1
|
Githaka JM, Kirschenman R, Patel N, Tripathi N, Wang J, Li L, Muranyi H, Pirayeshfard L, Montpetit R, Glubrecht DD, Lerner EP, Perry T, Danial NN, Nation PN, Godbout R, Goping IS. Multiple anti-tumor programs are activated by blocking BAD phosphorylation. Oncogene 2025:10.1038/s41388-025-03420-1. [PMID: 40316741 DOI: 10.1038/s41388-025-03420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
The Bcl-2 family member BAD is a candidate disease modulator because it stimulates apoptosis in a cell context basis and inhibits cell migration during normal mammary gland morphogenesis. This activity depends on 3 key regulatory serines (S75, 99, 118) in the unphosphorylated state. Given that developmental programs are often hijacked in cancer, we hypothesized that BAD would impede breast cancer progression. We generated breast cancer mouse models representing loss-of-function or phosphorylation deficient mutations (PyMT-Bad-/- and PyMT-Bad3SA/3SA, respectively). Preventing BAD phosphorylation significantly decreased breast cancer progression and metastasis. The knock-out phenocopied the control PyMT-Bad+/+ suggesting that phosphorylated BAD protein was inert. Thus, the BAD3SA mutation unmasked latent anti-tumor activity. Indeed, transcriptomics showed PyMT-Bad3SA/3SA activated multiple anti-tumor programs including apoptosis, inflammation, cellular differentiation, and diminished cell migration. This anti-tumor effect associated with clinical survival of breast cancer patients whose tumors had high levels of unphosphorylated BAD. Kinase screens identified ERK as the major BAD kinase in breast cells, and ERK inhibition impeded tumoroid invasion. Our data suggest that unphosphorylated BAD modulates anti-tumor pathways that contribute to excellent patient prognosis. Thus, targeting ERK to dephosphorylate BAD may be an exciting therapeutic opportunity in the future.
Collapse
Affiliation(s)
| | - Raven Kirschenman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Namrata Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Namita Tripathi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Joy Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Laiji Li
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Heather Muranyi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Rachel Montpetit
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - E Paul Lerner
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Troy Perry
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - P Nick Nation
- Animal Pathology Services (APS) Ltd., Canmore, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Chou MY, Yang MH. Immunomodulation on tumor immune microenvironment in acquired targeted therapy resistance and implication for immunotherapy resistance. Transl Oncol 2025; 54:102353. [PMID: 40058234 PMCID: PMC11929932 DOI: 10.1016/j.tranon.2025.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025] Open
Abstract
The emergence of molecularly targeted therapies and immunotherapies has revolutionized cancer treatment, yet the optimal sequencing of these modalities remains debated. While targeted therapies often induce initial immunostimulatory effects, the development of resistance is accompanied by dynamic alterations in the tumor-immune microenvironment. These changes can promote tumor growth, hinder immune surveillance, and contribute to subsequent immunotherapy resistance. This review focuses on solid tumors and summarizes the immunomodulatory effects arising in the context of targeted therapy resistance, highlighting the challenges they pose for the subsequent immunotherapy efficacy.
Collapse
Affiliation(s)
- Ming-Yu Chou
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Taipei 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan.
| |
Collapse
|
3
|
He B, Wood KH, Li ZJ, Ermer JA, Li J, Bastow ER, Sakaram S, Darcy PK, Spalding LJ, Redfern CT, Canes J, Oliveira M, Prat A, Cortes J, Thompson EW, Littlefield BA, Redfern A, Ganss R. Selective tubulin-binding drugs induce pericyte phenotype switching and anti-cancer immunity. EMBO Mol Med 2025:10.1038/s44321-025-00222-6. [PMID: 40140727 DOI: 10.1038/s44321-025-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
The intratumoral immune milieu is crucial for the success of anti-cancer immunotherapy. We show here that stromal modulation by the tubulin-binding anti-cancer drugs combretastatin A4 (CA-4) and eribulin improved tumor perfusion and anti-tumor immunity. This was achieved by reverting highly proliferative, angiogenic pericytes into a quiescent, contractile state which durably normalized the vascular bed and reduced hypoxia in mouse models of pancreatic neuroendocrine cancer, breast cancer and melanoma. The crucial event in pericyte phenotype switching was RhoA kinase activation, which distinguished CA-4 and eribulin effects from other anti-mitotic drugs such as paclitaxel and vinorelbine. Importantly, eribulin pre-treatment sensitized tumors for adoptive T cell therapy or checkpoint inhibition resulting in effector cell infiltration and better survival outcomes in mice. In breast cancer patients, eribulin neoadjuvant treatment induced pericyte maturity and RhoA kinase activity indicating similar vessel remodeling effects as seen in mice. Moreover, a contractile pericyte signature was associated with overall better survival outcome in two independent breast cancer cohorts. This underscores the potential of re-purposing specific anti-cancer drugs to enable synergistic complementation with emerging immunotherapies.
Collapse
Affiliation(s)
- Bo He
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Kira H Wood
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Zhi-Jie Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Guangdong, P. R. China
| | - Judith A Ermer
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Ji Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Edward R Bastow
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | | | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J Spalding
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Cameron T Redfern
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jordi Canes
- SOLTI Cancer Research Group, Barcelona, Spain
| | - Mafalda Oliveira
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Aleix Prat
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Cortes
- SOLTI Cancer Research Group, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR)-Oncoclínicas&Co, Jersey City, NJ, USA
- Medica Scientia Innovation Research (MEDSIR)-Oncoclínicas&Co, Sao Paulo, Brazil
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
- IOB Madrid, Institute of Oncology, Hospital Beata María Ana, Madrid, Spain
| | - Erik W Thompson
- School of Biomedical Sciences and Centre for Genomics and Personalised Health, Faculty of Health, Queensland University of Technology (QUT) and Translational Research Institute, Brisbane, Australia
| | | | - Andrew Redfern
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Fiona Stanley Hospital, Perth, WA, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
4
|
Kim Y, Song J, Kim N, Sim T. Recent progress in emerging molecular targeted therapies for intrahepatic cholangiocarcinoma. RSC Med Chem 2025:d4md00881b. [PMID: 39925737 PMCID: PMC11800140 DOI: 10.1039/d4md00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/11/2025] [Indexed: 02/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a diverse group of epithelial malignant tumors arising from the biliary tract, characterized by high molecular heterogeneity. It is classified into intrahepatic (iCCA) and extrahepatic CCA (eCCA) based on the location of the primary tumor. CCA accounts for approximately 15% of all primary liver cancers, with iCCA comprising 10-20% of all CCAs. iCCA is especially known for its characteristic aggressiveness and refractoriness, leading to poor prognosis. Despite the increasing global incidence and mortality rates, surgery remains the only available standard treatment approach for a subset (25%) of patients with early-stage, resectable iCCA. The paucity of effective systemic medical therapies restricts therapeutic options for patients with advanced or metastatic iCCA. In the past decade, advances in the understanding of the molecular complexity of these tumors have provided fruitful insights for the identification of promising new druggable targets and the development of feasible therapeutic strategies that may improve treatment outcomes for patients with iCCA. In this review, we aim to highlight critical up-to-date studies and medicinal chemistry aspects, focusing on novel targeted approaches utilizing promising candidates for molecular targeted therapy in iCCA. These candidates include aberrations in isocitrate dehydrogenase (IDH) 1/2, fibroblast growth factor receptor (FGFR), B-Raf proto-oncogene (BRAF), neurotrophic tyrosine receptor kinase (NTRK), human epidermal growth factor receptor 2 (HER2), and programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1). Furthermore, this review provides an overview of potential inhibitors aimed at overcoming acquired drug resistance in these actionable targets for iCCA.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
| | - Jaewon Song
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
5
|
García-Díaz N, Solli E, Hajjar E, Cornillot-Clément S, Landskron J, Ahmad R, Wei Q, Taskén K. MAPK and STAT3 Inhibitors Modulate FoxP3 Expression and Regulatory T Cell Function. Eur J Immunol 2025; 55:e202451225. [PMID: 39955647 DOI: 10.1002/eji.202451225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Regulatory T cells (Tregs) are a subset of T cells defined by the expression of Forkhead box protein P3 (FoxP3) playing a crucial role in regulating effector T cell activity. Tregs accumulate in the tumor microenvironment facilitating tumor growth. Thus, targeting FoxP3+ Tregs could improve cancer immunotherapies. Here, we conducted a high-throughput, phenotypic screening of a drug repurposing library to identify compounds downregulating FoxP3 expression in human primary T cells. We identified the tyrosine kinase inhibitor bosutinib and the STAT3 inhibitor nifuroxazide effectively downregulating FoxP3 expression. To identify more potent compounds, structural analogs of these two compounds were searched and validated. These analogs were found to reduce FoxP3 expression in a similar- or more potent manner than the original hits. All compounds inhibited Treg suppressive functions and reduced the expression of Treg activation markers. Importantly, bosutinib disrupted FAK and CaMKII signaling more potently in Tregs, whilst nifuroxazide and its analog NA16 targeted STAT3 protein levels more effectively in Tregs. Additionally, bosutinib and NA16 targeted effector Tregs more effectively than other Treg subsets. In summary, bosutinib, nifuroxazide, and their analogs inhibited FoxP3 expression, Treg suppressive abilities, and Treg activation effectively, which could serve as tools for the improvement of current cancer immunotherapies.
Collapse
Affiliation(s)
- Nuria García-Díaz
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elise Solli
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ehsan Hajjar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Selma Cornillot-Clément
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Johannes Landskron
- Centre for Molecular Medicine, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Rafi Ahmad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Biotechnology, University of Inland Norway, Hamar, Norway
| | - Qian Wei
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Hernández‐Prat A, Rodriguez‐Vida A, Cardona L, Qin M, Arpí‐Llucià O, Soria‐Jiménez L, Menendez S, Quimis FG, Galindo M, Arriola E, Salido M, Juanpere‐Rodero N, Rojo F, Muntasell A, Albanell J, Rovira A, Bellmunt J. Enhancing immunotherapy through PD-L1 upregulation: the promising combination of anti-PD-L1 plus mTOR inhibitors. Mol Oncol 2025; 19:151-172. [PMID: 39258533 PMCID: PMC11705730 DOI: 10.1002/1878-0261.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 09/12/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway have transformed urothelial cancer (UC) therapy. The correlation between PD-L1 expression and ICI effectiveness is uncertain, leaving the role of PD-L1 as a predictive marker for ICI efficacy unclear. Among several ways to enhance the efficacy of ICI, trials are exploring combining ICIs with serine/threonine-protein kinase mTOR (mTOR) inhibitors in different tumor types. The potential interaction between mTOR inhibitors and PD-L1 expression in UC has not been well characterized. In our study, we investigated how phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway inhibitors (TAK-228, everolimus and TAK-117) affect PD-L1 expression and function in preclinical bladder cancer cell models. TAK-228 increased cell surface levels of glycosylated PD-L1 in all but one of the seven cell lines, regardless of baseline levels. TAK-228 promoted the secretion of epidermal growth factor (EGF) and interferon-β (IFNβ), both linked to PD-L1 protein induction. Blocking EGF and IFNβ receptors reversed the TAK-228-induced PD-L1 increase. Additionally, TAK-228 enhanced IFN-γ-induced PD-L1 expression and intracellular HLA-I levels in some cells. TAK-228-treated bladder cancer cells exhibited resistance to the cytotoxic effects of peripheral blood mononuclear cells (PBMCs) and cluster of differentiation 8 (CD8)+ T cells. The addition of an anti-PD-L1 antibody diminished this resistance in T24 cells. Increased expression of PD-L1 under TAK-228 exposure was confirmed in patient-derived explants (PDEs) treated ex vivo. These preclinical findings suggest that mTOR inhibition with TAK-228 can increase PD-L1 levels, potentially impacting the specific immune response against UC cells. This highlights the rationale for exploring the combination of mTOR inhibitors with ICIs in patients with advanced UC.
