1
|
Dassaye R, Chetty T, Daniels B, Gaffoor Z, Spooner E, Ramraj T, Mthethwa N, Nsibande DF, Pillay S, Bhana A, Magasana V, Reddy T, Mohlabi K, Moore PL, Burgers WA, de Oliveira T, Msomi N, Goga A. SARS-CoV-2 Infections in a Triad of Primary School Learners (Grades 1-7), Their Parents, and Teachers in KwaZulu-Natal, South Africa: Protocol for a Cross-Sectional and Nested Case-Cohort Study. JMIR Res Protoc 2024; 13:e52713. [PMID: 39700491 PMCID: PMC11695960 DOI: 10.2196/52713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND In low- and middle-income countries (LMICs) such as South Africa, there is paucity of data on SARS-CoV-2 infections among children attending school, including seroprevalence and transmission dynamics. OBJECTIVE This pilot study aims to assess (1) the prevalence of self-reported or confirmed SARS-CoV-2 prior infections, COVID-19 symptoms (including long COVID), seroprevalence of SARS-CoV-2 antibodies, and general/mental health, (2) longitudinal changes in SARS-CoV-2 seroprevalence, and (3) SARS-CoV-2 acute infections, immune responses, transmission dynamics, and symptomatic versus asymptomatic contacts in a unique cohort of unvaccinated primary school learners, their parents, teachers, and close contacts in semirural primary school settings. METHODS Learners (grades 1-7) from primary schools in KwaZulu-Natal, South Africa, their parents, and teachers will be invited to enroll into the COVID kids school study (CoKiDSS). CoKiDSS comprises 3 parts: a cross-sectional survey (N=640), a follow-up survey (n=300), and a nested case-cohort substudy. Finger-prick blood and saliva samples will be collected for serological and future testing, respectively, in the cross-sectional (451 learners:147 parents:42 teachers) and follow-up (210 learners:70 parents:20 teachers) surveys. The nested case-cohort substudy will include cases from the cross-sectional survey with confirmed current SARS-CoV-2 infection (n=30) and their close contacts (n=up to 10 per infected participant). Finger-prick blood (from all substudy participants), venous blood (from cases), and nasal swabs (from cases and contacts) will be collected for serological testing, immunological testing, and viral genome sequencing, respectively. Questionnaires covering sociodemographic and general and mental health information, prior and current SARS-CoV-2 symptoms and testing information, vaccination status, preventative behavior, and lifestyle will be administered. Statistical methods will include generalized linear mixed models, intracluster correlation, descriptive analysis, and graphical techniques. RESULTS A total of 645 participants were enrolled into the cross-sectional survey between May and August 2023. A subset of 300 participants were followed up in the follow-up survey in October 2023. Screening of the participants into the nested case-cohort substudy is planned between November 2023 and September 2024. Data cleanup and analysis for the cross-sectional survey is complete, while those for the follow-up survey and nested case substudy will be completed by the third quarter of 2024. The dissemination and publication of results is anticipated for the fourth quarter of 2024. CONCLUSIONS This study provides data from an LMIC setting on the impact of SARS-CoV-2 on school-attending learners, their parents, and teachers 3 years after the SARS-CoV-2 pandemic was declared and 21-24 months after resumption of normal school attendance. In particular, this study will provide data on the prevalence of self-reported or confirmed SARS-CoV-2 prior infection, prior and current symptoms, seroprevalence, changes in seroprevalence, SARS-CoV-2 transmission, SARS-CoV-2 adaptive immune responses, and symptoms of long COVID and mental health among a triad of learners, their parents, and teachers. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/52713.
Collapse
Affiliation(s)
- Reshmi Dassaye
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Terusha Chetty
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Brodie Daniels
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Zakir Gaffoor
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Elizabeth Spooner
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Trisha Ramraj
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Ncengani Mthethwa
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Duduzile Faith Nsibande
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Saresha Pillay
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Arvin Bhana
- Center for Rural Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
- Health Systems Research Unit, South African Medical Research Council, Durban, South Africa
| | - Vuyolwethu Magasana
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Tarylee Reddy
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| | - Khanya Mohlabi
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Penelope Linda Moore
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- South African Medical Research Council Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy A Burgers
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Tulio de Oliveira
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Nokukhanya Msomi
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
- National Health Laboratory Service, Durban, South Africa
| | - Ameena Goga
- HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Wisgrill L, Martens A, Kasbauer R, Eigenschink M, Pummer L, Redlberger-Fritz M, Végvári Á, Warth B, Berger A, Fyhrquist N, Alenius H. Network analysis reveals age- and virus-specific circuits in nasal epithelial cells of extremely premature infants. Allergy 2024; 79:3062-3081. [PMID: 38898695 DOI: 10.1111/all.16196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. METHODS Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. RESULTS Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular-viral networks, emphasizing highly relevant virus-specific pathways, independent of viral replication kinetics. CONCLUSION This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers crucial insights that allow for a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Anke Martens
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Rajmund Kasbauer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Michael Eigenschink
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Linda Pummer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Ákos Végvári
- Proteomics Biomedicum, Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Benedikt Warth
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Human microbiome research program (HUMI), Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Files MA, Gentles L, Kehoe L, Adler A, Lacombe K, Dickerson JA, Greninger A, Waghmare A, Fairlie T, Pringle K, Midgley CM, Hagen MB, Englund JA, Seshadri C. Kinetics and Durability of Antibody and T-Cell Responses to SARS-CoV-2 in Children. J Infect Dis 2024; 230:889-900. [PMID: 38838218 PMCID: PMC11481334 DOI: 10.1093/infdis/jiae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells and sera were archived at approximately 1, 6, and 12 months after symptom onset. METHODS We compared antibody responses (n = 85) and T-cell responses (n = 30) to nucleocapsid (N) and spike (S) glycoprotein over time across 4 age strata: 6 months to 5 years and 5-9, 10-14, and 15-20 years. RESULTS N-specific antibody responses declined over time, becoming undetectable in 26 (81%) of 32 children by approximately 1 year postinfection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson r = .31, P = .008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children and, with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS Our data reveal durable age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-antibody responses in comparison with declining antibody responses to N.
Collapse
Affiliation(s)
- Megan A Files
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Lauren Gentles
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Leanne Kehoe
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Amanda Adler
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Kirsten Lacombe
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Jane A Dickerson
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| | - Alexander Greninger
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington
| | - Alpana Waghmare
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Tarayn Fairlie
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kimberly Pringle
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Claire M Midgley
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Melissa Briggs Hagen
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Janet A Englund
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Chetan Seshadri
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Silva-Junior AL, Oliveira LS, Dias S, Costa TCC, Xabregas LA, Alves-Hanna FS, Abrahim CMM, Neves WLL, Crispim MAE, Toro DM, Silva-Neto PV, Aponte DCM, Oliveira TC, Silva MCC, Matos MMM, Carvalho MPSS, Tarragô AM, Fraiji NA, Faccioli LH, Sorgi CA, Sabino EC, Teixeira-Carvalho A, Martins-Filho OA, Costa AG, Malheiro A. Immunologic mediators profile in COVID-19 convalescence. Sci Rep 2024; 14:20930. [PMID: 39251702 PMCID: PMC11384766 DOI: 10.1038/s41598-024-71419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
SARS-CoV-2 caused the pandemic situation experienced since the beginning of 2020, and many countries faced the rapid spread and severe form of the disease. Mechanisms of interaction between the virus and the host were observed during acute phase, but few data are available when related to immunity dynamics in convalescents. We conducted a longitudinal study, with 51 healthy donors and 62 COVID-19 convalescent patients, which these had a 2-month follow-up after symptoms recovery. Venous blood sample was obtained from all participants to measure blood count, subpopulations of monocytes, lymphocytes, natural killer cells and dendritic cells. Serum was used to measure cytokines, chemokines, growth factors, anti-N IgG and anti-S IgG/IgM antibodies. Statistic was performed by Kruskal-Wallis test, and linear regression with days post symptoms and antibody titers. All analysis had confidence interval of 95%. Less than 35% of convalescents were anti-S IgM+, while more than 80% were IgG+ in D30. Anti-N IgG decreased along time, with loss of seroreactivity of 13%. Eosinophil count played a distinct role on both antibodies during all study, and the convalescence was orchestrated by higher neutrophil-to-lymphocyte ratio and IL-15, but initial stages were marked by increase in myeloid DCs, B1 lymphocytes, inflammatory and patrolling monocytes, G-CSF and IL-2. Later convalescence seemed to change to cytotoxicity mediated by T lymphocytes, plasmacytoid DCs, VEGF, IL-9 and CXCL10. Anti-S IgG antibodies showed the longest perseverance and may be a better option for diagnosis. The inflammatory pattern is yet present on initial stage of convalescence, but quickly shifts to a reparative dynamic. Meanwhile eosinophils seem to play a role on anti-N levels in convalescence, although may not be the major causative agent. We must highlight the importance of immunological markers on acute clinical outcomes, but their comprehension to potentialize adaptive system must be explored to improve immunizations and further preventive policies.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lucas Silva Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Stephanny Dias
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Thaina Cristina Cardoso Costa
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lilyane Amorim Xabregas
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Fabíola Silva Alves-Hanna
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Cláudia Maria Moura Abrahim
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Walter Luiz Lima Neves
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Myuki Alfaia Esashika Crispim
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Diana Mota Toro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Pedro Vieira Silva-Neto
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | | | | | | | - Andrea Monteiro Tarragô
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil
| | - Nelson Abrahim Fraiji
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Lúcia Helena Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos Artério Sorgi
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Andrea Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Allyson Guimarães Costa
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil.
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica em Saúde do Estado do Amazonas (REGESAM), Manaus, AM, Brazil.
| |
Collapse
|
5
|
Moreno E, Ciordia S, Fátima SM, Jiménez D, Martínez-Sanz J, Vizcarra P, Ron R, Sánchez-Conde M, Bargiela R, Sanchez-Carrillo S, Moreno S, Corrales F, Ferrer M, Serrano-Villar S. Proteomic snapshot of saliva samples predicts new pathways implicated in SARS-CoV-2 pathogenesis. Clin Proteomics 2024; 21:37. [PMID: 38778280 PMCID: PMC11112864 DOI: 10.1186/s12014-024-09482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Information on the microbiome's human pathways and active members that can affect SARS-CoV-2 susceptibility and pathogenesis in the salivary proteome is very scarce. Here, we studied a unique collection of samples harvested from April to June 2020 from unvaccinated patients. METHODS We compared 10 infected and hospitalized patients with severe (n = 5) and moderate (n = 5) coronavirus disease (COVID-19) with 10 uninfected individuals, including non-COVID-19 but susceptible individuals (n = 5) and non-COVID-19 and nonsusceptible healthcare workers with repeated high-risk exposures (n = 5). RESULTS By performing high-throughput proteomic profiling in saliva samples, we detected 226 unique differentially expressed (DE) human proteins between groups (q-value ≤ 0.05) out of 3376 unambiguously identified proteins (false discovery rate ≤ 1%). Major differences were observed between the non-COVID-19 and nonsusceptible groups. Bioinformatics analysis of DE proteins revealed human proteomic signatures related to inflammatory responses, central cellular processes, and antiviral activity associated with the saliva of SARS-CoV-2-infected patients (p-value ≤ 0.0004). Discriminatory biomarker signatures from human saliva include cystatins, protective molecules present in the oral cavity, calprotectins, involved in cell cycle progression, and histones, related to nucleosome functions. The expression levels of two human proteins related to protein transport in the cytoplasm, DYNC1 (p-value, 0.0021) and MAPRE1 (p-value, 0.047), correlated with angiotensin-converting enzyme 2 (ACE2) plasma activity. Finally, the proteomes of microorganisms present in the saliva samples showed 4 main microbial functional features related to ribosome functioning that were overrepresented in the infected group. CONCLUSION Our study explores potential candidates involved in pathways implicated in SARS-CoV-2 susceptibility, although further studies in larger cohorts will be necessary.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Santos Milhano Fátima
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Daniel Jiménez
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Vizcarra
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Sergio Sanchez-Carrillo
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, 28049, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Facultad de Medicina, Universidad de Alcalá de Henares, 28801, Alcalá de Henares, Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
6
|
Menon T, Illing PT, Chaurasia P, McQuilten HA, Shepherd C, Rowntree LC, Petersen J, Littler DR, Khuu G, Huang Z, Allen LF, Rockman S, Crowe J, Flanagan KL, Wakim LM, Nguyen THO, Mifsud NA, Rossjohn J, Purcell AW, van de Sandt CE, Kedzierska K. CD8 + T-cell responses towards conserved influenza B virus epitopes across anatomical sites and age. Nat Commun 2024; 15:3387. [PMID: 38684663 PMCID: PMC11059233 DOI: 10.1038/s41467-024-47576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.
