1
|
Patel H, Patel A, Chauhan R, Bhavsar T, Rathod S, Kadam M, Rawat A, Rawat S. Genotypic and phenotypic characterization of virulence in methicillin resistant Staphylococcus aureus isolated from a local hospital of Ahmedabad, Gujarat, India. BMC Microbiol 2025; 25:223. [PMID: 40240951 PMCID: PMC12001574 DOI: 10.1186/s12866-025-03885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Staphylococcus aureus is a causative agent of diseases ranging from skin and soft tissue infections to several other invasive diseases such as bacteraemia, osteomyelitis, and pneumonia, as well as various non-invasive diseases due to secretion of diverse array of virulence factors. The aim of this study was to establish a correlation between antibiotic resistance, virulence traits, genotypes and infections caused by MRSA in a local hospital of Ahmedabad, Gujarat, India. METHOD For this study, 118 S. aureus isolates were obtained from the Microbiology Department of Sheth L.G General Hospital, Ahmedabad, Gujarat, India during the period of March 2022 to September 2022. The isolates were subjected to antibiotic susceptibility, phenotypic characterization of virulence traits, genotypic characterization of adhesion and virulence genes as well as genotyping of agr and SCCmec types. RESULTS This study reports 55.93% isolates from males and 44.07% isolates from females. 88.98% of isolates were associated with cases of skin and soft tissue infections (SSTIs), one of the most common infections associated with S. aureus. All the isolates were multidrug resistant (MDR). Phenotypically, 95.76% of isolates were reported to be either strong or moderate biofilm producers, 94.07% of isolates showed strong or moderate lipolytic activity and 91.53% of isolates were β- haemolytic. Genotypically, adhesion genes, ebpS, eno, sarA, fnbA and cna were reported in 94.07%, 93.22%, 82.20%, 78.81% and 67.80% of isolates, respectively and virulence genes, spA, SE family, coa, pvl and tsst, were reported in 99.15%, 97.46%, 84.75%, 77.12% and 50% of isolates, respectively. agr typing and SCCmec classification revealed agr type I (61.02%) and SCCmec type III (35.59%) to be the most prevalent type. The antibiotic resistance, biofilm formation and presence of adhesion and virulence genes were found to be associated with agr type I and III and SCCmec type I, III and IV. A strong correlation was observed between isolates obtained from pus samples and agr type I, II and III, SCCmec type I, IA, II, III, IIIA, IIIB and IV, biofilm formation, haemolysis, lipolysis and prevalence of adhesion and virulence genes. CONCLUSION SSTIs was the most common infection associated with S. aureus. Maximum antibiotic resistance was reported against β lactam, fluoroquinolones and macrolides class of antibiotics. Majority of isolates were strong biofilm producers, β- hemolytic, lipolytic and belonged to agr type I and SCCmec type III. Isolates belonging to agr type I and III and SCCmec type I, III and IV were found to be more virulent.
Collapse
Affiliation(s)
- Hardi Patel
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Aakruti Patel
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Ravi Chauhan
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Toral Bhavsar
- Microbiology Department, Sheth L.G. General Hospital, Narendra Modi Medical College, Ahmedabad- 380008, Gujarat, India
| | - Sanjay Rathod
- Microbiology Department, Sheth L.G. General Hospital, Narendra Modi Medical College, Ahmedabad- 380008, Gujarat, India
| | - Mina Kadam
- Microbiology Department, Sheth L.G. General Hospital, Narendra Modi Medical College, Ahmedabad- 380008, Gujarat, India
| | - Anurag Rawat
- Department of Cardiology, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, India.
| | - Seema Rawat
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India.
| |
Collapse
|
2
|
Fong PM, Tang VYM, Xu L, Yam BHC, Pradeep HP, Feng Y, Tao L, Kao RYT, Yang D. Synthetic Cation Transporters Eradicate Drug-Resistant Staphylococcus aureus, Persisters, and Biofilms. JACS AU 2025; 5:1328-1339. [PMID: 40151269 PMCID: PMC11938004 DOI: 10.1021/jacsau.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/29/2025]
Abstract
New drugs are urgently required to address the ongoing health crisis caused by methicillin-resistant Staphylococcus aureus (MRSA) infections. Added to the challenge is the difficult-to-treat persister cells and biofilm which are tolerant to the antibiotics. Here we report a new approach to these problems, describing the design and synthesis of aminoxy-acid-based dipeptides that facilitate cation transport across cell membranes to disrupt bacterial ion homeostasis. Remarkably, these synthetic cation transporters display significant antibacterial activity against MRSA, while maintaining high selectivity over mammalian cells. They also effectively eliminate bacterial persisters and reduce established biofilms. Additionally, they inhibit biofilm formation and suppress bacterial virulent protein secretion, even at subinhibitory concentrations. Their associated antibiotic effects support their in vivo efficacy in murine skin and bloodstream MRSA infection models with no observable toxicity to the host. Mode-of-action analysis indicates that these cation transporters induce cytoplasmic acidification, hyperpolarization, and calcium influx, accelerating autolysis. Given their potent activity against bacterial persisters and biofilms, synthetic cation transporters are an emergent and promising class of compounds in the fight against MRSA infections.
Collapse
Affiliation(s)
- Pak-Ming Fong
- Morningside
Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Victor Yat-Man Tang
- Department
of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Lu Xu
- School
of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Bill Hin-Cheung Yam
- Department
of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Halebeedu Prakash Pradeep
- Department
of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Yuhui Feng
- School
of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Liang Tao
- School
of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake
Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Richard Yi-Tsun Kao
- Department
of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Dan Yang
- Morningside
Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
- School
of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake
Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Arora P, Kumar S, Mukhopadhyay CS, Kaur S. Codon usage analysis in selected virulence genes of Staphylococcal species. Curr Genet 2025; 71:5. [PMID: 39853506 DOI: 10.1007/s00294-025-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S. saprophyticus, each implicated in a range of infections. This study investigates the codon usage patterns in key virulence genes, including Autolysin (alt), Elastin Binding protein (EbpS), Lipase, Thermonuclease, Intercellular Adhesion Protein (IcaR), and V8 Protease, across four Staphylococcus species. Using metrics such as the Effective Number of Codons (ENc), Relative Synonymous Codon Usage (RSCU), Codon Adaptation Index (CAI), alongside neutrality and parity plots, we explored the codon preferences and nucleotide composition biases. Our findings revealed a pronounced AT-rich codon preference, with AT-rich genomes likely aiding in energy-efficient translation and bacterial survival in host environments. These insights provide a deeper understanding of the evolutionary adaptations and translational efficiency mechanisms that contribute to the pathogenicity of Staphylococcus species. This knowledge could pave the way for novel therapeutic interventions targeting codon usage to disrupt virulence gene expression.
Collapse
Affiliation(s)
- Pinky Arora
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional, University, Jalandhar- G.T. Road, Phagwara, Punjab, 144411, India
| | - Chandra Shekhar Mukhopadhyay
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ferozepur G.T. Road, Ludhiana, Punjab, 141004, India
| | - Sandeep Kaur
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
4
|
Hitzler SUJ, Fernández-Fernández C, Montaño DE, Dietschmann A, Gresnigt MS. Microbial adaptive pathogenicity strategies to the host inflammatory environment. FEMS Microbiol Rev 2025; 49:fuae032. [PMID: 39732621 PMCID: PMC11737513 DOI: 10.1093/femsre/fuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024] Open
Abstract
Pathogenic microorganisms can infect a variety of niches in the human body. During infection, these microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction. An inappropriate deployment of pathogenicity mechanisms will alert host defence mechanisms that aim to eradicate the pathogen. Thus, these adaptations require tight regulation to guarantee nutritional access without eliciting strong immune activation. To work efficiently, the immune system relies on a complex signalling network, involving a myriad of immune mediators, some of which are quite directly associated with imminent danger for the pathogen. To manipulate the host immune system, viruses have evolved cytokine receptors and viral cytokines. However, among bacteria and fungi, selected pathogens have evolved the capacity to use these inflammatory response-specific signals to regulate their pathogenicity. In this review, we explore how bacterial and fungal pathogens can sense the immune system and use adaptive pathogenicity strategies to evade and escape host defence to ensure their persistence in the host.