Collapse
Affiliation(s)
- Anna Hernández‐Prat
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | | | - Laura Cardona
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Mengjuan Qin
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Oriol Arpí‐Llucià
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Luis Soria‐Jiménez
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Sílvia Menendez
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Pathology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | | | - Miguel Galindo
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Edurne Arriola
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Marta Salido
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | | | - Federico Rojo
- Pathology DepartmentIIS Fundación Jimenez Diaz‐CIBERONCMadridSpain
| | - Aura Muntasell
- Immunity and Infection GroupIMIM (Hospital del Mar Research Institute)‐CIBERONCBarcelonaSpain
- Universitat Autònoma de BarcelonaSpain
| | - Joan Albanell
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Ana Rovira
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Joaquim Bellmunt
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Dana Farber Medical InstituteHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
7
|
Cui C, Zhang H, Yang C, Yin M, Teng X, Yang M, Kong D, Zhang J, Peng W, Chu Z, Wang J, Sun Y, Kang L, Lyu B, Gao Q, Wu M, Wang Y, Li Y. Inhibition of JNK Signaling Overcomes Cancer-Associated Fibroblast-Mediated Immunosuppression and Enhances the Efficacy of Immunotherapy in Bladder Cancer. Cancer Res 2024; 84:4199-4213. [PMID: 39292817 DOI: 10.1158/0008-5472.can-24-0940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Currently, only 20% to 40% of patients with cancer benefit from immune checkpoint inhibitors. Understanding the mechanisms underlying the immunosuppressive tumor microenvironment (TME) and characterizing dynamic changes in the immunologic landscape during treatment are critical for improving responsiveness to immunotherapy. In this study, we identified JNK signaling in cancer-associated fibroblasts (CAF) as a regulator of the immunosuppressive TME. Single-cell RNA sequencing of bladder cancer samples treated with a JNK inhibitor revealed enhanced cytotoxicity and effector functions of CD8+ T cells. In untreated tumors, CAFs interacted frequently with CD8+ T cells and mediated their exhaustion. JNK inhibition abrogated the immunosuppression function of CAFs by downregulating the expression of thymic stromal lymphopoietin (TSLP), thereby restoring CD8+ T-cell cytotoxicity. In addition, blockade of CAF-derived TSLP in combination with anti-PD-1 treatment promoted tumor elimination by CD8+ T cells in vivo. Collectively, these results indicate that JNK signaling plays an important immunosuppressive role in the TME by promoting expression of TSLP in CAFs and suggest that inhibiting JNK signaling could be a promising immunotherapeutic strategy for cancer treatment. Significance: JNK signaling promotes the secretion of TSLP by bladder cancer-associated fibroblasts to impede CD8+ T-cell activity, which can be circumvented by combination treatment targeting JNK signaling and PD-1.
Collapse
Affiliation(s)
- Chengying Cui
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Haojie Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, China
| | - Congcong Yang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Mingwei Yin
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinkun Teng
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Miaomiao Yang
- The First Affiliated Hospital of Anhui Medical University, Pathology Center, Hefei, China
- Anhui Public Health Clinical Center, Pathology Center, Hefei, China
| | - Dejie Kong
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Jinzhi Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Weidong Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhimin Chu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Jingjing Wang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Yating Sun
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Liping Kang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Bin Lyu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Qian Gao
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Mingqing Wu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Yongqiang Wang
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Liu Z, Mao S, Dai L, Huang R, Hu W, Yu C, Yang Y, Cao G, Huang X. Discovery of dual-targeted molecules based on Olaparib and Rigosertib for triple-negative breast cancer with wild-type BRCA. Bioorg Med Chem 2024; 113:117936. [PMID: 39369565 DOI: 10.1016/j.bmc.2024.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
PARP inhibitors (PARPis) demonstrate significant potential efficacy in the clinical treatment of BRCA-mutated triple-negative breast cancer (TNBC). However, a majority of patients with TNBC do not possess BRCA mutations, and therefore cannot benefit from PARPis. Previous studies on multi-targeted molecules derived from PARPis or disruptors of RAF-RAF pathway have offered an alternative approach to develop novel anti-TNBC agents. Hence, to broaden the application of PARP inhibitors for TNBC patients with wild-type BRCA, a series of dual-targeted molecules were constructed via integrating the key pharmacophores of Olaparib (Ola) and Rigosertib into a single entity. Subsequent studies exhibited that the resulting compounds 13a-14c obtained potential anti-proliferative activity against BRCA-defected or wild-type TNBC cells. Among them, an optimal compound 13b showed good inhibitory activity toward PARP-1, displayed approximately 34-fold higher inhibitory activity than that of Ola in MDA-MB-231 cells, and exerted multi-functional mechanisms to induce apoptosis. Moreover, 13b displayed superior antitumor efficacy (TGI, 61.3 %) than the single administration of Ola (TGI, 38.5 %), 11b (TGI, 51.8 %) or even their combined administration (TGI, 56.7 %), but did not show significant systematic toxicity. These findings suggest that 13b may serve as a potential candidate for BRCA wild-type TNBC.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shining Mao
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lumei Dai
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China; School of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rizhen Huang
- Guangxi Key Laboratoryfor Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medicinal University, Guilin 541199, China
| | - Weiwei Hu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chunhao Yu
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yong Yang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Guoxiu Cao
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Xiaochao Huang
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
9
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
10
|
Dong L, Choi H, Budhu S, Schulze I, Verma S, Mangarin LM, Estrada Nevarro V, Mehanna N, Khan JF, Venkatesh D, Thach D, Rosen N, Wolchok JD, Merghoub T. Intermittent MEK Inhibition with GITR Costimulation Rescues T-cell Function for Increased Efficacy with CTLA-4 Blockade in Solid Tumor Models. Cancer Immunol Res 2024; 12:1392-1408. [PMID: 38885362 DOI: 10.1158/2326-6066.cir-23-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
MEK inhibitors (MEKi) have shown limited success as a treatment for MAPK/ERK pathway-dependent cancers due to various resistance mechanisms tumor cells can employ. CH5126766 (CKI27) is an inhibitor that binds to MEK and prevents release of RAF, reducing the relief of negative feedback commonly observed with other MEKis. We observed that CKI27 increased MHC expression in tumor cells and improved T cell-mediated killing. Yet, CKI27 also decreased T-cell proliferation, activation, and cytolytic activity by inhibiting the MAPK/ERK pathway that is activated downstream of T-cell receptor signaling. Therefore, we aimed to balance the positive and negative immunomodulatory effects of MEKis for optimal combination with immunotherapy. Intermittent administration of CKI27 allowed T cells to partially recover and costimulation via GITR and OX-40 agonist antibodies completely alleviated inhibition of function. In Kras mutant lung and colon tumor mouse models, intermittent CKI27 and anti-GITR significantly decreased tumor growth and prolonged survival when further combined with CTLA-4 immune checkpoint blockade. Moreover, this triple combination increased CD8+ and CD4+ T-cell proliferation, activation, and effector/memory subsets in the tumor-draining lymph nodes and tumors and led to intratumoral regulatory T-cell destabilization. These data, collectively, will allow for more informed decisions when optimizing combination regimens by overcoming resistance, reducing toxicity, and generating long-term immune responses.
Collapse
Affiliation(s)
- Lauren Dong
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Hyejin Choi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Sadna Budhu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Isabell Schulze
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Svena Verma
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Levi M Mangarin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Valeria Estrada Nevarro
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Nezar Mehanna
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Jonathan F Khan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Divya Venkatesh
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Daniel Thach
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Neal Rosen
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jedd D Wolchok
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, New York
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
11
|
Li ZJ, He B, Domenichini A, Satiaputra J, Wood KH, Lakhiani DD, Bashaw AA, Nilsson LM, Li J, Bastow ER, Johansson-Percival A, Denisenko E, Forrest AR, Sakaram S, Carretero R, Hämmerling GJ, Nilsson JA, Lee GY, Ganss R. Pericyte phenotype switching alleviates immunosuppression and sensitizes vascularized tumors to immunotherapy in preclinical models. J Clin Invest 2024; 134:e179860. [PMID: 39286984 PMCID: PMC11405053 DOI: 10.1172/jci179860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/23/2024] [Indexed: 09/19/2024] Open
Abstract
T cell-based immunotherapies are a promising therapeutic approach for multiple malignancies, but their efficacy is limited by tumor hypoxia arising from dysfunctional blood vessels. Here, we report that cell-intrinsic properties of a single vascular component, namely the pericyte, contribute to the control of tumor oxygenation, macrophage polarization, vessel inflammation, and T cell infiltration. Switching pericyte phenotype from a synthetic to a differentiated state reverses immune suppression and sensitizes tumors to adoptive T cell therapy, leading to regression of melanoma in mice. In melanoma patients, improved survival is correlated with enhanced pericyte maturity. Importantly, pericyte plasticity is regulated by signaling pathways converging on Rho kinase activity, with pericyte maturity being inducible by selective low-dose therapeutics that suppress pericyte MEK, AKT, or notch signaling. We also show that low-dose targeted anticancer therapy can durably change the tumor microenvironment without inducing adaptive resistance, creating a highly translatable pathway for redosing anticancer targeted therapies in combination with immunotherapy to improve outcome.
Collapse
Affiliation(s)
- Zhi-Jie Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Bo He
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Alice Domenichini
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiulia Satiaputra
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Kira H Wood
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Devina D Lakhiani
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Abate A Bashaw
- Melanoma Discovery Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa M Nilsson
- Melanoma Discovery Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ji Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Edward R Bastow
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Anna Johansson-Percival
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Elena Denisenko
- Systems Biology and Genomics Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Alistair Rr Forrest
- Systems Biology and Genomics Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Rafael Carretero
- DKFZ-Bayer Immunotherapeutic Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Jonas A Nilsson
- Melanoma Discovery Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gabriel Yf Lee
- St. John of God Subiaco Hospital and School of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Bullock KK, Richmond A. Beyond Anti-PD-1/PD-L1: Improving Immune Checkpoint Inhibitor Responses in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:2189. [PMID: 38927895 PMCID: PMC11201651 DOI: 10.3390/cancers16122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The introduction of anti-programmed cell death protein-1 (anti-PD-1) to the clinical management of triple-negative breast cancer (TNBC) represents a breakthrough for a disease whose treatment has long relied on the standards of chemotherapy and surgery. Nevertheless, few TNBC patients achieve a durable remission in response to anti-PD-1, and there is a need to develop strategies to maximize the potential benefit of immune checkpoint inhibition (ICI) for TNBC patients. In the present review, we discuss three conceptual strategies to improve ICI response rates in TNBC patients. The first effort involves improving patient selection. We discuss proposed biomarkers of response and resistance to anti-PD-1, concluding that an optimal biomarker will likely be multifaceted. The second effort involves identifying existing targeted therapies or chemotherapies that may synergize with ICI. In particular, we describe recent efforts to use inhibitors of the PI3K/AKT or RAS/MAPK/ERK pathways in combination with ICI. Third, considering the possibility that targeting the PD-1 axis is not the most promising strategy for TNBC treatment, we describe ongoing efforts to identify novel immunotherapy strategies.