Collapse
Affiliation(s)
- Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T Illing
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Chloe Shepherd
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grace Khuu
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ziyi Huang
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- CSL Seqirus Ltd, Parkville, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Reperant L, Russell CA, Osterhaus A. Scientific highlights of the 9th ESWI Influenza Conference. ONE HEALTH OUTLOOK 2024; 6:5. [PMID: 38561784 PMCID: PMC10986029 DOI: 10.1186/s42522-024-00099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The European Scientific Working Group on Influenza (ESWI) held the 9th ESWI Influenza Conference in Valencia from 17-20 September 2023. Here we provide a summary of twelve key presentations, covering major topics on influenza virus, respiratory syncytial virus (RSV) and SARS coronavirus 2 (SARS-CoV-2) including: infection processes beyond acute respiratory disease, long COVID, vaccines against influenza and RSV, the implications of the potential extinction of influenza B virus Yamagata lineage, and the threats posed by zoonotic highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
| | - Colin A Russell
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Osterhaus
- Center of Infection Medicine and Zoonosis Research and the University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
8
|
Withers C, Patel R, Reynolds BC, Christian M, Muorah M, Tse Y, Edwards L, Yadav P, Haq S, Hegde S, Callaghan CJ, Bamford A, Marks SD. National study on the risks of COVID-19 infection for paediatric kidney transplant recipients: a retrospective, cross-sectional study. Arch Dis Child 2024; 109:334-338. [PMID: 38336457 DOI: 10.1136/archdischild-2023-326297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION During the COVID-19 pandemic, evidence emerged that immunosuppressed children were less affected by COVID-19 infections compared with immunosuppressed adults. The aim of our study was to investigate how COVID-19 infections affected paediatric kidney transplant recipients (pKTR) in the UK. METHODS Questionnaires regarding COVID-19 infection data and care of pKTR during the COVID-19 pandemic were sent to all 13 UK paediatric nephrology centres examining asymptomatic and symptomatic pKTR with positive COVID-19 PCR testing from 1 April 2020 to 1 December 2021. RESULTS 63 pKTR who were 3.1 (range 0.1-15) years post-transplantation had COVID-19 infection with positive SARS-CoV-2 PCR RNA. Classical COVID-19 symptoms were present in half of the patients; with atypical presentations including diarrhoea (13%) and lethargy (13%) also noted, while a third of patients were asymptomatic. Eighteen patients (28%) were hospitalised including five asymptomatic patients admitted for other reasons. No patients needed ventilation or intensive care admission, and one patient received supplemental oxygen. There was evidence of acute kidney injury (AKI) in 71% of patients, but no patients needed kidney replacement therapy with haemofiltration or dialysis. CONCLUSION We report 10.4% of the UK paediatric renal transplantation population had documented COVID-19 infections with positive SARS-CoV-2 PCR RNA with 28% of those affected requiring hospitalisation. The increased incidence of AKI, particularly after the first wave of the COVID-19 pandemic, was possibly due to increased testing. There was low morbidity and mortality compared with the adult population.
Collapse
Affiliation(s)
- Charlotte Withers
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rishil Patel
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ben C Reynolds
- Paediatric Renal Unit, Royal Hospital for Children, Glasgow, UK
| | | | - Mordi Muorah
- Department of Paediatric Nephrology, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Yincent Tse
- Department of Paediatric Nephrology, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Liz Edwards
- Royal Manchester Children's Hospital, Manchester, Manchester, UK
| | - Pallavi Yadav
- Department of Paediatric Nephrology, Leeds Teaching Hospitals NHS Trust, Leeds, Leeds, UK
| | - Shuman Haq
- Department of Paediatric Nephrology, Southampton Children's Hospital, Southampton, UK
| | | | - Chris J Callaghan
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alasdair Bamford
- Deparment of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stephen D Marks
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Subramanian K, Varghese R, Pochedly M, Muralidaran V, Yazigi N, Kaufman S, Khan K, Vitola B, Kroemer A, Fishbein T, Ressom H, Ekong UD. Non-fatal outcomes of COVID-19 disease in pediatric organ transplantation associates with down-regulation of senescence pathways. Sci Rep 2024; 14:1877. [PMID: 38253675 PMCID: PMC10803774 DOI: 10.1038/s41598-024-52456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
This is a cross-sectional study examining kinetics and durability of immune response in children with solid organ transplants (SOTs) who had COVID-19 disease between November 2020 through June 2022, who were followed for 60-days at a single transplant center. Blood was collected between 1-14 (acute infection), and 15-60 days of a positive PCR (convalescence). SOT children with peripheral blood mononuclear cells (PBMC) cryopreserved before 2019 were non-infected controls (ctrls). PBMCs stimulated with 15-mer peptides from spike protein and anti-CD49d/anti-CD28. Testing done included mass cytometry, mi-RNA sequencing with confirmatory qPCR. 38 children formed the study cohort, 10 in the acute phase and 8 in the convalescence phase. 20 subjects were non-infected controls. Two subjects had severe disease. Subjects in the acute and convalescent phases were different subjects. The median age and tacrolimus level at blood draw was not significantly different. There was no death, and no subject was lost to follow-up. During acute infection CD57 expression was low in NKT, Th17 effector memory, memory Treg, CD4-CD8-, and γδT cells (p = 0.01, p = 0.04, p = 0.03, p = 0.03, p = 0.004 respectively). The frequencies of NK and Th2 effector memory cells increased (p = 0.01, p = 0.02) during acute infection. Non-switched memory B and CD8 central memory cell frequencies were decreased during acute infection (p = 0.02; p = 0.02), but the decrease in CD8 central memory cells did not persist. CD4-CD8- and CD14 monocyte frequencies increased during recovery (p = 0.03; p = 0.007). Our observations suggest down regulation of CD57 with absence of NK cell contraction protect against death from COVID-19 disease in children with SOTs.
Collapse
Affiliation(s)
- Kumar Subramanian
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Rency Varghese
- Department of Oncology, Genomics, and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Molly Pochedly
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Vinona Muralidaran
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Nada Yazigi
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Stuart Kaufman
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Khalid Khan
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Bernadette Vitola
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Alexander Kroemer
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Thomas Fishbein
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Habtom Ressom
- Department of Oncology, Genomics, and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Udeme D Ekong
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA.
| |
Collapse
|
10
|
Benede N, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Hahnle L, Mennen M, Skelem S, Adriaanse M, Facey-Thomas H, Scott C, Day J, Spracklen TF, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, MacGinty R, Botha M, Workman L, Johnson M, Goldblatt D, Zar HJ, Ntusi NA, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell polyfunctional profile in SARS-CoV-2 seronegative children associated with endemic human coronavirus cross-reactivity. iScience 2024; 27:108728. [PMID: 38235336 PMCID: PMC10792240 DOI: 10.1016/j.isci.2023.108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Lina Hahnle
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Christiaan Scott
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Jonathan Day
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Timothy F. Spracklen
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Rae MacGinty
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
- Crick African Network, The Francis Crick Institute, London, UK
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
11
|
Ravkov EV, Williams ESCP, Elgort M, Barker AP, Planelles V, Spivak AM, Delgado JC, Lin L, Hanley TM. Reduced monocyte proportions and responsiveness in convalescent COVID-19 patients. Front Immunol 2024; 14:1329026. [PMID: 38250080 PMCID: PMC10797708 DOI: 10.3389/fimmu.2023.1329026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We sought to examine the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and nonclassical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients. Methods Peripheral blood mononuclear cells (PBMCs) from convalescent COVID-19 patients and uninfected controls were analyzed by multiparameter flow cytometry to determine relative percentages of total monocytes and monocyte subsets. The expression of activation markers and proinflammatory cytokines in response to LPS treatment were measured by flow cytometry and ELISA, respectively. Results We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. Conclusion SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Collapse
Affiliation(s)
- Eugene V. Ravkov
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Elizabeth S. C. P. Williams
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Marc Elgort
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
| | - Adam P. Barker
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Vicente Planelles
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Adam M. Spivak
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Julio C. Delgado
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Leo Lin
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Timothy M. Hanley
- ARUP Laboratories Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States
- Department of Pathology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
12
|
Demirhan S, Goldman DL, Herold BC. Differences in the Clinical Manifestations and Host Immune Responses to SARS-CoV-2 Variants in Children Compared to Adults. J Clin Med 2023; 13:128. [PMID: 38202135 PMCID: PMC10780117 DOI: 10.3390/jcm13010128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The COVID-19 pandemic challenged the medical field to rapidly identify and implement new approaches to the diagnosis, treatment and prevention of SARS-CoV-2 infections. The scientific community also needed to rapidly initiate basic, translational, clinical and epidemiological studies to understand the pathophysiology of this new family of viruses, which continues to evolve with the emergence of new genetic variants. One of the earliest clinical observations that provided a framework for the research was the finding that, in contrast to most other respiratory viruses, children developed less severe acute and post-acute disease compared to adults. Although the clinical manifestations of SARS-CoV-2 infection changed with each new wave of the pandemic, which was dominated by evolving viral variants, the differences in severity between children and adults persisted. Comparative immunologic studies have shown that children mount a more vigorous local innate response characterized by the activation of interferon pathways and recruitment of innate cells to the mucosa, which may mitigate against the hyperinflammatory adaptive response and systemic cytokine release that likely contributed to more severe outcomes including acute respiratory distress syndrome in adults. In this review, the clinical manifestations and immunologic responses in children during the different waves of COVID-19 are discussed.
Collapse
Affiliation(s)
| | | | - Betsy C. Herold
- Department of Pediatrics, Division of Infectious Diseases, Albert Einstein College of Medicine, The Children’s Hospital at Montefiore, 1225 Morris Park Avenue, Bronx, NY 10461, USA; (S.D.); (D.L.G.)
| |
Collapse
|
13
|
Raineri A, Radtke T, Rueegg S, Haile SR, Menges D, Ballouz T, Ulyte A, Fehr J, Cornejo DL, Pantaleo G, Pellaton C, Fenwick C, Puhan MA, Kriemler S. Persistent humoral immune response in youth throughout the COVID-19 pandemic: prospective school-based cohort study. Nat Commun 2023; 14:7764. [PMID: 38012137 PMCID: PMC10682435 DOI: 10.1038/s41467-023-43330-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Understanding the development of humoral immune responses of children and adolescents to SARS-CoV-2 is essential for designing effective public health measures. Here we examine the changes of humoral immune response in school-aged children and adolescents during the COVID-19 pandemic (June 2020 to July 2022), with a specific interest in the Omicron variant (beginning of 2022). In our study "Ciao Corona", we assess in each of the five testing rounds between 1874 and 2500 children and adolescents from 55 schools in the canton of Zurich with a particular focus on a longitudinal cohort (n=751). By July 2022, 96.9% (95% credible interval 95.3-98.1%) of children and adolescents have SARS-CoV-2 anti-spike IgG (S-IgG) antibodies. Those with hybrid immunity or vaccination have higher S-IgG titres and stronger neutralising responses against Wildtype, Delta and Omicron BA.1 variants compared to those infected but unvaccinated. S-IgG persist over 18 months in 93% of children and adolescents. During the study period one adolescent was hospitalised for less than 24 hours possibly related to an acute SARS-CoV-2 infection. These findings show that the Omicron wave and the rollout of vaccines boosted S-IgG titres and neutralising capacity. Trial registration number: NCT04448717. https://clinicaltrials.gov/ct2/show/NCT04448717 .
Collapse
Affiliation(s)
- Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Sarah R Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Dominik Menges
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Tala Ballouz
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Daniel L Cornejo
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Hirschengraben 84, 8001 Zürich, Zurich, Switzerland.
| |
Collapse
|
14
|
Ravkov EV, Williams ESCP, Elgort M, Barker AP, Planelles V, Spivak AM, Delgado JC, Lin L, Hanley TM. Reduced Monocyte Proportions and Responsiveness in Convalescent COVID-19 Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563806. [PMID: 37961575 PMCID: PMC10634809 DOI: 10.1101/2023.10.25.563806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The clinical manifestations of acute severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection and COVID-19 suggest a dysregulation of the host immune response that leads to inflammation, thrombosis, and organ dysfunction. It is less clear whether these dysregulated processes persist during the convalescent phase of disease or during long COVID. We investigated the effects of SARS-CoV-2 infection on the proportions of classical, intermediate, and non-classical monocytes, their activation status, and their functional properties in convalescent COVID-19 patients and uninfected control subjects. We found that the percentage of total monocytes was decreased in convalescent COVID-19 patients compared to uninfected controls. This was due to decreased intermediate and non-classical monocytes. Classical monocytes from convalescent COVID-19 patients demonstrated a decrease in activation markers, such as CD56, in response to stimulation with bacterial lipopolysaccharide (LPS). In addition, classical monocytes from convalescent COVID-19 patients showed decreased expression of CD142 (tissue factor), which can initiate the extrinsic coagulation cascade, in response to LPS stimulation. Finally, we found that monocytes from convalescent COVID-19 patients produced less TNF-α and IL-6 in response to LPS stimulation, than those from uninfected controls. In conclusion, SARS-CoV-2 infection exhibits a clear effect on the relative proportions of monocyte subsets, the activation status of classical monocytes, and proinflammatory cytokine production that persists during the convalescent phase of disease.