Collapse
Affiliation(s)
- Sophia U J Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Candela Fernández-Fernández
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Dolly E Montaño
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| |
Collapse
|
5
|
Fan H, Zhao L, Wang W, Yu F, Jing H, Yang Y, Zhang X, Zhao Z, Gou Q, Zhang W, Zou Q, Zhang J, Zeng H. A highly neutralizing human monoclonal antibody targeting a novel linear epitope on staphylococcal enterotoxin B. Hum Vaccin Immunother 2024; 20:2360338. [PMID: 38857905 PMCID: PMC11182437 DOI: 10.1080/21645515.2024.2360338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Staphylococcal Enterotoxin B (SEB), produced by Staphylococcus aureus (S. aureus), is a powerful superantigen that induces severe immune disruption and toxic shock syndrome (TSS) upon binding to MHC-II and TCR. Despite its significant impact on the pathogenesis of S. aureus, there are currently no specific therapeutic interventions available to counteract the mechanism of action exerted by this toxin. In this study, we have identified a human monoclonal antibody, named Hm0487, that specifically targets SEB by single-cell sequencing using PBMCs isolated from volunteers enrolled in a phase I clinical trial of the five-antigen S. aureus vaccine. X-ray crystallography studies revealed that Hm0487 exhibits high affinity for a linear B cell epitope in SEB (SEB138-147), which is located distantly from the site involved in the formation of the MHC-SEB-TCR ternary complex. Furthermore, in vitro studies demonstrated that Hm0487 significantly impacts the interaction of SEB with both receptors and the binding to immune cells, probably due to an allosteric effect on SEB rather than competing with receptors for binding sites. Moreover, both in vitro and in vivo studies validated that Hm0487 displayed efficient neutralizing efficacy in models of lethal shock and sepsis induced by either SEB or bacterial challenge. Our findings unveil an alternative mechanism for neutralizing the pathogenesis of SEB by Hm0487, and this antibody provides a novel strategy for mitigating both SEB-induced toxicity and S. aureus infection.
Collapse
Affiliation(s)
- Hongyin Fan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Weiwei Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Feng Yu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
6
|
Jian Y, Chen T, Yang Z, Xiang G, Xu K, Wang Y, Zhao N, He L, Liu Q, Li M. Small regulatory RNA RSaX28 promotes virulence by reinforcing the stability of RNAIII in community-associated ST398 clonotype Staphylococcus aureus. Emerg Microbes Infect 2024; 13:2341972. [PMID: 38597192 PMCID: PMC11034457 DOI: 10.1080/22221751.2024.2341972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Staphylococcus aureus (S. aureus) is a notorious pathogen that cause metastatic or complicated infections. Hypervirulent ST398 clonotype strains, remarkably increased in recent years, dominated Community-associated S. aureus (CA-SA) infections in the past decade in China. Small RNAs like RNAIII have been demonstrated to play important roles in regulating the virulence of S. aureus, however, the regulatory roles played by many of these sRNAs in the ST398 clonotype strains are still unclear. Through transcriptome screening and combined with knockout phenotype analysis, we have identified a highly transcribed sRNA, RSaX28, in the ST398 clonotype strains. Sequence analysis revealed that RSaX28 is highly conserved in the most epidemic clonotypes of S. aureus, but its high transcription level is particularly prominent in the ST398 clonotype strains. Characterization of RSaX28 through RACE and Northern blot revealed its length to be 533nt. RSaX28 is capable of promoting the hemolytic ability, reducing biofilm formation capacity, and enhancing virulence of S. aureus in the in vivo murine infection model. Through IntaRNA prediction and EMSA validation, we found that RSaX28 can specifically interact with RNAIII, promoting its stability and positively regulating the translation of downstream alpha-toxin while inhibiting the translation of Sbi, thereby regulating the virulence and biofilm formation capacity of the ST398 clonotype strains. RSaX28 is an important virulence regulatory factor in the ST398 clonotype S. aureus and represents a potential important target for future treatment and immune intervention against S. aureus infections.
Collapse
Affiliation(s)
- Ying Jian
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tianchi Chen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ziyu Yang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Kai Xu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yanan Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Na Zhao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Sundar Das D, Dey A, Das G, Naik S. Staphylococcus aureus Dissemination Presenting With Encephalopathy and Epidural Abscess. Case Rep Infect Dis 2024; 2024:6889110. [PMID: 39606097 PMCID: PMC11599475 DOI: 10.1155/crdi/6889110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Staphylococcal infection is a common bacterial disease with common clinical features. Untreated infection, especially in immunosenescence cases, can affect other organs. This can lead to multiorgan dysfunction and cause increased morbidity and mortality. Unlike commonly presented features of pneumonia, dissemination of infection can pose diagnostic and therapeutic enigma. Therefore, any such presentation in common clinical practice can yield a conundrum of diagnoses. Case Report: A 69-year-old elderly male presented to the Emergency Department with acute onset encephalopathy. Historically, cues were limited, and evaluation was negated for acute cerebrovascular event or seizure. Laboratory findings were suggestive of a severe sepsis. While clinical medicine workup and diagnostic dilemma were ongoing, possible sources of the sepsis were thoroughly sought including range of infectious causes. This patient's presentation was one of its kind: staphylococcal bacteremia seeding to cause pneumonia and unusual epidural abscess in due course of illness. Conclusion: The health outcome of the critically ill especially elderly patients depends mostly on the importance of clinical medicine to address the diagnostic enigma and virtue of supportive care delivered. Staphylococcus aureus infections are capable of developing distant infectious foci, as highlighted in this case, and that the clinician should be alert to this possibility. This particular case firmly posits an admonition for clinicians and the importance of clinical medicine for critical reasoning to improve the patient outcome.
Collapse
Affiliation(s)
- Dhriti Sundar Das
- Department of General Medicine, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Anupam Dey
- Department of General Medicine, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Gurudip Das
- Department of Orthopedics, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suprava Naik
- Department of Radiodiagnosis, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
8
|
Dinić M, Verpile R, Burgess JL, Ming J, Marjanovic J, Beliz CN, Plano L, Hower S, Thaller SR, Banerjee S, Lev‐Tov H, Tomic‐Canic M, Pastar I. Multi-drug resistant Staphylococcus epidermidis from chronic wounds impair healing in human wound model. Wound Repair Regen 2024; 32:799-810. [PMID: 39439244 PMCID: PMC11584363 DOI: 10.1111/wrr.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Venous leg ulcers (VLUs) represent one of the most prevalent types of chronic wounds characterised by perturbed microbiome and biofilm-forming bacteria. As one of the most abundant skin-commensal, Staphylococcus epidermidis is known as beneficial for the host, however, some strains can form biofilms and hinder wound healing. In this study, S. epidermidis distribution in VLUs and associated resistome were analysed in ulcer tissue from patients. Virulence of S. epidermidis isolates from VLUs were evaluated by whole genome sequencing, antimicrobial susceptibility testing, in vitro biofilm and binding assays, and assessment of biofilm-forming capability and pro-inflammatory potential using human ex vivo wound model. We demonstrated that S. epidermidis isolates from VLUs inhibit re-epithelialization through biofilm-dependent induction of IL-1β, IL-8, and IL-6 which was in accordance with impaired healing outcomes observed in patients. High extracellular matrix binding ability of VLU isolates was associated with antimicrobial resistance and expression levels of the embp and sdrG, responsible for bacterial binding to fibrinogen and fibrin, respectively. Finally, we showed that S. epidermidis from VLUs demonstrate pathogenic features with ability to impair healing which underscores the emergence of treatment-resistant virulent lineages in patients with chronic ulcers.
Collapse
Affiliation(s)
- Miroslav Dinić
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Group for Probiotics and Microbiota‐Host Interaction, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
| | - Rebecca Verpile
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jingjing Ming
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Carmen Nicole Beliz
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Lisa Plano
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Suzanne Hower
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Seth R. Thaller
- Department of SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Santanu Banerjee
- Department of SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Hadar Lev‐Tov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Marjana Tomic‐Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
9
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Mao R, Zhao Q, Lu H, Yang N, Li Y, Teng D, Hao Y, Gu X, Wang J. The Marine Antimicrobial Peptide AOD with Intact Disulfide Bonds Has Remarkable Antibacterial and Anti-Biofilm Activity. Mar Drugs 2024; 22:463. [PMID: 39452871 PMCID: PMC11509771 DOI: 10.3390/md22100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
American Oyster Defensin (AOD) is a marine peptide that is derived from North American mussels. It has been demonstrated to exhibit potent antimicrobial activity and high safety in both in vitro and in vivo models. In this study, to facilitate synthesis, mutants of AOD with fewer disulfide bonds were designed and subjected to structural, antimicrobial, and anti-biofilm analysis. The antimicrobial activity of AOD-derived peptides decreased after reduction in the disulfide bond, and among its three derivatives, only AOD-1 inhibited very few bacteria with a MIC value of 64 μg/mL, whereas the others had no inhibitory effect on pathogenic bacteria. The findings demonstrated that full disulfide bonds are indispensable for bactericidal activity, with the α-helix playing a pivotal role in inhibiting bacterial membranes. Furthermore, the results of the ATP, ROS, membrane potential, and membrane fluidity assays demonstrated that intracellular ATP, reactive oxygen species, and membrane fluidity were all increased, while membrane potential was reduced. This indicated that AOD resulted in the impairment of membrane fluidity and induced metabolic disorders, ultimately leading to bacterial death. The inhibitory effect of AOD on the biofilm of S. epidermidis G-81 was determined through the crystal violet and confocal microscopy. The results demonstrated that AOD exhibited a notable inhibitory impact on the biofilm of S. epidermidis G-81. The minimum biofilm inhibitory concentration of AOD on S. epidermidis G-81 was 16 μg/mL, and the minimum biofilm scavenging concentration was 32 μg/mL, which exhibited superior efficacy compared to that of lincomycin. The inhibitory effect on the primary biofilm was 90.3%, and that on the mature biofilm was 82.85%, with a dose-dependent inhibition effect. Concurrently, AOD cleared intra-biofilm organisms and reduced the number of biofilm-holding bacteria by six orders of magnitude. These data indicate that disulfide bonds are essential to the structure and activity of AOD, and AOD may potentially become an effective dual-action antimicrobial and anti-biofilm agent.
