1
|
Li LY, Liang SY, Cai MP, Ge JC, Tan HS, Wang CB, Xu B. Engineered extracellular vesicles as imaging biomarkers and therapeutic applications for urological diseases. Mater Today Bio 2025; 32:101646. [PMID: 40160248 PMCID: PMC11953971 DOI: 10.1016/j.mtbio.2025.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
With the ever-increasing burden of urological diseases, the need for developing novel imaging biomarkers and therapeutics to manage these disorders has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles and widely applied in both diagnostics and therapeutics for many diseases. A growing body of research has demonstrated that EVs can be engineered to enhance their efficiency, specificity, and safety. We systematically examine the strategies for achieving targeted delivery of EVs as well as the techniques for engineering them in this review, with a particular emphasis on cargo loading and transportation. Additionally, this review highlights and summarizes the wide range of imaging biomarkers and therapeutic applications of engineered EVs in the context of urological diseases, emphasizing the potential applications in urological malignancy and kidney diseases.
Collapse
Affiliation(s)
- Liao-Yuan Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Si-Yuan Liang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mao-Ping Cai
- Department of Urology, Cancer Center, Fudan University, Shanghai, China
| | - Jian-Chao Ge
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Song Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng-Bang Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Jin Y, Xu C, Zhu Y, Gu Z. Extracellular vesicle as a next-generation drug delivery platform for rheumatoid arthritis therapy. J Control Release 2025; 381:113610. [PMID: 40058499 DOI: 10.1016/j.jconrel.2025.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation and progressive damage to connective tissue. It is driven by dysregulated cellular homeostasis, often leading to autoimmune destruction and permanent disability in severe cases. Over the past decade, various drug delivery systems have been developed to enable targeted therapies for disease prevention, reduction, or suppression. As an emerging therapeutic platform, extracellular vesicles (EVs) offer several advantages over conventional drug delivery systems, including biocompatibility and low immunogenicity. Consequently, an increasing number of studies have explored EV-based delivery systems in the treatment of RA, leveraging their natural ability to evade phagocytosis, prolong in vivo half-life, and minimize the immunogenicity of therapeutic agents. In this review, we first provide an in-depth overview of the pathogenesis of RA and the current treatment landscape. We then discuss the classification and biological properties of EVs, their potential therapeutic mechanisms, and the latest advancements in EVs as drug delivery platforms for RA therapy. We emphasize the significance of EVs as carriers in RA treatment and their potential to revolutionize therapeutic strategies. Furthermore, we examine key technological innovations and the future trajectory of EV research, focusing on the challenges and opportunities in translating these platforms into clinical practice. Our discussion aims to offer a comprehensive understanding of the current state and future prospects of EV-based therapeutics in RA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yujuan Zhu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Clinical Medicine, Research Center of Immunology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Huang Q, Wang J, Ning H, Liu W, Han X. Exosome isolation based on polyethylene glycol (PEG): a review. Mol Cell Biochem 2025; 480:2847-2861. [PMID: 39702782 DOI: 10.1007/s11010-024-05191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Exosome acts as an outstanding biomarker for ongoing studies, diagnosis and prognosis of multiples diseases. Therefore, the call for economically and efficiently isolating a large number of exosomes is an active area of investigation. However, to date, the challenges including complex isolated procedure, uneconomical equipment, low protein content and distinct loss in the particle number of exosomes etc. still encounter in exosome isolation. Polyethylene glycol (PEG)-induced exosome isolation increasingly attracts wide attention of scientists. PEG precipitation reveals higher performance in the yield of exosomes among multiple common isolation techniques. PEG-based precipitation is a temporarily low-purity, but inexpensive, time-save, labor-less, convenient and high-yield technique to gain exosomes with high biological activities. Hence, the PEG-based exosome isolation approach wins the endorsement of experimental workers. Herein, we summary the existing knowledge on procedures of PEG-based exosomes separation from different biospecimens, the binding process of PEG to exosomes, some notices, demerits, merits of PEG-based exosome isolation, and at last the advantages by combining PEG-precipitation to other techniques for exosome isolation, with a view to eliciting profound insights for investigators who recruit PEG for exosome separation, and advancing references for the standardization of PEG-based exosome isolation in future.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Netti GS, De Luca F, Camporeale V, Khalid J, Leccese G, Troise D, Sanguedolce F, Stallone G, Ranieri E. Liquid Biopsy as a New Tool for Diagnosis and Monitoring in Renal Cell Carcinoma. Cancers (Basel) 2025; 17:1442. [PMID: 40361369 PMCID: PMC12070982 DOI: 10.3390/cancers17091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Renal cell carcinoma (RCC) presents a significant diagnostic challenge, particularly in small renal masses. The search for non-invasive screening methods and biomarkers has directed research toward liquid biopsy, which focuses on microRNAs (miRNAs), exosomes, and circulating tumor cells (CTCs). miRNAs are small non-coding RNA molecules that show considerable dysregulation in RCC, and they have potential for both diagnostic and prognostic applications. Research has highlighted their utility on biofluids, such as plasma, serum, and urine, in detecting RCC and characterizing its subtypes. Promising miRNA signatures have been associated with overall survival, suggesting their potential importance in the management of RCC. Exosomes, which carry a variety of molecular components, including miRNAs, are emerging as valuable biomarkers, whereas CTCs, released from primary tumors into the bloodstream, provide critical information on cancer progression. However, translation of these findings into clinical practice requires additional validation and standardization through large-scale studies and robust evidence. Although there are currently no approved diagnostic tests for RCC, the future potential of liquid biopsy in monitoring, treatment decision-making, and outcome prediction in patients with this disease is significant. This review examined and discussed recent developments in liquid biopsy for RCC, assessing both the strengths and limitations of these approaches for managing this disease.
Collapse
Affiliation(s)
- Giuseppe Stefano Netti
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Federica De Luca
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Valentina Camporeale
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Javeria Khalid
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Giorgia Leccese
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Dario Troise
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Unit of Nephrology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Francesca Sanguedolce
- Unit of Pathology, Department of Clinical and Experimental Medicine, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Giovanni Stallone
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Unit of Nephrology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
- Center for Research and Innovation in Medicine (CREATE), Department of Medical and Surgical Sciences, University of Foggia–University Hospital “Policlinico Riuniti”, Viale Luigi Pinto, 71122 Foggia, Italy
| |
Collapse
|
5
|
Urzì O, Olofsson Bagge R, Crescitelli R. Extracellular vesicles in uveal melanoma - Biological roles and diagnostic value. Cancer Lett 2025; 615:217531. [PMID: 39914771 DOI: 10.1016/j.canlet.2025.217531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Uveal melanoma (UM), which originates from the uveal tract of the eye, is the most common and aggressive intraocular cancer in adults. The detection of genetic markers is crucial for an accurate diagnosis, but this requires tumor biopsies that can be challenging to obtain. Extracellular vesicles (EVs) have emerged as potential biomarkers for UM due to their presence in biological fluids and their ability to carry disease-related biomolecules such as proteins and nucleic acids. Increasing evidence indicates that EVs released from UM cells play crucial roles in UM development, including cancer progression, pre-metastatic niche formation, and metastasis. Moreover, many studies have demonstrated that UM-derived EVs carry proteins and microRNAs that might be used as biomarkers. This review explores the role of EVs in UM, focusing on their biological functions and their potential as diagnostic and prognostic biomarkers of UM. Additionally, current challenges to the use of UM-derived EVs in clinical translation were identified, as well as perspectives and future directions in the field.
Collapse
Affiliation(s)
- Ornella Urzì
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Mao X, Xu H, Liu X, Guan J, Shi J, Yang S. Proteomics of urinary exosomes for discovering novel non-invasive biomarkers of acute myocardial infarction patients. Int J Biol Macromol 2025; 302:140427. [PMID: 39890005 DOI: 10.1016/j.ijbiomac.2025.140427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/08/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Patients with acute myocardial infarction (AMI) can be identified by myocardial enzymes in peripheral blood, but no protein markers have been found in urinary exosomes derived from AMI patients. METHODS In the present study, a comprehensive proteomics analysis of urinary exosomes derived from patients with AMI was performed. Firstly, we employed the outstanding separation method known as EXODUS to isolate urinary exosomes from AMI patients and healthy controls. Then, we characterized urinary exosomes by nanoparticle tracking analysis (NTA), western blotting and transmission electron microscopy (TEM). After that, we identified the protein components of exosomes through label-free proteomics and conducted bioinformatics analysis. RESULT High-quality exosomes were obtained through separation using EXODUS, which could be demonstrated by NTA, Western blotting and TEM. NTA analysis showed that partilce amount in AMI patients was significantly higher than healthy controls. The equal-volume Western blotting experiment indicated that the expression level of classic exosomal markers Alix, heat shock protein90 (HSP90), CD63 and TSG101 (Tumor susceptibility gene101) in AMI patents was obviously stronger than healthy subjects. We first described the protein profiles of urinary exosomes in AMI patients through proteomics. In this study, We have identified 3194 proteins, among which a total of 30 differential proteins were detected between the urinary exosomes of AMI patients and healthy controls. We investigated F2 and OLR1 among identified exosomal proteins significantly elevated in AMI group, whereas F3 and APCS dysregulated in AMI development. CONCLUSIONS F2, F3, OLR1 and APCS are able to distinguish individuals between the AMI group and the healthy controls, and the protein panel represent a novel prospective non-invasive biomarkers for the diagnostic process of acute myocardial infarction.