Collapse
|
15
|
Rotulo GA, Palma P. Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatr Res 2023; 94:434-442. [PMID: 36879079 PMCID: PMC9987407 DOI: 10.1038/s41390-023-02549-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Coronavirus disease 2019 in children presents with milder clinical manifestations than in adults. On the other hand, the presence of a wide range of inflammatory manifestations, including multisystem inflammatory syndrome in children (MIS-C), in the period after infection suggests a particular susceptibility of some children toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Both protective factors that prevent evolution to severe forms and risk factors for post-infectious conditions are likely to be found in age-related differences in the immune system. The prompt innate response with type I IFN production and the generation of neutralizing antibodies play a crucial role in containing the infection. The greater number of naive and regulatory cells in children helps to avoid the cytokine storm while the causes of the intense inflammatory response in MIS-C need to be elucidated. This review aims to analyze the main results of the recent literature assessing immune response to SARS-CoV-2 over the pediatric age group. We summarized such observations by dividing them into innate and acquired immunity, then reporting how altered immune responses can determine post-infectious conditions. IMPACT: The main immune markers of acute SARS-CoV-2 infection in children are summarized in this review. This paper reports a broad overview of age-related differences in the immune response to SARS-CoV-2 and emerging post-infection conditions. A summary of currently available therapies for the pediatric age group is provided.
Collapse
Affiliation(s)
- Gioacchino Andrea Rotulo
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", 00185, Rome, Italy.
| |
Collapse
|
16
|
Soriano-Arandes A, Brett A, Buonsenso D, Emilsson L, de la Fuente Garcia I, Gkentzi D, Helve O, Kepp KP, Mossberg M, Muka T, Munro A, Papan C, Perramon-Malavez A, Schaltz-Buchholzer F, Smeesters PR, Zimmermann P. Policies on children and schools during the SARS-CoV-2 pandemic in Western Europe. Front Public Health 2023; 11:1175444. [PMID: 37564427 PMCID: PMC10411527 DOI: 10.3389/fpubh.2023.1175444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
During the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mitigation policies for children have been a topic of considerable uncertainty and debate. Although some children have co-morbidities which increase their risk for severe coronavirus disease (COVID-19), and complications such as multisystem inflammatory syndrome and long COVID, most children only get mild COVID-19. On the other hand, consistent evidence shows that mass mitigation measures had enormous adverse impacts on children. A central question can thus be posed: What amount of mitigation should children bear, in response to a disease that is disproportionally affecting older people? In this review, we analyze the distinct child versus adult epidemiology, policies, mitigation trade-offs and outcomes in children in Western Europe. The highly heterogenous European policies applied to children compared to adults did not lead to significant measurable differences in outcomes. Remarkably, the relative epidemiological importance of transmission from school-age children to other age groups remains uncertain, with current evidence suggesting that schools often follow, rather than lead, community transmission. Important learning points for future pandemics are summarized.
Collapse
Affiliation(s)
- Antoni Soriano-Arandes
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ana Brett
- Infectious Diseases Unit and Emergency Service, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Milan, Italy
| | - Louise Emilsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden
- Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Isabel de la Fuente Garcia
- Pediatric Infectious Diseases, National Pediatric Center, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Despoina Gkentzi
- Department of Paediatrics, Patras Medical School, Patras, Greece
| | - Otto Helve
- Department of Health Security, Institute for Health and Welfare, Helsinki, Finland
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Kasper P. Kepp
- Section of Biophysical and Biomedicinal Chemistry, DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Mossberg
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Epistudia, Bern, Switzerland
| | - Alasdair Munro
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Faculty of Medicine, Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Cihan Papan
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Aida Perramon-Malavez
- Computational Biology and Complex Systems (BIOCOM-SC) Group, Department of Physics, Universitat Politècnica de Catalunya (UPC·BarcelonaTech), Barcelona, Spain
| | | | - Pierre R. Smeesters
- Department of Pediatrics, University Hospital Brussels, Academic Children’s Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Petra Zimmermann
- Department of Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
| |
Collapse
|
17
|
Ibrahim L, Wilson C, Tham D, Corden M, Jani S, Zhang M, Kochar A, Tan KF, George S, Phillips NT, Buntine P, Robins‐Browne K, Chong V, Georgeson T, Lithgow A, Davidson S, O'Brien S, Tran V, Babl FE. The characteristics of SARS-CoV-2-positive children in Australian hospitals: a PREDICT network study. Med J Aust 2023; 218:460-466. [PMID: 37087105 PMCID: PMC10953026 DOI: 10.5694/mja2.51934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/24/2023]
Abstract
OBJECTIVES To examine the clinical characteristics and short term outcomes for children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections who presented to Australian hospitals during 2020 and 2021. DESIGN, SETTING Retrospective case review study in nineteen hospitals of the Paediatric Research in Emergency Departments International Collaborative (PREDICT) network from all Australian states and territories, including seven major paediatric tertiary centres and eight Victorian hospitals. PARTICIPANTS SARS-CoV-2-positive people under 18 years of age who attended emergency departments or were admitted to hospital during 1 February 2020 - 31 December 2021. MAIN OUTCOME MEASURES Epidemiological and clinical characteristics, by hospital care type (emergency department [ED] or inpatient care). RESULTS A total of 1193 SARS-CoV-2-positive children and adolescents (527 girls, 44%) attended the participating hospitals (107 in 2020, 1086 in 2021). Their median age was 3.8 years (interquartile range [IQR], 0.8-11.4 years); 63 were Aboriginal or Torres Strait Islander people (5%). Other medical conditions were recorded for 293 children (25%), including asthma (86, 7%) and premature birth (68, 6%). Medical interventions were not required during 795 of 1181 ED presentations (67%); children were discharged directly home in 764 cases (65%) and admitted to hospital in 282 (24%; sixteen to intensive care units). The 384 admissions to hospital (including 102 direct admissions) of 341 children (25 infants under one month of age) included 23 to intensive care (6%); the median length of stay was three days (IQR, 1-9 days). Medical interventions were not required during 261 admissions (68%); 44 children received respiratory support (11%) and 21 COVID-19-specific treatments, including antiviral and biologic agents (5%). Being under three months of age (v one year to less than six years: odds ratio [OR], 2.6; 95% confidence interval [CI], 1.7-4.0) and pre-existing medical conditions (OR, 2.5; 95% CI, 1.9-3.2) were the major predictors of hospital admission. Two children died, including one without a known pre-existing medical condition. CONCLUSION During 2020 and 2021, most SARS-CoV-2-positive children and adolescents who presented to participating hospitals could be managed as outpatients. Outcomes were generally good, including for those admitted to hospital.
Collapse
Affiliation(s)
- Laila Ibrahim
- Royal Children's HospitalMelbourneMelbourneVIC
- Murdoch Children's Research InstituteMelbourneVIC
| | - Catherine Wilson
- Murdoch Children's Research InstituteMelbourneVIC
- PREDICT Research NetworkMelbourneVIC
| | - Doris Tham
- Murdoch Children's Research InstituteMelbourneVIC
- Western HealthMelbourneVIC
| | | | - Shefali Jani
- The Children's Hospital at WestmeadSydneyNSW
- The Children's Hospital at Westmead Clinical Schoolthe University of SydneySydneyNSW
| | - Michael Zhang
- PREDICT Research NetworkMelbourneVIC
- John Hunter HospitalNewcastleNSW
| | | | - Ker Fern Tan
- Auburn HospitalSydneyNSW
- University of Notre DameSydneyNSW
| | - Shane George
- Gold Coast University HospitalGold CoastQLD
- Child Health Research Centrethe University of QueenslandBrisbaneQLD
| | - Natalie T Phillips
- Child Health Research Centrethe University of QueenslandBrisbaneQLD
- Queensland Children's HospitalBrisbaneQLD
| | - Paul Buntine
- Eastern HealthMelbourneVIC
- Eastern Health Clinical SchoolMonash UniversityMelbourneVIC
| | | | | | | | | | | | - Sharon O'Brien
- Perth Children's HospitalPerthWA
- Curtin UniversityPerthWA
| | - Viet Tran
- Royal Hobart HospitalHobartTAS
- Tasmanian School of MedicineUniversity of TasmaniaHobartTAS
| | - Franz E Babl
- Murdoch Children's Research InstituteMelbourneVIC
- The University of MelbourneMelbourneVIC
| |
Collapse
|
18
|
Wani SA, Gulzar B, Khan MS, Majid S, Bhat IA. Impact of Age and Clinico-Biochemical Parameters on Clinical Severity of SARS-CoV-2 Infection. Intervirology 2023; 66:88-96. [PMID: 37263256 PMCID: PMC10353304 DOI: 10.1159/000530906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION The surge in novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to coronavirus disease-2019 (COVID-19) has overwhelmed the health system. To help health-care workers and policy makers prioritize treatment and to decrease the burden on health systems caused by COVID-19, clinical severity along with various clinico-biochemical parameters was evaluated by designing a cross-sectional study comprising 236 SARS-CoV-2-infected individuals from Kashmir Valley, India. METHODS Briefly, real-time polymerase chain reaction (RT-PCR) was used for the confirmation of SARS-CoV-2 infection. The principles of spectrophotometry and chemiluminescent microparticle immunoassay (CMIA) were employed to estimate the levels of glucose, TSH, and 25-hydroxy vitamin D levels in serum of infected patients. RESULTS A total of 236 patients infected with SARS-CoV-2 were taken for this cross-sectional study. Patients with COVID-19 had a male predominance (72.9 vs. 27.1%) and a higher prevalence of 25-hydroxy vitamin D deficiency (72.0 vs. 28.0%) with a mean 25-hydroxy vitamin D levels of 24.0 ± 13.9 in ng/mL. We observed a varied clinical spectrum of SARS-CoV-2 infection with 36.4%, 23.7%, and 29.7% patients having mild, moderate, and severe disease, respectively. We observed that severity of SARS-CoV-2 infection was significantly associated with older age group, hypertension, low TSH levels, and 25-hydroxy vitamin D deficiency. CONCLUSION We conclude that not only old age but also hypertension and low levels of TSH and 25-hydroxy vitamin D levels could significantly lead to clinical severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shariq Ahmad Wani
- Department of Medicine, Government Medical College Srinagar and Associated Hospitals, Jammu and Kashmir, India
| | - Babar Gulzar
- Department of Medicine, Government Medical College Srinagar and Associated Hospitals, Jammu and Kashmir, India
| | - Mosin Saleem Khan
- Department of Biochemistry, Government Medical College Baramulla and Associated Hospitals, Jammu and Kashmir, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Baramulla and Associated Hospitals, Jammu and Kashmir, India
| | - Irfan Ahmad Bhat
- Department of Medicine, Government Medical College Srinagar and Associated Hospitals, Jammu and Kashmir, India
| |
Collapse
|
19
|
Ho RM, Bowen AC, Blyth CC, Imrie A, Kollmann TR, Stick SM, Kicic A. Defining the pediatric response to SARS-CoV-2 variants. Front Immunol 2023; 14:1200456. [PMID: 37304275 PMCID: PMC10248061 DOI: 10.3389/fimmu.2023.1200456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
The global population has been severely affected by the coronavirus disease 2019 (COVID-19) pandemic, however, with older age identified as a risk factor, children have been underprioritized. This article discusses the factors contributing to the less severe response observed in children following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including, differing viral entry receptor expression and immune responses. It also discusses how emerging and future variants could present a higher risk to children, including those with underlying comorbidities, in developing severe disease. Furthermore, this perspective discusses the differential inflammatory markers between critical and non-critical cases, as well as discussing the types of variants that may be more pathogenic to children. Importantly, this article highlights where more research is urgently required, in order to protect the most vulnerable of our children.