Collapse
Affiliation(s)
- Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qingyi Zhao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Haiqiang Lu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yuanyuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xinxi Gu
- Enzyme Engineering Laboratory, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
11
|
Fernando DD, Mounsey KE, Bernigaud C, Surve N, Estrada Chávez GE, Hay RJ, Currie BJ, Chosidow O, Fischer K. Scabies. Nat Rev Dis Primers 2024; 10:74. [PMID: 39362885 DOI: 10.1038/s41572-024-00552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
Scabies is one of the most common and highest-burden skin diseases globally. Estimates suggest that >200 million people worldwide have scabies at any one time, with an annual prevalence of 455 million people, with children in impoverished and overcrowded settings being the most affected. Scabies infection is highly contagious and leads to considerable morbidity. Secondary bacterial infections are common and can cause severe health complications, including sepsis or necrotizing soft-tissue infection, renal damage and rheumatic heart disease. There is no vaccine or preventive treatment against scabies and, for the past 30 years, only few broad-spectrum antiparasitic drugs (mainly topical permethrin and oral ivermectin) have been widely available. Treatment failure is common because drugs have short half-lives and do not kill all developmental stages of the scabies parasite. At least two consecutive treatments are needed, which is difficult to achieve in resource-poor and itinerant populations. Another key issue is the lack of a practical, rapid, cheap and accurate diagnostic tool for the timely detection of scabies, which could prevent the cycle of exacerbation and disease persistence in communities. Scabies control will require a multifaceted approach, aided by improved diagnostics and surveillance, new treatments, and increased public awareness.
Collapse
Affiliation(s)
- Deepani D Fernando
- Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kate E Mounsey
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Charlotte Bernigaud
- Research Group Dynamic, EA7380, Faculté de Santé de Créteil, USC ANSES, Université Paris-Est Créteil, Créteil, France
| | - Nuzhat Surve
- Department of Microbiology, Seth G S Medical College and KEM Hospital, Parel, Mumbai, India
| | - Guadalupe E Estrada Chávez
- State Institute of Cancer "Dr. Arturo Beltrán Ortega", Faculty of Medicine, Universidad Autónoma de Guerrero, Community Dermatology Mexico, Acapulco, Guerrero, Mexico
| | - Roderick J Hay
- St Johns Institute of Dermatology, King's College London, London, UK
| | - Bart J Currie
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Olivier Chosidow
- Hôpital Universitaire La Pitié-Salpêtrière, AP-HP, Paris, France
| | - Katja Fischer
- Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
12
|
Zhao T, Liu X, Chu Z, Zhao J, Jiang D, Dong X, Lu Z, Yeung KWK, Liu X, Ouyang L. L-arginine loading porous PEEK promotes percutaneous tissue repair through macrophage orchestration. Bioact Mater 2024; 40:19-33. [PMID: 38882001 PMCID: PMC11179658 DOI: 10.1016/j.bioactmat.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/18/2024] Open
Abstract
Infection and poor tissue repair are the key causes of percutaneous implantation failure. However, there is a lack of effective strategies to cope with due to its high requirements of sterilization, soft tissue healing, and osseointegration. In this work, l-arginine (L-Arg) was loaded onto a sulfonated polyetheretherketone (PEEK) surface to solve this issue. Under the infection condition, nitric oxide (NO) and reactive oxygen species (ROS) are produced through catalyzing L-Arg by inducible nitric oxide synthase (iNOS) and thus play a role in bacteria sterilization. Under the tissue repair condition, L-Arg is catalyzed to ornithine by Arginase-1 (Arg-1), which promotes the proliferation and collagen secretion of L929 and rBMSCs. Notably, L-Arg loading samples could polarize macrophages to M1 and M2 in infection and tissue repair conditions, respectively. The results in vivo show that the L-Arg loading samples could enhance infected soft tissue sealing and bone regeneration. In summary, L-Arg loading sulfonated PEEK could polarize macrophage through metabolic reprogramming, providing multi-functions of antibacterial abilities, soft tissue repair, and bone regeneration, which gives a new idea to design percutaneous implantation materials.
Collapse
Affiliation(s)
- Tong Zhao
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xingdan Liu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhuangzhuang Chu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Dongya Jiang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ziyi Lu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Kelvin W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology, Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Liping Ouyang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
13
|
Urso A, Monk IR, Cheng YT, Predella C, Wong Fok Lung T, Theiller EM, Boylan J, Perelman S, Baskota SU, Moustafa AM, Lohia G, Lewis IA, Howden BP, Stinear TP, Dorrello NV, Torres V, Prince AS. Staphylococcus aureus adapts to exploit collagen-derived proline during chronic infection. Nat Microbiol 2024; 9:2506-2521. [PMID: 39134708 PMCID: PMC11445067 DOI: 10.1038/s41564-024-01769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/25/2024] [Indexed: 10/03/2024]
Abstract
Staphylococcus aureus is a pulmonary pathogen associated with substantial human morbidity and mortality. As vaccines targeting virulence determinants have failed to be protective in humans, other factors are likely involved in pathogenesis. Here we analysed transcriptomic responses of human clinical isolates of S. aureus from initial and chronic infections. We observed upregulated collagenase and proline transporter gene expression in chronic infection isolates. Metabolomics of bronchiolar lavage fluid and fibroblast infection, growth assays and analysis of bacterial mutant strains showed that airway fibroblasts produce collagen during S. aureus infection. Host-adapted bacteria upregulate collagenase, which degrades collagen and releases proline. S. aureus then imports proline, which fuels oxidative metabolism via the tricarboxylic acid cycle. Proline metabolism provides host-adapted S. aureus with a metabolic benefit enabling out-competition of non-adapted strains. These data suggest that clinical settings characterized by airway repair processes and fibrosis provide a milieu that promotes S. aureus adaptation and supports infection.
Collapse
Affiliation(s)
- Andreacarola Urso
- Department of Pediatric Infectious Diseases, Columbia University, New York, NY, USA
- Department of Pharmacology, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Ian R Monk
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ying-Tsun Cheng
- Department of Pediatric Infectious Diseases, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Camilla Predella
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Tania Wong Fok Lung
- Department of Pharmacology, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Erin M Theiller
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jack Boylan
- Department of Pharmacology, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Sofya Perelman
- Department of Microbiology, New York University, New York, NY, USA
| | | | - Ahmed M Moustafa
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gaurav Lohia
- Department of Pharmacology, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Benjamin P Howden
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Victor Torres
- Department of Microbiology, New York University, New York, NY, USA
| | - Alice S Prince
- Department of Pediatric Infectious Diseases, Columbia University, New York, NY, USA.
- Department of Pharmacology, Columbia University, New York, NY, USA.
- Department of Pediatrics, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
15
|
Canchola J, Donkor GYB, Tawiah PO, Fasawe A, Ayim E, Engelke MF, Dahl JU. Alkyl Pyridinol Compounds Exhibit Antimicrobial Effects against Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:897. [PMID: 39335070 PMCID: PMC11428593 DOI: 10.3390/antibiotics13090897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives. The rise of antibiotic-resistant pathogens represents a significant global challenge in infectious disease control, which is amplified by the decline in the discovery of novel antibiotics. Staphylococcus aureus continues to be a highly significant pathogen, causing infections in multiple organs and tissues in both healthcare institutions and community settings. The bacterium has become increasingly resistant to all available antibiotics. Consequently, there is an urgent need for novel small molecules that inhibit the growth or impair the survival of bacterial pathogens. Given their large structural and chemical diversity, as well as often unique mechanisms of action, natural products represent an excellent avenue for the discovery and development of novel antimicrobial treatments. Anaephene A and B are two such naturally occurring compounds with significant antimicrobial activity against Gram-positive bacteria. Here, we report the rapid syntheses and biological characterization of five novel anaephene derivatives, which display low cytotoxicity against mammalian cells but potent antibacterial activity against various S. aureus strains, including methicillin-resistant S. aureus (MRSA) and the multi-drug-resistant community-acquired strain USA300LAC. Methods. A Sonogashira cross-coupling reaction served as the key step for the synthesis of the alkyl pyridinol products. Results/Conclusions. Using the compound JC-01-074, which displays bactericidal activity already at low concentrations (MIC: 16 μg/mL), we provide evidence that alkyl pyridinols target actively growing and biofilm-forming cells and show that these compounds cause disruption and deformation of the staphylococcal membrane, indicating a membrane-associated mechanism of action.