Collapse
Affiliation(s)
- Xulong Mao
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Hao Xu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoling Liu
- Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jiale Guan
- Basic Medical College of Wenzhou Medical University, Zhejiang 325035, China
| | - Jiachong Shi
- Department of Cardiovascular Medicine, Qianjiang Central Hospital of Hubei Province, Qianjiang City 434000, Hubei, China
| | - Shaning Yang
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China
| |
Collapse
|
7
|
Wu F, Li Y, Zhang L, Zhou Y, Xu Y, Cai Y, Ding L, Zhang L, Wang Y, Qian H. Real-Time Isolation and Versatile Detection for Extracellular Vesicles Based on Ordered Porous Layer Interferometry. Anal Chem 2025; 97:5798-5807. [PMID: 40045887 DOI: 10.1021/acs.analchem.4c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Extracellular vesicles (EVs) are progressively becoming novel instruments for clinical therapeutics and liquid biopsies. Due to the complexity of biofluids and the physicochemical properties of EVs, the biological activity, velocity, and efficiency of EV isolation are always unsatisfying. Here, we present a real-time isolation approach of EVs derived from cells and urine using ordered porous layer interferometry with a silica colloidal crystal film as the sensing substrate, achieving efficiency greater than 90%. The online concentration detection function is performed during the isolation process on the basis of its real-time monitoring characteristic. Using membrane protein markers of urine EVs as targets, this technique has a high diagnostic value for liquid biopsy of prostate cancer. Furthermore, we compared multiple EV membrane protein expression and binding dissociation kinetic data from cells and urine. In summary, this multifunctional approach provides a novel strategy for the rapid EVs isolation, concentration detection, drug target screening, and liquid biopsy of various body fluids.
Collapse
Affiliation(s)
- Feng Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yaoyang Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Linlin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yuchen Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yili Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Youpeng Cai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lingling Ding
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yanfeng Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Fu Y, Liu Q, Yao R, Fu Y, Dai L, Jian W, Zhang W, Li J. Development of LncRNA Biomarkers in Extracellular Vesicle of Amniotic Fluid Associated with Antenatal Hydronephrosis. Biomedicines 2025; 13:668. [PMID: 40149644 PMCID: PMC11940114 DOI: 10.3390/biomedicines13030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/22/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Antenatal hydronephrosis (ANH) is the most common congenital renal and urinary tract anomaly, and parenchymal damage and renal fibrosis due to pathological hydronephrosis are the main causes of end-stage renal disease in children and chronic kidney disease in adults. At present, there is no validated biomarker for ANH, and diagnostic criteria other than prenatal ultrasonography (US) assessment are lacking. Therefore, we assessed to determine if biomarkers extracted from amniotic fluid small extracellular vesicles (sEVs) might be used as ANH diagnosis. Methods: With congenital ureteropelvic junction obstruction (UPJO) as the ultimate diagnosis, 10 pregnant women with Grade III-IV ANH and 10 normal pregnant women were recruited. The sEVs were extracted from amniotic fluid supernatant of all samples. Transcriptomic sequencing of sEVs in the discovery cohort identified the differential expression profiles for ANH. The known differentially expressed lncRNAs (DE-lncRNAs) were assessed by qRT-PCR in the validation cohort. Results: We explored the global RNA expression in sEVs from amniotic fluid. The differential expression profiles of both mRNAs and lncRNAs were related to fetal kidney development. Six known DE-lncRNAs were identified for ANH, and three of those with high expression were verified in more ANH samples. In particular, the upregulated LINC02863 and its target genes were associated with renal development and morphogenesis. The four predicted novel lncRNAs in high expression were also related to mesenchymal morphogenesis and the STAT3 signaling pathway and may play roles in ANH. Conclusions: We identified differentially expressed RNAs of all species in the sEVs from amniotic fluid, and the validated known DE-lncRNAs might serve as promising diagnostic biomarkers for ANH.
Collapse
Affiliation(s)
- Ying Fu
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Q.L.); (R.Y.); (Y.F.); (L.D.); (W.J.); (W.Z.)
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiaoshu Liu
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Q.L.); (R.Y.); (Y.F.); (L.D.); (W.J.); (W.Z.)
| | - Ruojin Yao
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Q.L.); (R.Y.); (Y.F.); (L.D.); (W.J.); (W.Z.)
| | - Yimei Fu
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Q.L.); (R.Y.); (Y.F.); (L.D.); (W.J.); (W.Z.)
| | - Lei Dai
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Q.L.); (R.Y.); (Y.F.); (L.D.); (W.J.); (W.Z.)
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha 410008, China
| | - Wenyan Jian
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Q.L.); (R.Y.); (Y.F.); (L.D.); (W.J.); (W.Z.)
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Q.L.); (R.Y.); (Y.F.); (L.D.); (W.J.); (W.Z.)
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha 410008, China
| | - Jingzhi Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.F.); (Q.L.); (R.Y.); (Y.F.); (L.D.); (W.J.); (W.Z.)
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha 410008, China
| |
Collapse
|
9
|
Singh M, Tiwari PK, Kashyap V, Kumar S. Proteomics of Extracellular Vesicles: Recent Updates, Challenges and Limitations. Proteomes 2025; 13:12. [PMID: 40137841 PMCID: PMC11944546 DOI: 10.3390/proteomes13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles secreted by cells, including exosomes, microvesicles, and apoptotic bodies. Proteomic analyses of EVs, particularly in relation to cancer, reveal specific biomarkers crucial for diagnosis and therapy. However, isolation techniques such as ultracentrifugation, size-exclusion chromatography, and ultrafiltration face challenges regarding purity, contamination, and yield. Contamination from other proteins complicates downstream processing, leading to difficulties in identifying biomarkers and interpreting results. Future research will focus on refining EV characterization for diagnostic and therapeutic applications, improving proteomics tools for greater accuracy, and exploring the use of EVs in drug delivery and regenerative medicine. In this review, we provide a bird's eye view of various challenges, starting with EV isolation methods, yield, purity, and limitations in the proteome analysis of EVs for identifying protein targets.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Prashant Kumar Tiwari
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Vivek Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
- Division of Nephrology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Xie XH, Chen MM, Xu SX, Mei J, Yang Q, Wang C, Lyu H, Gong Q, Liu Z. Isolating Astrocyte-Derived Extracellular Vesicles From Urine. Int J Nanomedicine 2025; 20:2475-2484. [PMID: 40027875 PMCID: PMC11872092 DOI: 10.2147/ijn.s492381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Brain-derived extracellular vesicles (BDEVs) can cross the blood-brain barrier and enter the periphery. Therefore, quantifying and analyzing peripherally circulating BDEVs offer a promising approach to directly obtain a window into central nervous system (CNS) pathobiology in vivo. Rapidly evolving CNS diseases require high-frequency sampling, but daily venipuncture of human subjects is highly invasive and usually unfeasible. Methods To address this challenge, here we present a novel method for isolating astrocyte-derived extracellular vesicles from urine (uADEVs), combining urine concentration, ultracentrifugation to isolate total EVs, and then glutamate-aspartate transporter (GLAST) EV isolation using an anti-GLAST antibody. Results The identity of these GLAST+EVs as uADEVs was confirmed by transmission electron microscopy, nanoparticle tracking analysis, western blotting, and assessment of astrocyte-related neurotrophins. Conclusions Leveraging the convenience and availability of urine samples, the non-invasive uADEV approach provides a novel tool that allows high-frequency sampling to investigate rapidly evolving CNS diseases.
Collapse
Affiliation(s)
- Xin-hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Mian-mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Shu-xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Junhua Mei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, People’s Republic of China
| | - Qing Yang
- Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, People’s Republic of China
| | - Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Honggang Lyu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
12
|
Liu AP, Sun TJ, Liu TY, Duan HZ, Jiang XH, Li M, Luo YZ, Feloney MP, Cline M, Zhang YY, Yu AY. Urinary exosomes as promising biomarkers for early kidney disease detection. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2025; 13:1-19. [PMID: 40124571 PMCID: PMC11928825 DOI: 10.62347/dake5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/21/2025] [Indexed: 03/25/2025]
Abstract
Kidney injury and disease pose a significant global health burden. Despite existing diagnostic methods, early detection remains challenging due to the lack of specific molecular markers to identify and stage various kidney lesions. Urinary exosomes, extracellular vesicles secreted by kidney cells, offer a promising solution. These vesicles contain a variety of biomolecules, such as proteins, RNA, and DNA. These biomolecules can reflect the unique physiological and pathological states of the kidney. This review explores the potential of urinary exosomes as biomarkers for a range of kidney diseases, including renal failure, diabetic nephropathy, and renal tumors. By analyzing specific protein alterations within these exosomes, we aim to develop more precise and tailored diagnostic tools to detect kidney diseases at an early stage and improve patient outcomes. While challenges persist in isolating, characterizing, and extracting reliable information from urinary exosomes, overcoming these hurdles is crucial for advancing their clinical application. The successful implementation of urinary exosome-based diagnostics could revolutionize early kidney disease detection, enabling more targeted treatment and improved patient outcomes.
