSENSORS 2022; 13:48. [PMID: 36671883 PMCID: PMC9855867 DOI: 10.3390/bios13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
G protein-coupled receptors (GPCRs) are major disease-relevant drug targets; robust monitoring of their activities upon drug treatment is key to drug discovery. The split TEV cell-based assay technique monitors the interaction of an activated GPCR with β-arrestin-2 through TEV protein fragment complementation using a luminescent signal as the readout. In this work, split TEV GPCR β-arrestin-2 recruitment assays were optimized to monitor the endogenous ligand-induced activities of six GPCRs (DRD1, DRD2, HTR2A, GCGR, AVPR2, and GLP1R). Each GPCR was tested in four forms; i.e., its wildtype form, a variant with a signal peptide (SP) to facilitate receptor expression, a variant containing the C-terminal tail from the V2 vasopressin receptor (V2R tail) to promote β-arrestin-2 recruitment, and a variant containing both the SP and V2R tail. These 24 GPCR variants were systematically tested for assay performance in four cell lines (HEK-293, PC12 Tet-Off, U-2 OS, and HeLa). We found that the assay performance differed significantly for each GPCR variant and was dependent on the cell line. We found that V2R improved the DRD2 split TEV assays and that HEK-293 cells were the preferred cell line across the GPCRs tested. When taking these considerations into account, the defined selection of assay modifications and conditions may improve the performance of drug development campaigns that apply the split TEV technique as a screening tool.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Isabelle V. von Hauff
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Niels Jensen
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81699 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81699 Munich, Germany
| |
Collapse
|
50
|
Devaux CA, Camoin-Jau L. An update on angiotensin-converting enzyme 2 structure/functions, polymorphism, and duplicitous nature in the pathophysiology of coronavirus disease 2019: Implications for vascular and coagulation disease associated with severe acute respiratory syndrome coronavirus infection. Front Microbiol 2022; 13:1042200. [PMID: 36519165 PMCID: PMC9742611 DOI: 10.3389/fmicb.2022.1042200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 08/01/2023] Open
Abstract
It has been known for many years that the angiotensin-converting enzyme 2 (ACE2) is a cell surface enzyme involved in the regulation of blood pressure. More recently, it was proven that the severe acute respiratory syndrome coronavirus (SARS-CoV-2) interacts with ACE2 to enter susceptible human cells. This functional duality of ACE2 tends to explain why this molecule plays such an important role in the clinical manifestations of coronavirus disease 2019 (COVID-19). At the very start of the pandemic, a publication from our Institute (entitled "ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome"), was one of the first reviews linking COVID-19 to the duplicitous nature of ACE2. However, even given that COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin system (RAS), we were still far from understanding the complexity of the mechanisms which are controlled by ACE2 in different cell types. To gain insight into the physiopathology of SARS-CoV-2 infection, it is essential to consider the polymorphism and expression levels of the ACE2 gene (including its alternative isoforms). Over the past 2 years, an impressive amount of new results have come to shed light on the role of ACE2 in the pathophysiology of COVID-19, requiring us to update our analysis. Genetic linkage studies have been reported that highlight a relationship between ACE2 genetic variants and the risk of developing hypertension. Currently, many research efforts are being undertaken to understand the links between ACE2 polymorphism and the severity of COVID-19. In this review, we update the state of knowledge on the polymorphism of ACE2 and its consequences on the susceptibility of individuals to SARS-CoV-2. We also discuss the link between the increase of angiotensin II levels among SARS-CoV-2-infected patients and the development of a cytokine storm associated microvascular injury and obstructive thrombo-inflammatory syndrome, which represent the primary causes of severe forms of COVID-19 and lethality. Finally, we summarize the therapeutic strategies aimed at preventing the severe forms of COVID-19 that target ACE2. Changing paradigms may help improve patients' therapy.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Center National de la Recherche Scientifique, Marseille, France
| | - Laurence Camoin-Jau
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Laboratoire d’Hématologie, Hôpital de La Timone, APHM, Boulevard Jean-Moulin, Marseille, France
| |
Collapse
|