Collapse
Affiliation(s)
- Reanne M. Ho
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
| | - Asha C. Bowen
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
- Department of Infectious Diseases, Perth Children’s Hospital, Nedlands, WA, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Christopher C. Blyth
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
- Department of Infectious Diseases, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Allison Imrie
- Medical School, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Tobias R. Kollmann
- Department of Infectious Diseases, Perth Children’s Hospital, Nedlands, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- School of Population Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
20
|
Qureshi AI, Baskett WI, Huang W, Akinci Y, Suri MFK, Naqvi SH, French BR, Siddiq F, Gomez CR, Shyu CR. New cardiovascular events in the convalescent period among survivors of SARS-CoV-2 infection. Int J Stroke 2023; 18:437-444. [PMID: 35796639 PMCID: PMC10037124 DOI: 10.1177/17474930221114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may have an increased risk of acute cardiovascular events in the convalescent period. AIMS To determine whether patients with SARS-CoV-2 infection have an increased risk of cardiovascular events during the convalescent period. METHODS We analyzed 10,691 hospitalized adult pneumonia patients with SARS-CoV-2 infection and contemporary matched controls of pneumonia patients without SARS-CoV-2 infection. The risk of new cardiovascular events following >30 days pneumonia admission (convalescent period) was ascertained using Cox proportional hazards regression analysis to adjust for potential confounders. RESULTS Among 10,691 pneumonia patients with SARS-CoV-2 infection, 697 patients (5.8%; 95% CI, 5.4-6.2%) developed new cardiovascular events (median time interval of 218 days post pneumonia admission; interquartile range Q1 = 117 days, Q3 = 313 days). The risk of new cardiovascular events was not significantly higher among pneumonia patients with SARS-CoV-2 infection compared with those with pneumonia without SARS-CoV-2 infection (hazard ratio (HR), 0.90, 95% CI, 0.80-1.02) after adjustment for potential confounders. In addition, no significant difference in the rate of a new ischemic stroke (HR, 0.84; 95% CI, 0.70-1.02) or ischemic heart disease (HR, 1.00; 95% CI, 0.87-1.15) was observed between the pneumonia patients with and without SARS-CoV-2 infection. CONCLUSION Our study suggests that new cardiovascular events rate in the convalescent period among pneumonia patients with SARS-CoV-2 infection was not significantly higher than the rate seen with other pneumonias.
Collapse
Affiliation(s)
- Adnan I Qureshi
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - William I Baskett
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Wei Huang
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Yasemin Akinci
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA
| | | | - S Hasan Naqvi
- Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Brandi R French
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Farhan Siddiq
- Division of Neurosurgery, University of Missouri, Columbia, MO, USA
| | - Camilo R Gomez
- Zeenat Qureshi Stroke Institute and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Chi-Ren Shyu
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| |
Collapse
|
21
|
Silva-Junior AL, Oliveira LDS, Belezia NCT, Tarragô AM, Costa AGD, Malheiro A. Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. IMMUNO 2023; 3:86-111. [DOI: 10.3390/immuno3010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
COVID-19 is a viral disease that has caused millions of deaths around the world since 2020. Many strategies have been developed to manage patients in critical conditions; however, comprehension of the immune system is a key factor in viral clearance, tissue repairment, and adaptive immunity stimulus. Participation of immunity has been identified as a major factor, along with biomarkers, prediction of clinical outcomes, and antibody production after infection. Immune cells have been proposed not only as a hallmark of severity, but also as a predictor of clinical outcomes, while dynamics of inflammatory molecules can also induce worse consequences for acute patients. For convalescent patients, mild disease was related to higher antibody production, although the factors related to the specific antibodies based on a diversity of antigens were not clear. COVID-19 was explored over time; however, the study of immunological predictors of outcomes is still lacking discussion, especially in convalescent patients. Here, we propose a review using previously published studies to identify immunological markers of COVID-19 outcomes and their relation to antibody production to further contribute to the clinical and laboratorial management of patients.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Lucas da Silva Oliveira
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Nara Caroline Toledo Belezia
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Andréa Monteiro Tarragô
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
| | - Allyson Guimarães da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
22
|
Akhtar E, Mily A, Sarker P, Chanda BC, Haque F, Kuddusi RU, Haq MA, Lourda M, Brighenti S, Raqib R. Immune cell landscape in symptomatic and asymptomatic SARS-CoV-2 infected adults and children in urban Dhaka, Bangladesh. Immunobiology 2023; 228:152350. [PMID: 36822063 PMCID: PMC9938758 DOI: 10.1016/j.imbio.2023.152350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/08/2022] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES The study of cellular immunity to SARS-CoV-2 is crucial for evaluating the course of the COVID-19 disease and for improving vaccine development. We aimed to assess the phenotypic landscape of circulating lymphocytes and mononuclear cells in adults and children who were seropositive to SARS-CoV-2 in the past 6 months. METHODS Blood samples (n = 350) were collected in a cross-sectional study in Dhaka, Bangladesh (Oct 2020-Feb 2021). Plasma antibody responses to SARS-CoV-2 were determined by an electrochemiluminescence immunoassay while lymphocyte and monocyte responses were assessed using flow cytometry including dimensionality reduction and clustering algorithms. RESULTS SARS-CoV-2 seropositivity was observed in 52% of adults (18-65 years) and 56% of children (10-17 years). Seropositivity was associated with reduced CD3+T cells in both adults (beta(β) = -2.86; 95% Confidence Interval (CI) = -5.98, 0.27) and children (β = -8.78; 95% CI = -13.8, -3.78). The frequencies of T helper effector (CD4+TEFF) and effector memory cells (CD4+TEM) were increased in seropositive compared to seronegative children. In adults, seropositivity was associated with an elevated proportion of cytotoxic T central memory cells (CD8+TCM). Overall, diverse manifestations of immune cell dysregulations were more prominent in seropositive children compared to adults, who previously had COVID-like symptoms. These changes involved reduced frequencies of CD4+TEFF cells and CD163+CD64+ classical monocytes, but increased levels of intermediate or non-classical monocytes, as well as CD8+TEM cells in symptomatic children. CONCLUSION Seropositive individuals in convalescence showed increased central and effector memory T cell phenotypes and pro-resolving/healing monocyte phenotypes compared to seronegative subjects. However, seropositive children with a previous history of COVID-like symptoms, displayed an ongoing innate inflammatory trait.
Collapse
Affiliation(s)
- Evana Akhtar
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Protim Sarker
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | | | - Farjana Haque
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | | | - Md Ahsanul Haq
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh.
| |
Collapse
|
23
|
Etemadi J, Motavalli R, Mirghaffari SA, Soltani-Zangbar MS, Hajivalili M, Ahmadian Heris J, Niknafs B, Zununi S, Sadeghi M, Rasi Hashemi S, Tayebi Khosroshahi H, Yousefi M. Potent SARS-CoV2-specific T-cell response in asymptomatic hemodialysis patients with hidden COVID-19 infection history. J Clin Lab Anal 2023; 37:e24863. [PMID: 36941528 PMCID: PMC10098065 DOI: 10.1002/jcla.24863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/24/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND COVID-19-related immune responses in patients with end-stage renal disease (ESRD) are characterized in detail by the humoral response, but their cellular immunity has not been clarified. Here, we evaluated virus-specific T cells in parallel with serology-related tests. METHODS In this study, 104 ESRD patients at the hemodialysis ward of Imam Reza hospital at Tabriz (Iran) were enrolled. After blood sampling, SARS-CoV2-specific humoral and cellular immune responses were evaluated by SARS-CoV2-specific IgM/IgG ELISA and peptide/MHCI-Tetramers flow cytometry, respectively. RESULTS Our results showed that 14 (13.5%) and 45 (43.3%) patients had specific SARS-CoV2 IgM and IgG in their sera, respectively. Immunophenotyping for SARS-CoV2-specific CD8+ T lymphocytes revealed that 68 (65.4%) patients had these types of cells. Among SARS-CoV2-specific CD8+ T lymphocytes positive subjects, 13 and 43 individuals had positive results for specific SARS-CoV2 IgM and IgG existence, respectively. Also, there was a relationship between specific SARS-CoV2 IgM (p = 0.031) and IgG (p < 0.0001) existence and having SARS-CoV2-specific TCD8+ lymphocytes in the studied population. CONCLUSION Despite not having clinical symptoms, a high rate of SARS-CoV2-specific T-cell response in asymptomatic ESRD patients may reveal a high burden of asymptomatic COVID-19 infection in these patients.
Collapse
Affiliation(s)
- Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Sadegh Soltani-Zangbar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Niknafs
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Zununi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Swadling L, Maini MK. Can T Cells Abort SARS-CoV-2 and Other Viral Infections? Int J Mol Sci 2023; 24:4371. [PMID: 36901802 PMCID: PMC10002440 DOI: 10.3390/ijms24054371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Despite the highly infectious nature of the SARS-CoV-2 virus, it is clear that some individuals with potential exposure, or even experimental challenge with the virus, resist developing a detectable infection. While a proportion of seronegative individuals will have completely avoided exposure to the virus, a growing body of evidence suggests a subset of individuals are exposed, but mediate rapid viral clearance before the infection is detected by PCR or seroconversion. This type of "abortive" infection likely represents a dead-end in transmission and precludes the possibility for development of disease. It is, therefore, a desirable outcome on exposure and a setting in which highly effective immunity can be studied. Here, we describe how early sampling of a new pandemic virus using sensitive immunoassays and a novel transcriptomic signature can identify abortive infections. Despite the challenges in identifying abortive infections, we highlight diverse lines of evidence supporting their occurrence. In particular, expansion of virus-specific T cells in seronegative individuals suggests abortive infections occur not only after exposure to SARS-CoV-2, but for other coronaviridae, and diverse viral infections of global health importance (e.g., HIV, HCV, HBV). We discuss unanswered questions related to abortive infection, such as: 'Are we just missing antibodies? Are T cells an epiphenomenon? What is the influence of the dose of viral inoculum?' Finally, we argue for a refinement of the current paradigm that T cells are only involved in clearing established infection; instead, we emphasise the importance of considering their role in terminating early viral replication by studying abortive infections.
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| |
Collapse
|
25
|
Abdulla ZA, Al-Bashir SM, Alzoubi H, Al-Salih NS, Aldamen AA, Abdulazeez AZ. The Role of Immunity in the Pathogenesis of SARS-CoV-2 Infection and in the Protection Generated by COVID-19 Vaccines in Different Age Groups. Pathogens 2023; 12:329. [PMID: 36839601 PMCID: PMC9967364 DOI: 10.3390/pathogens12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
This study aims to review the available data regarding the central role of immunity in combating SARS-CoV-2 infection and in the generation of protection by vaccination against COVID-19 in different age groups. Physiologically, the immune response and the components involved in it are variable, both functionally and quantitatively, in neonates, infants, children, adolescents, and adults. These immunological differences are mirrored during COVID-19 infection and in the post-vaccination period. The outcome of SARS-CoV-2 infection is greatly dependent on the reaction orchestrated by the immune system. This is clearly obvious in relation to the clinical status of COVID-19 infection, which can be symptomless, mild, moderate, or severe. Even the complications of the disease show a proportional pattern in relation to the immune response. On the contrary, the commonly used anti-COVID-19 vaccines generate protective humoral and cellular immunity. The magnitude of this immunity and the components involved in it are discussed in detail. Furthermore, many of the adverse effects of these vaccines can be explained on the basis of immune reactions against the different components of the vaccines. Regarding the appropriate choice of vaccine for different age groups, many factors have to be considered. This is a cornerstone, particularly in the following age groups: 1 day to 5 years, 6 to 11 years, and 12 to 17 years. Many factors are involved in deciding the route, doses, and schedule of vaccination for children. Another important issue in this dilemma is the hesitancy of families in making the decision about whether to vaccinate their children. Added to these difficulties is the choice by health authorities and governments concerning whether to make children's vaccination compulsory. In this respect, although rare and limited, adverse effects of vaccines in children have been detected, some of which, unfortunately, have been serious or even fatal. However, to achieve comprehensive control over COVID-19 in communities, both children and adults have to be vaccinated, as the former group represents a reservoir for viral transmission. The understanding of the various immunological mechanisms involved in SARS-CoV-2 infection and in the preparation and application of its vaccines has given the sciences a great opportunity to further deepen and expand immunological knowledge. This will hopefully be reflected positively on other diseases through gaining an immunological background that may aid in diagnosis and therapy. Humanity is still in continuous conflict with SARS-CoV-2 infection and will be for a while, but the future is expected to be in favor of the prevention and control of this disease.