Collapse
Affiliation(s)
- An-Ping Liu
- Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Tian-Jing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Tong-Ying Liu
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Hai-Zhen Duan
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Xu-Heng Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Yuan-Ze Luo
- Dejiang County Ethnic Traditional Chinese Medicine HospitalZunyi 563003, Guizhou, China
| | - Michael P Feloney
- Department of Urology, School of Medicine, Creighton University School of MedicineOmaha, NE, USA
| | - Mark Cline
- Department of Pathology, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - Yuan-Yuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of MedicineWinston-Salem, NC, USA
| | - An-Yong Yu
- Dalian Medical UniversityDalian 116044, Liaoning, China
- Department of Emergency, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| |
Collapse
|
13
|
Huang W, Han G, Wang D, Zhu Y, Wang H, Liu Z, Uvdal K, Geng J, Hu Z, Zhang R, Zhang Z. Lipophilicity Modulation of Fluorescent Probes for In Situ Imaging of Cellular Microvesicle Dynamics. J Am Chem Soc 2025; 147:4147-4158. [PMID: 39749720 DOI: 10.1021/jacs.4c13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Real-time monitoring of dynamic microvesicles (MVs), vesicles associated with living cells, is of great significance in deeply understanding their origin, transport, and function. However, specific labeling MVs poses a challenge due to the lack of unique biomarkers that differentiate them from other cellular compartments. Here, we present a strategy to selectively label MVs by evaluating a series of lipid layer-sensitive cationic indolium-coumarin fluorescent probes (designated as IC-Cn, with n ranging from 1 to 18) that feature varying aliphatic side chains (CnH2n+1). Through in situ cell imaging and analysis, we found that IC-Cn location is highly related to their lipophilicities and the phospholipid layer hydrophobic microenvironments in cellular compartments. In detail, IC-C1 and IC-C2 specifically localize MVs both inside and outside cells. In contrast, IC-C3, IC-C4, and IC-C5 label cellular MVs and mitochondria but with distinct fluorescence lifetimes. Using these probes strategically, we have discovered that, in addition to the biogenesis of MVs from plasma membranes and damaged mitochondria, newly formed MVs can undergo fusion and fission processes. Moreover, mitochondria-derived MVs, beyond being released from parent cells, can fuse with lysosomes to facilitate the removal of dysfunctional mitochondria. The work not only provides new insights into MV physiology but also inspires the design strategies for probes used in specific labeling in cell studies.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yingzhong Zhu
- School of Materials and Chemical Engineering, Chuzhou University, Chu Zhou, Anhui 239000, China
| | - Hui Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Junlong Geng
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
14
|
Zhang Y, Chen F, Cao Y, Zhang H, Zhao L, Xu Y. Identifying diagnostic markers and establishing prognostic model for lung cancer based on lung cancer-derived exosomal genes. Cancer Biomark 2025; 42:18758592251317400. [PMID: 40179422 DOI: 10.1177/18758592251317400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Background: Lung cancer (LC) is the most common malignancy and the leading cause of cancer death. LC-derived exosomes have been found to play a critical role in tumor initiation, progression, metastasis and drug resistance. Therefore, the objective of this study is to identify prognostic markers based on lung cancer-derived exosomes in patients with different subtypes of lung cancer, including small cell lung cancer (SCLC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and large cell carcinoma (LCC). Additionally, we aim to develop corresponding prognostic models to predict the outcomes of these patients. Methods: In this study, the mRNAs information about LC-derived exosomes was collected from Vesiclependia database, and the mRNAs data of LCC, LUAD, LUSC and LCC tumors and paracancerous tissues was obtained from the GEO database and UCSC database. The prognostic models based on exosomes-related differential expression genes (ExoDEGs) by univariate Cox, LASSO, and multivariate Cox regression analyses. The independent prognostic value of the risk model was systematically analyzed. Results: A LUAD prognostic risk model of 12 ExoDEGs (CDH17, DAAM2, FKBP3, FLNC, GSTM2, PGAM4, HPCAL1, FERMT2, LYPD1, SNRNP70, KIR3DL2 and GPX3) and a LUSC prognostic risk model of 7 ExoDEGs (FGA, ERH, HID1, CSNK2A1, SLC7A5, ACOT7 and FUNDC1) were constructed. Kaplan-Meier curve, ROC curve and stratification survival analysis confirmed that the LUAD and LUSC risk models both possessed reliable predictive value for the prognosis of LUAD and LUSC patients. The expression level of ExoDEGs for building the LUAD and LUSC risk models is significantly correlated with immunosuppressive activity of patients, and the immunosuppressive activity is lower in the high-risk groups. Conclusions: We established a LUAD prognostic model with 12 ExoDEGs and a LUSC prognostic model with 7 ExoDEGs, which can be used as independent prognostic indicators for patients LUAD and LUSC. The identified ExoDEGs have the potential to be as prognostic markers and may also serve as novel candidate targets for the treatment of LUAD and LUSC.
Collapse
Affiliation(s)
- Yongxiang Zhang
- Department of Respiratory and Critical Care Medicine, Tianjin chest Hospital, Tianjin, China
| | - Feng Chen
- Department of Thoracic surgery, Tianjin chest Hospital, Tianjin, China
| | - Yuqi Cao
- Department of Thoracic surgery, Tianjin chest Hospital, Tianjin, China
| | - Hao Zhang
- Department of Thoracic surgery, Tianjin chest Hospital, Tianjin, China
| | - Lingling Zhao
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Yijun Xu
- Department of Thoracic surgery, Tianjin chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Bavafa A, Izadpanahi M, Hosseini E, Hajinejad M, Abedi M, Forouzanfar F, Sahab-Negah S. Exosome: an overview on enhanced biogenesis by small molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03762-9. [PMID: 39862264 DOI: 10.1007/s00210-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are extracellular vesicles that received attention for their potential use in the treatment of various injuries. They communicate intercellularly by transferring genetic and bioactive molecules from parent cells. Although exosomes hold immense promise for treating neurodegenerative and oncological diseases, their actual clinical use is very limited because of their biogenesis and secretion. Recent studies have shown that small molecules can significantly enhance exosome biogenesis, thereby remarkably improving yield, functionality, and therapeutic effects. These molecules modulate critical pathways toward optimum exosome production in a mode that is either ESCRT dependent or ESCRT independent. Improved exosome biogenesis may provide new avenues for targeted cancer therapy, neuroprotection in neurodegenerative diseases, and regenerative medicine in wound healing. This review explores the role of small molecules in enhancing exosome biogenesis and secretion, highlights their underlying mechanisms, and discusses emerging clinical applications. By addressing current challenges and focusing on translational opportunities, this study provides a foundation for advancing cell-free therapies in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Amir Bavafa
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Abedi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
16
|
Xu K, Hao Y, Gao H, Feng H, Chen J, Zhao R, Huang Y. Engineering Peptide-Based Molecular Baits for Targeted Fishing and Protein Profiling of Exosomes as a Liquid Biopsy for Gastrointestinal Adenocarcinoma. Anal Chem 2025; 97:741-748. [PMID: 39810339 DOI: 10.1021/acs.analchem.4c05186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
High-performance isolation of exosomes as a promising liquid biopsy target is of great importance for both fundamental research and clinical applications. This is, however, challenged by the prevalent heterogeneity of exosomes and the highly complex nature of biosamples. Here, we introduce the use of a CD81-targeting peptide as a building block for tailoring molecular baits for exosome isolation and payload analysis in clinical biofluids. To explore the full potential of multivalent interactions, peptide-functionalized affinity interfaces were covalently engineered with varied assembling topology, flexibility, and local density of the recognition motif. Capable of best fitting the surface conformation of CD81 on highly curved exosome membranes, a dual-layered exosome capture affinity interface (Exo-PepTrap2) with tandem bivalent peptide decoration outperforms the monolayered and the branched multivalent architectures. Enabled by the multivalency-enhanced affinity reaction and antifouling ability, Exo-PepTrap2 achieved a high yield and purity for targeted fishing of exosomes in complex cell culture media and clinical urine samples. By integration of Exo-PepTrap2 isolation with mass spectrometry-based proteomic profiling, differentially expressed proteins were efficiently identified in harvested exosomes as potential biomarkers for gastrointestinal adenocarcinoma. This CD81-targeted tandem peptide-functionalized affinity platform provides a new viewpoint for tailoring multivalency-based affinity interfaces and a versatile tool to explore molecular information in exosomes for precise medicine.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Hao
- Department of Geriatrics, Peking University Third Hospital, Beijing 100191, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Lou S, Hu W, Wei P, He D, Fu P, Ding K, Chen Z, Dong Z, Zheng J, Wang K. Artificial Nanovesicles Derived from Cells: A Promising Alternative to Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22-41. [PMID: 39692623 DOI: 10.1021/acsami.4c12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
As naturally secreted vesicles by cells, extracellular vesicles (EVs) play essential roles in modulating cell-cell communication and have significant potential in tissue regeneration, immune regulation, and drug delivery. However, the low yield and uncontrollable heterogeneity of EVs have been obstacles to their widespread translation into clinical practice. Recently, it has been discovered that artificial nanovesicles (NVs) produced by cell processing can inherit the components and functions of the parent cells and possess similar structures and functions to EVs, with significantly higher yields and more flexible functionalization, making them a powerful complement to natural EVs. This review focuses on recent advances in the research of artificial NVs as replacements for natural EVs. We provide an overview comparing natural EVs and artificial NVs and summarize the top-down preparation strategies of NVs. The applications of NVs prepared from stem cells, differentiated cells, and engineered cells are presented, as well as the latest advances in NV engineering. Finally, the main challenges of artificial NVs are discussed.