Collapse
Affiliation(s)
| | - Ann Richmond
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
13
|
Sun XY, Wang CQ, Mao Y, Zhang ZQ, Cui J, Dong XN, Wang HB. Prognostic value and distribution pattern of tumor infiltrating lymphocytes and their subsets in distant metastases of advanced breast cancer. Clin Breast Cancer 2024; 24:e167-e176. [PMID: 38212189 DOI: 10.1016/j.clbc.2023.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND There are significant correlations between the levels of tumor infiltrating lymphocytes (TILs) and the prognosis of primary breast cancer. While little is known about immunological mechanisms in the distant metastasis of advanced breast cancer. PATIENTS AND METHODS A total of 106 patients with advanced metastatic breast cancer were enrolled in this study between 2016 and 2022. Hematoxylin and eosin staining and immunohistochemistry were used to assess the densities of stromal TILs (sTILs), intratumoral TILs (iTILs) and invasive marginal TILs (imTILs) and CD4+, CD8+, CD20+, FOXP3+ TILs in the primary tumor and metastasis (bone, lung, liver, and distant lymph node) of advanced breast cancer. RESULTS Higher levels of sTILs at metastatic sites were associated with better progression-free survival (PFS), postmetastasis survival (PMS) and overall survival (OS) (p = .026, .001 and .005, respectively). The levels of iTILs were significantly lower than those of sTILs and imTILs in both primary tumor (p< .001, both) and metastasis (p< .001, both). The level of CD4+ T cells was higher than those of CD8+ T cells and CD20+ B cells in both primary tumor (p < .001) and metastasis (p < .001). The levels of sTILs (p=0. 001) and imTILs (p< .001) in the primary tumor were generally higher than those in the metastasis. CONCLUSION The levels of TILs and their subsets can predict the survival and prognosis of patients with advanced breast cancer. The distributions of TILs and their subsets are similar between the primary tumor and metastasis. The metastases have a lower degree of lymphocytes infiltration than its corresponding primary tumor.
Collapse
Affiliation(s)
- Xin-Yi Sun
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Cheng-Qin Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Yan Mao
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Zhen-Qi Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Jian Cui
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Xian-Ning Dong
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China.
| |
Collapse
|
14
|
Cortesi A, Gandolfi F, Arco F, Di Chiaro P, Valli E, Polletti S, Noberini R, Gualdrini F, Attanasio S, Citron F, Ho IL, Shah R, Yen EY, Spinella MC, Ronzoni S, Rodighiero S, Mitro N, Bonaldi T, Ghisletti S, Monticelli S, Viale A, Diaferia GR, Natoli G. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. SCIENCE ADVANCES 2024; 10:eadk5386. [PMID: 38536927 PMCID: PMC10971493 DOI: 10.1126/sciadv.adk5386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/08/2025]
Abstract
While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.
Collapse
Affiliation(s)
- Alice Cortesi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gandolfi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Fabiana Arco
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Emanuele Valli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Citron
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - I-lin Ho
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rutvi Shah
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Er-Yen Yen
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mara Cetty Spinella
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simona Ronzoni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Nico Mitro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
15
|
Wilbur HC, Azad NS. Immunotherapy for the treatment of biliary tract cancer: an evolving landscape. Ther Adv Med Oncol 2024; 16:17588359241235799. [PMID: 38449562 PMCID: PMC10916472 DOI: 10.1177/17588359241235799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Biliary tract cancers (BTCs), consisting of intrahepatic and extrahepatic cholangiocarcinoma and gallbladder cancer, are an aggressive, heterogeneous malignancy. They are most often diagnosed in the locally advanced or metastatic setting, at which point treatment consists of systemic therapy or best supportive care. Our understanding of the tumor microenvironment and the molecular classification has led to the identification of targetable mutations, such as isocitrate dehydrogenase 1 and fibroblast growth factor receptor 2. Despite the identification of these genomic alterations, until recently, little advancement had been made in the first-line setting for advanced BTC. While immunotherapy (IO) has revolutionized the treatment of many malignancies, the use of IO in BTC had yielded limited results prior to TOPAZ-1. In this review, we discuss the systemic therapeutic advances for BTC over the past decade, the rationale for immunotherapy in BTC, prior trials utilizing IO in BTC, and current and emerging immune-based therapeutic options. We further analyze the culmination of these advances, which resulted in the approval of durvalumab with gemcitabine and cisplatin for the first-line treatment of BTC per TOPAZ-1. We also discuss the results of KEYNOTE-966, which similarly reported improved clinical outcomes with the use of pembrolizumab in combination with gemcitabine and cisplatin.
Collapse
Affiliation(s)
- Helen Catherine Wilbur
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nilofer S. Azad
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| |
Collapse
|
16
|
García-Díaz N, Wei Q, Taskén K. Small molecule inhibitors targeting regulatory T cells for cancer treatment. Eur J Immunol 2024; 54:e2350448. [PMID: 37937687 DOI: 10.1002/eji.202350448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
Regulatory T cells (Tregs) are important controllers of the immune system homeostasis by preventing disproportionate immune responses. In the context of cancer, Tregs contribute to tumor development by suppressing other immune cells in the tumor microenvironment (TME). Infiltration of Tregs in the TME has been associated with poor prognosis in cancer patients. Thus, understanding the mechanisms underlying Treg recruitment and suppressive functions is essential for developing cancer immunotherapies to boost antitumor immune responses. While antibody-based strategies targeting Tregs have shown promise, small molecule inhibitors offer distinct advantages, including oral bioavailability and the ability to penetrate the TME and target intracellular proteins. Here, we provide an overview of small molecule inhibitors that have demonstrated efficacy in modulating Tregs activity in cancer and highlight the need for phenotypic assays to characterize therapeutic compounds.
Collapse
Affiliation(s)
- Nuria García-Díaz
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Qian Wei
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Teo ZL, O'Connor MJ, Versaci S, Clarke KA, Brown ER, Percy LW, Kuykhoven K, Mintoff CP, Savas P, Virassamy B, Luen SJ, Byrne A, Sant S, Lindeman GJ, Darcy PK, Loi S. Combined PARP and WEE1 inhibition triggers anti-tumor immune response in BRCA1/2 wildtype triple-negative breast cancer. NPJ Breast Cancer 2023; 9:68. [PMID: 37582853 PMCID: PMC10427618 DOI: 10.1038/s41523-023-00568-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Novel therapeutic strategies that can effectively combine with immunotherapies are needed in the treatment of triple-negative breast cancer (TNBC). We demonstrate that combined PARP and WEE1 inhibition are synergistic in controlling tumour growth in BRCA1/2 wild-type TNBC preclinical models. The PARP inhibitor (PARPi) olaparib combined with the WEE1 inhibitor (WEE1i) adavosertib triggered increases in anti-tumour immune responses, including STING pathway activation. Combinations with a STING agonist resulted in further improved durable tumour regression and significant improvements in survival outcomes in murine tumour models of BRCA1/2 wild-type TNBC. In addition, we have identified baseline tumour-infiltrating lymphocyte (TIL) levels as a potential predictive biomarker of response to PARPi, WEE1i and immunotherapies in BRCA1/2 wild-type TNBC.
Collapse
Affiliation(s)
- Zhi Ling Teo
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Stephanie Versaci
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Kylie A Clarke
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Emmaline R Brown
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Luke W Percy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Keilly Kuykhoven
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | | | - Peter Savas
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Balaji Virassamy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Stephen J Luen
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ann Byrne
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Sneha Sant
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Geoffrey J Lindeman
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Phillip K Darcy
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sherene Loi
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
18
|
Lo JH, Agarwal R, Goff LW, Heumann TR. Immunotherapy in Biliary Tract Cancers: Current Standard-of-Care and Emerging Strategies. Cancers (Basel) 2023; 15:3312. [PMID: 37444422 PMCID: PMC10340362 DOI: 10.3390/cancers15133312] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Biliary tract cancers (BTCs), comprising intrahepatic, perihilar, and distal cholangiocarcinoma as well as gallbladder adenocarcinoma, continue to be challenging to manage. Conventional chemotherapy regimens for advanced disease are limited in both options and benefits, and more effective perioperative regimens are also needed. Over the last decade, immunotherapy has had a profound impact on the management of many solid tumor types, particularly in using immune checkpoint inhibition to enable a tumor-directed T cell response. Immunotherapy administered on its own has had limited utility in BTCs, in part due to a hostile immune microenvironment and the relative infrequency of biomarker-based tumor-agnostic indications for immunotherapy. However, immunotherapy in conjunction with chemotherapy, molecularly targeted therapies, and/or anti-angiogenic therapies has gained traction, supported by evidence that these agents can impart favorable immunomodulatory effects on the tumor microenvironment. The TOPAZ-1 trial led to the first BTC-specific immunotherapy approval, establishing the combination of durvalumab with gemcitabine and cisplatin as the preferred first-line treatment for advanced or metastatic disease. Recently, the KEYNOTE-966 trial showed positive results for the combination of pembrolizumab with gemcitabine and cisplatin in the same setting, adding further evidence for the addition of immune checkpoint inhibition to the standard chemotherapy backbone. Meanwhile, advances in the molecular profiling of BTCs has contributed to the recent proliferation of molecularly targeted therapeutics for the subset of BTCs harboring alterations in IDH1, FGFR2, MAP kinase signaling, HER2, and beyond, and there has been great interest in investigating combinations of these agents with immunotherapy. Emerging immunotherapy strategies beyond immune checkpoint inhibition are also being studied in BTCs, and these include immunostimulatory receptor agonists, Wnt signaling modulators, adoptive cell therapy, and cancer vaccines. A large number of trials are underway to explore promising new combinations and immune-targeted strategies, offering opportunities to expand the role of immunotherapy in BTC management in the near future.
Collapse
Affiliation(s)
| | | | | | - Thatcher R. Heumann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Schirizzi A, De Leonardis G, Lorusso V, Donghia R, Rizzo A, Vallarelli S, Ostuni C, Troiani L, Lolli IR, Giannelli G, Ricci AD, D'Alessandro R, Lotesoriere C. Targeting Angiogenesis in the Era of Biliary Tract Cancer Immunotherapy: Biological Rationale, Clinical Implications, and Future Research Avenues. Cancers (Basel) 2023; 15:cancers15082376. [PMID: 37190304 DOI: 10.3390/cancers15082376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Although biliary tract cancers are traditionally considered rare in Western countries, their incidence and mortality rates are rising worldwide. A better knowledge of the genomic landscape of these tumor types has broadened the number of molecular targeted therapies, including angiogenesis inhibitors. The role of immune checkpoint inhibitors (ICIs) could potentially change the first-line therapeutic approach, but monotherapy with ICIs has shown disappointing results in CCA. Several clinical trials are evaluating combination strategies that include immunotherapy together with other anticancer agents with a synergistic activity. The tumor microenvironment (TME) composition plays a pivotal role in the prognosis of BTC patients. The accumulation of immunosuppressive cell types, such as tumor-associated macrophages (TAMs) and regulatory T-cells, together with the poor infiltration of cytotoxic CD8+ T-cells, is known to predispose to a poor prognosis owing to the establishment of resistance mechanisms. Likewise, angiogenesis is recognized as a major player in modulating the TME in an immunosuppressive manner. This is the mechanistic rationale for combination treatment schemes blocking both immunity and angiogenesis. In this scenario, this review aims to provide an overview of the most recent completed or ongoing clinical trials combining immunotherapy and angiogenesis inhibitors with/without a chemotherapy backbone.