Collapse
Affiliation(s)
| | - Sharaf M. Al-Bashir
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Noor S. Al-Salih
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Ala A. Aldamen
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | | |
Collapse
|
26
|
Khoo WH, Jackson K, Phetsouphanh C, Zaunders JJ, Alquicira-Hernandez J, Yazar S, Ruiz-Diaz S, Singh M, Dhenni R, Kyaw W, Tea F, Merheb V, Lee FXZ, Burrell R, Howard-Jones A, Koirala A, Zhou L, Yuksel A, Catchpoole DR, Lai CL, Vitagliano TL, Rouet R, Christ D, Tang B, West NP, George S, Gerrard J, Croucher PI, Kelleher AD, Goodnow CG, Sprent JD, Powell JE, Brilot F, Nanan R, Hsu PS, Deenick EK, Britton PN, Phan TG. Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clin Immunol 2023; 246:109209. [PMID: 36539107 PMCID: PMC9758763 DOI: 10.1016/j.clim.2022.109209] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.
Collapse
Affiliation(s)
- Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | | | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - José Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Rebecca Burrell
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Archana Koirala
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Li Zhou
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Aysen Yuksel
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Catchpoole
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Catherine L Lai
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia; Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia; Respiratory Tract Infection Research Node, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
| | - Nicholas P West
- Systems Biology and Data Science, Menzies Health Institute QLD, Griffith University, Parklands, Australia
| | - Shane George
- Departments of Emergency Medicine and Children's Critical Care, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - John Gerrard
- Department of Infectious Diseases and Immunology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | - Christopher G Goodnow
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Jonathan D Sprent
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ralph Nanan
- Charles Perkins Centre Nepean, University of Sydney, Sydney, Australia
| | - Peter S Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Philip N Britton
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
27
|
Langel SN, Garrido C, Phan C, Travieso T, Kirshner H, DeMarco T, Ma ZM, Reader JR, Olstad KJ, Sammak RL, Shaan Lakshmanappa Y, Roh JW, Watanabe J, Usachenko J, Immareddy R, Pollard R, Iyer SS, Permar S, Miller LA, Van Rompay KKA, Blasi M. Dam-Infant Rhesus Macaque Pairs to Dissect Age-Dependent Responses to SARS-CoV-2 Infection. Immunohorizons 2022; 6:851-863. [PMID: 36547390 PMCID: PMC10538284 DOI: 10.4049/immunohorizons.2200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated coronavirus disease (COVID-19) has led to a pandemic of unprecedented scale. An intriguing feature of the infection is the minimal disease in most children, a demographic at higher risk for other respiratory viral diseases. To investigate age-dependent effects of SARS-CoV-2 pathogenesis, we inoculated two rhesus macaque monkey dam-infant pairs with SARS-CoV-2 and conducted virological and transcriptomic analyses of the respiratory tract and evaluated systemic cytokine and Ab responses. Viral RNA levels in all sampled mucosal secretions were comparable across dam-infant pairs in the respiratory tract. Despite comparable viral loads, adult macaques showed higher IL-6 in serum at day 1 postinfection whereas CXCL10 was induced in all animals. Both groups mounted neutralizing Ab responses, with infants showing a more rapid induction at day 7. Transcriptome analysis of tracheal airway cells isolated at day 14 postinfection revealed significant upregulation of multiple IFN-stimulated genes in infants compared with adults. In contrast, a profibrotic transcriptomic signature with genes associated with cilia structure and function, extracellular matrix composition and metabolism, coagulation, angiogenesis, and hypoxia was induced in adults compared with infants. Our study in rhesus macaque monkey dam-infant pairs suggests age-dependent differential airway responses to SARS-CoV-2 infection and describes a model that can be used to investigate SARS-CoV-2 pathogenesis between infants and adults.
Collapse
Affiliation(s)
- Stephanie N Langel
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Carolina Garrido
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Caroline Phan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Tatianna Travieso
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Helene Kirshner
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Katherine J Olstad
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Rebecca L Sammak
- California National Primate Research Center, University of California, Davis, Davis, CA
| | | | - Jamin W Roh
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- Graduate Group in Immunology, University of California, Davis, Davis, CA
| | - Jennifer Watanabe
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Jodie Usachenko
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Rachel Pollard
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
| | - Smita S Iyer
- California National Primate Research Center, University of California, Davis, Davis, CA
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Sallie Permar
- Department of Pediatrics, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY; and
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, Davis, CA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
28
|
Mortezaee K, Majidpoor J. Cellular immune states in SARS-CoV-2-induced disease. Front Immunol 2022; 13:1016304. [PMID: 36505442 PMCID: PMC9726761 DOI: 10.3389/fimmu.2022.1016304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
The general immune state plays important roles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Cells of the immune system are encountering rapid changes during the acute phase of SARS-CoV-2-induced disease. Reduced fraction of functional CD8+ T cells, disrupted cross-talking between CD8+ T cells with dendritic cells (DCs), and impaired immunological T-cell memory, along with the higher presence of hyperactive neutrophils, high expansion of myeloid-derived suppressor cells (MDSCs) and non-classical monocytes, and attenuated cytotoxic capacity of natural killer (NK) cells, are all indicative of low efficient immunity against viral surge within the body. Immune state and responses from pro- or anti-inflammatory cells of the immune system to SARS-CoV-2 are discussed in this review. We also suggest some strategies to enhance the power of immune system against SARS-CoV-2-induced disease.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,*Correspondence: Keywan Mortezaee, ;
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
29
|
Malik A, Tóth EN, Teng MS, Hurst J, Watt E, Wise L, Kent N, Bartram J, Grandjean L, Dominguez-Villar M, Adams S, Cooper N. Distorted TCR repertoires define multisystem inflammatory syndrome in children. PLoS One 2022; 17:e0274289. [PMID: 36301874 PMCID: PMC9612519 DOI: 10.1371/journal.pone.0274289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
While the majority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) display mild or no symptoms, rare individuals develop severe disease presenting with multisystem inflammatory syndrome (MIS-C). The reason for variable clinical manifestations is not understood. Here, we carried out TCR sequencing and conducted comparative analyses of TCR repertoires between children with MIS-C (n = 12) and mild (n = 8) COVID-19. We compared these repertoires with unexposed individuals (samples collected pre-COVID-19 pandemic: n = 8) and with the Adaptive Biotechnologies MIRA dataset, which includes over 135,000 high-confidence SARS-CoV-2-specific TCRs. We show that the repertoires of children with MIS-C are characterised by the expansion of TRBV11-2 chains with high junctional and CDR3 diversity. Moreover, the CDR3 sequences of TRBV11-2 clones shift away from SARS-CoV-2 specific T cell clones, resulting in distorted TCR repertoires. In conclusion, our study reports that CDR3-independent expansion of TRBV11-2+ cells, lacking SARS-CoV-2 specificity, defines MIS-C in children.
Collapse
Affiliation(s)
- Amna Malik
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Eszter N. Tóth
- Etcembly Ltd, Magdalen Centre, Robert Robinson Way, Oxford, United Kingdom
| | - Michelle S. Teng
- Etcembly Ltd, Magdalen Centre, Robert Robinson Way, Oxford, United Kingdom
| | - Jacob Hurst
- Etcembly Ltd, Magdalen Centre, Robert Robinson Way, Oxford, United Kingdom
| | - Eleanor Watt
- Molecular and Cellular Immunology Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lauren Wise
- SIHMDS-Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Natalie Kent
- SIHMDS-Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Louis Grandjean
- Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Stuart Adams
- SIHMDS-Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Nichola Cooper
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Urueña C, Ballesteros-Ramírez R, Gomez-Cadena A, Barreto A, Prieto K, Quijano S, Aschner P, Martínez C, Zapata-Cardona MI, El-Ahanidi H, Jandus C, Florez-Alvarez L, Rugeles MT, Zapata-Builes W, Garcia AA, Fiorentino S. Randomized double-blind clinical study in patients with COVID-19 to evaluate the safety and efficacy of a phytomedicine (P2Et). Front Med (Lausanne) 2022; 9:991873. [PMID: 36160152 PMCID: PMC9494348 DOI: 10.3389/fmed.2022.991873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background It has been proposed that polyphenols can be used in the development of new therapies against COVID-19, given their ability to interfere with the adsorption and entrance processes of the virus, thus disrupting viral replication. Seeds from Caesalpinia spinosa, have been traditionally used for the treatment of inflammatory pathologies and respiratory diseases. Our team has obtained an extract called P2Et, rich in polyphenols derived from gallic acid with significant antioxidant activity, and the ability to induce complete autophagy in tumor cells and reduce the systemic inflammatory response in animal models. Methods In this work, a phase II multicenter randomized double-blind clinical trial on COVID-19 patients was designed to evaluate the impact of the P2Et treatment on the clinical outcome and the immunological parameters related to the evolution of the disease. The Trial was registered with the number No. NCT04410510*. A complementary study in an animal model of lung fibrosis was carried out to evaluate in situ lung changes after P2Et in vivo administration. The ability of P2Et to inhibit the viral load of murine and human coronaviruses in cellular models was also evaluated. Results Patients treated with P2Et were discharged on average after 7.4 days of admission vs. 9.6 days in the placebo group. Although a decrease in proinflammatory cytokines such as G-CSF, IL-15, IL-12, IL-6, IP10, MCP-1, MCP-2 and IL-18 was observed in both groups, P2Et decreased to a greater extent G-CSF, IL-6 and IL-18 among others, which are related to lower recovery of patients in the long term. The frequency of T lymphocytes (LT) CD3+, LT double negative (CD3+CD4-CD8-), NK cells increased in the P2Et group where the population of eosinophils was also significantly reduced. In the murine bleomycin model, P2Et also reduced lung inflammation and fibrosis. P2Et was able to reduce the viral replication of murine and human coronaviruses in vitro, showing its dual antiviral and anti-inflammatory role, key in disease control. Conclusions Taken together these results suggest that P2Et could be consider as a good co-adjuvant in the treatment of COVID-19. Clinical trail registration https://clinicaltrials.gov/ct2/show/NCT04410510, identifier: NCT04410510.
Collapse
Affiliation(s)
- Claudia Urueña
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alejandra Gomez-Cadena
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Alfonso Barreto
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karol Prieto
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sandra Quijano
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pablo Aschner
- Oficina de Investigaciones, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Carlos Martínez
- Departamento de Cardiología, Clínica CardioVID, Medellín, Colombia
| | - Maria I. Zapata-Cardona
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Hajar El-Ahanidi
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Lizdany Florez-Alvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Maria Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Angel Alberto Garcia
- Departamento de Cardiología, Hospital Universitario San Ignacio – Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiologiay Biología Celular, Facultad de Ciencias, Unidad de Investigación en Ciencias Biomédicas, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Susana Fiorentino
| |
Collapse
|
31
|
Nathanielsz J, Toh ZQ, Do LAH, Mulholland K, Licciardi PV. SARS-CoV-2 infection in children and implications for vaccination. Pediatr Res 2022; 93:1177-1187. [PMID: 35970935 PMCID: PMC9376896 DOI: 10.1038/s41390-022-02254-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/20/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
The COVID-19 pandemic caused by novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for more than 500 million cases worldwide as of April 2022. Initial estimates in 2020 found that children were less likely to become infected with SARS-CoV-2 and more likely to be asymptomatic or display mild COVID-19 symptoms. Our early understanding of COVID-19 transmission and disease in children led to a range of public health measures including school closures that have indirectly impacted child health and wellbeing. The emergence of variants of concern (particularly Delta and Omicron) has raised new issues about transmissibility in children, as preliminary data suggest that children may be at increased risk of infection, especially if unvaccinated. Global national prevalence data show that SARS-CoV-2 infection in children and adolescents is rising due to COVID-19 vaccination among adults and increased circulation of Delta and Omicron variants. To mitigate this, childhood immunisation programmes are being implemented globally to prevent direct and indirect consequences of COVID-19 including severe complications (e.g., MIS-C), debilitating long-COVID symptoms, and the indirect impacts of prolonged community and school closures on childhood education, social and behavioural development and mental health. This review explores the current state of knowledge on COVID-19 in children including COVID-19 vaccination strategies. IMPACT: Provides an up-to-date account of SARS-CoV-2 infections in children. Discusses the direct and indirect effects of COVID-19 in children. Provides the latest information on the current state of global COVID-19 vaccination in children.