Collapse
Affiliation(s)
- Juan Canchola
- Department of Chemistry, Illinois State University, Normal, IL 61761, USA
| | | | - Patrick Ofori Tawiah
- School of Biological Sciences, Microbiology, Illinois State University, Normal, IL 61761, USA
| | - Ayoola Fasawe
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61761, USA
| | - Emmanuel Ayim
- Department of Chemistry, Illinois State University, Normal, IL 61761, USA
| | - Martin F. Engelke
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL 61761, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Microbiology, Illinois State University, Normal, IL 61761, USA
| |
Collapse
|
16
|
Keydel T, Link A. Synthetic Approaches, Properties, and Applications of Acylals in Preparative and Medicinal Chemistry. Molecules 2024; 29:4451. [PMID: 39339447 PMCID: PMC11434492 DOI: 10.3390/molecules29184451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Diesters of geminal diols (R-CH(O-CO-R')2, RR'C(OCOR″)2, etc. with R = H, aryl or alkyl) are termed acylals according to IUPAC recommendations (Rule P-65.6.3.6 Acylals) if the acids involved are carboxylic acids. Similar condensation products can be obtained from various other acidic structures as well, but these related "non-classical acylals", as one might call them, differ in various aspects from classical acylals and will not be discussed in this article. Carboxylic acid diesters of geminal diols play a prominent role in organic chemistry, not only in their application as protective groups for aldehydes and ketones but also as precursors in the total synthesis of natural compounds and in a variety of organic reactions. What is more, acylals are useful as a key structural motif in clinically validated prodrug approaches. In this review, we summarise the syntheses and chemical properties of such classical acylals and show what potentially under-explored possibilities exist in the field of drug design, especially prodrugs, and classify this functional group in medicinal chemistry.
Collapse
Affiliation(s)
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany;
| |
Collapse
|
17
|
Liu L, Wang L, Liu X, Wang B, Guo X, Wang Y, Xu Y, Guan J, Zhao Y. Elucidating the potential of isorhapontigenin in targeting the MgrA regulatory network: a paradigm shift for attenuating MRSA virulence. Antimicrob Agents Chemother 2024; 68:e0061124. [PMID: 39046236 PMCID: PMC11373206 DOI: 10.1128/aac.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024] Open
Abstract
As methicillin-resistant Staphylococcus aureus (MRSA) exhibits formidable resistance to many drugs, the imperative for alternative therapeutic strategies becomes increasingly evident. At the heart of our study is the identification of a novel inhibitor through fluorescence anisotropy assays, specifically targeting the crucial multiple gene regulator A (MgrA) regulatory network in S. aureus. Isorhapontigenin (Iso), a natural compound, exhibits outstanding inhibitory efficacy, modulating bacterial virulence pathways without exerting direct bactericidal activity. This suggests a paradigm shift toward attenuating virulence instead of purely focusing on bacterial elimination. Through comprehensive in vitro and in vivo evaluations, we elucidated the complex interplay between Iso and MgrA, leading to reduced S. aureus adhesion, and overall virulence. At the cellular level, Iso offers significant protection to A549 cells infected with S. aureus, reducing cellular damage. Importantly, Iso augments the chemotaxis of neutrophils, curtailing the immune evasion capabilities of S. aureus. Furthermore, in vivo investigations highlight the notable effectiveness of Iso against MRSA-induced pneumonia and within the Galleria mellonella infection model, underscoring its pivotal role in the evolving realm of antibacterial drug discovery. Significantly, when Iso is used in combination with vancomycin, it outperforms its solo application, indicating a more pronounced therapeutic impact. This seminal research emphasizes Iso's potential as a primary defense against the surge of multidrug-resistant pathogens, heralding new prospects in antimicrobial therapy.
Collapse
Affiliation(s)
- Lihan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yueying Wang
- Department of Orthopedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yueshan Xu
- Department of Orthopedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
| | - Yicheng Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, China
- China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Cao Y, Chen F, Zhu S, Zhu D, Qi H. Staphylococcus aureus infection initiates hypoxia-mediated STIP1 homology and U-box containing protein 1 upregulation to trigger osteomyelitis. Toxicon 2024; 248:108049. [PMID: 39059559 DOI: 10.1016/j.toxicon.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although little is known about the regulatory mechanisms underlying the pathogenesis of osteomyelitis caused by Staphylococcus aureus (S. aureus), hypoxia-inducible factor-1α (HIF-1α) and STIP1 homology and U-box containing protein 1 (STUB1) have been found to be up-regulated in both S. aureus infected MC3T3-E1 cells and in patients with osteomyelitis. HIF-1α directly targets STUB1 to induce its expression. In MC3T3-E1 cells infected with S. aureus, silencing HIF-1α and STUB1 and administering the hypoxia inhibitor IDF-11774 consistently increased the expression of OSX and RUNX2, as well as the levels of alizarin Red S and alkaline phosphatase activity. In a mouse model of osteomyelitis, S. aureus infection elevated HIF-1α expression and serum STUB1 levels. Interleukin (IL)-6, IL-1β, and C-reactive protein levels in serum were reduced after treatment with the hypoxia inhibitor IDF-11774. Following an infection with S. aureus, hypoxia was activated to cause STUB1 overexpression by directly targeting HIF-1α, ultimately causing osteomyelitis symptoms such as osteogenesis and mineralization defected and increased inflammation. This study presents a novel signaling cascade in the pathogenesis of osteomyelitis involving hypoxia/HIF-1α/STUB1. This signaling cascade may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Feng Chen
- Department of Pediatric, Luodian Hospital, Shanghai, China
| | - Suyue Zhu
- Department of Pediatric, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, China
| | - Dongsheng Zhu
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Han Qi
- Department of Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China.
| |
Collapse
|
19
|
Bonini D, Duggan S, Alnahari A, Brignoli T, Strahl H, Massey RC. Lipoteichoic acid biosynthesis by Staphylococcus aureus is controlled by the MspA protein. mBio 2024; 15:e0151224. [PMID: 39037275 PMCID: PMC11323550 DOI: 10.1128/mbio.01512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024] Open
Abstract
Staphylococcus aureus produces a plethora of virulence factors critical to its ability to establish an infection and cause disease. We have previously characterized a small membrane protein, MspA, which has pleiotropic effects on virulence and contributes to S. aureus pathogenicity in vivo. Here we report that mspA inactivation triggers overaccumulation of the essential cell wall component, lipoteichoic acid (LTA), which, in turn, decreases autolytic activity and leads to increased cell size due to a delay in cell separation. We show that MspA directly interacts with the enzymes involved in LTA biosynthesis (LtaA, LtaS, UgtP, and SpsB), interfering with their normal activities. MspA, in particular, interacts with the type I signal peptidase SpsB, limiting its cleavage of LtaS into its active form. These findings suggest that MspA contributes to maintaining a physiological level of LTA in the cell wall by interacting with and inhibiting the activity of SpsB, thereby uncovering a critical role for the MspA protein in regulating cell envelope biosynthesis and pathogenicity.IMPORTANCEThe S. aureus cell envelope, comprising the cytoplasmic membrane, a thick peptidoglycan layer, and the anionic polymers lipoteichoic acid and wall teichoic acids, is fundamental for bacterial growth and division, as well as being the main interface between the pathogen and the host. It has become increasingly apparent that the synthesis and turnover of cell envelope components also affect the virulence of S. aureus. In this study, we show that MspA, an effector of S. aureus virulence, contributes to the maintenance of normal levels of lipoteichoic acid in the cell wall, with implications on cell cycle and size. These findings further our understanding of the connections between envelope synthesis and pathogenicity and suggest that MspA represents a promising target for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Dora Bonini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Seána Duggan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alaa Alnahari
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ruth C. Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Ahmad I, Xuan T, Wang Q, Zhang S, Wang L, Gu J, Qi F, Luan W. Bacterial Lipoteichoic Acid Induces Capsular Contracture by Activating Innate Immune Response. Plast Reconstr Surg 2024; 154:333-342. [PMID: 37699551 DOI: 10.1097/prs.0000000000011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Capsular contracture is attributed to an exaggerated fibrosis response within the capsule and is partly associated with bacterial contamination in situ. However, the cellular mechanisms that initiate this response are unclear. METHODS The authors developed a mouse model of capsular contracture by repeated injection of 10 μg/mL lipoteichoic acid (LTA). The histological changes in the capsule tissue were measured by hematoxylin and eosin, Masson trichrome, and immunohistochemical staining. The expression of cytokines was measured by quantitative reverse transcription polymerase chain reaction. The authors also used pharmacological methods to verify the roles of macrophages and toll-like receptor 2 (TLR2) signaling in this pathological process. RESULTS The authors discovered that repeated LTA injection, at a low concentration, could induce thickening of the capsule tissue. Macrophage infiltration and TLR2/nuclear factor-κB signaling activated in this process could be suppressed by macrophage depletion or TLR2 receptor inhibition. CONCLUSION As TLR2 signal activation was found to cause capsular contracture by inducing macrophage infiltration as a consequence of trace amounts of LTA contamination in situ, this target is helpful for understanding that chronic or repeated subclinical infection can activate capsular contracture. CLINICAL RELEVANCE STATEMENT This finding is of significant importance for understanding that chronic or repeated subclinical infection could activate a persistent immune response and capsular contracture, and provides novel strategies to interfere with the formation of capsular contracture.