Collapse
Affiliation(s)
- Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Vincenza Lorusso
- Clinical Trial Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello", I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Laura Troiani
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Ivan Roberto Lolli
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| |
Collapse
|
20
|
Alvanou M, Lysandrou M, Christophi P, Psatha N, Spyridonidis A, Papadopoulou A, Yannaki E. Empowering the Potential of CAR-T Cell Immunotherapies by Epigenetic Reprogramming. Cancers (Basel) 2023; 15:1935. [PMID: 37046597 PMCID: PMC10093039 DOI: 10.3390/cancers15071935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
T-cell-based, personalized immunotherapy can nowadays be considered the mainstream treatment for certain blood cancers, with a high potential for expanding indications. Chimeric antigen receptor T cells (CAR-Ts), an ex vivo genetically modified T-cell therapy product redirected to target an antigen of interest, have achieved unforeseen successes in patients with B-cell hematologic malignancies. Frequently, however, CAR-T cell therapies fail to provide durable responses while they have met with only limited success in treating solid cancers because unique, unaddressed challenges, including poor persistence, impaired trafficking to the tumor, and site penetration through a hostile microenvironment, impede their efficacy. Increasing evidence suggests that CAR-Ts' in vivo performance is associated with T-cell intrinsic features that may be epigenetically altered or dysregulated. In this review, we focus on the impact of epigenetic regulation on T-cell differentiation, exhaustion, and tumor infiltration and discuss how epigenetic reprogramming may enhance CAR-Ts' memory phenotype, trafficking, and fitness, contributing to the development of a new generation of potent CAR-T immunotherapies.
Collapse
Affiliation(s)
- Maria Alvanou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Memnon Lysandrou
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Panayota Christophi
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 570 10 Thessaloniki, Greece
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA 98195-2100, USA
| |
Collapse
|
21
|
At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 2023; 20:143-159. [PMID: 36639452 DOI: 10.1038/s41571-022-00718-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/15/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has become a paradigm of precision medicine, with the discovery of numerous disease subtypes defined by specific oncogenic driver mutations leading to the development of a range of molecularly targeted therapies. Over the past decade, rapid progress has also been made in the development of immune-checkpoint inhibitors (ICIs), especially antagonistic antibodies targeting the PD-L1-PD-1 axis, for the treatment of NSCLC. Although many of the major oncogenic drivers of NSCLC are associated with intrinsic resistance to ICIs, patients with certain oncogene-driven subtypes of the disease that are highly responsive to specific targeted therapies might also derive benefit from immunotherapy. However, the development of effective immunotherapy approaches for oncogene-addicted NSCLC has been challenged by a lack of predictive biomarkers for patient selection and limited knowledge of how ICIs and oncogene-directed targeted therapies should be combined. Therefore, whether ICIs alone or with chemotherapy or even in combination with molecularly targeted agents would offer comparable benefit in the context of selected oncogenic driver alterations to that observed in the general unselected NSCLC population remains an open question. In this Review, we discuss the effects of oncogenic driver mutations on the efficacy of ICIs and the immune tumour microenvironment as well as the potential vulnerabilities that could be exploited to overcome the challenges of immunotherapy for oncogene-addicted NSCLC.
Collapse
|
22
|
Zidan M, Zidan AAA, Attia Saad M, El-Shanshory M, Bakry U, Sobh A, Mohammed Abdou S, Labib Salem M. Altered microRNA expression profile is linked to T-cell exhaustion-related pathways in pediatric patients with acute lymphoblastic leukemia. Hum Immunol 2023; 84:113-122. [PMID: 36347735 DOI: 10.1016/j.humimm.2022.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Although the phenotype and functions of exhausted T cells in several cancers have been identified, the involved molecular mechanisms remain to be further elucidated. In this regard, we have recently reported that the immunoregulatory cells, including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), share common dysregulated miRNAs that target specific immunosuppressive pathways in patients with in acute lymphoblastic leukemia (ALL). AIM In this study, we aimed to further explore whether similar dysregulation in miRNA expression is linked to T cell exhaustion and dysfunctionality in B cell ALL patients. METHODS Peripheral blood samples from pediatric patients with ALL were recruited before and after induction chemotherapy as well as from healthy donors. Affymetrix microarray platform was used for miRNA profiling, and qRT-PCR was used to validate the expression of certain miRNAs that are related to T cell exhaustion. Bioinformatics analysis was performed to explore whether the dysregulated miRNAs were linked to T-cell exhaustion related pathways. RESULTS A total of 516 miRNAs were dysregulated in ALL patients as compared to the healthy donor. Furthermore, among the total analyzed miRNAs, 10 were found to be linked to the key genes implicated in three exhaustion-related pathways; TGF-β, FOXO, and MAPK, as revealed by miR-pathway analysis. Moreover, qRT-PCR analysis showed similar expression pattern to those obtained by microarray analysis. CONCLUSION Our pilot study suggests the implication of certain miRNAs in T cell exhaustion pathways via targeting the specific key genes in those pathways.
Collapse
Affiliation(s)
- Mona Zidan
- Microbiology and Immunology Research Program, 57357 Children Cancer Hospital, Cairo, Egypt
| | - Abdel-Aziz A Zidan
- Department of Zoology, Faculty of Science, Damanhur University, Damanhur, Egypt; Center of Excellence in Cancer Research, Tanta University Educational Hospital, Tanta University, Tanta, Egypt
| | - Mohamed Attia Saad
- Center of Excellence in Cancer Research, Tanta University Educational Hospital, Tanta University, Tanta, Egypt; Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed El-Shanshory
- Center of Excellence in Cancer Research, Tanta University Educational Hospital, Tanta University, Tanta, Egypt; Department of Pediatric, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Usama Bakry
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Ashraf Sobh
- Department of Biology, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| | | | - Mohamed Labib Salem
- Center of Excellence in Cancer Research, Tanta University Educational Hospital, Tanta University, Tanta, Egypt; Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
23
|
van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 2023; 23:193-215. [PMID: 36717668 DOI: 10.1038/s41568-022-00544-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.
Collapse
Affiliation(s)
- Antoinette van Weverwijk
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
24
|
Yuan C, Huang J, Li H, Zhai R, Zhai J, Fang X, Wu Y. Association of clinical outcomes and the predictive value of T lymphocyte subsets within colorectal cancer patients. Front Surg 2023; 10:1102545. [PMID: 37206348 PMCID: PMC10188938 DOI: 10.3389/fsurg.2023.1102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Tumor immunity is a hot topic in tumor research today, and human immunity is closely related to tumor progression. T lymphocyte is an important component of human immune system, and the changes in their subsets may influence the progression of colorectal cancer (CRC) to some extent. This clinical study systematically describes and analyzes the association of CD4+ and CD8+ T-lymphocyte content and CD4+/CD8+ T-lymphocyte ratio with CRC differentiation, clinical pathological stage, Ki67 expression, T-stage, N-stage, carcinoembryonic antigen (CEA) content, nerve and vascular infiltration, and other clinical features, as well as preoperative and postoperative trends. Furthermore, a predictive model is constructed to evaluate the predictive value of T-lymphocyte subsets for CRC clinical features. Methods Strict inclusion and exclusion criterion were formulated to screen patients, preoperative and postoperative flow cytometry and postoperative pathology reports from standard laparoscopic surgery were assessed. PASS and SPSS software, R packages were invoked to calculate and analyze. Results We found that a high CD4+ T-lymphocyte content in peripheral blood and a high CD4+/CD8+ ratio were associated with better tumor differentiation, an earlier clinical pathological stage, lower Ki67 expression, shallower tumor infiltration, a smaller number of lymph node metastases, a lower CEA content, and a lower likelihood of nerve or vascular infiltration (P < 0.05). However, a high CD8+ T-lymphocyte content indicated an unpromising clinical profile. After effective surgical treatment, the CD4+ T-lymphocyte content and CD4+/CD8+ ratio increased significantly (P < 0.05), while the CD8+ T-lymphocyte content decreased significantly (P < 0.05). Further, we comprehensively compared the merits of CD4+ T-lymphocyte content, CD8+ T-lymphocyte content, and CD4+/CD8+ ratio in predicting the clinical features of CRC. We then combined the CD4+ and CD8+ T-lymphocyte content to build models and predict major clinical characteristics. We compared these models with the CD4+/CD8+ ratio to explore their advantages and disadvantages in predicting the clinical features of CRC. Discussion Our results provide a theoretical basis for the future screening of effective markers in reflecting and predicting the progression of CRC. Changes in T lymphocyte subsets affect the progression of CRC to a certain extent, while their changes also reflect variations in the human immune system.
Collapse
Affiliation(s)
- Chaofeng Yuan
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiannan Huang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haitao Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rongnan Zhai
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinjing Zhai
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Correspondence: Xuedong Fang Yuanyu Wu
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Correspondence: Xuedong Fang Yuanyu Wu
| |
Collapse
|
25
|
Akbari B, Hosseini Z, Shahabinejad P, Ghassemi S, Mirzaei HR, O'Connor RS. Metabolic and epigenetic orchestration of (CAR) T cell fate and function. Cancer Lett 2022; 550:215948. [DOI: 10.1016/j.canlet.2022.215948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
26
|
Apport de l'immunothérapie dans le traitement des cancers des voies biliaires avancés. Bull Cancer 2022; 109:11S11-11S20. [DOI: 10.1016/s0007-4551(22)00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Nakamura K, Okuyama R. Changes in the Immune Cell Repertoire for the Treatment of Malignant Melanoma. Int J Mol Sci 2022; 23:12991. [PMID: 36361781 PMCID: PMC9658693 DOI: 10.3390/ijms232112991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 10/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been used for the treatment of various types of cancers, including malignant melanoma. Mechanistic exploration of tumor immune responses is essential to improve the therapeutic efficacy of ICIs. Since tumor immune responses are based on antigen-specific immune responses, investigators have focused on T cell receptors (TCRs) and have analyzed changes in the TCR repertoire. The proliferation of T cell clones against tumor antigens is detected in patients who respond to treatment with ICIs. The proliferation of these T cell clones is observed within tumors as well as in the peripheral blood. Clonal proliferation has been detected not only in CD8-positive T cells but also in CD4-positive T cells, resident memory T cells, and B cells. Moreover, changes in the repertoire at an early stage of treatment seem to be useful for predicting the therapeutic efficacy of ICIs. Further analyses of the repertoire of immune cells are desirable to improve and predict the therapeutic efficacy of ICIs.
Collapse
Affiliation(s)
- Kenta Nakamura
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | |
Collapse
|
28
|
Morante M, Pandiella A, Crespo P, Herrero A. Immune Checkpoint Inhibitors and RAS-ERK Pathway-Targeted Drugs as Combined Therapy for the Treatment of Melanoma. Biomolecules 2022; 12:1562. [PMID: 36358912 PMCID: PMC9687808 DOI: 10.3390/biom12111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/08/2023] Open
Abstract
Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.
Collapse
Affiliation(s)
- Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Atanasio Pandiella
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| |
Collapse
|
29
|
Ruggieri AN, Yarchoan M, Goyal S, Liu Y, Sharon E, Chen HX, Olson BM, Paulos CM, El-Rayes BF, Maithel SK, Azad NS, Lesinski GB. Combined MEK/PD-L1 Inhibition Alters Peripheral Cytokines and Lymphocyte Populations Correlating with Improved Clinical Outcomes in Advanced Biliary Tract Cancer. Clin Cancer Res 2022; 28:4336-4345. [PMID: 35833954 PMCID: PMC9529897 DOI: 10.1158/1078-0432.ccr-22-1123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Biliary tract cancers (BTC) are aggressive malignancies refractory to chemotherapy and immunotherapy. MEK inhibition (MEKi)-based regimens may have utility in this disease when combined with PD-L1 blockade. We hypothesize that dual MEK/PD-L1 inhibition alters circulating soluble and cellular immune mediators to improve clinical outcomes in patients with advanced BTC. EXPERIMENTAL DESIGN We examined immune features in peripheral blood from 77 patients with advanced BTC enrolled in a phase II clinical trial investigating atezolizumab with or without cobimetinib. Plasma and peripheral blood mononuclear cells (PBMC) were isolated from whole blood to evaluate soluble factors and immune cell populations. Baseline blood samples were additionally compared with healthy donors to identify immune signatures unique to BTC. RESULTS At baseline, the soluble factors platelet-derived growth factor B (PDGF)-BB, placental growth factor (PlGF)-1, IL5, and IL17A were elevated in patients with BTC compared with healthy adult donors, and higher baseline frequencies of CD8+BTLA+ T cells correlated with better overall survival (OS) in this trial. There were also significant treatment-related alterations in several factors, including decreased PDGF-BB following combination treatment, that correlated with improved OS and progression-free survival (PFS). Higher baseline levels of IL23 and RANTES corresponded to improved clinical outcomes following combination treatment. Dual MEK/PD-L1 inhibition increased populations of CD4+TIM3+ and decreased CD8+VISTA+ T cells, correlating with worse OS and better PFS, respectively. CONCLUSIONS This work represents a comprehensive analysis of peripheral immune features in patients with BTC and systemic responses to dual MEK/PD-L1 inhibition. These data support further investigation to understand how MEKi combines with immunotherapeutic approaches to improve clinical outcomes for patients with advanced BTC.
