1
|
Wojcechowskyj JA, Jong RM, Mäger I, Flach B, Munson PV, Mukherjee PP, Mertins B, Barcay KR, Folliard T. Controlling reactogenicity while preserving immunogenicity from a self-amplifying RNA vaccine by modulating nucleocytoplasmic transport. NPJ Vaccines 2025; 10:85. [PMID: 40301369 PMCID: PMC12041602 DOI: 10.1038/s41541-025-01135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Self-amplifying RNA (saRNA)-based vaccines have emerged as a potent and durable RNA vaccine platform relative to first generation mRNA vaccines. However, RNA vaccine platforms trigger undesirable side effects at protective doses, underscoring the need for improved tolerability. To address this, we leveraged the Cardiovirus leader protein, which is well-characterized to dampen host innate signaling by modulating nucleocytoplasmic transport (NCT). Co-administration of a leader-protein-encoding mRNA (which we have named "RNAx") delivered alongside vaccine cargo saRNA reduced interferon production while enhancing Influenza hemagglutinin (HA) expression in human primary cells and murine models. RNAx potently decreased serum biomarkers of reactogenicity after immunizations with an HA-expressing saRNA-LNP vaccine while maintaining the magnitude of the antibody and cellular response. RNAx also consistently enhanced binding antibody titers after a single injection and in some conditions enhanced binding antibody and neutralization titers post-boost. These findings support RNAx as a promising platform approach for improving tolerability of saRNA-LNP vaccines while preserving or enhancing immunogenicity.
Collapse
Affiliation(s)
| | - Robyn M Jong
- ExcepGen Inc. Emeryville, San Francisco, CA, USA
| | - Imre Mäger
- ExcepGen Inc. Emeryville, San Francisco, CA, USA
| | - Britta Flach
- ExcepGen Inc. Emeryville, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
2
|
Khorshid Sokhangouy S, Behzadi M, Rezaei S, Farjami M, Haghshenas M, Sefidbakht Y, Mozaffari-Jovin S. mRNA Vaccines: Design Principles, Mechanisms, and Manufacturing-Insights From COVID-19 as a Model for Combating Infectious Diseases. Biotechnol J 2025; 20:e202400596. [PMID: 39989260 DOI: 10.1002/biot.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
The full approval of two SARS-CoV-2 mRNA vaccines, Comirnaty and Spikevax, has greatly accelerated the development of numerous mRNA vaccine candidates targeting infectious diseases and cancer. mRNA vaccines provide a rapid, safe, and versatile manufacturing process while eliciting strong humoral and cellular immune responses, making them particularly beneficial for addressing emerging pandemics. Recent advancements in modified nucleotides and lipid nanoparticle delivery systems have further emphasized the potential of this vaccine platform. Despite these transformative opportunities, significant improvements are needed to enhance vaccine efficacy, stability, and immunogenicity. This review outlines the fundamentals of mRNA vaccine design, the manufacturing process, and administration strategies, along with various optimization approaches. It also offers a comprehensive overview of the mRNA vaccine candidates developed since the onset of the COVID-19 pandemic, the challenges posed by emerging SARS-CoV-2 variants, and current strategies to address these variants. Finally, we discuss the potential of broad-spectrum and combined mRNA vaccines and examine the challenges and future prospects of the mRNA vaccine platform.
Collapse
Affiliation(s)
- Saeideh Khorshid Sokhangouy
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matine Behzadi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokuh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Mahsa Farjami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Haghshenas
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Du S, Yang L, Chen X, Chen Y, Weng L, Huang H, Pang S. Engineering mRNA vaccine with broad-spectrum protection against SARS-cov-2 variants. Biochem Biophys Res Commun 2025; 746:151224. [PMID: 39742790 DOI: 10.1016/j.bbrc.2024.151224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Herd immunity through mass vaccination is an effective method for preventing infectious diseases. However, the emerging SARS-CoV-2 variants, with their frequent mutations, largely evade the immune response and protection induced by COVID-19 vaccines. Here, we designed messenger RNAs encoding mutant epitopes of the spike protein shared among various COVID-19 variants. These mRNAs were encapsulated in lipid nanoparticles to formulate a vaccine named 'mPANVAX@COVID'. Post-vaccination, this approach elicited effective immunity against multiple SARS-CoV-2 variants, including Delta and Omicron, and demonstrated good safety. This study suggests a novel direction for the design of broadly protective vaccines.