Collapse
Affiliation(s)
- Ikram Ahmad
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Tianfan Xuan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
- Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Jiangnan University
| | - Qiang Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Simin Zhang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Lu Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Jianying Gu
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Wenjie Luan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|
21
|
Zhu J, Xie R, Gao R, Zhao Y, Yodsanit N, Zhu M, Burger JC, Ye M, Tong Y, Gong S. Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections. NATURE NANOTECHNOLOGY 2024; 19:1032-1043. [PMID: 38632494 DOI: 10.1038/s41565-024-01648-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice.
Collapse
Affiliation(s)
- Jingcheng Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruixuan Gao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisakorn Yodsanit
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Min Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacobus C Burger
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mingzhou Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yao Tong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Fernandez‐Calvo A, Reifs A, Saa L, Cortajarena AL, De Sancho D, Perez‐Jimenez R. The strongest protein binder is surprisingly labile. Protein Sci 2024; 33:e5030. [PMID: 38864696 PMCID: PMC11168069 DOI: 10.1002/pro.5030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Bacterial adhesins are cell-surface proteins that anchor to the cell wall of the host. The first stage of infection involves the specific attachment to fibrinogen (Fg), a protein found in human blood. This attachment allows bacteria to colonize tissues causing diseases such as endocarditis. The study of this family of proteins is hence essential to develop new strategies to fight bacterial infections. In the case of the Gram-positive bacterium Staphylococcus aureus, there exists a class of adhesins known as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Here, we focus on one of them, the clumping factor A (ClfA), which has been found to bind Fg through the dock-lock-latch mechanism. Interestingly, it has recently been discovered that MSCRAMM proteins employ a catch-bond to withstand forces exceeding 2 nN, making this type of interaction as mechanically strong as a covalent bond. However, it is not known whether this strength is an evolved feature characteristic of the bacterial protein or is typical only of the interaction with its partner. Here, we combine single-molecule force spectroscopy, biophysical binding assays, and molecular simulations to study the intrinsic mechanical strength of ClfA. We find that despite the extremely high forces required to break its interactions with Fg, ClfA is not by itself particularly strong. Integrating the results from both theory and experiments we dissect contributions to the mechanical stability of this protein.
Collapse
Affiliation(s)
- Alba Fernandez‐Calvo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - Antonio Reifs
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - Laura Saa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
| | - Aitziber L. Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- Ikerbasque Foundation for ScienceBilbaoSpain
| | - David De Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, University of the Basque Country (UPV/EHU)San SebastianSpain
- Donostia International Physics Center (DIPC)San SebastianSpain
| | - Raul Perez‐Jimenez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
- Ikerbasque Foundation for ScienceBilbaoSpain
| |
Collapse
|
23
|
Chauhan R, Nate Z, Ike B, Kwabena Adu D, Alake J, Gill AAS, Miya L, Bachheti Thapliyal N, Karpoormath R. One pot fabrication of diamino naphthalene -AuNPs decorated graphene nanoplatform for the MRSA detection in the biological sample. Bioelectrochemistry 2024; 157:108674. [PMID: 38460467 DOI: 10.1016/j.bioelechem.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
Early monitoring of MRSA can effectively mitigate the disease risk by using Penicillin-binding protein 2a (PbP2a) biomarker. Diamino naphthalene-AuNPs decorated graphene (AuNPsGO-DN) nanocomposite was synthesized for a rapid and sensitive immunosensor detecting PbP2a. The synthesized AuNPsGO-DN nanocomposites were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray diffraction spectroscopy (XRD). Electrochemical characterization done with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrical impedance spectroscopy (EIS) techniques. Anti-PbP2a monoclonal antibodies immobilized at AuNPsGO-DN/GCE via covalent bonding. AuNPs enhanced the electrode surface area and the antibodies' loading. Mercaptopropionic acid (MPA) was a linker between the AuNPs and antibodies, orientated the antibodies as opposite to the PbP2a antigen, and improved the sensitivity and specificity. The antiPbP2a/MPA/AuNPsGO-DN/GCE electrode displayed sensitive and selective detection towards the PbP2a antigen in phosphate buffer saline (PBS pH 7.4). The broad linear range from 0.01 to 8000 pg/mL was obtained with LOD of 0.154 pg/mL and 0.0239 pg/mL, respectively. A label-free, simple, and sensitive immunosensor was developed with a 98-106 % recovery rate in spiked biological samples. It shows the potential applicability of the developed immunoelectrode.
Collapse
Affiliation(s)
- Ruchika Chauhan
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Zondi Nate
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Blessing Ike
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Darko Kwabena Adu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - John Alake
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Atal A S Gill
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Lungelo Miya
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Neeta Bachheti Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|
24
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
25
|
Saha S, Barik D, Biswas D. AMPs as Host-Directed Immunomodulatory Agents against Skin Infections Caused by Opportunistic Bacterial Pathogens. Antibiotics (Basel) 2024; 13:439. [PMID: 38786167 PMCID: PMC11117387 DOI: 10.3390/antibiotics13050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 05/25/2024] Open
Abstract
Skin is the primary and largest protective organ of the human body. It produces a number of highly evolved arsenal of factors to counter the continuous assault of foreign materials and pathogens from the environment. One such potent factor is the repertoire of Antimicrobial Peptides (AMPs) that not only directly destroys invading pathogens, but also optimally modulate the immune functions of the body to counter the establishment and spread of infections. The canonical direct antimicrobial functions of these AMPs have been in focus for a long time to design principles for enhanced therapeutics, especially against the multi-drug resistant pathogens. However, in recent times the immunomodulatory functions performed by these peptides at sub-microbicidal concentrations have been a point of major focus in the field of host-directed therapeutics. Such strategies have the added benefit of not having the pathogens develop resistance against the immunomodulatory pathways, since the pathogens exploit these signaling pathways to obtain and survive within the host. Thus, this review summarizes the potent immunomodulatory effect of these AMPs on, specifically, the different host immune cells with the view of providing a platform of information that might help in designing studies to exploit and formulate effective host-directed adjunct therapeutic strategies that would synergies with drug regimens to counter the current diversity of drug-resistant skin opportunistic pathogens.
Collapse
Affiliation(s)
| | | | - Debabrata Biswas
- Institute of Life Sciences, NALCO Square, Bhubaneswar 751023, Odisha, India; (S.S.); (D.B.)
| |
Collapse
|
26
|
Mikkelsen JH, Stødkilde K, Jensen MP, Hansen AG, Wu Q, Lorentzen J, Graversen JH, Andersen GR, Fenton RA, Etzerodt A, Thiel S, Andersen CBF. Trypanosoma brucei Invariant Surface Glycoprotein 75 Is an Immunoglobulin Fc Receptor Inhibiting Complement Activation and Antibody-Mediated Cellular Phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1334-1344. [PMID: 38391367 DOI: 10.4049/jimmunol.2300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Various subspecies of the unicellular parasite Trypanosoma brucei cause sleeping sickness, a neglected tropical disease affecting millions of individuals and domestic animals. Immune evasion mechanisms play a pivotal role in parasite survival within the host and enable the parasite to establish a chronic infection. In particular, the rapid switching of variant surface glycoproteins covering a large proportion of the parasite's surface enables the parasite to avoid clearance by the adaptive immune system of the host. In this article, we present the crystal structure and discover an immune-evasive function of the extracellular region of the T. brucei invariant surface gp75 (ISG75). Structural analysis determined that the ISG75 ectodomain is organized as a globular head domain and a long slender coiled-coil domain. Subsequent ligand screening and binding analysis determined that the head domain of ISG75 confers interaction with the Fc region of all subclasses of human IgG. Importantly, the ISG75-IgG interaction strongly inhibits both activation of the classical complement pathway and Ab-dependent cellular phagocytosis by competing with C1q and host cell FcγR CD32. Our data reveal a novel immune evasion mechanism of T. brucei, with ISG75 able to inactivate the activities of Abs recognizing the parasite surface proteins.
Collapse
Affiliation(s)
| | | | | | | | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Heilskov Graversen
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
27
|
Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-Inspired Smart Antibacterial Materials and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305940. [PMID: 37469232 DOI: 10.1002/adma.202305940] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
28
|
Winstel V, Abt ER, Le TM, Radu CG. Targeting host deoxycytidine kinase mitigates Staphylococcus aureus abscess formation. eLife 2024; 12:RP91157. [PMID: 38512723 PMCID: PMC10957174 DOI: 10.7554/elife.91157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anticancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.