Collapse
Affiliation(s)
- Amanda N. Ruggieri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Mark Yarchoan
- Department of Oncology, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Subir Goyal
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Yuan Liu
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Elad Sharon
- National Cancer Institute (NCI) Cancer Therapy Evaluation Program (CTEP), Bethesda, MD, USA
| | - Helen X. Chen
- National Cancer Institute (NCI) Cancer Therapy Evaluation Program (CTEP), Bethesda, MD, USA
| | - Brian M. Olson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Chrystal M. Paulos
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Bassel F. El-Rayes
- O’Neal Comprehensive Cancer Center of the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shishir K. Maithel
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Nilofer S. Azad
- Department of Oncology, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA,To whom correspondence should be addressed: Nilofer S. Azad, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans Street, Room 4M10, Baltimore, MD 20815, Tel: 410-955-8893; , Gregory B. Lesinski, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd. NE, Atlanta, GA, 30322, USA. Tel: (404)-778-3072;
| | - Gregory B. Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA,To whom correspondence should be addressed: Nilofer S. Azad, Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans Street, Room 4M10, Baltimore, MD 20815, Tel: 410-955-8893; , Gregory B. Lesinski, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd. NE, Atlanta, GA, 30322, USA. Tel: (404)-778-3072;
| |
Collapse
|
30
|
Khan S, Patel SP, Shoushtari AN, Ambrosini G, Cremers S, Lee S, Franks L, Singh-Kandah S, Hernandez S, Sender N, Vuolo K, Nesson A, Mundi P, Izar B, Schwartz GK, Carvajal RD. Intermittent MEK inhibition for the treatment of metastatic uveal melanoma. Front Oncol 2022; 12:975643. [PMID: 36249046 PMCID: PMC9557946 DOI: 10.3389/fonc.2022.975643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Uveal melanoma (UM) is associated with poor outcomes in the metastatic setting and harbors activating mutations resulting in upregulation of MAPK signaling in almost all cases. The efficacy of selumetinib, an oral allosteric inhibitor of MEK1/2, was limited when administered at a continual dosing schedule of 75 mg BID. Preclinical studies demonstrate that intermittent MEK inhibition reduces compensatory pathway activation and promotes T cell activation. We hypothesized that intermittent dosing of selumetinib would reduce toxicity, allow for the administration of increased doses, and achieve more complete pathway inhibition, thus resulting in improved antitumor activity. Methods We conducted a phase Ib trial of selumetinib using an intermittent dosing schedule in patients with metastatic UM. The primary objective was to estimate the maximum tolerated dose (MTD) and assess safety and tolerability. Secondary objectives included assessment of the overall response rate (RR), progression-free survival (PFS) and overall survival (OS). Tumor biopsies were collected at baseline, on day 3 (on treatment), and between days 11-14 (off treatment) from 9 patients for pharmacodynamic (PD) assessments. Results 29 patients were enrolled and received at least one dose of selumetinib across 4 dose levels (DL; DL1: 100 mg BID; DL2: 125 mg BID; DL3: 150 mg BID; DL4: 175 mg BID). All patients experienced a treatment-related adverse event (TRAE), with 5/29 (17%) developing a grade 3 or higher TRAE. Five dose limiting toxicities (DLT) were observed: 2/20 in DL2, 2/5 in DL3, 1/1 in DL4. The estimated MTD was 150 mg BID (DL3), with an estimated probability of toxicity of 29% (90% probability interval 16%-44%). No responses were observed; 11/29 patients achieved a best response of stable disease (SD). The median PFS and OS were 1.8 months (95% CI 1.7, 4.5) and 7.1 months (95% CI 5.3, 11.5). PD analysis demonstrated at least partial pathway inhibition in all samples at day 3, with reactivation between days 11-14 in 7 of those cases. Conclusions We identified 150 mg BID as the MTD of intermittent selumetinib, representing a 100% increase over the continuous dose MTD (75 mg BID). However, no significant clinical efficacy was observed using this dosing schedule.
Collapse
Affiliation(s)
- Shaheer Khan
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Sapna P Patel
- Department of Melanoma Medical Oncology University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander N Shoushtari
- Department of Medicine Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Grazia Ambrosini
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Serge Cremers
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Shing Lee
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lauren Franks
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Shahnaz Singh-Kandah
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Susana Hernandez
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Naomi Sender
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Kristina Vuolo
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Alexandra Nesson
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Prabhjot Mundi
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Benjamin Izar
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Gary K Schwartz
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| | - Richard D Carvajal
- Department of Medicine Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
31
|
Shi M, Chen Y, Ji D. The implications from the interplay of neoadjuvant chemoradiotherapy and the immune microenvironment in rectal cancer. Future Oncol 2022; 18:3229-3244. [PMID: 36017694 DOI: 10.2217/fon-2022-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neoadjuvant chemoradiotherapy (nCRT) is recommended for the treatment of locally advanced rectal cancer. Even though the combination of nCRT and immune checkpoint inhibitors (ICIs) has received much attention, the specific combination modes and dose fractions in radiotherapy (RT) are still indistinct. This review focuses on the immunological mechanism involved in nCRT, the clinical efficacy, the immunological effect of different combined strategies, concurrent or sequential nCRT plus ICIs, long-course RT and short-course RT. This review discusses the impact of nCRT on tumor immunity and summarizes the availability of different dose fractions in RT and distinct combined strategies, aiming at providing clues for optimal neoadjuvant therapy options that maximize efficacy and minimize side effects.
Collapse
Affiliation(s)
- Mengyuan Shi
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Yongkang Chen
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Dengbo Ji
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| |
Collapse
|
32
|
Liu Z, Zhang Y, Xiang Y, Kang X. Small-Molecule PROTACs for Cancer Immunotherapy. Molecules 2022; 27:5439. [PMID: 36080223 PMCID: PMC9458232 DOI: 10.3390/molecules27175439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Unsatisfactory physicochemical properties of macromolecular drugs seriously hinder their application in tumor immunotherapy. However, these problems can be effectively solved by small-molecule compounds. In the promising field of small-molecule drug development, proteolysis targeting chimera (PROTAC) offers a novel mode of action in the interactions between small molecules and therapeutic targets (mainly proteins). This revolutionary technology has shown considerable impact on several proteins related to tumor survival but is rarely exploited in proteins associated with immuno-oncology up until now. This review attempts to comprehensively summarize the well-studied and less-developed immunological targets available for PROTAC technology, as well as some targets to be explored, aiming to provide more options and opportunities for the development of small-molecule-based tumor immunotherapy. In addition, some novel directions that can magnify and broaden the protein degradation efficiency are mentioned to improve PROTAC design in the future.
Collapse
Affiliation(s)
| | | | | | - Xin Kang
- West China (Airport) Hospital, Sichuan University, Chengdu 610047, China
| |
Collapse
|
33
|
Offringa R, Kötzner L, Huck B, Urbahns K. The expanding role for small molecules in immuno-oncology. Nat Rev Drug Discov 2022; 21:821-840. [PMID: 35982333 DOI: 10.1038/s41573-022-00538-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) using antibodies against PD1 and its ligand PDL1 has prompted substantial efforts to develop complementary drugs. Although many of these are antibodies directed against additional checkpoint proteins, there is an increasing interest in small-molecule immuno-oncology drugs that address intracellular pathways, some of which have recently entered clinical trials. In parallel, small molecules that target pro-tumorigenic pathways in cancer cells and the tumour microenvironment have been found to have immunostimulatory effects that synergize with the action of ICI antibodies, leading to the approval of an increasing number of regimens that combine such drugs. Combinations with small molecules targeting cancer metabolism, cytokine/chemokine and innate immune pathways, and T cell checkpoints are now under investigation. This Review discusses the recent milestones and hurdles encountered in this area of drug development, as well as our views on the best path forward.
Collapse
Affiliation(s)
- Rienk Offringa
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany. .,DKFZ-Bayer Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Lisa Kötzner
- Merck Healthcare KGaA, Healthcare R&D, Discovery and Development Technologies, Darmstadt, Germany
| | - Bayard Huck
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA
| | - Klaus Urbahns
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA.
| |
Collapse
|
34
|
Li H, Liu H, Hao Q, Liu X, Yao Y, Cao M. Oncogenic signaling pathway-related long non-coding RNAs for predicting prognosis and immunotherapy response in breast cancer. Front Immunol 2022; 13:891175. [PMID: 35990668 PMCID: PMC9386474 DOI: 10.3389/fimmu.2022.891175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe clinical outcomes of breast cancer (BC) are unpredictable due to the high level of heterogeneity and complex immune status of the tumor microenvironment (TME). When set up, multiple long non-coding RNA (lncRNA) signatures tended to be employed to appraise the prognosis of BC. Nevertheless, predicting immunotherapy responses in BC is still essential. LncRNAs play pivotal roles in cancer development through diverse oncogenic signal pathways. Hence, we attempted to construct an oncogenic signal pathway–based lncRNA signature for forecasting prognosis and immunotherapy response by providing reliable signatures.MethodsWe preliminarily retrieved RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) database and extracted lncRNA profiles by matching them with GENCODE. Following this, Gene Set Variation Analysis (GSVA) was used to identify the lncRNAs closely associated with 10 oncogenic signaling pathways from the TCGA-BRCA (breast-invasive carcinoma) cohort and was further screened by the least absolute shrinkage and selection operator Cox regression model. Next, an lncRNA signature (OncoSig) was established through the expression level of the final 29 selected lncRNAs. To examine survival differences in the stratification described by the OncoSig, the Kaplan–Meier (KM) survival curve with the log-rank test was operated on four independent cohorts (n = 936). Subsequently, multiple Cox regression was used to investigate the independence of the OncoSig as a prognostic factor. With the concordance index (C-index), the time-dependent receiver operating characteristic was employed to assess the performance of the OncoSig compared to other publicly available lncRNA signatures for BC. In addition, biological differences between the high- and low-risk groups, as portrayed by the OncoSig, were analyzed on the basis of statistical tests. Immune cell infiltration was investigated using gene set enrichment analysis (GSEA) and deconvolution tools (including CIBERSORT and ESTIMATE). The combined effect of the Oncosig and immune checkpoint genes on prognosis and immunotherapy was elucidated through the KM survival curve. Ultimately, a pan-cancer analysis was conducted to attest to the prevalence of the OncoSig.ResultsThe OncoSig score stratified BC patients into high- and low-risk groups, where the latter manifested a significantly higher survival rate and immune cell infiltration when compared to the former. A multivariate analysis suggested that OncoSig is an independent prognosis predictor for BC patients. In addition, compared to the other four publicly available lncRNA signatures, OncoSig exhibited superior predictive performance (AUC = 0.787, mean C-index = 0.714). The analyses of the OncoSig and immune checkpoint genes clarified that a lower OncoSig score meant significantly longer survival and improved response to immunotherapy. In addition to BC, a high OncoSig score in several other cancers was negatively correlated with survival and immune cell infiltration.ConclusionsOur study established a trustworthy and discriminable prognostic signature for BC patients with similar clinical profiles, thus providing a new perspective in the evaluation of immunotherapy responses. More importantly, this finding can be generalized to be applicable to the vast majority of human cancers.