Collapse
Affiliation(s)
- Shuang Du
- Shenzhen Shenxin Biotechnology Co., Ltd., 518052, China
| | - Liu Yang
- Nanjing Shenxin Biotechnology Co., Ltd., 211800, China
| | | | - Yonghao Chen
- Shenzhen Shenxin Biotechnology Co., Ltd., 518052, China
| | - Liang Weng
- Shenzhen Shenxin Biotechnology Co., Ltd., 518052, China
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, 211109, China.
| | - Silin Pang
- Nanjing Shenxin Biotechnology Co., Ltd., 211800, China.
| |
Collapse
|
4
|
Fricke C, Ulrich L, Kochmann J, Gergen J, Kovacikova K, Roth N, Beer J, Schnepf D, Mettenleiter TC, Rauch S, Petsch B, Hoffmann D, Beer M, Corleis B, Dorhoi A. mRNA vaccine-induced IgG mediates nasal SARS-CoV-2 clearance in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102360. [PMID: 39524696 PMCID: PMC11550364 DOI: 10.1016/j.omtn.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus disease 2019 (COVID-19) mRNA vaccines that have contributed to controlling the SARS-CoV-2 pandemic induce specific serum antibodies, which correlate with protection. However, the neutralizing capacity of antibodies for emerging SARS-CoV-2 variants is altered. Suboptimal antibody responses are observed in patients with humoral immunodeficiency diseases, ongoing B cell depletion therapy, and aging. Common experimental mouse models with altered B cell compartments, such as B cell depletion or deficiency, do not fully recapitulate scenarios of declining or suboptimal antibody levels as observed in humans. We report on SARS-CoV-2 immunity in a transgenic mouse model with restricted virus-specific antibodies. Vaccination of C57BL/6-Tg(IghelMD4)4Ccg/J mice with unmodified or N1mΨ-modified mRNA encoding for ancestral spike (S) protein and subsequent challenge with mouse-adapted SARS-CoV-2 provided insights into antibody-independent immunity and the impact of antibody titers on mucosal immunity. Protection against fatal disease was independent of seroconversion following mRNA vaccination, suggesting that virus-specific T cells can compensate for suboptimal antibody levels. In contrast, mRNA-induced IgG in the nasal conchae limited the local viral load and disease progression. Our results indicate that parenteral mRNA immunization can elicit nasal IgG antibodies that effectively suppress local viral replication, highlighting the potential of vaccines in controlling SARS-CoV-2 transmission and epidemiology.
Collapse
Affiliation(s)
- Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | - Julius Beer
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
5
|
Mohl BP, Blaurock C, Breithaupt A, Riek A, Speakman JR, Hambly C, Bokelmann M, Pei G, Sadeghi B, Dorhoi A, Balkema-Buschmann A. Increased Susceptibility of Rousettus aegyptiacus Bats to Respiratory SARS-CoV-2 Challenge Despite Its Distinct Tropism for Gut Epithelia in Bats. Viruses 2024; 16:1717. [PMID: 39599832 PMCID: PMC11598992 DOI: 10.3390/v16111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Increasing evidence suggests bats are the ancestral hosts of the majority of coronaviruses. In general, coronaviruses primarily target the gastrointestinal system, while some strains, especially Betacoronaviruses with the most relevant representatives SARS-CoV, MERS-CoV, and SARS-CoV-2, also cause severe respiratory disease in humans and other mammals. We previously reported the susceptibility of Rousettus aegyptiacus (Egyptian fruit bats) to intranasal SARS-CoV-2 infection. Here, we compared their permissiveness to an oral infection versus respiratory challenge (intranasal or orotracheal) by assessing virus shedding, host immune responses, tissue-specific pathology, and physiological parameters. While respiratory challenge with a moderate infection dose of 1 × 104 TCID50 caused a systemic infection with oral and nasal shedding of replication-competent virus, the oral challenge only induced nasal shedding of low levels of viral RNA. Even after a challenge with a higher infection dose of 1 × 106 TCID50, no replication-competent virus was detectable in any of the samples of the orally challenged bats. We postulate that SARS-CoV-2 is inactivated by HCl and digested by pepsin in the stomach of R. aegyptiacus, thereby decreasing the efficiency of an oral infection. Therefore, fecal shedding of RNA seems to depend on systemic dissemination upon respiratory infection. These findings may influence our general understanding of the pathophysiology of coronavirus infections in bats.
Collapse
Affiliation(s)
- Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Alexander Riek
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Doernbergstraße 25, 29223 Celle, Germany;
| | - John R. Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (J.R.S.); (C.H.)
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (J.R.S.); (C.H.)
| | - Marcel Bokelmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (G.P.); (A.D.)
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (G.P.); (A.D.)