Collapse
Affiliation(s)
- Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection ResearchHannoverGermany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical SchoolHannoverGermany
| | - Evan R Abt
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
29
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
30
|
Tang C, Jing W, Han K, Yang Z, Zhang S, Liu M, Zhang J, Zhao X, Liu Y, Shi C, Chai Q, Li Z, Han M, Wang Y, Fu Z, Zheng Z, Zhao K, Sun P, Zhu D, Chen C, Zhang D, Li D, Ni S, Li T, Cui J, Jiang X. mRNA-Laden Lipid-Nanoparticle-Enabled in Situ CAR-Macrophage Engineering for the Eradication of Multidrug-Resistant Bacteria in a Sepsis Mouse Model. ACS NANO 2024; 18:2261-2278. [PMID: 38207332 DOI: 10.1021/acsnano.3c10109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.
Collapse
Affiliation(s)
- Chunwei Tang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Kun Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhenmei Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Shengchang Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Miaoyan Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jing Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Xiaotian Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chongdeng Shi
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Qihao Chai
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ziyang Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Maosen Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Yan Wang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhipeng Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zuolin Zheng
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Kun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Danqing Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, 4572A Academic Building, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Chen Chen
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong Province 250012, China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong Province 250101, China
| | - Dawei Li
- Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong Province 250101, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, 107 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province 250100, China
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
31
|
Wang P, Fredj Z, Zhang H, Rong G, Bian S, Sawan M. Blocking Superantigen-Mediated Diseases: Challenges and Future Trends. J Immunol Res 2024; 2024:2313062. [PMID: 38268531 PMCID: PMC10807946 DOI: 10.1155/2024/2313062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Superantigens are virulence factors secreted by microorganisms that can cause various immune diseases, such as overactivating the immune system, resulting in cytokine storms, rheumatoid arthritis, and multiple sclerosis. Some studies have demonstrated that superantigens do not require intracellular processing and instated bind as intact proteins to the antigen-binding groove of major histocompatibility complex II on antigen-presenting cells, resulting in the activation of T cells with different T-cell receptor Vβ and subsequent overstimulation. To combat superantigen-mediated diseases, researchers have employed different approaches, such as antibodies and simulated peptides. However, due to the complex nature of superantigens, these approaches have not been entirely successful in achieving optimal therapeutic outcomes. CD28 interacts with members of the B7 molecule family to activate T cells. Its mimicking peptide has been suggested as a potential candidate to block superantigens, but it can lead to reduced T-cell activity while increasing the host's infection risk. Thus, this review focuses on the use of drug delivery methods to accurately target and block superantigens, while reducing the adverse effects associated with CD28 mimic peptides. We believe that this method has the potential to provide an effective and safe therapeutic strategy for superantigen-mediated diseases.
Collapse
Affiliation(s)
- Pengbo Wang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| |
Collapse
|
32
|
Kulshrestha M, Tiwari M, Tiwari V. Bacteriophage therapy against ESKAPE bacterial pathogens: Current status, strategies, challenges, and future scope. Microb Pathog 2024; 186:106467. [PMID: 38036110 DOI: 10.1016/j.micpath.2023.106467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The ESKAPE pathogens are the primary threat due to their constant spread of drug resistance worldwide. These pathogens are also regarded as opportunistic pathogens and could potentially cause nosocomial infections. Most of the ESKAPE pathogens have developed resistance to almost all the antibiotics that are used against them. Therefore, to deal with antimicrobial resistance, there is an urgent requirement for alternative non-antibiotic strategies to combat this rising issue of drug-resistant organisms. One of the promising alternatives to this scenario is implementing bacteriophage therapy. This under-explored mode of treatment in modern medicine has posed several concerns, such as preferable phages for the treatment, impact on the microbiome (or gut microflora), dose optimisation, safety, etc. The review will cover a rationale for phage therapy, clinical challenges, and propose phage therapy as an effective therapeutic against bacterial coinfections during pandemics. This review also addresses the expected uncertainties for administering the phage as a treatment against the ESKAPE pathogens and the advantages of using lytic phage over temperate, the immune response to phages, and phages in combinational therapies. The interaction between bacteria and bacteriophages in humans and countless animal models can also be used to design novel and futuristic therapeutics like personalised medicine or bacteriophages as anti-biofilm agents. Hence, this review explores different aspects of phage therapy and its potential to emerge as a frontline therapy against the ESKAPE bacterial pathogen.
Collapse
Affiliation(s)
- Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
33
|
Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Expert Rev Anti Infect Ther 2024; 22:87-101. [PMID: 38180805 DOI: 10.1080/14787210.2024.2303018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Winstel V, Abt ER, Le TM, Radu CG. Targeting host deoxycytidine kinase mitigates Staphylococcus aureus abscess formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553822. [PMID: 37645972 PMCID: PMC10462150 DOI: 10.1101/2023.08.18.553822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anti-cancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.
Collapse
Affiliation(s)
- Volker Winstel
- Research Group Pathogenesis of Bacterial Infections; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Evan R. Abt
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| | - Thuc M. Le
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, United States of America
| |
Collapse
|
35
|
Chen Y, Ye Z, Zhen W, Zhang L, Min X, Wang Y, Liu F, Su M. Design and synthesis of broad-spectrum antimicrobial amphiphilic peptidomimetics to combat drug-resistance. Bioorg Chem 2023; 140:106766. [PMID: 37572534 DOI: 10.1016/j.bioorg.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The gradual depletion of antibiotic discovery pipeline makes the antibiotic resistance a difficult clinical problem and a global health emergency. The membrane-active antimicrobial peptides (AMPs) attracted much attention due to a lower tendency to bacterial resistance than traditional antibiotics. However, some immanent drawbacks of AMPs may hamper their application in combating antibiotic resistance in the long run, such as susceptible to enzymatic degradation and low cell permeability. Herein, we report the design and synthesis of a novel series of amphiphilic peptidomimetics, from which we identified compounds that exhibited potent antimicrobial activity against a panel of clinically relevant Gram-positive and Gram-negative bacteria strains. The most potent compound 20 (SD-110-12) is able to kill intracellular bacterial pathogens and prevent the development of bacterial resistance under the tested conditions by targeting cell membranes. Additionally, compound 20 (SD-110-12) obtains good in vivo efficacy that is comparative to vancomycin by eradicating MRSA and suppressing inflammation in a mice infected skin wound model, demonstrating its promising therapeutic potential.
Collapse
Affiliation(s)
- Yating Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenteng Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xiangyang Min
- Department of Clinical Laboratory Medicine, Yangpu Hospital of Tongji University, Shanghai 200000, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
36
|
Friot A, Djebali S, Valsesia S, Parroche P, Dubois M, Baude J, Vandenesch F, Marvel J, Leverrier Y. Antigen specific activation of cytotoxic CD8 + T cells by Staphylococcus aureus infected dendritic cells. Front Cell Infect Microbiol 2023; 13:1245299. [PMID: 37953797 PMCID: PMC10639145 DOI: 10.3389/fcimb.2023.1245299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathogen associated with a wide variety of diseases, from minor to life-threatening infections. Antibiotic-resistant strains have emerged, leading to increasing concern about the control of S. aureus infections. The development of vaccines may be one way to overcome these resistant strains. However, S. aureus ability to internalize into cells - and thus to form a reservoir escaping humoral immunity - is a challenge for vaccine development. A role of T cells in the elimination of persistent S. aureus has been established in mice but it remains to be established if CD8+ T cells could display a cytotoxic activity against S. aureus infected cells. We examined in vitro the ability of CD8+ T cells to recognize and kill dendritic cells infected with S. aureus. We first evidenced that both primary mouse dendritic cells and DC2.4 cell line can be infected with S. aureus. We then generated a strain of S. aureus expressing a model CD8 epitope and transgenic F5 CD8+ T cells recognizing this model epitope were used as reporter T cells. In response to S. aureus-infected dendritic cells, F5 CD8+ T cells produced IFN-γ in an antigen-specific manner and displayed an increased ability to kill infected cells. Altogether, these results demonstrate that cells infected by S. aureus display bacteria-derived epitopes at their surface that are recognized by CD8+ T cells. This paves the way for the development of CD8+ T cell-based therapies against S. aureus.
Collapse
|
37
|
Hetta HF, Rashed ZI, Ramadan YN, Al-Kadmy IMS, Kassem SM, Ata HS, Nageeb WM. Phage Therapy, a Salvage Treatment for Multidrug-Resistant Bacteria Causing Infective Endocarditis. Biomedicines 2023; 11:2860. [PMID: 37893232 PMCID: PMC10604041 DOI: 10.3390/biomedicines11102860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Infective endocarditis (IE) is defined as an infection of the endocardium, or inner surface of the heart, most frequently affecting the heart valves or implanted cardiac devices. Despite its rarity, it has a high rate of morbidity and mortality. IE generally occurs when bacteria, fungi, or other germs from another part of the body, such as the mouth, spread through the bloodstream and attach to damaged areas in the heart. The epidemiology of IE has changed as a consequence of aging and the usage of implantable cardiac devices and heart valves. The right therapeutic routes must be assessed to lower complication and fatality rates, so this requires early clinical suspicion and a fast diagnosis. It is urgently necessary to create new and efficient medicines to combat multidrug-resistant bacterial (MDR) infections because of the increasing threat of antibiotic resistance on a worldwide scale. MDR bacteria that cause IE can be treated using phages rather than antibiotics to combat MDR bacterial strains. This review will illustrate how phage therapy began and how it is considered a powerful potential candidate for the treatment of MDR bacteria that cause IE. Furthermore, it gives a brief about all reported clinical trials that demonstrated the promising effect of phage therapy in combating resistant bacterial strains that cause IE and how it will become a hope in future medicine.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Z.I.R.); (Y.N.R.)