Collapse
Affiliation(s)
- Jordan Nathanielsz
- grid.1021.20000 0001 0526 7079School of Medicine, Deakin University, Geelong, VIC Australia ,grid.267362.40000 0004 0432 5259Department of Medicine, Alfred Health, Melbourne, VIC Australia ,grid.1058.c0000 0000 9442 535XInfection and Immunity, Murdoch Children’s Research Institute, Melbourne, VIC Australia
| | - Zheng Quan Toh
- grid.1058.c0000 0000 9442 535XInfection and Immunity, Murdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, The University of Melbourne, Melbourne, VIC Australia
| | - Lien Anh Ha Do
- grid.1058.c0000 0000 9442 535XInfection and Immunity, Murdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, The University of Melbourne, Melbourne, VIC Australia
| | - Kim Mulholland
- grid.1058.c0000 0000 9442 535XInfection and Immunity, Murdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, The University of Melbourne, Melbourne, VIC Australia ,grid.8991.90000 0004 0425 469XDepartment of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Paul V. Licciardi
- grid.1058.c0000 0000 9442 535XInfection and Immunity, Murdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
32
|
Rowntree LC, Nguyen THO, Kedzierski L, Neeland MR, Petersen J, Crawford JC, Allen LF, Clemens EB, Chua B, McQuilten HA, Minervina AA, Pogorelyy MV, Chaurasia P, Tan HX, Wheatley AK, Jia X, Amanat F, Krammer F, Allen EK, Sonda S, Flanagan KL, Jumarang J, Pannaraj PS, Licciardi PV, Kent SJ, Bond KA, Williamson DA, Rossjohn J, Thomas PG, Tosif S, Crawford NW, van de Sandt CE, Kedzierska K. SARS-CoV-2-specific T cell memory with common TCRαβ motifs is established in unvaccinated children who seroconvert after infection. Immunity 2022; 55:1299-1315.e4. [PMID: 35750048 PMCID: PMC9174177 DOI: 10.1016/j.immuni.2022.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
Abstract
As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαβ repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαβ motifs in unvaccinated seroconverted children after their first virus encounter.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melanie R Neeland
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jan Petersen
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Priyanka Chaurasia
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Department of Immunology and Pathology, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Science, RMIT University, Melbourne, VIC 3000, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Jaycee Jumarang
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Pia S Pannaraj
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Departments of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Paul V Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Katherine A Bond
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shidan Tosif
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC 3000, Australia
| | - Nigel W Crawford
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, VIC 3000, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, VIC 3000, Australia; Royal Children's Hospital Melbourne, Immunisation Service, Melbourne, VIC 3000, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
33
|
Tosif S, Haycroft ER, Sarkar S, Toh ZQ, Do LAH, Donato CM, Selva KJ, Hoq M, Overmars I, Nguyen J, Lee L, Clifford V, Daley A, Mordant FL, McVernon J, Mulholland K, Marcato AJ, Smith MZ, Curtis N, McNab S, Saffery R, Kedzierska K, Subarrao K, Burgner D, Steer A, Bines JE, Sutton P, Licciardi PV, Chung AW, Neeland MR, Crawford NW. Virology and immune dynamics reveal high household transmission of ancestral SARS-CoV-2 strain. Pediatr Allergy Immunol 2022; 33:10.1111/pai.13824. [PMID: 35871459 PMCID: PMC9349415 DOI: 10.1111/pai.13824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.
Collapse
|
34
|
Di Sante G, Buonsenso D, De Rose C, Tredicine M, Palucci I, De Maio F, Camponeschi C, Bonadia N, Biasucci D, Pata D, Chiaretti A, Valentini P, Ria F, Sanguinetti M, Sali M. Immunopathology of SARS-CoV-2 Infection: A Focus on T Regulatory and B Cell Responses in Children Compared with Adults. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9050681. [PMID: 35626859 PMCID: PMC9139466 DOI: 10.3390/children9050681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
While the clinical impact of COVID-19 on adults has been massive, the majority of children develop pauci-symptomatic or even asymptomatic infection and only a minority of the latter develop a fatal outcome. The reasons of such differences are not yet established. We examined cytokines in sera and Th and B cell subpopulations in peripheral blood mononuclear cells (PBMC) from 40 children (<18 years old), evaluating the impact of COVID-19 infection during the pandemic’s first waves. We correlated our results with clinical symptoms and compared them to samples obtained from 16 infected adults and 7 healthy controls. While IL6 levels were lower in SARS-CoV-2+ children as compared to adult patients, the expression of other pro-inflammatory cytokines such as IFNγ and TNFα directly correlated with early age infection and symptoms. Th and B cell subsets were modified during pediatric infection differently with respect to adult patients and controls and within the pediatric group based on age. Low levels of IgD− CD27+ memory B cells correlated with absent/mild symptoms. On the contrary, high levels of FoxP3+/CD25high T-Regs associated with a moderate−severe clinical course in the childhood. These T and B cells subsets did not associate with severity in infected adults, with children showing a predominant expansion of immature B lymphocytes and natural regulatory T cells. This study shows differences in immunopathology of SARS-CoV-2 infection in children compared with adults. Moreover, these data could provide information that can drive vaccination endpoints for children.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.S.); (M.T.); (C.C.); (F.R.)
- Dipartimento di Medicina Traslazionale, Sezione di Anatomia Umana, Clinica e Forense, Università degli studi di Perugia, 06123 Perugia, Italy
| | - Danilo Buonsenso
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
- Global Health Research Center, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel./Fax: +39-063-015-4390
| | - Cristina De Rose
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
| | - Maria Tredicine
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.S.); (M.T.); (C.C.); (F.R.)
| | - Ivana Palucci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Chiara Camponeschi
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.S.); (M.T.); (C.C.); (F.R.)
| | - Nicola Bonadia
- Dipartimento di Medicina di Emergenza, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Daniele Biasucci
- Dipartimento di Anestesia e Terapia Intensiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Davide Pata
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
| | - Antonio Chiaretti
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
| | - Piero Valentini
- Dipartimento della Salute della Donna e del Bambino e di Sanità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.D.R.); (D.P.); (A.C.); (P.V.)
| | - Francesco Ria
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.S.); (M.T.); (C.C.); (F.R.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (I.P.); (F.D.M.); (M.S.); (M.S.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del S. Cuore, 00168 Rome, Italy
| |
Collapse
|
35
|
Wang Y, Wu M, Li Y, Yuen HH, He ML. The effects of SARS-CoV-2 infection on modulating innate immunity and strategies of combating inflammatory response for COVID-19 therapy. J Biomed Sci 2022; 29:27. [PMID: 35505345 PMCID: PMC9063252 DOI: 10.1186/s12929-022-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
The global pandemic of COVID-19 has caused huge causality and unquantifiable loss of social wealth. The innate immune response is the first line of defense against SARS-CoV-2 infection. However, strong inflammatory response associated with dysregulation of innate immunity causes severe acute respiratory syndrome (SARS) and death. In this review, we update the current knowledge on how SARS-CoV-2 modulates the host innate immune response for its evasion from host defense and its corresponding pathogenesis caused by cytokine storm. We emphasize Type I interferon response and the strategies of evading innate immune defense used by SARS-CoV-2. We also extensively discuss the cells and their function involved in the innate immune response and inflammatory response, as well as the promises and challenges of drugs targeting excessive inflammation for antiviral treatment. This review would help us to figure out the current challenge questions of SARS-CoV-2 infection on innate immunity and directions for future studies.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ho Him Yuen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China. .,CityU Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
36
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
37
|
García-Salido A, Leoz-Gordillo I, González Brabin A, García-Teresa MÁ, Martínez-de-Azagra-Garde A, Iglesias-Bouzas MI, Cabrero-Hernández M, De Lama Caro-Patón G, Unzueta-Roch JL, Castillo-Robleda A, Ramirez-Orellana M, Nieto-Moro M. PIMS-TS immunophenotype: description and comparison with healthy children, Kawasaki disease and severe viral and bacterial infections. Infect Dis (Lond) 2022; 54:687-691. [PMID: 35394410 DOI: 10.1080/23744235.2022.2059561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND A new clinical syndrome named Paediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2 (PIMS-TS) has been described. This new disease is a leading cause of hospital and paediatric intensive care unit (PICU). It has been related to immunity dysregulation. METHODS Prospective-retrospective observational study to describe the innate cell signature and immunophenotype of children admitted to PICU because of PIMS-TS (from March 2020 to September 2020). The immunophenotype was done through the expression analysis of these proteins of mononuclear cells: CD64, CD18, CD11a and CD11b. They were compared with previous healthy controls and children admitted to PICU because of bacterial infection, viral infection and Kawasaki disease (KD). Two hundred and forty-seven children were studied: 183 healthy controls, 25 viral infections, 20 bacterial infections, 6 KD and 13 PIMS-TS. RESULTS PIMT-TS showed the lowest percentage of lymphocytes and monocytes with higher relative numbers of CD4+ (p = .000). Monocytes and neutrophils in PIMS-TS showed higher levels of CD64 expression (p = .000). Also, CD11a and CD11b were highly expressed (p =,000). CONCLUSION We observed a differential cell innate signature in PIMS-TS. These findings are consistent with a proinflammatory status (CD64 elevated expression) and lymphocyte trafficking to tissues (CD11a and CD11b). More studies should be carried out to confirm our results.
Collapse
Affiliation(s)
- Alberto García-Salido
- Pediatric Critical Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Inés Leoz-Gordillo
- Pediatric Critical Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | | | | | | | | | | | | | - Ana Castillo-Robleda
- Pediatric Oncohematology Unit, Flow Cytometry Laboratory, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Manuel Ramirez-Orellana
- Pediatric Oncohematology Unit, Flow Cytometry Laboratory, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Montserrat Nieto-Moro
- Pediatric Critical Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
38
|
Shin SH, Park E, Kim S, Jang M, Park S, Kim DH, Son TJ, Park JH. COVID-19 outbreak and risk factors for infection in a taekwondo gym in the Republic of Korea. Osong Public Health Res Perspect 2022; 13:162-170. [PMID: 35538688 PMCID: PMC9091639 DOI: 10.24171/j.phrp.2021.0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
|
39
|
Han MS, Um J, Lee EJ, Kim KM, Chang SH, Lee H, Kim YK, Choi YY, Cho EY, Kim DH, Choi JH, Lee J, Kim M, Chung KH, Min HS, Choe YJ, Lim DG, Park JS, Choi EH. Antibody Responses to SARS-CoV-2 in Children With COVID-19. J Pediatric Infect Dis Soc 2022; 11:267-273. [PMID: 35275210 PMCID: PMC8992286 DOI: 10.1093/jpids/piac012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/14/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND The immunologic features of children with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not clearly delineated. This study was conducted to evaluate SARS-CoV-2-specific antibody responses in children with COVID-19. METHODS The levels of anti-spike (S) IgG, anti-SARS-CoV-2 IgG, and neutralizing antibody (NAb) were measured during various time points in children <19 years of age with COVID-19 in South Korea from February 2020 to September 2020. RESULTS One hundred sixty-five blood samples from 114 children with COVID-19 (43.9% asymptomatic and 56.1% mildly symptomatic) were analyzed. In both asymptomatic and mildly symptomatic children, the positive rates of anti-S IgG, anti-SARS-CoV-2 IgG, and NAb were low within 7 days after onset, but they soon reached 100% 14 to <28 days after onset. In symptomatic children, the geometric mean titers (GMTs) of antibodies were all below the positive cutoff during the first 2 weeks from onset and peaked at 28 to <56 days (5.6 for anti-S IgG, 383.6 for anti-SARS-CoV-2 IgG, and 55.0 for NAb, P < .001, respectively). Antibody levels remained detectable up to 3 months after infection. The antibody GMTs during the period 14 to <56 days after symptom onset were highest in children aged 0-4 years. CONCLUSIONS These results collectively present the humoral immune responses during SARS-CoV-2 infection in children. A further longitudinal study is needed to thoroughly understand the immune system and for effective vaccine development in children during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mi Seon Han
- Department of Pediatrics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Jihye Um
- Research Institute of Public Health, National Medical Center, Seoul, South Korea
| | - Eun Joo Lee
- Department of Pediatrics, Seongnam Citizens Medical Center, Seongnam, South Korea
| | - Kyung Min Kim
- Department of Pediatrics, The Catholic University of Korea Daejeon St. Mary’s Hospital, Daejeon, South Korea
| | - Sung Hee Chang
- Department of Pediatrics, Seonam Hospital, Seoul, South Korea
| | - Hyunju Lee
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Ye Kyung Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, South Korea
| | - Youn Young Choi
- Department of Pediatrics, National Medical Center, Seoul, South Korea
| | - Eun Young Cho
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Dong Hyun Kim
- Department of Pediatrics, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Jae Hong Choi
- Department of Pediatrics, Jeju National University Hospital, Jeju, South Korea
| | - Jina Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Misuk Kim
- Research Institute of Public Health, National Medical Center, Seoul, South Korea
| | - Ki-Hyun Chung
- Research Institute of Public Health, National Medical Center, Seoul, South Korea
| | - Hye Sook Min
- Research Institute of Public Health, National Medical Center, Seoul, South Korea
| | - Young June Choe
- Department of Pediatrics, Korea University Anam Hospital, Seoul, South Korea
| | - Dong-Gyun Lim
- Research Institute of Public Health, National Medical Center, Seoul, South Korea
| | - Jun-Sun Park