Collapse
Affiliation(s)
- Huamei Li
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Xianglin Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Yongzhong Yao, ; Meng Cao,
| | - Meng Cao
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Yongzhong Yao, ; Meng Cao,
| |
Collapse
|
35
|
Dongye Z, Wu X, Wen Y, Ding X, Wang C, Zhao T, Li J, Wu Y. Icaritin and intratumoral injection of CpG treatment synergistically promote T cell infiltration and antitumor immune response in mice. Int Immunopharmacol 2022; 111:109093. [PMID: 35930912 DOI: 10.1016/j.intimp.2022.109093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
The development of combination therapy that can modulate the tumor immunosuppressive microenvironment is highly desirable for cancer immunotherapy. Icaritin (ICT), a hydrolytic product of icariin from genus Epimedium, has been used as an anti-cancer immunoregulatory agent for many types of cancers. Herein, we design a novel therapeutic strategy for mice melanoma that combines systemic administration of icaritin with intratumoral injection of unmethylated cytosine-guanine oligodeoxynucleotide (CpG). Icaritin induces tumor cell apoptosis and increases tumor immunogenicity. The combination of icaritin with CpG synergistically suppresses tumor growth and significantly prolonged survival time of B16F10 melanoma bearing mice. importantly, the anti-tumor effects of this combination strategy are associated with the reversing of immunosuppressive microenvironment through increased recruitment of functional DCs and tumor-associated macrophages (TAM) in tumors, leading to the infiltration of cytotoxic CD8+ T cells expressing elevated levels of IFN-γ and TNF-α. Furthermore, the combination of icaritin with CpG augments the anti-tumor immune response to anti-PD-1/CTLA-4 immune checkpoint blockade treatment. These results support the combination of icaritin with CpG as a novel strategy to elicit effective T cell-mediated antitumor immune response.
Collapse
Affiliation(s)
- Zhangchi Dongye
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China; Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoping Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuxiang Wen
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuelei Ding
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuanjie Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tingting Zhao
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
36
|
Avery TY, Köhler N, Zeiser R, Brummer T, Ruess DA. Onco-immunomodulatory properties of pharmacological interference with RAS-RAF-MEK-ERK pathway hyperactivation. Front Oncol 2022; 12:931774. [PMID: 35965494 PMCID: PMC9363660 DOI: 10.3389/fonc.2022.931774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Hyperactivation of the RAS-RAF-MEK-ERK cascade - a mitogen-activated protein kinase pathway – has a well-known association with oncogenesis of leading tumor entities, including non-small cell lung cancer, colorectal carcinoma, pancreatic ductal adenocarcinoma, and malignant melanoma. Increasing evidence shows that genetic alterations leading to RAS-RAF-MEK-ERK pathway hyperactivation mediate contact- and soluble-dependent crosstalk between tumor, tumor microenvironment (TME) and the immune system resulting in immune escape mechanisms and establishment of a tumor-sustaining environment. Consequently, pharmacological interruption of this pathway not only leads to tumor-cell intrinsic disruptive effects but also modification of the TME and anti-tumor immunomodulation. At the same time, the importance of ERK signaling in immune cell physiology and potentiation of anti-tumor immune responses through ERK signaling inhibition within immune cell subsets has received growing appreciation. Specifically, a strong case was made for targeted MEK inhibition due to promising associated immune cell intrinsic modulatory effects. However, the successful transition of therapeutic agents interrupting RAS-RAF-MEK-ERK hyperactivation is still being hampered by significant limitations regarding durable efficacy, therapy resistance and toxicity. We here collate and summarize the multifaceted role of RAS-RAF-MEK-ERK signaling in physiology and oncoimmunology and outline the rationale and concepts for exploitation of immunomodulatory properties of RAS-RAF-MEK-ERK inhibition while accentuating the role of MEK inhibition in combinatorial and intermittent anticancer therapy. Furthermore, we point out the extensive scientific efforts dedicated to overcoming the challenges encountered during the clinical transition of various therapeutic agents in the search for the most effective and safe patient- and tumor-tailored treatment approach.
Collapse
Affiliation(s)
- Thomas Yul Avery
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| | - Natalie Köhler
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Tilman Brummer
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| |
Collapse
|
37
|
Hacking SM, Yakirevich E, Wang Y. From Immunohistochemistry to New Digital Ecosystems: A State-of-the-Art Biomarker Review for Precision Breast Cancer Medicine. Cancers (Basel) 2022; 14:3469. [PMID: 35884530 PMCID: PMC9315712 DOI: 10.3390/cancers14143469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancers represent complex ecosystem-like networks of malignant cells and their associated microenvironment. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are biomarkers ubiquitous to clinical practice in evaluating prognosis and predicting response to therapy. Recent feats in breast cancer have led to a new digital era, and advanced clinical trials have resulted in a growing number of personalized therapies with corresponding biomarkers. In this state-of-the-art review, we included the latest 10-year updated recommendations for ER, PR, and HER2, along with the most salient information on tumor-infiltrating lymphocytes (TILs), Ki-67, PD-L1, and several prognostic/predictive biomarkers at genomic, transcriptomic, and proteomic levels recently developed for selection and optimization of breast cancer treatment. Looking forward, the multi-omic landscape of the tumor ecosystem could be integrated with computational findings from whole slide images and radiomics in predictive machine learning (ML) models. These are new digital ecosystems on the road to precision breast cancer medicine.
Collapse
Affiliation(s)
| | | | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Rhode Island Hospital and Lifespan Medical Center, 593 Eddy Street, Providence, RI 02903, USA; (S.M.H.); (E.Y.)
| |
Collapse
|
38
|
Howard FM, Villamar D, He G, Pearson AT, Nanda R. The emerging role of immune checkpoint inhibitors for the treatment of breast cancer. Expert Opin Investig Drugs 2022; 31:531-548. [PMID: 34569400 PMCID: PMC8995399 DOI: 10.1080/13543784.2022.1986002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer has traditionally been viewed as immunogenically 'cold,' but two immune checkpoint inhibitors have been approved in combination with chemotherapy for PD-L1 positive advanced triple-negative breast cancer (TNBC), and pembrolizumab was also recently approved for early stage TNBC. As the landscape is rapidly evolving, a comprehensive review of checkpoint inhibitors in breast cancer is needed to aid clinicians in selecting appropriate candidates for therapy, and to highlight ongoing promising studies in this area and topics in need of further investigation. AREA COVERED This review summarizes the latest evidence from completed and ongoing trials of immune checkpoint inhibitors. Ongoing studies were identified using a search of ClinicalTrials.gov with the term 'breast cancer' along with specific checkpoint inhibitor agents. EXPERT OPINION A number of novel combination strategies are under investigation to enhance response and overcome resistance to immunotherapy, with promising preliminary data from checkpoint inhibitors targeting TIGIT, combinations with small molecule inhibitors such as lenvatinib, and injectable agents directly influencing the immune microenvironment. As immunotherapy enters into the curative setting, biomarkers predictive of immunotherapy benefit are needed, as PD-L1 status has not been a helpful discriminator in completed trials in early-stage breast cancer.
Collapse
Affiliation(s)
| | - Dario Villamar
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gong He
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Rita Nanda
- Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
39
|
Combination of OX40 Co-Stimulation, Radiotherapy, and PD-1 Inhibition in a Syngeneic Murine Triple-Negative Breast Cancer Model. Cancers (Basel) 2022; 14:cancers14112692. [PMID: 35681672 PMCID: PMC9179485 DOI: 10.3390/cancers14112692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This experimental study was designed in order to investigate the efficacy of the triple combination of radiation (SBRT), PD-1 blockade, and OX40 co-stimulation in a syngeneic murine model using ‘immunologically cold’ triple-negative breast cancer cells. SBRT can induce immunogenic tumor cell deaths and act as an in situ vaccine while OX40 signaling has been shown to improve anticancer immunity combined with PD-1 inhibition via multiple preclinical studies. In our study, triple combination therapy significantly improved primary/abscopal tumor control and reduced lung metastases compared to single or dual therapies. This was found to be through an increased ratio of CD8+ T cells to regulatory T cells and a reduced proportion of exhausted T cells in the tumor microenvironment. Abstract Immune checkpoint inhibitors have been successful in a wide range of tumor types but still have limited efficacy in immunologically cold tumors, such as breast cancers. We hypothesized that the combination of agonistic anti-OX40 (α-OX40) co-stimulation, PD-1 blockade, and radiotherapy would improve the therapeutic efficacy of the immune checkpoint blockade in a syngeneic murine triple-negative breast cancer model. Murine triple-negative breast cancer cells (4T1) were grown in immune-competent BALB/c mice, and tumors were irradiated with 24 Gy in three fractions. PD-1 blockade and α-OX40 were administered five times every other day. Flow cytometric analyses and immunohistochemistry were used to monitor subsequent changes in the immune cell repertoire. The combination of α-OX40, radiotherapy, and PD-1 blockade significantly improved primary tumor control, abscopal effects, and long-term survival beyond 2 months (60%). In the tumor microenvironment, the ratio of CD8+ T cells to CD4 + FOXP3+ regulatory T cells was significantly elevated and exhausted CD8+ T cells (PD-1+, CTLA-4+, TIM-3+, or LAG-3+ cells) were significantly reduced in the triple combination group. Systemically, α-OX40 co-stimulation and radiation significantly increased the CD103+ dendritic cell response in the spleen and plasma IFN-γ, respectively. Together, our results suggest that the combination of α-OX40 co-stimulation and radiation is a viable approach to overcome therapeutic resistance to PD-1 blockade in immunologically cold tumors, such as triple-negative breast cancer.
Collapse
|
40
|
Bari S, Muzaffar J, Eroglu Z. Combination targeted and immune therapy in the treatment of advanced melanoma: a valid treatment option for patients? Ther Adv Med Oncol 2022; 14:17588359221090306. [PMID: 35478991 PMCID: PMC9036333 DOI: 10.1177/17588359221090306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Melanomas harboring an activating BRAFV600 mutation account for 50% of all advanced melanomas. The approval of BRAF-targeted therapy revolutionized treatment of these patients with achievement of impressive responses. However, development of resistance to these drugs is a significant problem, and as such, duration of response remains low, with median progression free survival of around 11–15 months. Immune checkpoint blockers exploit the immune system to eradicate cancer and can produce durable disease control that results in long-term, treatment-free survival in some patients. These drugs have shown very impressive survival in patients with BRAF-mutated melanoma. Thus, there is a need to continue to utilize emerging data to achieve long-term disease control for patients with advanced melanoma. Combining targeted therapy with immune therapy may be one possible way to achieve this goal. In this review, the mechanisms of action of these two pathways, including the mechanistic basis of this combination, are summarized, along with results of completed and ongoing trials in triple therapy.