Collapse
Affiliation(s)
- Saiyun Lou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Wei Hu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Pengyao Wei
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Dongdong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejian Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhenyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
19
|
Jindal N, Sharma P, Punia S, Dass M, Anthwal D, Gupta RK, Bhalla M, Singhal R, Behera A, Yadav R, Sethi S, Dhooria S, Aggarwal AN, Haldar S. Utility of pleural fluid-derived extracellular vesicles as a source of Mycobacterium tuberculosis antigens MPT51 and MPT64 for pleural TB diagnosis: a proof-of-concept study. Tuberculosis (Edinb) 2025; 150:102578. [PMID: 39647431 DOI: 10.1016/j.tube.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/22/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024]
Abstract
Extracellular vesicles (EVs) have recently emerged as a source of microbe-specific biomarkers for disease diagnosis. In the present study, we evaluated the utility of pleural fluid-derived extracellular vesicles (pEVs) as a source of Mycobacterium tuberculosis (M. tb.) antigens for pleural TB (pTB) diagnosis. EVs were isolated from pleural fluid (PF) samples and were characterized by scanning electron microscopy, and immunoblotting by targeting CD63 and LAMP2 markers. Antigen-detection ELISAs were developed for 2 M.tb.-specific antigens, MPT51 and MPT64 in pEVs (pEV-ELISA) and direct PF samples (PF-ELISA), and were evaluated on n = 86 samples in a blinded manner. Cut-off values were calculated by ROC-curve analysis to achieve 90 % (95%CI:73.47-97.89) and 86.67 % (95%CI:69.28-96.24) specificity for MPT51 and MPT64 pEV-ELISA respectively. The sensitivity of pEV-ELISA was 71.43 % (95%CI; 29.04-96.33) for MPT51 antigen and 57.14 % (95%CI; 18.41-90.1) for MPT64 antigen in the 'Definite' pTB group, while in the 'Definite and Probable' pTB group, the sensitivity was 62.86 % (95%CI:44.92-78.53) for MPT51 and 65.71 % (95%CI:47.79-80.87) for MPT64. The performance of PF-ELISA was sub-optimal, with 28.57 % (95%CI:3.67-70.96) and 14.29 % (95%CI:0.36-57.87) sensitivity for MPT51 and MPT64 in 'Definite' pTB group respectively. We conclude that M. tb.-antigens are concentrated in the EV-fraction of PF samples and EVs can be utilized for antigen-detection assays for pTB diagnosis.
Collapse
Affiliation(s)
- Neha Jindal
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pratibha Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sachin Punia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manisha Dass
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Anthwal
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Kumar Gupta
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manpreet Bhalla
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Ritu Singhal
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Ashish Behera
- Department of Internal Medicine, PGIMER, Chandigarh, India
| | - Rakesh Yadav
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Sunil Sethi
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | | | | | - Sagarika Haldar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
20
|
Wang Y, Xiong J, Ouyang K, Ling M, Luo J, Sun J, Xi Q, Chen T, Zhang Y. Extracellular vesicles: From large-scale production and engineering to clinical applications. J Tissue Eng 2025; 16:20417314251319474. [PMID: 40322740 PMCID: PMC12048759 DOI: 10.1177/20417314251319474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising strategy for treating a wide spectrum of pathologies, as they can deliver their cargo to recipient cells and regulate the signaling pathway of these cells to modulate their fate. Despite the great potential of EVs in clinical applications, their low yield and the challenges of cargo loading remain significant obstacles, hindering their transition from experimental research to clinical practice. Therefore, promoting EV release and enhancing EV cargo-loading are promising fields with substantial research potential and broad application prospects. In this review, we summarize the clinical applications of EVs, the methods and technologies for their large-scale production, engineering, and modification, as well as the challenges that must be addressed during their development. We also discuss the future perspectives of this exciting field of research to facilitate its transformation from bench to clinical reality.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiali Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kun Ouyang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingwang Ling
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Buitrago JC, Cruz-Barrera M, Dorsant-Ardón V, Medina C, Hernández-Mejía DG, Beltrán K, Flórez N, Camacho B, Gruber J, Salguero G. Large and small extracellular vesicles from Wharton's jelly MSCs: Biophysics, function, and strategies to improve immunomodulation. Mol Ther Methods Clin Dev 2024; 32:101353. [PMID: 39512906 PMCID: PMC11541841 DOI: 10.1016/j.omtm.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Extracellular vesicles (EVs) have emerged as mediators of immunosuppression and pro-regenerative processes, particularly through mesenchymal stromal cells (MSCs) across various disease models. Despite significant progress, there is still a need for a deeper understanding of EV content and functionality to fully harness their biomedical potential. Moreover, strategies to enhance EV production for clinical scalability are still under development. This study aimed to characterize two distinct types of EV-large EV (lgEV) and small EV (smEV)-secreted by Wharton's jelly MSCs (WJ-MSCs). Strategies were explored to augment both EV production and their immunoregulatory effects. Both lgEV and smEV displayed typical EV markers and demonstrated inhibition of human lymphocyte proliferation. Furthermore, analysis of IsomiR content revealed a pronounced immunomodulating signature within MSC-derived EVs, validated by a dual-fluorescence reporter system. MSC primed with pro-inflammatory cytokines yielded increased production of lgEV and smEV, enhancing their immunomodulatory potency. Finally, genetically engineering WJ-MSC to express CD9 resulted in lgEV and smEV with heightened efficacy in suppressing lymphocyte proliferation. This study successfully isolated, characterized, and demonstrated the potent immunosuppressive effect of WJ-MSC-derived lgEV and smEV. We propose cytokine preconditioning and genetic manipulation as viable strategies to enhance the therapeutic potential of WJ-MSC-derived EV in inflammatory conditions.
Collapse
Affiliation(s)
- July Constanza Buitrago
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
- Curexsys GmbH, Göttingen, Germany
- PhD Biomedical and Biological Sciences Program, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mónica Cruz-Barrera
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Valerie Dorsant-Ardón
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Carlos Medina
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - David G. Hernández-Mejía
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Karl Beltrán
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | - Natalia Flórez
- Faculty of Medicine, Universidad EAN, Medellín, Colombia
| | - Bernardo Camacho
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| | | | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud – IDCBIS, Bogotá, Colombia
| |
Collapse
|
22
|
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, Kulkarni M, Shen B, Singla RK. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156087. [PMID: 39388922 DOI: 10.1016/j.phymed.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plant-derived exosomes (PDEs), are nanoscale vesicles secreted by multivesicular bodies, play pivotal roles in critical biological processes, including gene regulation, cell communication, and immune defense against pathogens. Recognized for their potential health-promoting properties, PDEs are emerging as innovative components in functional nutrition, poised to enhance dietary health benefits. PURPOSE To describe the efficacy of PDEs in nanoform and their application as precision therapy in many disorders. STUDY DESIGN The design of this review was carried out in PICO format using randomized clinical trials and research articles based on in vivo and in vitro studies. METHODS All the relevant clinical and research studies conducted on plant-derived nanovesicle application and efficacy were included, as retrieved from PubMed and Cochrane, after using specific search terms. This review was performed to determine PDEs' efficacy as nanomedicine and precision therapy. Sub-group analysis and primary data were included to determine the relationship with PDEs. RESULT PDEs are extracted from plant materials using sophisticated techniques like precipitation, size exclusion, immunoaffinity capture, and ultracentrifugation, encapsulating vital molecules such as lipids, proteins, and predominantly microRNAs. Although their nutritional impact may be minimal in small quantities, the broader application of PDEs in biomedicine, particularly as vehicles for drug delivery, underscores their significance. They offer a promising strategy to improve the bioavailability and efficacy of therapeutic agents carrying nano-bioactive substances that exhibit anti-inflammatory, antioxidant, cardioprotective, and anti-cancer activities. CONCLUSION PDEs enhance the therapeutic potency of plant-derived phytochemicals, supporting their use in disease prevention and therapy. This comprehensive review explores the multifaceted aspects of PDEs, including their isolation methods, biochemical composition, health implications, and potential to advance medical and nutritional interventions.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M College of Pharmacy, Ahmedabad 380009, Gujrat, India.
| | - Dixa A Vaghela
- Pharmacy section, L.M College of Pharmacy Ahmedabad 380009, Gujrat, India
| | - Rajashri Bezbaruah
- Department of Pharmacology, Dibrugarh University, Dibrugarh 786004, Assam
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India
| | - Mangesh Kulkarni
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India; Department of Pharmaceutics, Gandhinagar Institute of Pharmacy, Gandhinagar University, Moti Bhoyan, Khatraj-Kalol Road 382721, Gujarat, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
23
|
Li X, Wu Y, Jin Y. Exosomal LncRNAs and CircRNAs in lung cancer: Emerging regulators and potential therapeutic targets. Noncoding RNA Res 2024; 9:1069-1079. [PMID: 39022675 PMCID: PMC11254510 DOI: 10.1016/j.ncrna.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Lung cancer remains one of the most prevalent and lethal malignancies globally, characterized by high incidence and mortality rates among all cancers. The delayed diagnosis of lung cancer at intermediate to advanced stages frequently leads to suboptimal treatment outcomes. To improve the management of this disease, it is imperative to identify new, highly sensitive prognostic and diagnostic biomarkers. Exosomes, extracellular vesicles with a lipid-bilayer structure and a size range of 30-150 nm, are pivotal in intercellular communication and play significant roles in lung cancer progression. Non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are highly prevalent within exosomes and play a crucial role in various pathophysiological processes mediated by these extracellular vesicles. Beyond their established functions in miRNA and protein sequestration, these ncRNAs are involved in regulating translation and interactions within exosomes. Numerous studies have highlighted the importance of exosomal lncRNAs and circRNAs in influencing epithelial-mesenchymal transition (EMT), angiogenesis, proliferation, invasion, migration, and metastasis in lung cancer. Due to their unique functional characteristics, these molecules are promising therapeutic targets and biomarkers for diagnosis and prognosis. This review provides a succinct summary of the formation of exosomal lncRNAs and circRNAs, clarifies their biological roles, and thoroughly explains the mechanisms by which they participate in the progression of lung cancer. Finally, we discuss the potential clinical applications and challenges associated with exosomal lncRNAs and circRNAs in lung cancer.