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq
| | - Soheir M. Kassem
- Department of Internal Medicine and Critical Care, Faculty of Medicine, Assuit University, Assiut 71515, Egypt;
| | - Hesham S. Ata
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Qassim, Saudi Arabia;
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
38
|
Bertoglio F, Ko YP, Thomas S, Giordano L, Scommegna FR, Meier D, Polten S, Becker M, Arora S, Hust M, Höök M, Visai L. Antibodies to coagulase of Staphylococcus aureus crossreact to Efb and reveal different binding of shared fibrinogen binding repeats. Front Immunol 2023; 14:1221108. [PMID: 37828992 PMCID: PMC10565355 DOI: 10.3389/fimmu.2023.1221108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 10/14/2023] Open
Abstract
Staphylococcus aureus pathology is caused by a plethora of virulence factors able to combat multiple host defence mechanisms. Fibrinogen (Fg), a critical component in the host coagulation cascade, plays an important role in the pathogenesis of this bacterium, as it is the target of numerous staphylococcal virulence proteins. Amongst its secreted virulence factors, coagulase (Coa) and Extracellular fibrinogen-binding protein (Efb) share common Fg binding motives and have been described to form a Fg shield around staphylococcal cells, thereby allowing efficient bacterial spreading, phagocytosis escape and evasion of host immune system responses. Targeting these proteins with monoclonal antibodies thus represents a new therapeutic option against S. aureus. To this end, here we report the selection and characterization of fully human, sequence-defined, monoclonal antibodies selected against the C-terminal of coagulase. Given the functional homology between Coa and Efb, we also investigated if the generated antibodies bound the two virulence factors. Thirteen unique antibodies were isolated from naïve antibodies gene libraries by antibody phage display. As anticipated, most of the selected antibodies showed cross-recognition of these two proteins and among them, four were able to block the interaction between Coa/Efb and Fg. Furthermore, our monoclonal antibodies could interact with the two main Fg binding repeats present at the C-terminal of Coa and distinguish them, suggesting the presence of two functionally different Fg-binding epitopes.
Collapse
Affiliation(s)
- Federico Bertoglio
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
- School of Advanced Studies IUSS Pavia, Pavia, Italy
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Sheila Thomas
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Liliana Giordano
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
| | - Francesca Romana Scommegna
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
| | - Doris Meier
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Polten
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marlies Becker
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Michael Hust
- Department of Medical Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), Unitá di Ricerca (UdR) Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Pavia, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, Istituti Clinici Scientifici (ICS) Maugeri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Pavia, Italy
| |
Collapse
|
39
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
40
|
Parente R, Fumagalli MR, Di Claudio A, Cárdenas Rincón CL, Erreni M, Zanini D, Iapichino G, Protti A, Garlanda C, Rusconi R, Doni A. A Multilayered Imaging and Microfluidics Approach for Evaluating the Effect of Fibrinolysis in Staphylococcus aureus Biofilm Formation. Pathogens 2023; 12:1141. [PMID: 37764949 PMCID: PMC10534389 DOI: 10.3390/pathogens12091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The recognition of microbe and extracellular matrix (ECM) is a recurring theme in the humoral innate immune system. Fluid-phase molecules of innate immunity share regulatory roles in ECM. On the other hand, ECM elements have immunological functions. Innate immunity is evolutionary and functionally connected to hemostasis. Staphylococcus aureus (S. aureus) is a major cause of hospital-associated bloodstream infections and the most common cause of several life-threatening conditions such as endocarditis and sepsis through its ability to manipulate hemostasis. Biofilm-related infection and sepsis represent a medical need due to the lack of treatments and the high resistance to antibiotics. We designed a method combining imaging and microfluidics to dissect the role of elements of the ECM and hemostasis in triggering S. aureus biofilm by highlighting an essential role of fibrinogen (FG) in adhesion and formation. Furthermore, we ascertained an important role of the fluid-phase activation of fibrinolysis in inhibiting biofilm of S. aureus and facilitating an antibody-mediated response aimed at pathogen killing. The results define FG as an essential element of hemostasis in the S. aureus biofilm formation and a role of fibrinolysis in its inhibition, while promoting an antibody-mediated response. Understanding host molecular mechanisms influencing biofilm formation and degradation is instrumental for the development of new combined therapeutic approaches to prevent the risk of S. aureus biofilm-associated diseases.
Collapse
Affiliation(s)
- Raffaella Parente
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Maria Rita Fumagalli
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Alessia Di Claudio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Cindy Lorena Cárdenas Rincón
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Marco Erreni
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Damiano Zanini
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Giacomo Iapichino
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Andrea Doni
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
41
|
Nappi F, Avtaar Singh SS. Host-Bacterium Interaction Mechanisms in Staphylococcus aureus Endocarditis: A Systematic Review. Int J Mol Sci 2023; 24:11068. [PMID: 37446247 PMCID: PMC10341754 DOI: 10.3390/ijms241311068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococci sp. are the most commonly associated pathogens in infective endocarditis, especially within high-income nations. This along with the increasing burden of healthcare, aging populations, and the protracted infection courses, contribute to a significant challenge for healthcare systems. A systematic review was conducted using relevant search criteria from PubMed, Ovid's version of MEDLINE, and EMBASE, and data were tabulated from randomized controlled trials (RCT), observational cohort studies, meta-analysis, and basic research articles. The review was registered with the OSF register of systematic reviews and followed the PRISMA reporting guidelines. Thirty-five studies met the inclusion criteria and were included in the final systematic review. The role of Staphylococcus aureus and its interaction with the protective shield and host protection functions was identified and highlighted in several studies. The interaction between infective endocarditis pathogens, vascular endothelium, and blood constituents was also explored, giving rise to the potential use of antiplatelets as preventative and/or curative agents. Several factors allow Staphylococcus aureus infections to proliferate within the host with numerous promoting and perpetuating agents. The complex interaction with the hosts' innate immunity also potentiates its virulence. The goal of this study is to attain a better understanding on the molecular pathways involved in infective endocarditis supported by S. aureus and whether therapeutic avenues for the prevention and treatment of IE can be obtained. The use of antibiotic-treated allogeneic tissues have marked antibacterial action, thereby becoming the ideal substitute in native and prosthetic valvular infections. However, the development of effective vaccines against S. aureus still requires in-depth studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
42
|
Wu Y, Pernet E, Touqui L. Modulation of Airway Expression of the Host Bactericidal Enzyme, sPLA2-IIA, by Bacterial Toxins. Toxins (Basel) 2023; 15:440. [PMID: 37505708 PMCID: PMC10467128 DOI: 10.3390/toxins15070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Host molecules with antimicrobial properties belong to a large family of mediators including type-IIA secreted phospholipase A2 (sPLA2-IIA). The latter is a potent bactericidal agent with high selectivity against Gram-positive bacteria, but it may also play a role in modulating the host inflammatory response. However, several pathogen-associated molecular patterns (PAMPs) or toxins produced by pathogenic bacteria can modulate the levels of sPLA2-IIA by either inducing or inhibiting its expression in host cells. Thus, the final sPLA2-IIA concentration during the infection process is determined by the orchestration between the levels of toxins that stimulate and those that downregulate the expression of this enzyme. The stimulation of sPLA2-IIA expression is a process that participates in the clearance of invading bacteria, while inhibition of this expression highlights a mechanism by which certain bacteria can subvert the immune response and invade the host. Here, we will review the major functions of sPLA2-IIA in the airways and the role of bacterial toxins in modulating the expression of this enzyme. We will also summarize the major mechanisms involved in this modulation and the potential consequences for the pulmonary host response to bacterial infection.