Collapse
Affiliation(s)
- Shahla Bari
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jameel Muzaffar
- Department of Head and Neck Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
41
|
Wang S, Zhang X, Ning H, Dong S, Wang G, Sun R. B7 homolog 3 induces lung metastasis of breast cancer through Raf/MEK/ERK axis. Breast Cancer Res Treat 2022; 193:405-416. [PMID: 35312883 DOI: 10.1007/s10549-022-06520-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE The essential action of B7 homolog 3 (B7-H3) in different diseases and cancers has been documented. We here focused on its role in breast cancer through the Raf/MEK/ERK axis regarding lung metastasis. METHODS Expression pattern of B7-H3 was determined in breast cancer tissues and cells with its correlation with prognosis analyzed. Then, through transfection of lentivirus vector expressing B7-H3-shRNA, overexpression vector of B7-H3 (B7-H3-LV), U0126 (small molecule inhibitor of MEK), or PD98059 (small molecule inhibitor of ERK), the in vitro and in vivo effects of B7-H3 in breast cancer cell biological processes, and lung metastasis were analyzed in relation to the Raf/MEK/ERK axis. RESULTS We discovered elevated B7-H3 in breast cancer and its elevation associated with poor prognosis. B7-H3 promoted the malignant properties of breast cancer cells, accompanied with increased N-cadherin and vimentin and reduced E-cadherin. Additionally, overexpression of B7-H3 accelerated the lung metastasis in breast cancer in vivo. All the above promoting action of B7-H3 was achieved through activation of the Raf/MEK/ERK signaling pathway. CONCLUSION Taken together, B7-H3 can promote lung metastasis in breast cancer through activation of the Raf/MEK/ERK axis.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong Province, China
| | - Xinyan Zhang
- Department of Intervention, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, 264200, China
| | - Houfa Ning
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China
| | - Senyi Dong
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China
| | - Guangzhi Wang
- School of Medical Imaging, Weifang Medical University, No. 7166, Baotong West Street, Weifang, 261053, Shandong Province, China.
| | - Ruimei Sun
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong Province, China.
| |
Collapse
|
42
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
43
|
Bae J, Accardi F, Hideshima T, Tai YT, Prabhala R, Shambley A, Wen K, Rowell S, Richardson PG, Munshi NC, Anderson KC. Targeting LAG3/GAL-3 to overcome immunosuppression and enhance anti-tumor immune responses in multiple myeloma. Leukemia 2022; 36:138-154. [PMID: 34290359 PMCID: PMC8727303 DOI: 10.1038/s41375-021-01301-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Immune profiling in patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM) provides the framework for developing novel immunotherapeutic strategies. Here, we demonstrate decreased CD4+ Th cells, increased Treg and G-type MDSC, and upregulation of immune checkpoints on effector/regulatory and CD138+ cells in MM patients, compared MGUS/SMM patients or healthy individuals. Among the checkpoints profiled, LAG3 was most highly expressed on proliferating CD4+ Th and CD8+ Tc cells in MM patients BMMC and PBMC. Treatment with antibody targeting LAG3 significantly enhanced T cells proliferation and activities against MM. XBP1/CD138/CS1-specific CTL generated in vitro displayed anti-MM activity, which was further enhanced following anti-LAG3 treatment, within the antigen-specific memory T cells. Treg and G-type MDSC weakly express LAG3 and were minimally impacted by anti-LAG3. CD138+ MM cells express GAL-3, a ligand for LAG3, and anti-GAL-3 treatment increased MM-specific responses, as observed for anti-LAG3. Finally, we demonstrate checkpoint inhibitor treatment evokes non-targeted checkpoints as a cause of resistance and propose combination therapeutic strategies to overcome this resistance. These studies identify and validate blockade of LAG3/GAL-3, alone or in combination with immune strategies including XBP1/CD138/CS1 multipeptide vaccination, to enhance anti-tumor responses and improve patient outcome in MM.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Fabrizio Accardi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rao Prabhala
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aaron Shambley
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sean Rowell
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Yarchoan M, Cope L, Ruggieri AN, Anders RA, Noonan AM, Goff LW, Goyal L, Lacy J, Li D, Patel AK, He AR, Abou-Alfa GK, Spencer K, Kim EJ, Davis SL, McRee AJ, Kunk PR, Goyal S, Liu Y, Dennison L, Xavier S, Mohan AA, Zhu Q, Wang-Gillam A, Poklepovic A, Chen HX, Sharon E, Lesinski GB, Azad NS. Multicenter randomized phase II trial of atezolizumab with or without cobimetinib in biliary tract cancers. J Clin Invest 2021; 131:152670. [PMID: 34907910 DOI: 10.1172/jci152670] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/19/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUNDMEK inhibitors have limited activity in biliary tract cancers (BTCs) as monotherapy but are hypothesized to enhance responses to programmed death ligand 1 (PD-L1) inhibition.METHODSThis open-label phase II study randomized patients with BTC to atezolizumab (anti-PD-L1) as monotherapy or in combination with cobimetinib (MEK inhibitor). Eligible patients had unresectable BTC with 1 to 2 lines of prior therapy in the metastatic setting, measurable disease, and Eastern Cooperative Oncology Group (ECOG) performance status less than or equal to 1. The primary endpoint was progression-free survival (PFS).RESULTSSeventy-seven patients were randomized and received study therapy. The trial met its primary endpoint, with a median PFS of 3.65 months in the combination arm versus 1.87 months in the monotherapy arm (HR 0.58, 90% CI 0.35-0.93, 1-tail P = 0.027). One patient in the combination arm (3.3%) and 1 patient in the monotherapy arm (2.8%) had a partial response. Combination therapy was associated with more rash, gastrointestinal events, CPK elevations, and thrombocytopenia. Exploratory analysis of tumor biopsies revealed enhanced expression of antigen processing and presentation genes and an increase in CD8/FoxP3 ratios with combination treatment. Patients with higher baseline or lower fold changes in expression of certain inhibitory ligands (LAG3, BTLA, VISTA) on circulating T cells had evidence of greater clinical benefit from the combination.CONCLUSIONThe combination of atezolizumab plus cobimetinib prolonged PFS as compared with atezolizumab monotherapy, but the low response rate in both arms highlights the immune-resistant nature of BTCs.TRIAL REGISTRATIONClinicalTrials.gov NCT03201458.FUNDINGNational Cancer Institute (NCI) Experimental Therapeutics Clinical Trials Network (ETCTN); F. Hoffmann-La Roche, Ltd.; NCI, NIH (R01 CA228414-01 and UM1CA186691); NCI's Specialized Program of Research Excellence (SPORE) in Gastrointestinal Cancers (P50 CA062924); NIH Center Core Grant (P30 CA006973); and the Passano Foundation.
Collapse
Affiliation(s)
| | - Leslie Cope
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | - Laura W Goff
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Lipika Goyal
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Jill Lacy
- Yale Cancer Center, New Haven, Connecticut, USA
| | - Daneng Li
- City of Hope, Duarte, California, USA
| | - Anuj K Patel
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aiwu R He
- Georgetown University, Washington, DC, USA
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York City, New York, USA.,Weill Medical College at Cornell University, New York City, New York, USA
| | | | | | | | - Autumn J McRee
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paul R Kunk
- University of Virginia, Charlottesville, Virginia, USA
| | - Subir Goyal
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Yuan Liu
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | | | | | | - Qingfeng Zhu
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrea Wang-Gillam
- Washington University in St. Louis, Siteman Cancer Center, St. Louis, Missouri, USA
| | - Andrew Poklepovic
- Virginia Commonwealth University, Massey Cancer Center, Richmond, Virginia, USA
| | - Helen X Chen
- NCI Cancer Therapy Evaluation Program, Bethesda, Maryland, USA
| | - Elad Sharon
- NCI Cancer Therapy Evaluation Program, Bethesda, Maryland, USA
| | | | | |
Collapse
|
45
|
El Bairi K, Haynes HR, Blackley E, Fineberg S, Shear J, Turner S, de Freitas JR, Sur D, Amendola LC, Gharib M, Kallala A, Arun I, Azmoudeh-Ardalan F, Fujimoto L, Sua LF, Liu SW, Lien HC, Kirtani P, Balancin M, El Attar H, Guleria P, Yang W, Shash E, Chen IC, Bautista V, Do Prado Moura JF, Rapoport BL, Castaneda C, Spengler E, Acosta-Haab G, Frahm I, Sanchez J, Castillo M, Bouchmaa N, Md Zin RR, Shui R, Onyuma T, Yang W, Husain Z, Willard-Gallo K, Coosemans A, Perez EA, Provenzano E, Ericsson PG, Richardet E, Mehrotra R, Sarancone S, Ehinger A, Rimm DL, Bartlett JMS, Viale G, Denkert C, Hida AI, Sotiriou C, Loibl S, Hewitt SM, Badve S, Symmans WF, Kim RS, Pruneri G, Goel S, Francis PA, Inurrigarro G, Yamaguchi R, Garcia-Rivello H, Horlings H, Afqir S, Salgado R, Adams S, Kok M, Dieci MV, Michiels S, Demaria S, Loi S. The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer 2021; 7:150. [PMID: 34853355 PMCID: PMC8636568 DOI: 10.1038/s41523-021-00346-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/28/2021] [Indexed: 02/08/2023] Open
Abstract
The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
| | - Harry R Haynes
- Department of Cellular Pathology, Great Western Hospital, Swindon, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Elizabeth Blackley
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Susan Fineberg
- Department of Pathology, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey Shear
- Chief Information Officer, WISS & Company, LLP and President J. Shear Consulting, LLC-Ardsley, Ardsley, NY, USA
| | | | - Juliana Ribeiro de Freitas
- Department of Pathology and Legal Medicine, Medical School of the Federal University of Bahia, Salvador, Brazil
| | - Daniel Sur
- Department of Medical Oncology, University of Medicine "I. Hatieganu", Cluj Napoca, Romania
| | | | - Masoumeh Gharib
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Indu Arun
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - Farid Azmoudeh-Ardalan
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Luciana Fujimoto
- Pathology and Legal Medicine, Amazon Federal University, Belém, Brazil
| | - Luz F Sua
- Department of Pathology and Laboratory Medicine, Fundacion Valle del Lili, and Faculty of Health Sciences, Universidad ICESI, Cali, Colombia
| | | | - Huang-Chun Lien
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pawan Kirtani
- Department of Histopathology, Manipal Hospitals Dwarka, New Delhi, India
| | - Marcelo Balancin
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Prerna Guleria
- Army Hospital Research and Referral, Delhi Cantt, New Delhi, India
| | | | - Emad Shash
- Breast Cancer Comprehensive Center, National Cancer Institute, Cairo University, Cairo, Egypt
| | - I-Chun Chen
- Department of Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Veronica Bautista
- Department of Pathology, Breast Cancer Center FUCAM, Mexico City, Mexico
| | | | - Bernardo L Rapoport
- The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, corner Doctor Savage Road and Bophelo Road, Pretoria, 0002, South Africa
| | - Carlos Castaneda
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, 15038, Peru
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
| | - Eunice Spengler
- Departmento de Patologia, Hospital Universitario Austral, Pilar, Argentina
| | - Gabriela Acosta-Haab
- Department of Pathology, Hospital de Oncología Maria Curie, Buenos Aires, Argentina
| | - Isabel Frahm
- Department of Pathology, Sanatorio Mater Dei, Buenos Aires, Argentina
| | - Joselyn Sanchez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Miluska Castillo
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Najat Bouchmaa
- Institute of Biological Sciences, Mohammed VI Polytechnic University (UM6P), 43 150, Ben-Guerir, Morocco
| | - Reena R Md Zin
- Department of Pathology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Ruohong Shui
- Department of Pathology, Fudan University Cancer Center, Shanghai, China
| | | | - Wentao Yang
- Department of Pathology, Fudan University Cancer Center, Shanghai, China
| | | | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - An Coosemans
- Laboratory of Tumour Immunology and Immunotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Edith A Perez
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Elena Provenzano
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Paula Gonzalez Ericsson
- Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eduardo Richardet
- Clinical Oncology Unit, Instituto Oncológico Córdoba, Córdoba, Argentina
| | - Ravi Mehrotra
- India Cancer Research Consortium-ICMR, Department of Health Research, New Delhi, India
| | - Sandra Sarancone
- Department of Pathology, Laboratorio QUANTUM, Rosario, Argentina
| | - Anna Ehinger
- Department of Clinical Genetics and Pathology, Skåne University Hospital, Lund University, Lund, Sweden
| | - David L Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - John M S Bartlett
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Canada
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Giuseppe Viale
- Department of Pathology, Istituto Europeo di Oncologia IRCCS, and University of Milan, Milan, Italy
| | - Carsten Denkert
- Institute of Pathology, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg and Philipps-Universität Marburg, Marburg, Germany
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Christos Sotiriou
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, USA
| | - William Fraser Symmans
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rim S Kim
- National Surgical Adjuvant Breast and Bowel Project (NSABP)/NRG Oncology, Pittsburgh, PA, USA
| | - Giancarlo Pruneri
- Department of Pathology, RCCS Fondazione Istituto Nazionale Tumori and University of Milan, School of Medicine, Milan, Italy
| | - Shom Goel
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Prudence A Francis
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Medical Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Rin Yamaguchi
- Department of Pathology and Laboratory Medicine, Kurume University Medical Center, Kurume, Fukuoka, Japan
| | - Hernan Garcia-Rivello
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Hugo Horlings
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Sylvia Adams
- Perlmutter Cancer Center, New York University Medical School, New York, NY, USA
| | - Marleen Kok
- Divisions of Medical Oncology, Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018, Inserm, University Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif, France
| | - Sandra Demaria
- Department of Radiation Oncology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
46
|
Terp MG, Gammelgaard OL, Vever H, Gjerstorff MF, Ditzel HJ. Sustained compensatory p38 MAPK signaling following treatment with MAPK inhibitors induces the immunosuppressive protein CD73 in cancer: combined targeting could improve outcomes. Mol Oncol 2021; 15:3299-3316. [PMID: 34165921 PMCID: PMC8637576 DOI: 10.1002/1878-0261.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022] Open
Abstract
RAS-MAPK signaling promotes immune evasion and cancer cell survival, and MAPK inhibitors (MAPKis) are frequently used as cancer therapies. Despite progress elucidating the direct effects of MAPKi on immune cells, their indirect effect on the tumor microenvironment (TME) through changes in tumor cells remains incompletely understood. Here, we present evidence of a rapid compensatory response to MAPKi that is driven by sustained p38 MAPK signaling and by which cancer cells can upregulate the immunosuppressive protein CD73 to reduce the antitumor immune response. This compensatory response also results in decreased sensitivity toward MAPKi, and, accordingly, combining anti-CD73 antibodies and MAPKi significantly enhances the antitumor effect compared to single-agent treatment in vivo. Combining MAPKi and anti-CD73 was accompanied by significant alterations in intratumor immune cell composition, supporting the effect of MAPKi-induced CD73 expression on the TME. We show that high CD73 expression significantly correlates with worse outcome in MAPKi-treated colorectal cancer patients, highlighting the potential clinical importance of increased CD73 expression following MAPKi treatment. Our findings may explain the diminished effect of MAPKi in cancer patients and provides further rationale for combined anti-CD73 and MAPKi treatment.