Collapse
Affiliation(s)
- Xia Li
- Center of Molecular Diagnostic, Northern Jiangsu People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| | - Yunbing Wu
- Department of Medicine Laboratory, Northern Jiangsu People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| | - Yue Jin
- Center of Molecular Diagnostic, Northern Jiangsu People's Hospital of Jiangsu Province, Yangzhou, 225001, China
| |
Collapse
|
24
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
25
|
Wilczak M, Surman M, Przybyło M. Towards Understanding the Role of the Glycosylation of Proteins Present in Extracellular Vesicles in Urinary Tract Diseases: Contributions to Cancer and Beyond. Molecules 2024; 29:5241. [PMID: 39598633 PMCID: PMC11596185 DOI: 10.3390/molecules29225241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are a population of nanoscale particles surrounded by a phospholipid bilayer, enabling intercellular transfer of bioactive molecules. Once released from the parental cell, EVs can be found in most biological fluids in the human body and can be isolated from them. For this reason, EVs have significant diagnostic potential and can serve as an excellent source of circulating disease biomarkers. Protein glycosylation plays a key role in many biological processes, and aberrant glycosylation is a hallmark of various diseases. EVs have been shown to carry multiple glycoproteins, but little is known about the specific biological roles of these glycoproteins in the context of EVs. Moreover, specific changes in EV glycosylation have been described for several diseases, including cancers and metabolic, cardiovascular, neurological or kidney diseases. Urine is the richest source of EVs, providing almost unlimited (in terms of volume) opportunities for non-invasive EV isolation. Recent studies have also revealed a pathological link between urinary EV glycosylation and urological cancers, as well as other pathologies of the urinary tract. In this review, we discuss recent research advances in this field and the diagnostic/prognostic potential of urinary EV glycosylation. In addition, we summarize common methods for isolating EVs from urine and techniques used to study their glycosylation.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Lojasiewicza 11 Street, 30-348 Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
| |
Collapse
|
26
|
Hallal SM, Sida LA, Tűzesi Á, Shivalingam B, Sim H, Buckland ME, Satgunaseelan L, Alexander KL. Size matters: Biomolecular compositions of small and large extracellular vesicles in the urine of glioblastoma patients. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70021. [PMID: 39554867 PMCID: PMC11565258 DOI: 10.1002/jex2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The promise of urinary extracellular vesicles (uEVs) in biomarker discovery is emerging. However, the characteristics and compositions of different uEV subpopulations across normal physiological and pathological states require rigorous explication. We recently reported proteomic signatures of small (s)-uEVs (<200 nm membranous nanoparticles) and described putative biomarkers corresponding to the diagnosis, tumour burden and recurrence of the lethal adult primary brain tumour, glioblastoma. Here, we comprehensively characterise uEV populations with significantly different mean and mode particle sizes obtained by differential centrifugation at 100,000 × g (100K-uEVs; smaller) and 17,000 × g (17K-uEVs; larger) using Fourier-transform infrared spectroscopy and quantitative data-independent acquisition mass spectrometry. We show distinct differences in protein and lipid content, prominent protein secondary structures, and proteome distributions between uEV populations that can distinguish glioblastoma patients from healthy controls and correspond to clinically relevant tumour changes (i.e., recurrence and treatment resistance). Among the key findings is a putative seven-protein biomarker panel associated with 17K-uEVs that could distinguish all glioblastoma patients from healthy controls and accurately classify 98.2% of glioblastoma samples. These novel, significant findings demonstrate that both uEV populations offer individual and combined biomarker potential. Further research is warranted to elucidate the complete diagnostic, prognostic, and predictive capabilities of often-neglected 17K-uEV populations.
Collapse
Affiliation(s)
- Susannah M. Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Liam A. Sida
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Ágota Tűzesi
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Brindha Shivalingam
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Neurosurgery DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Hao‐Wen Sim
- Department of Medical OncologyChris O'Brien LifehouseCamperdownNSWAustralia
- NHMRC Clinical Trials CentreThe University of SydneyCamperdownNSWAustralia
- Faculty of Medicine and HealthUniversity of New South WalesKensingtonNSWAustralia
| | - Michael E. Buckland
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| | - Laveniya Satgunaseelan
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- Sydney Medical School, Faculty of Medicine and Health SciencesThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia
- Department of NeuropathologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
- School of Medical SciencesThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
27
|
Mir R, Baba SK, Elfaki I, Algehainy N, Alanazi MA, Altemani FH, Tayeb FJ, Barnawi J, Husain E, Bedaiwi RI, Albalawi IA, Alhujaily M, Mir MM, Almotairi R, Alatwi HE, Albalawi AD. Unlocking the Secrets of Extracellular Vesicles: Orchestrating Tumor Microenvironment Dynamics in Metastasis, Drug Resistance, and Immune Evasion. J Cancer 2024; 15:6383-6415. [PMID: 39513123 PMCID: PMC11540496 DOI: 10.7150/jca.98426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vehicles (EVs) are gaining increasing recognition as central contributors to the intricate landscape of the tumor microenvironment (TME). This manuscript provides an extensive examination of the multifaceted roles played by EVs in shaping the TME, with a particular emphasis on their involvement in metastasis, drug resistance, and immune evasion. Metastasis, the process by which cancer cells disseminate to distant sites, remains a formidable challenge in cancer management. EVs, encompassing exosomes and microvesicles, have emerged as critical participants in this cascade of events. They facilitate the epithelial-to-mesenchymal transition (EMT), foster pre-metastatic niche establishment, and enhance the invasive potential of cancer cells. This manuscript delves into the intricate molecular mechanisms underpinning these processes, underscoring the therapeutic potential of targeting EVs to impede metastasis. Drug resistance represents a persistent impediment to successful cancer treatment. EVs are instrumental in intrinsic and acquired drug resistance, acting as mediators of intercellular communication. They ferry molecules like miRNAs and proteins, which confer resistance to conventional chemotherapy and targeted therapies. This manuscript scrutinizes the diverse strategies employed by EVs in propagating drug resistance while also considering innovative approaches involving EV-based drug delivery systems to counteract this phenomenon. Immune evasion is a hallmark of cancer, and EVs are central in sculpting the immunosuppressive milieu of the TME. Tumor-derived EVs thwart immune responses through various mechanisms, including T cell dysfunction induction, the expansion of regulatory T cells (Tregs), and polarization of macrophages towards an immunosuppressive phenotype. In addition, the manuscript explores the diagnostic potential of EVs as biomarkers and their role as therapeutic agents in immune checkpoint blockade therapies. This manuscript provides a comprehensive overview of EV's pivotal role in mediating intricate interactions within the TME, ultimately influencing cancer progression and therapeutic outcomes. A profound understanding of EV-mediated processes in metastasis, drug resistance, and immune evasion opens up promising avenues for developing innovative therapeutic strategies and identifying valuable biomarkers in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadaf Khursheed Baba
- Watson Crick Center for Molecular Medicine, Islamic University of Science and Technology, J & K, India
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faris Jamal Tayeb
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Eram Husain
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Biochemistry, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan E. Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | |
Collapse
|
28
|
Hayashi K, Takagane K, Itoh G, Kuriyama S, Koyota S, Meguro K, Ling Y, Abé T, Ohashi R, Yashiro M, Mizuno M, Tanaka M. Cell-cell contact-dependent secretion of large-extracellular vesicles from EFNB high cancer cells accelerates peritoneal dissemination. Br J Cancer 2024; 131:982-995. [PMID: 39003372 PMCID: PMC11405516 DOI: 10.1038/s41416-024-02783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Large non-apoptotic vesicles released from the plasma membrane protrusions are classified as large-EVs (LEVs). However, the triggers of LEV secretion and their functions in tumors remain unknown. METHODS Coculture system of cancer cells, peritoneal mesothelial cells (PMCs), and macrophages (MΦs) was conducted to observe cell-cell contact-mediated LEV secretion. Lineage tracing of PMCs was performed using Wt1CreERT2-tdTnu mice to explore the effects of LEVs on PMCs in vivo, and lymphangiogenesis was assessed by qRT-PCR and flow-cytometry. RESULTS In peritoneal dissemination, cancer cells expressing Ephrin-B (EFNB) secreted LEVs upon the contact with PMCs expressing ephrin type-B (EphB) receptors, which degraded mesothelial barrier by augmenting mesothelial-mesenchymal transition. LEVs were incorporated in subpleural MΦs, and these MΦs transdifferentiated into lymphatic endothelial cells (LEC) and integrated into the lymphatic vessels. LEC differentiation was also induced in PMCs by interacting with LEV-treated MΦs, which promoted lymphangiogenesis. Mechanistically, activation of RhoA-ROCK pathway through EFNB reverse signaling induced LEV secretion. EFNBs on LEVs activated EphB forward signaling in PMC and MΦs, activating Akt, ERK and TGF-β1 pathway, which were indispensable for causing MMT and LEC differentiation. LEVs accelerated peritoneal dissemination and lymphatic invasions by cancer cells. Blocking of EFNBs on LEVs using EphB-Fc-fusion protein attenuated these events. CONCLUSIONS EFNBhigh cancer cells scattered LEVs when they attached to PMCs, which augmented the local reactions of PMC and MΦ (MMT and lymphangiogenesis) and exaggerated peritoneal dissemination.