- Research Institute of Public Health, National Medical Center, Seoul, South Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea,Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, South Korea,Corresponding Author: Eun Hwa Choi, MD, PhD, Department of Pediatrics, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea. E-mail:
| |
Collapse
|
40
|
Toh ZQ, Anderson J, Mazarakis N, Neeland M, Higgins RA, Rautenbacher K, Dohle K, Nguyen J, Overmars I, Donato C, Sarkar S, Clifford V, Daley A, Nicholson S, Mordant FL, Subbarao K, Burgner DP, Curtis N, Bines JE, McNab S, Steer AC, Mulholland K, Tosif S, Crawford NW, Pellicci DG, Do LAH, Licciardi PV. Comparison of Seroconversion in Children and Adults With Mild COVID-19. JAMA Netw Open 2022; 5:e221313. [PMID: 35262717 PMCID: PMC8908077 DOI: 10.1001/jamanetworkopen.2022.1313] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE The immune response in children with SARS-CoV-2 infection is not well understood. OBJECTIVE To compare seroconversion in nonhospitalized children and adults with mild SARS-CoV-2 infection and identify factors that are associated with seroconversion. DESIGN, SETTING, AND PARTICIPANTS This household cohort study of SARS-CoV-2 infection collected weekly nasopharyngeal and throat swabs and blood samples during the acute (median, 7 days for children and 12 days for adults [IQR, 4-13] days) and convalescent (median, 41 [IQR, 31-49] days) periods after polymerase chain reaction (PCR) diagnosis for analysis. Participants were recruited at The Royal Children's Hospital, Melbourne, Australia, from May 10 to October 28, 2020. Participants included patients who had a SARS-CoV-2-positive nasopharyngeal or oropharyngeal swab specimen using PCR analysis. MAIN OUTCOMES AND MEASURES SARS-CoV-2 immunoglobulin G (IgG) and cellular (T cell and B cell) responses in children and adults. Seroconversion was defined by seropositivity in all 3 (an in-house enzyme-linked immunosorbent assay [ELISA] and 2 commercial assays: a SARS-CoV-2 S1/S2 IgG assay and a SARS-CoV-2 antibody ELISA) serological assays. RESULTS Among 108 participants with SARS-CoV-2-positive PCR findings, 57 were children (35 boys [61.4%]; median age, 4 [IQR, 2-10] years) and 51 were adults (28 women [54.9%]; median age, 37 [IQR, 34-45] years). Using the 3 established serological assays, a lower proportion of children had seroconversion to IgG compared with adults (20 of 54 [37.0%] vs 32 of 42 [76.2%]; P < .001). This result was not associated with viral load, which was similar in children and adults (mean [SD] cycle threshold [Ct] value, 28.58 [6.83] vs 24.14 [8.47]; P = .09). In addition, age and sex were not associated with seroconversion within children (median age, 4 [IQR, 2-14] years for both seropositive and seronegative groups; seroconversion by sex, 10 of 21 girls [47.6%] vs 10 of 33 boys [30.3%]) or adults (median ages, 37 years for seropositive and 40 years for seronegative adults [IQR, 34-39 years]; seroconversion by sex, 18 of 24 women [75.0%] vs 14 of 18 men [77.8%]) (P > .05 for all comparisons between seronegative and seropositive groups). Symptomatic adults had 3-fold higher SARS-CoV-2 IgG levels than asymptomatic adults (median, 227.5 [IQR, 133.7-521.6] vs 75.3 [IQR, 36.9-113.6] IU/mL), whereas no differences were observed in children regardless of symptoms. Moreover, differences in cellular immune responses were observed in adults compared with children with seroconversion. CONCLUSIONS AND RELEVANCE The findings of this cohort study suggest that among patients with mild COVID-19, children may be less likely to have seroconversion than adults despite similar viral loads. This finding has implications for future protection after SARS-CoV-2 infection in children and for interpretation of serosurveys that involve children. Further research to understand why seroconversion and development of symptoms are potentially less likely in children after SARS-CoV-2 infection and to compare vaccine responses may be of clinical and scientific importance.
Collapse
Affiliation(s)
- Zheng Quan Toh
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jeremy Anderson
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Nadia Mazarakis
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Melanie Neeland
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Rachel A. Higgins
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Karin Rautenbacher
- Laboratory Services, The Royal Children’s Hospital, Melbourne, Australia
| | - Kate Dohle
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Jill Nguyen
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Isabella Overmars
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
| | - Celeste Donato
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sohinee Sarkar
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Vanessa Clifford
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Andrew Daley
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Francesca L. Mordant
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- WHO (World Health Organization) Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Burgner
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Nigel Curtis
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Julie E. Bines
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Gastroenterology, The Royal Children’s Hospital, Melbourne, Australia
| | - Sarah McNab
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Andrew C. Steer
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Kim Mulholland
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shidan Tosif
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Nigel W. Crawford
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of General Medicine, The Royal Children’s Hospital, Melbourne, Australia
| | - Daniel G. Pellicci
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lien Anh Ha Do
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Paul V. Licciardi
- Division of Infection and Immunity, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
41
|
Cizmecioglu A, Emsen A, Sumer S, Ergun D, Akay Cizmecioglu H, Turk Dagi H, Artac H. Reduced Monocyte Subsets, Their HLA-DR Expressions, and Relations to Acute Phase Reactants in Severe COVID-19 Cases. Viral Immunol 2022; 35:273-282. [PMID: 35196160 DOI: 10.1089/vim.2021.0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monocytes are one of the principal immune defense cells that encounter infectious agents. However, an essential role of monocytes has been shown in the spread of viruses throughout the human body. Considering this dilemma, this study aimed to evaluate monocyte subsets and Human Leukocyte Antigen-DR isotype (HLA-DR) expressions in clinical coronavirus disease 2019 (COVID-19) cases. This prospective, multicenter, case-control study was conducted with COVID-19 patients and healthy controls. The patient group was divided into two subgroups according to disease severity (severe and non-severe). Three monocyte subsets (classical, CL; intermediate, INT; non-classical, NC) were analyzed with flow cytometry upon the patients' hospital admission. A total of 42 patients with COVID-19 and 30 controls participated in this study. The patients' conditions were either severe (n = 23) or non-severe (n = 19). All patients' monocyte and HLA-DR expressions were decreased compared with the controls (p < 0.05). Per disease severity, all monocyte subsets were not significant with disease severity; however, the HLA-DR expressions of CL monocytes (p = 0.002) and INT monocytes (p = 0.025) were more decreased in the severe patient group. In patients with various clinical features, NC monocytes were more affected. Based on these results, NC monocytes were more decreased in acute COVID-19 cases, though related various clinics decreased all monocyte subsets in these patients. Decreased monocyte HLA expressions may be a sign of immune suppression in severe patients, even when the percentage of monocyte levels has not decreased yet.
Collapse
Affiliation(s)
- Ahmet Cizmecioglu
- Department of Internal Medicine, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Ayca Emsen
- Department of Pediatric Allergy and Immunology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Sua Sumer
- Department of Infectious Disease, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Dilek Ergun
- Department of Respiratory Diseases, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Hilal Akay Cizmecioglu
- Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Hatice Turk Dagi
- Department of Clinical Microbiology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Hasibe Artac
- Department of Pediatric Allergy and Immunology, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
42
|
Kaaijk P, Olivo Pimentel V, Emmelot ME, Poelen MCM, Cevirgel A, Schepp RM, den Hartog G, Reukers DF, Beckers L, van Beek J, van Els CACM, Meijer A, Rots NY, de Wit J. Children and Adults With Mild COVID-19: Dynamics of the Memory T Cell Response up to 10 Months. Front Immunol 2022; 13:817876. [PMID: 35197982 PMCID: PMC8858984 DOI: 10.3389/fimmu.2022.817876] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
BackgroundSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to considerable morbidity/mortality worldwide, but most infections, especially among children, have a mild course. However, it remains largely unknown whether infected children develop cellular immune memory.MethodsTo determine whether a memory T cell response is being developed, we performed a longitudinal assessment of the SARS-CoV-2-specific T cell response by IFN-γ ELISPOT and activation marker analyses of peripheral blood samples from unvaccinated children and adults with mild-to-moderate COVID-19.ResultsUpon stimulation of PBMCs with heat-inactivated SARS-CoV-2 or overlapping peptides of spike (S-SARS-CoV-2) and nucleocapsid proteins, we found S-SARS-CoV-2-specific IFN-γ T cell responses in infected children (83%) and adults (100%) that were absent in unexposed controls. Frequencies of SARS-CoV-2-specific T cells were higher in infected adults, especially in those with moderate symptoms, compared to infected children. The S-SARS-CoV-2 IFN-γ T cell response correlated with S1-SARS-CoV-2-specific serum antibody concentrations. Predominantly, effector memory CD4+ T cells of a Th1 phenotype were activated upon exposure to SARS-CoV-2 antigens. Frequencies of SARS-CoV-2-specific T cells were significantly reduced at 10 months after symptom onset, while S1-SARS-CoV-2-specific IgG concentrations were still detectable in 90% of all children and adults.ConclusionsOur data indicate that an antigen-specific T cell and antibody response is developed after mild SARS-CoV-2 infection in children and adults. It remains to be elucidated to what extent this SARS-CoV-2-specific response can contribute to an effective recall response after reinfection.
Collapse
Affiliation(s)
- Patricia Kaaijk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- *Correspondence: Patricia Kaaijk,
| | - Verónica Olivo Pimentel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Maarten E. Emmelot
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Martien C. M. Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alper Cevirgel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Rutger M. Schepp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gerco den Hartog
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Daphne F.M. Reukers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lisa Beckers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Adam Meijer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
43
|
Zimmermann P, Curtis N. Why Does the Severity of COVID-19 Differ With Age?: Understanding the Mechanisms Underlying the Age Gradient in Outcome Following SARS-CoV-2 Infection. Pediatr Infect Dis J 2022; 41:e36-e45. [PMID: 34966142 PMCID: PMC8740029 DOI: 10.1097/inf.0000000000003413] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Although there are many hypotheses for the age-related difference in the severity of COVID-19, differences in innate, adaptive and heterologous immunity, together with differences in endothelial and clotting function, are the most likely mechanisms underlying the marked age gradient. Children have a faster and stronger innate immune response to SARS-CoV-2, especially in the nasal mucosa, which rapidly controls the virus. In contrast, adults can have an overactive, dysregulated and less effective innate response that leads to uncontrolled pro-inflammatory cytokine production and tissue injury. More recent exposure to other viruses and routine vaccines in children might be associated with protective cross-reactive antibodies and T cells against SARS-CoV-2. There is less evidence to support other mechanisms that have been proposed to explain the age-related difference in outcome following SARS-CoV-2 infection, including pre-existing immunity from exposure to common circulating coronaviruses, differences in the distribution and expression of the entry receptors ACE2 and TMPRSS2, and difference in viral load.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
44
|
Ryu BH, Hong SI, Lim SJ, Cho Y, Hong KW, Bae IG, Cho OH. Features of COVID-19 Among Children and Adolescents Without Risk Factors Before and After the Delta Variant Outbreak in South Korea. Pediatr Infect Dis J 2022; 41:e34-e35. [PMID: 34773397 PMCID: PMC8658054 DOI: 10.1097/inf.0000000000003394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Byung-Han Ryu
- From the Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon
| | - Sun In Hong
- From the Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon
| | - Su Jin Lim
- Department of Internal Medicine, Gyeongsangnam-do Masan Medical Center, Changwon
| | - Younghwa Cho
- Department of Internal Medicine, Korea Labour Welfare Corporation Changwon Hospital, Changwon
| | - Kyung-Wook Hong
- Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju
| | - In-Gyu Bae
- Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju
- Gyeongsang Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Oh-Hyun Cho
- From the Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon
- Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju
- Gyeongsang Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, South Korea
| |
Collapse
|
45
|
Howard‐Jones AR, Burgner DP, Crawford NW, Goeman E, Gray PE, Hsu P, Kuek S, McMullan BJ, Tosif S, Wurzel D, Bowen AC, Danchin M, Koirala A, Sharma K, Yeoh DK, Britton PN. COVID-19 in children. II: Pathogenesis, disease spectrum and management. J Paediatr Child Health 2022; 58:46-53. [PMID: 34694037 PMCID: PMC8662268 DOI: 10.1111/jpc.15811] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
Abstract
The global disruption of the COVID-19 pandemic has impacted the life of every child either directly or indirectly. This review explores the pathophysiology, immune response, clinical presentation and treatment of COVID-19 in children, summarising the most up-to-date data including recent developments regarding variants of concern. The acute infection with SARS-CoV-2 is generally mild in children, whilst the post-infectious manifestations, including paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) and 'long COVID' in children, are more complex. Given that most research on COVID-19 has focused on adult cohorts and that clinical manifestations, treatment availability and impacts differ markedly in children, research that specifically examines COVID-19 in children needs to be prioritised.