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| |
Collapse
|
6
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
7
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
8
|
Rauch S, Lutz J, Mühe J, Kowalczyk A, Schlake T, Heidenreich R. Sequence-Optimized mRNA Vaccines Against Infectious Disease. Methods Mol Biol 2024; 2786:183-203. [PMID: 38814395 DOI: 10.1007/978-1-0716-3770-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Developing effective mRNA vaccines poses certain challenges concerning mRNA stability and ability to induce sufficient immune stimulation and requires a specific panel of techniques for production and testing. Here, we describe the production of stabilized mRNA vaccines (RNActive® technology) with enhanced immunogenicity, generated using conventional nucleotides only, by introducing changes to the mRNA sequence and by formulation into lipid nanoparticles. Methods described here include the synthesis, purification, and formulation of mRNA vaccines as well as a comprehensive panel of in vitro and in vivo methods for evaluation of vaccine quality and immunogenicity.
Collapse
|
9
|
Roier S, Mangala Prasad V, McNeal MM, Lee KK, Petsch B, Rauch S. mRNA-based VP8* nanoparticle vaccines against rotavirus are highly immunogenic in rodents. NPJ Vaccines 2023; 8:190. [PMID: 38129390 PMCID: PMC10739717 DOI: 10.1038/s41541-023-00790-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Despite the availability of live-attenuated oral vaccines, rotavirus remains a major cause of severe childhood diarrhea worldwide. Due to the growing demand for parenteral rotavirus vaccines, we developed mRNA-based vaccine candidates targeting the viral spike protein VP8*. Our monomeric P2 (universal T cell epitope)-VP8* mRNA design is equivalent to a protein vaccine currently in clinical development, while LS (lumazine synthase)-P2-VP8* was designed to form nanoparticles. Cyro-electron microscopy and western blotting-based data presented here suggest that proteins derived from LS-P2-VP8* mRNA are secreted in vitro and self-assemble into 60-mer nanoparticles displaying VP8*. mRNA encoded VP8* was immunogenic in rodents and introduced both humoral and cellular responses. LS-P2-VP8* induced superior humoral responses to P2-VP8* in guinea pigs, both as monovalent and trivalent vaccines, with encouraging responses detected against the most prevalent P genotypes. Overall, our data provide evidence that trivalent LS-P2-VP8* represents a promising mRNA-based next-generation rotavirus vaccine candidate.
Collapse
Affiliation(s)
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
10
|
Pérez P, Albericio G, Astorgano D, Flores S, Sánchez-Corzo C, Sánchez-Cordón PJ, Luczkowiak J, Delgado R, Casasnovas JM, Esteban M, García-Arriaza J. Preclinical immune efficacy against SARS-CoV-2 beta B.1.351 variant by MVA-based vaccine candidates. Front Immunol 2023; 14:1264323. [PMID: 38155964 PMCID: PMC10754519 DOI: 10.3389/fimmu.2023.1264323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The constant appearance of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs) has jeopardized the protective capacity of approved vaccines against coronavirus disease-19 (COVID-19). For this reason, the generation of new vaccine candidates adapted to the emerging VoCs is of special importance. Here, we developed an optimized COVID-19 vaccine candidate using the modified vaccinia virus Ankara (MVA) vector to express a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, containing 3 proline (3P) substitutions in the S protein derived from the beta (B.1.351) variant, termed MVA-S(3Pbeta). Preclinical evaluation of MVA-S(3Pbeta) in head-to-head comparison to the previously generated MVA-S(3P) vaccine candidate, expressing a full-length prefusion-stabilized Wuhan S protein (with also 3P substitutions), demonstrated that two intramuscular doses of both vaccine candidates fully protected transgenic K18-hACE2 mice from a lethal challenge with SARS-CoV-2 beta variant, reducing mRNA and infectious viral loads in the lungs and in bronchoalveolar lavages, decreasing lung histopathological lesions and levels of proinflammatory cytokines in the lungs. Vaccination also elicited high titers of anti-S Th1-biased IgGs and neutralizing antibodies against ancestral SARS-CoV-2 Wuhan strain and VoCs alpha, beta, gamma, delta, and omicron. In addition, similar systemic and local SARS-CoV-2 S-specific CD4+ and CD8+ T-cell immune responses were elicited by both vaccine candidates after a single intranasal immunization in C57BL/6 mice. These preclinical data support clinical evaluation of MVA-S(3Pbeta) and MVA-S(3P), to explore whether they can diversify and potentially increase recognition and protection of SARS-CoV-2 VoCs.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Pathology Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
11
|