Collapse
Affiliation(s)
- Kaito Hayashi
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Souichi Koyota
- Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kenji Meguro
- Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yiwei Ling
- Medical AI Center, Niigata University School of Medicine, Niigata University Life Innovation Hub, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Tatsuya Abé
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Riuko Ohashi
- Divisions of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8545, Japan
| | - Masaru Mizuno
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
29
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
30
|
Miao X, Wu X, You W, He K, Chen C, Pathak JL, Zhang Q. Tailoring of apoptotic bodies for diagnostic and therapeutic applications:advances, challenges, and prospects. J Transl Med 2024; 22:810. [PMID: 39218900 PMCID: PMC11367938 DOI: 10.1186/s12967-024-05451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Apoptotic bodies (ABs) are extracellular vesicles released during apoptosis and possess diverse biological activities. Initially, ABs were regarded as garbage bags with the main function of apoptotic cell clearance. Recent research has found that ABs carry and deliver various biological agents and are taken by surrounding and distant cells, affecting cell functions and behavior. ABs-mediated intercellular communications are involved in various physiological processes including anti-inflammation and tissue regeneration as well as the pathogenesis of a variety of diseases including cancer, cardiovascular diseases, neurodegeneration, and inflammatory diseases. ABs in biological fluids can be used as a window of altered cellular and tissue states which can be applied in the diagnosis and prognosis of various diseases. The structural and constituent versatility of ABs provides flexibility for tailoring ABs according to disease diagnostic and therapeutic needs. An in-depth understanding of ABs' constituents and biological functions is mandatory for the effective tailoring of ABs including modification of bio membrane and cargo constituents. ABs' tailoring approaches including physical, chemical, biological, and genetic have been proposed for bench-to-bed translation in disease diagnosis, prognosis, and therapy. This review summarizes the updates on ABs tailoring approaches, discusses the existing challenges, and speculates the prospects for effective diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Miao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaojin Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenran You
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Kaini He
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Changzhong Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Qing Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
32
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 PMCID: PMC11351009 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
33
|
Wang B, Xiong Y, Deng X, Wang Y, Gong S, Yang S, Yang B, Yang Y, Leng Y, Li W, Li W. The role of intercellular communication in diabetic nephropathy. Front Immunol 2024; 15:1423784. [PMID: 39238645 PMCID: PMC11374600 DOI: 10.3389/fimmu.2024.1423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue. Recently, studies have shown that beyond traditional communication methods, tunnel nanotubes, exosomes, filopodial tip vesicles, and the fibrogenic niche can influence pathophysiological changes in diabetic nephropathy by disrupting intercellular communication. Therefore, this paper aims to review the varied roles of intercellular communication in diabetic nephropathy, focusing on recent advances in this area.
Collapse
Affiliation(s)
- Bihan Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinqi Deng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhao Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baichuan Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical College of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Crane B, Iles A, Banks CE, Rashid M, Linton PE, Shaw KJ. Multiplex antibiotic susceptibility testing of urinary tract infections using an electrochemical lab-on-a-chip. Biomed Microdevices 2024; 26:35. [PMID: 39120827 PMCID: PMC11315706 DOI: 10.1007/s10544-024-00719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Urinary tract infections (UTIs) represent the most prevalent type of outpatient infection, with significant adverse health and economic burdens. Current culture-based antibiotic susceptibility testing can take up to 72 h resulting in ineffective prescription of broad-spectrum antibiotics, poor clinical outcomes and development of further antibiotic resistance. We report an electrochemical lab-on-a-chip (LOC) for testing samples against seven clinically-relevant antibiotics. The LOC contained eight chambers, each housing an antibiotic-loaded hydrogel (cephalexin, ceftriaxone, colistin, gentamicin, piperacillin, trimethoprim, vancomycin) or antibiotic-free control, alongside a resazurin bulk-modified screen-printed electrode for electrochemical detection of metabolically active bacteria using differential pulse voltammetry. Antibiotic susceptibility in simulated UTI samples or donated human urine with either Escherichia coli or Klebsiella pneumoniae could be established within 85 min. Incorporating electrochemical detection onto a LOC provides an inexpensive, simple method for the sensitive determination of antibiotic susceptibility that is significantly faster than using a culture-based approach.
Collapse
Affiliation(s)
- Benjamin Crane
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alex Iles
- Department of Materials & Environmental Chemistry, University of Stockholm, Stockholm, Sweden
- Previously at Faculty of Science & Engineering, University of Hull, Hull, UK
| | - Craig E Banks
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Mamun Rashid
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Patricia E Linton
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Kirsty J Shaw
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
35
|
Harita Y. Urinary extracellular vesicles in childhood kidney diseases. Pediatr Nephrol 2024; 39:2293-2300. [PMID: 38093081 PMCID: PMC11199279 DOI: 10.1007/s00467-023-06243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 06/26/2024]
Abstract
Most biological fluids contain extracellular vesicles (EVs). EVs are surrounded by a lipid bilayer and contain biological macromolecules such as proteins, lipids, RNA, and DNA. They lack a functioning nucleus and are incapable of replicating. The physiological characteristics and molecular composition of EVs in body fluids provide valuable information about the status of originating cells. Consequently, they could be effectively utilized for diagnostic and prognostic applications. Urine contains a heterogeneous population of EVs. To date, these urinary extracellular vesicles (uEVs) have been ignored in the standard urinalysis. In recent years, knowledge has accumulated on how uEVs should be separated and analyzed. It has become clear how uEVs reflect the expression of each molecule in cells in nephron segments and how they are altered in disease states such as glomerular/tubular disorders, rare congenital diseases, acute kidney injury (AKI), and chronic kidney disease (CKD). Significant promise exists for the molecular expression signature of uEVs detected by simple techniques such as enzyme-linked immunosorbent assay (ELISA), making them more applicable in clinical settings. This review presents the current understanding regarding uEVs, emphasizing the potential for non-invasive diagnostics, especially for childhood kidney diseases.
Collapse
Affiliation(s)
- Yutaka Harita
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
36
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
37
|
Jiang S, Lu F, Chen J, Jiao Y, Qiu Q, Nian X, Qu M, Wang Y, Li M, Liu F, Gao X. UPCARE: Urinary Extracellular Vesicles-Derived Prostate Cancer Assessment for Risk Evaluation. J Extracell Vesicles 2024; 13:e12491. [PMID: 39175282 PMCID: PMC11341834 DOI: 10.1002/jev2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
In the quest for efficient tumor diagnosis via liquid biopsy, extracellular vesicles (EVs) have shown promise as a source of potential biomarkers. This study addresses the gap in biomarker efficacy for predicting clinically significant prostate cancer (csPCa) between the Western and Chinese populations. We developed a urinary extracellular vesicles-based prostate score (EPS) model, utilizing the EXODUS technique for EV isolation from 598 patients and incorporating gene expressions of FOXA1, PCA3, and KLK3. Our findings reveal that the EPS model surpasses prostate-specific antigen (PSA) testing in diagnostic accuracy within a training cohort of 234 patients, achieving an area under the curve (AUC) of 0.730 compared to 0.659 for PSA (p = 0.018). Similarly, in a validation cohort of 101 men, the EPS model achieved an AUC of 0.749, which was significantly better than PSA's 0.577 (p < 0.001). Our model has demonstrated a potential reduction in unnecessary prostate biopsies by 26%, with only a 3% miss rate for csPCa cases, indicating its effectiveness in the Chinese population.
Collapse
Affiliation(s)
- Shaoqin Jiang
- Department of UrologyFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Feiting Lu
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Jiadi Chen
- Department of Clinical LaboratoryFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Yingzhen Jiao
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Qingqing Qiu
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Xinwen Nian
- Department of UrologyChanghai HospitalShanghaiChina
| | - Min Qu
- Department of UrologyChanghai HospitalShanghaiChina
| | - Yan Wang
- Department of UrologyChanghai HospitalShanghaiChina
| | - Mengqiang Li
- Department of UrologyFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Fei Liu
- Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Xu Gao
- Department of UrologyChanghai HospitalShanghaiChina
| |
Collapse
|
38
|
Ma C, Xu Z, Hao K, Fan L, Du W, Gao Z, Wang C, Zhang Z, Li N, Li Q, Gao Q, Yu C. Rapid isolation method for extracellular vesicles based on Fe 3O 4@ZrO 2. Front Bioeng Biotechnol 2024; 12:1399689. [PMID: 39045537 PMCID: PMC11263208 DOI: 10.3389/fbioe.2024.1399689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Extracellular vesicles (EVs) are pivotal in intercellular communication, disease mechanisms. Despite numerous methods for EVs isolation, challenges persist in yield, purity, reproducibility, cost, time, and automation. We introduce a EVs isolation technique using Fe3O4@ZrO2 beads, leveraging ZrO2-phosphate interaction. The results indicated that EVs were efficiently separated from large volumes of samples in 30 minutes without preconcentration. Our method demonstrated capture efficiency (74%-78%) compared to ultracentrifugation, purity (97%), and reproducibility (0.3%-0.5%), with excellent linearity (R2 > 0.99). EVs from urine samples showed altered expression of miRNAs. The logistic regression model achieved an AUC of 0.961, sensitivity of 0.92, and specificity of 0.94. With potential for automation, this magnetic bead-based method holds promise for clinical applications, offering an efficient and reliable tool for EVs research and clinical studies.