Collapse
Affiliation(s)
- Mikkel G. Terp
- Department of Cancer and Inflammation ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Odd L. Gammelgaard
- Department of Cancer and Inflammation ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Henriette Vever
- Department of Cancer and Inflammation ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Morten F. Gjerstorff
- Department of Cancer and Inflammation ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of OncologyOdense University HospitalDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Academy of Geriatric Cancer Research (AgeCare)Odense University HospitalDenmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation ResearchInstitute of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of OncologyOdense University HospitalDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Academy of Geriatric Cancer Research (AgeCare)Odense University HospitalDenmark
| |
Collapse
|
47
|
Ledys F, Kalfeist L, Galland L, Limagne E, Ladoire S. Therapeutic Associations Comprising Anti-PD-1/PD-L1 in Breast Cancer: Clinical Challenges and Perspectives. Cancers (Basel) 2021; 13:5999. [PMID: 34885109 PMCID: PMC8656936 DOI: 10.3390/cancers13235999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Despite a few cases of long-responder patients, immunotherapy with anti-PD-(L)1 has so far proved rather disappointing in monotherapy in metastatic breast cancer, prompting the use of synergistic therapeutic combinations incorporating immunotherapy by immune-checkpoint inhibitors. In addition, a better understanding of both the mechanisms of sensitivity and resistance to immunotherapy, as well as the immunological effects of the usual treatments for breast cancer, make it possible to rationally consider this type of therapeutic combination. For several years, certain treatments, commonly used to treat patients with breast cancer, have shown that in addition to their direct cytotoxic effects, they may have an impact on the tumor immune microenvironment, by increasing the antigenicity and/or immunogenicity of a "cold" tumor, targeting the immunosuppressive microenvironment or counteracting the immune-exclusion profile. This review focuses on preclinical immunologic synergic mechanisms of various standard therapeutic approaches with anti-PD-(L)1, and discusses the potential clinical use of anti-PD-1/L1 combinations in metastatic or early breast cancer.
Collapse
Affiliation(s)
- Fanny Ledys
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Laura Kalfeist
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Loick Galland
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| | - Emeric Limagne
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Sylvain Ladoire
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
48
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
49
|
IL-10 Signaling Elicited by Nivolumab-Induced Activation of the MAP Kinase Pathway Does Not Fully Contribute to Nivolumab-Modulated Heterogeneous T Cell Responses. Int J Mol Sci 2021; 22:ijms222111848. [PMID: 34769278 PMCID: PMC8584131 DOI: 10.3390/ijms222111848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized anti-cancer treatment for many late-stage cancer patients. However, ICI therapy has thus far demonstrated limited efficacy for most patients, and it remains unclear why this is so. Interleukin 10 (IL-10) is a cytokine that has been recognized as a central player in cancer biology with its ability to inhibit anti-tumor T cell responses. Recent studies suggest that IL-10 might also exert some intrinsic anti-tumor T cell responses, and clinical studies using recombinant IL-10 alone or in combination with ICI are underway. This paradoxical effect of IL-10 and its underlying mechanisms impacting ICI-modulated T cell responses remain poorly understood. In this study, using an in vitro mixed lymphocyte reaction assay, we found that treatment with ICIs such as the anti-programmed cell death receptor-1 (PD-1) mAb nivolumab elicits a strong expression of IL-10. While neutralization of IL-10 signaling with an anti-IL-10 specific mAb significantly decreases the production of IFN-γ by T cells in a cohort of donor cells, the opposite effect was observed in other donor cells. Similarly, neutralization of IL-10 signaling significantly decreases the expression of T cell activation markers Ki67 and CD25, as well as the production of Granzyme B in a cohort of donor cells, whereas the opposite effect was observed in others. Furthermore, we found that nivolumab and IL-10 differentially modulate the signal transducer and activator of transcription 3 (STAT3) and AKT serine–threonine kinase pathways. Finally, we found that nivolumab activates the mitogen-activated protein kinase (MAPK) pathway, which in turn is responsible for the observed induction of IL-10 production by nivolumab. These findings provide new insights into the mechanisms underlying anti-PD-1-modulated T cell responses by IL-10, which could lead to the discovery of novel combination treatments that target IL-10 and immune checkpoint molecules.
Collapse
|
50
|
Frazao A, Rethacker L, Jeudy G, Colombo M, Pasmant E, Avril MF, Toubert A, Moins-Teisserenc H, Roelens M, Dalac S, Maubec E, Caignard A. BRAF inhibitor resistance of melanoma cells triggers increased susceptibility to natural killer cell-mediated lysis. J Immunother Cancer 2021; 8:jitc-2019-000275. [PMID: 32912923 PMCID: PMC7482503 DOI: 10.1136/jitc-2019-000275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background Targeted therapies and immunotherapies are first-line treatments for patients with advanced melanoma. Serine–threonine protein kinase B-RAF (BRAF) and mitogen-activated protein kinase (MEK) inhibition leads to a 70% response rate in patients with advanced melanoma with a BRAFV600E/K mutation. However, acquired resistance occurs in the majority of patients, leading to relapse. Immunotherapies that activate immune cytotoxic effectors induce long-lasting responses in 30% of patients. In that context, combination of targeted therapies with immunotherapy (IT) is a promising approach. We considered boosting natural killer (NK) cell tumor immunosurveillance, as melanoma cells express stress-induced molecules and activate NK cell lysis. Methods Here we have generated vemurafenib (a BRAF inihibitor)-resistant (R) cells from BRAFV600E SK28 and M14-sensitive (S) melanoma cell lines and investigated how resistance interferes with immunogenicity to NK cells. We determined the levels of several soluble molecules including NK ligands in 61 melanoma patients at baseline and 6 months M post-treatment with targeted therapies or immunotherapies. Results Vemurafenib resistance involved activation of p-AKT in SK28R and of p-MEK/p-ERK in M14R cells and was accompanied by modulation of NK ligands. Compared with S cells, SK28R displayed an increased expression of natural killer group 2 D (NKG2D) receptor ligands (major histocompatibility complex class (MHC) I chain-related protein A (MICA) and UL16-binding protein 2 (ULBP2)) whereas M14R exhibited decreased ULBP2. SK28R and M14R cells induced higher NK degranulation and interferon gamma secretion and were more efficiently lysed by donor and patient NK cells. SK28R showed increased tumor necrosis factor-related apoptosis-inducing ligand receptor II (TRAIL-RII) expression and TRAIL-induced apoptosis, and TRAIL-induced apoptosis of M14R was decreased. Combined BRAF/MEK inhibitors abrogated the growth of SK28S, M14S, and M14R cells, while growth of SK28R was maintained. BRAF/MEK inhibition attenuated NK activity but R cell lines activated polyfunctional NK cells and were lysed with high efficiency. We investigated the relationship of soluble NK ligands and response to treatment in a series of melanoma patients. Soluble NKG2D ligands known to regulate the receptor function have been associated to cancer progression. Serum analysis of patients treated with target therapies or IT indicates that soluble forms of NK ligands (MICA, B7H6, programmed cell death ligand 1, and carcinoembryonic antigen cell adhesion molecule 1) may correlate with clinical response. Conclusion These results support strategies combining targeted therapies and NK-based immunotherapies.
Collapse
Affiliation(s)
- Alexandra Frazao
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Louise Rethacker
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Géraldine Jeudy
- University Hospital Centre Dijon Bocage Complex, Dermatology Department, Dijon, France
| | - Marina Colombo
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Eric Pasmant
- Université de Paris, AP-HP Hôpital Cochin, Genetic and Molecular Biology Department, Institut Cochin, Paris, France
| | - Marie-Françoise Avril
- Université de Paris, AP-HP Hôpital Cochin, Dermatology Department, Institute Cochin, Paris, France
| | - Antoine Toubert
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Helene Moins-Teisserenc
- Université de Paris, INSERM UMRS-1160, AP-HP hopital Saint-Louis, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Marie Roelens
- Université de Paris, INSERM UMRS-1160, AP-HP hopital Saint-Louis, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Sophie Dalac
- University Hospital Centre Dijon Bocage Complex, Dermatology Department, Dijon, France
| | - Eve Maubec
- Université de Paris 13, AP-HP Hôpital Avicenne, Dermatology Department, Bobigny, France
| | - Anne Caignard
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| |
Collapse
|