Fricke C, Pfaff F, Ulrich L, Halwe NJ, Schön J, Timm L, Hoffmann W, Rauch S, Petsch B, Hoffmann D, Beer M, Corleis B, Dorhoi A. SARS-CoV-2 variants of concern elicit divergent early immune responses in hACE2 transgenic mice. Eur J Immunol 2023; 53:e2250332. [PMID: 37609807 DOI: 10.1002/eji.202250332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Knowledge about early immunity to SARS-CoV-2 variants of concern mainly comes from the analysis of human blood. Such data provide limited information about host responses at the site of infection and largely miss the initial events. To gain insights into compartmentalization and the early dynamics of host responses to different SARS-CoV-2 variants, we utilized human angiotensin converting enzyme 2 (hACE2) transgenic mice and tracked immune changes during the first days after infection by RNAseq, multiplex assays, and flow cytometry. Viral challenge infection led to divergent viral loads in the lungs, distinct inflammatory patterns, and innate immune cell accumulation in response to ancestral SARS-CoV-2, Beta (B.1.351) and Delta (B.1.617.2) variant of concern (VOC). Compared to other SARS-CoV-2 variants, infection with Beta (B.1.351) VOC spread promptly to the lungs, leading to increased inflammatory responses. SARS-CoV-2-specific antibodies and T cells developed within the first 7 days postinfection and were required to reduce viral spread and replication. Our studies show that VOCs differentially trigger transcriptional profiles and inflammation. This information contributes to the basic understanding of immune responses immediately postexposure to SARS-CoV-2 and is relevant for developing pan-VOC interventions including prophylactic vaccines.
Collapse
Affiliation(s)
- Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Laura Timm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Weda Hoffmann
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Cai S, Chang C, Zhang X, Qiao W. Comparative analysis of the effectiveness difference of SARS-COV-2 mRNA vaccine in different populations in the real world: A review. Medicine (Baltimore) 2023; 102:e34805. [PMID: 37653835 PMCID: PMC10470718 DOI: 10.1097/md.0000000000034805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has ravaged the world since December 2019. Up to now, it is still prevalent around the world. Vaccines are an important means to prevent the spread of COVID-19 and reduce severe disease and mortality. Currently, different types of novel coronavirus vaccines are still being developed and improved, and the relevant vaccines that have been approved for marketing have been widely vaccinated around the world. As vaccination coverage continues to grow, concerns about the efficacy and safety of vaccines after real-world use have grown. Some clinical studies have shown that vaccine effectiveness is closely related to antibody response after vaccination. Among them, the advantages of COVID-19 messenger ribonucleic acid (mRNA) vaccine, such as better adaptability to variant strains and better immune response ability, have attracted great attention. However, different populations with different genders, ages, previous COVID-19 infection history, underlying diseases and treatments will show different antibody responses after mRNA vaccination, which will affect the protection of the vaccine. Based on this, this paper reviews the reports related severe acute respiratory syndrome Coronavirus 2 mRNA vaccines, and summarizes the effectiveness of vaccines in different populations and different disease states and looked forward to the precise vaccination strategy of the vaccine in the future.
Collapse
Affiliation(s)
- Sihui Cai
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Chunyan Chang
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiuhong Zhang
- Department of Pharmacy, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Weizhen Qiao
- Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
13
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
14
|
Efficacy of an unmodified bivalent mRNA vaccine against SARS-CoV-2 variants in female small animal models. Nat Commun 2023; 14:816. [PMID: 36781853 PMCID: PMC9924835 DOI: 10.1038/s41467-023-36110-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/15/2023] [Indexed: 02/15/2023] Open
Abstract
Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS-CoV-2 variants could improve control of the COVID-19 pandemic. We compare monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S-protein in a transgenic mouse and a Wistar rat model. The blended low-dose bivalent mRNA vaccine contains half the mRNA of each respective monovalent vaccine, but induces comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, antigen-specific CD4+ and CD8+ responses, and protects transgenic female mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduces viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized female Wistar rats also contain neutralizing antibodies against the B.1.1.529 (Omicron BA.1 and BA.5) variants. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins are feasible approaches for extending the coverage of vaccines for emerging and co-circulating SARS-CoV-2 variants.