Collapse
Affiliation(s)
- Cuidie Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhihui Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Kun Hao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Lingling Fan
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Wenqian Du
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zheng Zhang
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ningxia Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
39
|
Jiang W, Zhan Y, Zhang Y, Sun D, Zhang G, Wang Z, Chen L, Sun J. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: Towards an optimized regenerative microenvironment. Biomaterials 2024; 308:122566. [PMID: 38603824 DOI: 10.1016/j.biomaterials.2024.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Achieving sufficient bone regeneration in large segmental defects is challenging, with the structure of bone repair scaffolds and their loaded bioactive substances crucial for modulating the local osteogenic microenvironment. This study utilized digital laser processing (DLP)-based 3D printing technology to successfully fabricate high-precision methacryloylated polycaprolactone (PCLMA) bionic bone scaffold structures. Adipose-derived stem cell-engineered nanovesicles (ADSC-ENs) were uniformly and stably modified onto the bionic scaffold surface using a perfusion device, constructing a conducive microenvironment for tissue regeneration and long bone defect repair through the scaffold's structural design and the vesicles' biological functions. Scanning electron microscopy (SEM) examination of the scaffold surface confirmed the efficient loading of ADSC-ENs. The material group loaded with vesicles (PCLMA-BAS-ENs) demonstrated good cell compatibility and osteogenic potential when analyzed for the adhesion and osteogenesis of primary rabbit bone marrow mesenchymal stem cells (BMSCs) on the material surface. Tested in a 15 mm critical rabbit radial defect model, the PCLMA-BAS-ENs scaffold facilitated near-complete bone defect repair after 12 weeks. Immunofluorescence and proteomic results indicated that the PCLMA-BAS-ENs scaffold significantly improved the osteogenic microenvironment at the defect site in vivo, promoted angiogenesis, and enhanced the polarization of macrophages towards M2 phenotype, and facilitated the recruitment of BMSCs. Thus, the PCLMA-BAS-ENs scaffold was proven to significantly promote the repair of large segmental bone defects. Overall, this strategy of combining engineered vesicles with highly biomimetic scaffolds to promote large-segment bone tissue regeneration holds great potential in orthopedic and other regenerative medicine applications.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yichen Zhan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| |
Collapse
|
40
|
Pirouzpanah MB, Babaie S, Pourzeinali S, Valizadeh H, Malekeh S, Şahin F, Farshbaf-Khalili A. Harnessing tumor-derived exosomes: A promising approach for the expansion of clinical diagnosis, prognosis, and therapeutic outcome of prostate cancer. Biofactors 2024; 50:674-692. [PMID: 38205673 DOI: 10.1002/biof.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
Prostate cancer is the second leading cause of men's death worldwide. Although early diagnosis and therapy for localized prostate cancer have improved, the majority of men with metastatic disease die from prostate cancer annually. Therefore, identification of the cellular-molecular mechanisms underlying the progression of prostate cancer is essential for overcoming controlled proliferation, invasion, and metastasis. Exosomes are small extracellular vesicles that mediate most cells' interactions and contain membrane proteins, cytosolic and nuclear proteins, extracellular matrix proteins, lipids, metabolites, and nucleic acids. Exosomes play an essential role in paracrine pathways, potentially influencing Prostate cancer progression through a wide variety of mechanisms. In the present review, we outline and discuss recent progress in our understanding of the role of exosomes in the Prostate cancer microenvironment, like their involvement in prostate cancer occurrence, progression, angiogenesis, epithelial-mesenchymal transition, metastasis, and drug resistance. We also present the latest findings regarding the function of exosomes as biomarkers, direct therapeutic targets in prostate cancer, and the challenges and advantages associated with using exosomes as natural carriers and in exosome-based immunotherapy. These findings are a promising avenue for the expansion of potential clinical approaches.
Collapse
Affiliation(s)
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Amiralmomenin Hospital of Charoimagh, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Malekeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
41
|
He G, Liu J, Yu Y, Wei S, Peng X, Yang L, Li H. Revisiting the advances and challenges in the clinical applications of extracellular vesicles in cancer. Cancer Lett 2024; 593:216960. [PMID: 38762194 DOI: 10.1016/j.canlet.2024.216960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Extracellular vesicles (EVs) have been the subject of an exponentially growing number of studies covering their biogenesis mechanisms, isolation and analysis techniques, physiological and pathological roles, and clinical applications, such as biomarker and therapeutic uses. Nevertheless, the heterogeneity of EVs both challenges our understanding of them and presents new opportunities for their potential application. Recently, the EV field experienced a wide range of advances. However, the challenges also remain huge. This review focuses on the recent progress and difficulties encountered in the practical use of EVs in clinical settings. In addition, we also explored the concept of EV heterogeneity to acquire a more thorough understanding of EVs and their involvement in cancer, specifically focusing on the fundamental nature of EVs.
Collapse
Affiliation(s)
- Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
42
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
43
|
Che Shaffi S, Hairuddin ON, Mansor SF, Syafiq TMF, Yahaya BH. Unlocking the Potential of Extracellular Vesicles as the Next Generation Therapy: Challenges and Opportunities. Tissue Eng Regen Med 2024; 21:513-527. [PMID: 38598059 PMCID: PMC11087396 DOI: 10.1007/s13770-024-00634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have undergone extensive investigation for their potential therapeutic applications, primarily attributed to their paracrine activity. Recently, researchers have been exploring the therapeutic potential of extracellular vesicles (EVs) released by MSCs. METHODS MEDLINE/PubMed and Google scholar databases were used for the selection of literature. The keywords used were mesenchymal stem cells, extracellular vesicles, clinical application of EVs and challenges EVs production. RESULTS These EVs have demonstrated robust capabilities in transporting intracellular cargo, playing a critical role in facilitating cell-to-cell communication by carrying functional molecules, including proteins, RNA species, DNAs, and lipids. Utilizing EVs as an alternative to stem cells offers several benefits, such as improved safety, reduced immunogenicity, and the ability to traverse biological barriers. Consequently, EVs have emerged as an increasingly attractive option for clinical use. CONCLUSION From this perspective, this review delves into the advantages and challenges associated with employing MSC-EVs in clinical settings, with a specific focus on their potential in treating conditions like lung diseases, cancer, and autoimmune disorders.
Collapse
Affiliation(s)
- Syahidatulamali Che Shaffi
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Omar Nafiis Hairuddin
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Farizan Mansor
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
- Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tengku Muhamad Faris Syafiq
- IIUM Molecular and Cellular Biology Research, Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, 25100, Kuantan, Pahang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), SAINS@BERTAM, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
44
|
Chen M, Pei Z, Wang Y, Song F, Zhong J, Wang C, Ma Y. Small extracellular vesicles' enrichment from biological fluids using an acoustic trap. Analyst 2024; 149:3169-3177. [PMID: 38639189 DOI: 10.1039/d4an00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Small extracellular vesicles (sEVs), a form of extracellular vesicles, are lipid bilayered structures released by all cells. Large-scale studies on sEVs from clinical samples are necessary, but a major obstacle is the lack of rapid, reproducible, efficient, and low-cost methods to enrich sEVs. Acoustic microfluidics have the advantage of being label-free and biocompatible, which have been reported to successfully enrich sEVs. In this paper, we present a highly efficient acoustic microfluidic trap that can offer low and large volume compatible ways of enriching sEVs from biological fluids by flexible structure design. It uses the idea of pre-loading larger seed particles in the acoustic trap to enable sub-micron particle capturing. The microfluidic chip is actuated using a piezoelectric plate transducer attached to a silicon-glass bonding plate with circular cavities. Each cavity works as a resonant unit, excited at the frequency of both the half wave resonance in the main plane and inverted quarter wave resonance in the depth direction, which has the ability to strongly trap seed particles at the center, thereby improving the subsequent nanoparticle capture efficiency. Mean trapping efficiencies of 35.62% and 64.27% were obtained using 60 nm and 100 nm nanobeads, respectively. By the use of this technology, we have successfully enriched sEVs from cell culture conditioned media and blood plasma at a flow rate of 10 μL min-1. The isolated sEV subpopulations are characterized by NTA and TEM, and their protein cargo is determined by WB. This acoustic trapping chip provides a rapid and robust method to enrich sEVs from biofluids with high reproducibility and sufficient quantities. Therefore, it can serve as a new tool for biological and clinical research such as cancer diagnosis and drug delivery.
Collapse
Affiliation(s)
- Mengli Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Zhiguo Pei
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Yao Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Jinfeng Zhong
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Ce Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
45
|
Chen M, Li J, Lin Y, Li X, Yu Y, Zhou S, Xu F, Zhang Q, Zhang H, Wang W. Recent research on material-based methods for isolation of extracellular vesicles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3179-3191. [PMID: 38738644 DOI: 10.1039/d4ay00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by cells with a closed phospholipid bilayer structure, which can participate in various physiological and pathological processes and have significant clinical value in disease diagnosis, targeted therapy and prognosis assessment. EV isolation methods currently include differential ultracentrifugation, ultrafiltration, size exclusion chromatography, immunoaffinity, polymer co-precipitation and microfluidics. In addition, material-based biochemical or biophysical approaches relying on intrinsic properties of the material or its surface-modified functionalized monomers, demonstrated unique advantages in the efficient isolation of EVs. In order to provide new ideas for the subsequent development of material-based EV isolation methods, this review will focus on the principle, research status and application prospects of material-based EV isolation methods based on different material carriers and functional monomers.
Collapse
Affiliation(s)
- Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Jiaxi Li
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Xiaowei Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Yuanyuan Yu
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Shenyue Zhou
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Fang Xu
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Qi Zhang
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339 and #2103, Wenjing Road, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
46
|
Grützmann K, Salomo K, Krüger A, Lohse-Fischer A, Erdmann K, Seifert M, Baretton G, Aust D, William D, Schröck E, Thomas C, Füssel S. Identification of novel snoRNA-based biomarkers for clear cell renal cell carcinoma from urine-derived extracellular vesicles. Biol Direct 2024; 19:38. [PMID: 38741178 DOI: 10.1186/s13062-024-00467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC with high rates of metastasis. Targeted therapies such as tyrosine kinase and checkpoint inhibitors have improved treatment success, but therapy-related side effects and tumor recurrence remain a challenge. As a result, ccRCC still have a high mortality rate. Early detection before metastasis has great potential to improve outcomes, but no suitable biomarker specific for ccRCC is available so far. Therefore, molecular biomarkers derived from body fluids have been investigated over the past decade. Among them, RNAs from urine-derived extracellular vesicles (EVs) are very promising. METHODS RNA was extracted from urine-derived EVs from a cohort of 78 subjects (54 ccRCC patients, 24 urolithiasis controls). RNA-seq was performed on the discovery cohort, a subset of the whole cohort (47 ccRCC, 16 urolithiasis). Reads were then mapped to the genome, and expression was quantified based on 100 nt long contiguous genomic regions. Cluster analysis and differential region expression analysis were performed with adjustment for age and gender. The candidate biomarkers were validated by qPCR in the entire cohort. Receiver operating characteristic, area under the curve and odds ratios were used to evaluate the diagnostic potential of the models. RESULTS An initial cluster analysis of RNA-seq expression data showed separation by the subjects' gender, but not by tumor status. Therefore, the following analyses were done, adjusting for gender and age. The regions differentially expressed between ccRCC and urolithiasis patients mainly overlapped with small nucleolar RNAs (snoRNAs). The differential expression of four snoRNAs (SNORD99, SNORD22, SNORD26, SNORA50C) was validated by quantitative PCR. Confounder-adjusted regression models were then used to classify the validation cohort into ccRCC and tumor-free subjects. Corresponding accuracies ranged from 0.654 to 0.744. Models combining multiple genes and the risk factors obesity and hypertension showed improved diagnostic performance with an accuracy of up to 0.811 for SNORD99 and SNORA50C (p = 0.0091). CONCLUSIONS Our study uncovered four previously unrecognized snoRNA biomarkers from urine-derived EVs, advancing the search for a robust, easy-to-use ccRCC screening method.