Collapse
Affiliation(s)
- Annaleise R Howard‐Jones
- Discipline of Child and Adolescent HealthUniversity of Sydney, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
- NSW Health Pathology‐NepeanNepean HospitalSydneyNew South WalesAustralia
| | - David P Burgner
- Infectious Diseases UnitDepartment of General Medicine, Royal Children's HospitalMelbourneVictoriaAustralia
- Infection and Immunity ThemeMurdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
| | - Nigel W Crawford
- Infection and Immunity ThemeMurdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
- Department of General MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Emma Goeman
- Department of Infectious Diseases and MicrobiologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
| | - Paul E Gray
- Department of Immunology and Infectious DiseasesSydney Children's HospitalSydneyNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Peter Hsu
- Discipline of Child and Adolescent HealthUniversity of Sydney, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of ImmunologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Stephanie Kuek
- Department of Respiratory and Sleep MedicineThe Royal Children's HospitalMelbourneVictoriaAustralia
| | - Brendan J McMullan
- Department of Immunology and Infectious DiseasesSydney Children's HospitalSydneyNew South WalesAustralia
- School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Shidan Tosif
- Infection and Immunity ThemeMurdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
- Department of General MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Danielle Wurzel
- Infection and Immunity ThemeMurdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of Respiratory and Sleep MedicineThe Royal Children's HospitalMelbourneVictoriaAustralia
- School of Population and Global HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Asha C Bowen
- Department of Infectious DiseasesPerth Children's HospitalPerthWestern AustraliaAustralia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Margie Danchin
- Infection and Immunity ThemeMurdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
- Department of General MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Archana Koirala
- Discipline of Child and Adolescent HealthUniversity of Sydney, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
- National Centre for Immunisation Research and SurveillanceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of Infectious DiseasesNepean HospitalPenrithNew South WalesAustralia
| | - Ketaki Sharma
- Discipline of Child and Adolescent HealthUniversity of Sydney, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
- National Centre for Immunisation Research and SurveillanceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Daniel K Yeoh
- Department of Infectious DiseasesPerth Children's HospitalPerthWestern AustraliaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Philip N Britton
- Discipline of Child and Adolescent HealthUniversity of Sydney, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of Infectious Diseases and MicrobiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| |
Collapse
|
46
|
Dowell AC, Butler MS, Jinks E, Tut G, Lancaster T, Sylla P, Begum J, Bruton R, Pearce H, Verma K, Logan N, Tyson G, Spalkova E, Margielewska-Davies S, Taylor GS, Syrimi E, Baawuah F, Beckmann J, Okike IO, Ahmad S, Garstang J, Brent AJ, Brent B, Ireland G, Aiano F, Amin-Chowdhury Z, Jones S, Borrow R, Linley E, Wright J, Azad R, Waiblinger D, Davis C, Thomson EC, Palmarini M, Willett BJ, Barclay WS, Poh J, Amirthalingam G, Brown KE, Ramsay ME, Zuo J, Moss P, Ladhani S. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat Immunol 2022; 23:40-49. [PMID: 34937928 PMCID: PMC8709786 DOI: 10.1038/s41590-021-01089-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.
Collapse
Affiliation(s)
- Alexander C Dowell
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Megan S Butler
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Elizabeth Jinks
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gokhan Tut
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tara Lancaster
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Panagiota Sylla
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jusnara Begum
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel Bruton
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kriti Verma
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Grace Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Eliska Spalkova
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sandra Margielewska-Davies
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Graham S Taylor
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eleni Syrimi
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Ifeanyichukwu O Okike
- Public Health England, 61 Colindale Avenue, London, UK
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Shazaad Ahmad
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Joanna Garstang
- Birmingham Community Healthcare NHS Trust, Aston, UK
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew J Brent
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- University of Oxford, Wellington Square, Oxford, UK
| | | | | | | | | | - Samuel Jones
- Public Health England, 61 Colindale Avenue, London, UK
| | - Ray Borrow
- Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Ezra Linley
- Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Rafaq Azad
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Dagmar Waiblinger
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College, London, UK
| | - John Poh
- Public Health England, 61 Colindale Avenue, London, UK
| | | | - Kevin E Brown
- Public Health England, 61 Colindale Avenue, London, UK
| | - Mary E Ramsay
- Public Health England, 61 Colindale Avenue, London, UK
| | - Jianmin Zuo
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Shamez Ladhani
- Public Health England, 61 Colindale Avenue, London, UK
- Paediatric Infectious Diseases Research Group, St. George's University of London, London, UK
| |
Collapse
|
47
|
Sousa BLA, Silva CA, Ferraro AA. An update on the epidemiology of pediatric COVID-19 in Brazil. REVISTA PAULISTA DE PEDIATRIA 2022; 40:e2021367. [PMID: 35442272 PMCID: PMC8983007 DOI: 10.1590/1984-0462/2022/40/2021367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/30/2022]
|
48
|
Stich M, Elling R, Renk H, Janda A, Garbade SF, Müller B, Kräusslich HG, Fabricius D, Zernickel M, Meissner P, Huzly D, Grulich-Henn J, Haddad A, Görne T, Spielberger B, Fritsch L, Nieters A, Hengel H, Dietz AN, Stamminger T, Ganzenmueller T, Ruetalo N, Peter A, Remppis J, Iftner T, Jeltsch K, Waterboer T, Franz AR, Hoffmann GF, Engel C, Debatin KM, Tönshoff B, Henneke P. Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in Households with Children, Southwest Germany, May-August 2020. Emerg Infect Dis 2021; 27:3009-3019. [PMID: 34695369 PMCID: PMC8632156 DOI: 10.3201/eid2712.210978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resolving the role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in households with members from different generations is crucial for containing the current pandemic. We conducted a large-scale, multicenter, cross-sectional seroepidemiologic household transmission study in southwest Germany during May 11-August 1, 2020. We included 1,625 study participants from 405 households that each had ≥1 child and 1 reverse transcription PCR-confirmed SARS-CoV-2-infected index case-patient. The overall secondary attack rate was 31.6% and was significantly higher in exposed adults (37.5%) than in children (24.6%-29.2%; p = <0.015); the rate was also significantly higher when the index case-patient was >60 years of age (72.9%; p = 0.039). Other risk factors for infectiousness of the index case-patient were SARS-CoV-2-seropositivity (odds ratio [OR] 27.8, 95% CI 8.26-93.5), fever (OR 1.93, 95% CI 1.14-3.31), and cough (OR 2.07, 95% CI 1.21-3.53). Secondary infections in household contacts generate a substantial disease burden.
Collapse
Affiliation(s)
| | | | | | | | - Sven F. Garbade
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Barbara Müller
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Hans-Georg Kräusslich
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Dorit Fabricius
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Maria Zernickel
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Peter Meissner
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Daniela Huzly
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Jürgen Grulich-Henn
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Anneke Haddad
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Tessa Görne
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Benedikt Spielberger
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Linus Fritsch
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Alexandra Nieters
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Hartmut Hengel
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Andrea N. Dietz
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Thomas Stamminger
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Tina Ganzenmueller
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Natalia Ruetalo
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Andreas Peter
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Jonathan Remppis
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Thomas Iftner
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Kathrin Jeltsch
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Tim Waterboer
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Axel R. Franz
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | - Georg Friedrich Hoffmann
- Heidelberg University Hospital, Heidelberg, Germany (M. Stich, S.F. Garbade, B. Müller, H.-G. Kräusslich, J. Grulich-Henn, K. Jeltsch, G.F. Hoffmann, B. Tönshoff)
- University Medical Centre and Faculty of Medicine Freiburg, Freiburg, Germany (R. Elling, D. Huzly, A. Haddad, T. Görne, B. Spielberger, L. Fritsch, A. Nieters, H. Hengel, P. Henneke)
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany (H. Renk, T. Ganzenmueller, N. Ruetalo, A. Peter, J. Remppis, T. Iftner, A.R. Franz, C. Engel)
- Ulm University Medical Center, Ulm, Germany (A. Janda, D. Fabricius, M. Zernickel, P. Meissner, A.N. Dietz, T. Stamminger, K.-M. Debatin)
- German Cancer Research Center (DKFZ), Heidelberg (T. Waterboer)
| | | | | | | | | |
Collapse
|
49
|
Shanthikumar S, Ranganathan SC, Saffery R, Neeland MR. Mapping Pulmonary and Systemic Inflammation in Preschool Aged Children With Cystic Fibrosis. Front Immunol 2021; 12:733217. [PMID: 34721395 PMCID: PMC8554310 DOI: 10.3389/fimmu.2021.733217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
The immune landscape of the paediatric respiratory system remains largely uncharacterised and as a result, the mechanisms of globally important childhood respiratory diseases remain poorly understood. In this work, we used high parameter flow cytometry and inflammatory cytokine profiling to map the local [bronchoalveolar lavage (BAL)] and systemic (whole blood) immune response in preschool aged children with cystic fibrosis (CF) and aged-matched healthy controls. We demonstrate that children with CF show pulmonary infiltration of CD66b+ granulocytes and increased levels of MIP-1α, MIG, MCP-1, IL-8, and IL-6 in BAL relative to healthy control children. Proportions of systemic neutrophils positively correlated with age in children with CF, whilst systemic CD4 T cells and B cells were inversely associated with age. Inflammatory cells in the BAL from both CF and healthy children expressed higher levels of activation and migration markers relative to their systemic counterparts. This work highlights the utility of multiplex immune profiling and advanced analytical pipelines to understand mechanisms of lung disease in childhood.
Collapse
Affiliation(s)
- Shivanthan Shanthikumar
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, VIC, Australia
| | - Sarath C Ranganathan
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, VIC, Australia
| | - Richard Saffery
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Melanie R Neeland
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Neeland MR, Bannister S, Clifford V, Nguyen J, Dohle K, Overmars I, Toh ZQ, Anderson J, Donato CM, Sarkar S, Do LAH, McCafferty C, Licciardi PV, Ignjatovic V, Monagle P, Bines JE, Mulholland K, Curtis N, McNab S, Steer AC, Burgner DP, Saffery R, Tosif S, Crawford NW. Children and Adults in a Household Cohort Study Have Robust Longitudinal Immune Responses Following SARS-CoV-2 Infection or Exposure. Front Immunol 2021; 12:741639. [PMID: 34721408 PMCID: PMC8548628 DOI: 10.3389/fimmu.2021.741639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Children have reduced severity of COVID-19 compared to adults and typically have mild or asymptomatic disease. The immunological mechanisms underlying these age-related differences in clinical outcomes remain unexplained. Here, we quantify 23 immune cell populations in 141 samples from children and adults with mild COVID-19 and their PCR-negative close household contacts at acute and convalescent time points. Children with COVID-19 displayed marked reductions in myeloid cells during infection, most prominent in children under the age of five. Recovery from infection in both children and adults was characterised by the generation of CD8 TCM and CD4 TCM up to 9 weeks post infection. SARS-CoV-2-exposed close contacts also had immunological changes over time despite no evidence of confirmed SARS-CoV-2 infection on PCR testing. This included an increase in low-density neutrophils during convalescence in both exposed children and adults, as well as increases in CD8 TCM and CD4 TCM in exposed adults. In comparison to children with other common respiratory viral infections, those with COVID-19 had a greater change in innate and T cell-mediated immune responses over time. These findings provide new mechanistic insights into the immune response during and after recovery from COVID-19 in both children and adults.
Collapse
Affiliation(s)
- Melanie R Neeland
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Samantha Bannister
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Unit, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Vanessa Clifford
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Unit, The Royal Children's Hospital, Parkville, VIC, Australia.,Laboratory Services, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Jill Nguyen
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kate Dohle
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Isabella Overmars
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Zheng Quan Toh
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Jeremy Anderson
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Celeste M Donato
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sohinee Sarkar
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Lien Anh Ha Do
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Conor McCafferty
- Clinical Sciences Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Paul V Licciardi
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Vera Ignjatovic
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Clinical Sciences Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Paul Monagle
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Clinical Sciences Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Clinical Haematology, The Royal Children's Hospital, Parkville, VIC, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Julie E Bines
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, VIC, Australia
| | - Kim Mulholland
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Epidemiology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nigel Curtis
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Unit, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Sarah McNab
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, VIC, Australia
| | - Andrew C Steer
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Unit, The Royal Children's Hospital, Parkville, VIC, Australia
| | - David P Burgner
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Unit, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Richard Saffery
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Shidan Tosif
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of General Medicine, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Nigel W Crawford
- Infection and Immunity Theme, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of General Medicine, The Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|