Collapse
Affiliation(s)
- Yongzheng Wu
- Unité de Biologie Cellulaire de l’Infection Microbionne, CNRS UMR3691, Institut Pasteur, Université de Paris Cité, 75015 Paris, France;
| | - Erwan Pernet
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Lhousseine Touqui
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
- Institut Pasteur, Université de Paris Cité, Mucoviscidose et Bronchopathies Chroniques, 75015 Paris, France
| |
Collapse
|
43
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
44
|
Ioannou P, Baliou S, Samonis G. Bacteriophages in Infectious Diseases and Beyond-A Narrative Review. Antibiotics (Basel) 2023; 12:1012. [PMID: 37370331 PMCID: PMC10295561 DOI: 10.3390/antibiotics12061012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of antibiotics has revolutionized medicine and has changed medical practice, enabling successful fighting of infection. However, quickly after the start of the antibiotic era, therapeutics for infectious diseases started having limitations due to the development of antimicrobial resistance. Since the antibiotic pipeline has largely slowed down, with few new compounds being produced in the last decades and with most of them belonging to already-existing classes, the discovery of new ways to treat pathogens that are resistant to antibiotics is becoming an urgent need. To that end, bacteriophages (phages), which are already used in some countries in agriculture, aquaculture, food safety, and wastewater plant treatments, could be also used in clinical practice against bacterial pathogens. Their discovery one century ago was followed by some clinical studies that showed optimistic results that were limited, however, by some notable obstacles. However, the rise of antibiotics during the next decades left phage research in an inactive status. In the last decades, new studies on phages have shown encouraging results in animals. Hence, further studies in humans are needed to confirm their potential for effective and safe treatment in cases where there are few or no other viable therapeutic options. This study reviews the biology and applications of phages for medical and non-medical uses in a narrative manner.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
45
|
Li Z, Zhang S, Fu Z, Liu Y, Man Z, Shi C, Tang C, Chen C, Chai Q, Yang Z, Zhang J, Zhao X, Xu H, Han M, Wang Y, Liao Z, Yu G, Shi B, Zhao K, Li W, Jiang X. Surficial nano-deposition locoregionally yielding bactericidal super CAR-macrophages expedites periprosthetic osseointegration. SCIENCE ADVANCES 2023; 9:eadg3365. [PMID: 37256944 PMCID: PMC10413653 DOI: 10.1126/sciadv.adg3365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/20/2023] [Indexed: 06/02/2023]
Abstract
Tracking and eradicating Staphylococcus aureus in the periprosthetic microenvironment are critical for preventing periprosthetic joint infection (PJI), yet effective strategies remain elusive. Here, we report an implant nanoparticle coating that locoregionally yields bactericidal super chimeric antigen receptor macrophages (CAR-MΦs) to prevent PJI. We demonstrate that the plasmid-laden nanoparticle from the coating can introduce S. aureus-targeted CAR genes and caspase-11 short hairpin RNA (CASP11 shRNA) into macrophage nuclei to generate super CAR-MΦs in mouse models. CASP11 shRNA allowed mitochondria to be recruited around phagosomes containing phagocytosed bacteria to deliver mitochondria-generated bactericidal reactive oxygen species. These super CAR-MΦs targeted and eradicated S. aureus and conferred robust bactericidal immunologic activity at the bone-implant interface. Furthermore, the coating biodegradability precisely matched the bone regeneration process, achieving satisfactory osteogenesis. Overall, our work establishes a locoregional treatment strategy for priming macrophage-specific bactericidal immunity with broad application in patients suffering from multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Ziyang Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Shengchang Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhipeng Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ying Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Zhentao Man
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Chongdeng Shi
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chunwei Tang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Chen Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Qihao Chai
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
| | - Zhenmei Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Jing Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Xiaotian Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Hailun Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Maosen Han
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Yan Wang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Ziyang Liao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kun Zhao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| | - Wei Li
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province 250021, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
46
|
Fungo GBN, Uy JCW, Porciuncula KLJ, Candelario CMA, Chua DPS, Gutierrez TAD, Clokie MRJ, Papa DMD. "Two Is Better Than One": The Multifactorial Nature of Phage-Antibiotic Combinatorial Treatments Against ESKAPE-Induced Infections. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:55-67. [PMID: 37350995 PMCID: PMC10282822 DOI: 10.1089/phage.2023.0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Phage-antibiotic synergy (PAS) has been extensively explored over the past decade, with the aim of developing more effective treatments against multidrug-resistant organisms. However, it remains unclear how to effectively combine these two approaches. To address this uncertainty, we assessed four main aspects of PAS interactions in this review, seeking to identify commonalities of combining treatments within and between bacterial species. We examined all literature on PAS efficacy toward ESKAPE pathogens and present an analysis of the data in papers focusing on: (1) order of treatment, (2) dose of both phage and antibiotics, (3) mechanism of action, and (4) viability of transfer from in vivo or animal model trials to clinical applications. Our analysis indicates that there is little consistency within phage-antibiotic therapy regimens, suggesting that highly individualized treatment regimens should be used. We propose a set of experimental studies to address these research gaps. We end our review with suggestions on how to improve studies on phage-antibiotic combination therapy to advance this field.
Collapse
Affiliation(s)
- Gale Bernice N. Fungo
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - John Christian W. Uy
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Kristiana Louise J. Porciuncula
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Chiarah Mae A. Candelario
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Deneb Philip S. Chua
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Tracey Antaeus D. Gutierrez
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Donna May D. Papa
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
47
|
Seebach E, Elschner T, Kraus FV, Souto-Carneiro M, Kubatzky KF. Bacterial and Metabolic Factors of Staphylococcal Planktonic and Biofilm Environments Differentially Regulate Macrophage Immune Activation. Inflammation 2023:10.1007/s10753-023-01824-3. [PMID: 37212952 PMCID: PMC10359233 DOI: 10.1007/s10753-023-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023]
Abstract
Biofilm formation is a leading cause for chronic implant-related bone infections as biofilms shield bacteria against the immune system and antibiotics. Additionally, biofilms generate a metabolic microenvironment that shifts the immune response towards tolerance. Here, we compared the impact of the metabolite profile of bacterial environments on macrophage immune activation using Staphylococcus aureus (SA) and epidermidis (SE) conditioned media (CM) of planktonic and biofilm cultures. The biofilm environment had reduced glucose and increased lactate concentrations. Moreover, the expression of typical immune activation markers on macrophages was reduced in the biofilm environment compared to the respective planktonic CM. However, all CM caused a predominantly pro-inflammatory macrophage cytokine response with a comparable induction of Tnfa expression. In biofilm CM, this was accompanied by higher levels of anti-inflammatory Il10. Planktonic CM, on the other hand, induced an IRF7 mediated Ifnb gene expression which was absent in the biofilm environments. For SA but not for SE planktonic CM, this was accompanied by IRF3 activation. Stimulation of macrophages with TLR-2/-9 ligands under varying metabolic conditions revealed that, like in the biofilm setting, low glucose concentration reduced the Tnfa to Il10 mRNA ratio. However, the addition of extracellular L-lactate but not D-lactate increased the Tnfa to Il10 mRNA ratio upon TLR-2/-9 stimulation. In summary, our data indicate that the mechanisms behind the activation of macrophages differ between planktonic and biofilm environments. These differences are independent of the metabolite profiles, suggesting that the production of different bacterial factors is ultimately more important than the concentrations of glucose and lactate in the environment.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Current address: Institute for Cardiovascular Sciences & Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Franziska V Kraus
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Margarida Souto-Carneiro
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
48
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
49
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
50
|
Chianese A, Zannella C, Foglia F, Nastri BM, Monti A, Doti N, Franci G, De Filippis A, Galdiero M. Hylin-a1: A Host Defense Peptide with Antibacterial Potential against Staphylococcus aureus Multi-Resistant Strains. Pharmaceuticals (Basel) 2023; 16:ph16040509. [PMID: 37111266 PMCID: PMC10145825 DOI: 10.3390/ph16040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
In recent years, the resistance of pathogenic microorganisms to common antimicrobial agents has raised to a severe public health problem. The moderate and wise use of antimicrobials and the prevention of infections are the most effective strategies for decreasing the spread and development of resistance. Therefore, the World Health Organization (WHO) has intensified the search for new drugs to fight emerging pathogens. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), play a crucial role in innate immunity, representing one of the first line of defense against microbial attacks. In this study, we evaluated the antibacterial activity of the AMP named Hylin-a1 (derived from the skin of the frog Heleioporus albopunctatus) against Staphylococcus aureus strains. S. aureus represents a commensal bacterium but also the principal causative agent of several human infections, including bacteremia, endocarditis, skin and device-related infections. Hylin-a1 toxicity was evaluated on human keratinocytes; once the non-cytotoxic concentration range was determined, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were analyzed, and time-killing assays were performed to verify the bacteriostatic and/or bactericidal activity of the peptide. We found that Hylin-a1 exerted a bacteriostatic action against most of the tested strains, with 90% inhibition at the concentration of 6.25 μM. Noteworthy, the peptide at a very low concentration (~3 μM) significantly blocked the growth of β-lactam- and methicillin-resistant S. aureus. The levels of interleukin (IL)-1β, IL-6 and IL-8 were quantified through a molecular assay, indicating that the peptide was able also to regulate the inflammatory response following bacterial infection. The effect of Hylin-a1 on S. aureus cell morphology was also evaluated. Altogether, these results indicate the high therapeutic potential of Hylin-a1 against a wide variety of clinical manifestations caused by S. aureus.
Collapse
|