Collapse
Affiliation(s)
- Konrad Grützmann
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Karsten Salomo
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Alexander Krüger
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Andrea Lohse-Fischer
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kati Erdmann
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Gustavo Baretton
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Daniela Aust
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Institute of Molecular Cell Biology and Genetics, ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Max Planck, 01307, Dresden, Germany
| | - Evelin Schröck
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Institute of Molecular Cell Biology and Genetics, ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Max Planck, 01307, Dresden, Germany
| | - Christian Thomas
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Susanne Füssel
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
47
|
Wang J, Shi R, Yin Y, Luo H, Cao Y, Lyu Y, Luo H, Zeng X, Wang D. Clinical significance of small extracellular vesicles in cholangiocarcinoma. Front Oncol 2024; 14:1334592. [PMID: 38665948 PMCID: PMC11043544 DOI: 10.3389/fonc.2024.1334592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Cholangiocarcinoma is an aggressive and heterogeneous malignancy originating from the bile duct epithelium. It is associated with poor prognosis and high mortality. The global incidence of cholangiocarcinoma is rising, and there is an urgent need for effective early diagnosis and treatment strategies to reduce the burden of this devastating tumor. Small extracellular vesicles, including exosomes and microparticles, are nanoscale vesicles formed by membranes that are released both normally and pathologically from cells, mediating the intercellular transfer of substances and information. Recent studies have demonstrated the involvement of small extracellular vesicles in numerous biological processes, as well as the proliferation, invasion, and metastasis of tumor cells. The present review summarizes the tumorigenic roles of small extracellular vesicles in the cholangiocarcinoma microenvironment. Owing to their unique composition, accessibility, and stability in biological fluids, small extracellular vesicles have emerged as ideal biomarkers for use in liquid biopsies for diagnosing and outcome prediction of cholangiocarcinoma. Specific tissue tropism, theoretical biocompatibility, low clearance, and strong biological barrier penetration of small extracellular vesicles make them suitable drug carriers for cancer therapy. Furthermore, the potential value of small extracellular vesicle-based therapies for cholangiocarcinoma is also reviewed.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ruizi Shi
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Yin
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hua Luo
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yun Lyu
- Departmant of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xintao Zeng
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
48
|
Fernando JJ, Biswas R, Biswas L. Non-invasive molecular biomarkers for monitoring solid organ transplantation: A comprehensive overview. Int J Immunogenet 2024; 51:47-62. [PMID: 38200592 DOI: 10.1111/iji.12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Solid organ transplantation is a life-saving intervention for individuals with end-stage organ failure. Despite the effectiveness of immunosuppressive therapy, the risk of graft rejection persists in all viable transplants between individuals. The risk of rejection may vary depending on the degree of compatibility between the donor and recipient for both human leucocyte antigen (HLA) and non-HLA gene-encoded products. Monitoring the status of the allograft is a critical aspect of post-transplant management, with invasive biopsies being the standard of care for detecting rejection. Non-invasive biomarkers are increasingly being recognized as valuable tools for aiding in the detection of graft rejection, monitoring graft status and evaluating the efficacy of immunosuppressive therapy. Here, we focus on the importance of molecular biomarkers in solid organ transplantation and their potential role in clinical practice. Conventional molecular biomarkers used in transplantation include HLA typing, detection of anti-HLA antibodies, killer cell immunoglobulin-like receptor genotypes, and anti-MHC class 1-related chain A antibodies, which are important for assessing the compatibility of the donor and recipient. Emerging molecular biomarkers include the detection of donor-derived cell-free DNA, microRNAs (regulation of gene expression), exosomes (small vesicles secreted by cells), and kidney solid organ response test, in the recipient's blood for early signs of rejection. This review highlights the strengths and limitations of these molecular biomarkers and their potential role in improving transplant outcomes.
Collapse
Affiliation(s)
- Jeffy J Fernando
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Raja Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
49
|
Crocetto F, Falcone A, Mirto BF, Sicignano E, Pagano G, Dinacci F, Varriale D, Machiella F, Giampaglia G, Calogero A, Varlese F, Balsamo R, Trama F, Sciarra A, Del Giudice F, Busetto GM, Ferro M, Lucarelli G, Lasorsa F, Imbimbo C, Barone B. Unlocking Precision Medicine: Liquid Biopsy Advancements in Renal Cancer Detection and Monitoring. Int J Mol Sci 2024; 25:3867. [PMID: 38612677 PMCID: PMC11011885 DOI: 10.3390/ijms25073867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Renal cell carcinoma (RCC) remains a formidable diagnostic challenge, especially in the context of small renal masses. The quest for non-invasive screening tools and biomarkers has steered research towards liquid biopsy, focusing on microRNAs (miRNAs), exosomes, and circulating tumor cells (CTCs). MiRNAs, small non-coding RNAs, exhibit notable dysregulation in RCC, offering promising avenues for diagnosis and prognosis. Studies underscore their potential across various biofluids, including plasma, serum, and urine, for RCC detection and subtype characterization. Encouraging miRNA signatures show correlations with overall survival, indicative of their future relevance in RCC management. Exosomes, with their diverse molecular cargo, including miRNAs, emerge as enticing biomarkers, while CTCs, emanating from primary tumors into the bloodstream, provide valuable insights into cancer progression. Despite these advancements, clinical translation necessitates further validation and standardization, encompassing larger-scale studies and robust evidence generation. Currently lacking approved diagnostic assays for renal cancer, the potential future applications of liquid biopsy in follow-up care, treatment selection, and outcome prediction in RCC patients are profound. This review aims to discuss and highlight recent advancements in liquid biopsy for RCC, exploring their strengths and weaknesses in the comprehensive management of this disease.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Alfonso Falcone
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Benito Fabio Mirto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Enrico Sicignano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Giovanni Pagano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Fabrizio Dinacci
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Domenico Varriale
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Fabio Machiella
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Gaetano Giampaglia
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Armando Calogero
- Department of Advanced Biomedical Science, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (F.V.)
| | - Filippo Varlese
- Department of Advanced Biomedical Science, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (F.V.)
| | | | - Francesco Trama
- ASL Napoli 2 Nord, P.O. Santa Maria delle Grazie, 80078 Pozzuoli, Italy;
| | - Antonella Sciarra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Francesco Del Giudice
- Department of Maternal Infant and Urological Sciences, Umberto I Polyclinic Hospital, Sapienza University, 00161 Rome, Italy;
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy;
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO)-IRCCS, 20141 Milan, Italy;
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (F.L.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (A.F.); (B.F.M.); (E.S.); (G.P.); (F.D.); (D.V.); (F.M.); (G.G.); (C.I.)
| | - Biagio Barone
- Urology Unit, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy
| |
Collapse
|
50
|
Ding T, He W, Yan H, Wei Z, Zeng X, Hao X. Metabolic profiling in tissues and urine of patients with prostatic lesions and the diagnostic value of urine extracellular vesicles metabolites in prostate cancer. Clin Chim Acta 2024; 556:117845. [PMID: 38403146 DOI: 10.1016/j.cca.2024.117845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Prostate cancer (PCa) lacks convenient and highly specific diagnostic markers. Although the value of extracellular vesicles (EV) in oncology is widely recognized, the diagnostic value of EV metabolites requires further exploration. This study aimed to explore the diagnostic value of urine EV (u-EV) metabolomics in PCa. METHODS We first detected metabolites in paired tissues cells (cells), tissue EV (t-EVs), u-EVs, and urine samples in cohort 1 (8 PCa vs. 5 benign prostatic hypertrophy, BPH) to prob the feasibility of EV metabolites as diagnostic markers. We then analyzed the value of u-EVs as markers for PCa diagnosis and typing in the expanded sample cohort (60 PCa vs. 40 BPH). RESULTS U-EV metabolites were more consistent with those in tissue-derived samples (cells and t-EVs) than those in urine, and more differential metabolites between BPH and PCa were identified in u-EV. Subsequently, we used a random forest model to construct a panel of six metabolites for PCa, which showed an area under the curve (AUC) of 0.833 in training cohort and 0.844 in validation cohort. We also found significantly differentially expressed metabolites between PCa subtypes (Gleason ≤ 7 vs. Gleason > 7 and localized vs. metastasis), demonstrating the value of EV metabolites in PCa typing and prognostic assessment. CONCLUSION Metabolomic analysis of u-EVs is a promising source of noninvasive markers for PCa diagnosis.
Collapse
Affiliation(s)
- Ting Ding
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China; School of Medicine, Northwest University, Xi'an, China
| | - Weixiang He
- Department of Urology, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Hua Yan
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, China
| | - Zhen Wei
- School of Medicine, Northwest University, Xi'an, China; Shanxi Lifegen Co., Ltd., Xi'an, China
| | - Xianfei Zeng
- School of Medicine, Northwest University, Xi'an, China; Shanxi Lifegen Co., Ltd., Xi'an, China.
| | - Xiaoke Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China; School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|