Collapse
|
15
|
Roth N, Gergen J, Kovacikova K, Mueller SO, Ulrich L, Schön J, Halwe NJ, Fricke C, Corleis B, Dorhoi A, Hoffmann D, Beer M, Maione D, Petsch B, Rauch S. Assessment of Immunogenicity and Efficacy of CV0501 mRNA-Based Omicron COVID-19 Vaccination in Small Animal Models. Vaccines (Basel) 2023; 11:vaccines11020318. [PMID: 36851196 PMCID: PMC9965737 DOI: 10.3390/vaccines11020318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron and its subvariants (BA.2, BA.4, BA.5) represented the most commonly circulating variants of concern (VOC) in the coronavirus disease 2019 (COVID-19) pandemic in 2022. Despite high vaccination rates with approved SARS-CoV-2 vaccines encoding the ancestral spike (S) protein, these Omicron subvariants have collectively resulted in increased viral transmission and disease incidence. This necessitates the development and characterization of vaccines incorporating later emerging S proteins to enhance protection against VOC. In this context, bivalent vaccine formulations may induce broad protection against VOC and potential future SARS-CoV-2 variants. Here, we report preclinical data for a lipid nanoparticle (LNP)-formulated RNActive® N1-methylpseudouridine (N1mΨ) modified mRNA vaccine (CV0501) based on our second-generation SARS-CoV-2 vaccine CV2CoV, encoding the S protein of Omicron BA.1. The immunogenicity of CV0501, alone or in combination with a corresponding vaccine encoding the ancestral S protein (ancestral N1mΨ), was first measured in dose-response and booster immunization studies performed in Wistar rats. Both monovalent CV0501 and bivalent CV0501/ancestral N1mΨ immunization induced robust neutralizing antibody titers against the BA.1, BA.2 and BA.5 Omicron subvariants, in addition to other SARS-CoV-2 variants in a booster immunization study. The protective efficacy of monovalent CV0501 against live SARS-CoV-2 BA.2 infection was then assessed in hamsters. Monovalent CV0501 significantly reduced SARS-CoV-2 BA.2 viral loads in the airways, demonstrating protection induced by CV0501 vaccination. CV0501 has now advanced into human Phase 1 clinical trials (ClinicalTrials.gov Identifier: NCT05477186).
Collapse
Affiliation(s)
| | | | | | | | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich Loeffler Institut, 17493 Griefswald-Insel Riems, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich Loeffler Institut, 17493 Griefswald-Insel Riems, Germany
| | - Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich Loeffler Institut, 17493 Griefswald-Insel Riems, Germany
| | - Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich Loeffler Institut, 17493 Griefswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich Loeffler Institut, 17493 Griefswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
16
|
Brady C, Tipton T, Longet S, Carroll MW. Pre-clinical models to define correlates of protection for SARS-CoV-2. Front Immunol 2023; 14:1166664. [PMID: 37063834 PMCID: PMC10097995 DOI: 10.3389/fimmu.2023.1166664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
A defined immune profile that predicts protection against a pathogen-of-interest, is referred to as a correlate of protection (CoP). A validated SARS-CoV-2 CoP has yet to be defined, however considerable insights have been provided by pre-clinical vaccine and animal rechallenge studies which have fewer associated limitations than equivalent studies in human vaccinees or convalescents, respectively. This literature review focuses on the advantages of the use of animal models for the definition of CoPs, with particular attention on their application in the search for SARS-CoV-2 CoPs. We address the conditions and interventions required for the identification and validation of a CoP, which are often only made possible with the use of appropriate in vivo models.
Collapse
Affiliation(s)
- Caolann Brady
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Caolann Brady, ; Miles W. Carroll,
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- International Center for Infectiology Research (CIRI), Team GIMAP, Claude Bernard Lyon 1 University, Inserm, U1111, CNRS, UMR530, Saint-Etienne, France
| | - Miles W. Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics and Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Caolann Brady, ; Miles W. Carroll,
| |
Collapse
|
17
|
Taddeo A, Veiga IB, Devisme C, Boss R, Plattet P, Weigang S, Kochs G, Thiel V, Benarafa C, Zimmer G. Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior immune response to SARS-CoV-2. NPJ Vaccines 2022; 7:82. [PMID: 35879345 PMCID: PMC9309237 DOI: 10.1038/s41541-022-00508-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Immunization with vesicular stomatitis virus (VSV)-vectored COVID-19 vaccine candidates expressing the SARS-CoV-2 spike protein in place of the VSV glycoprotein relies implicitly on expression of the ACE2 receptor at the muscular injection site. Here, we report that such a viral vector vaccine did not induce protective immunity following intramuscular immunization of K18-hACE2 transgenic mice. However, when the viral vector was trans-complemented with the VSV glycoprotein, intramuscular immunization resulted in high titers of spike-specific neutralizing antibodies. The vaccinated animals were fully protected following infection with a lethal dose of SARS-CoV-2-SD614G via the nasal route, and partially protected if challenged with the SARS-CoV-2Delta variant. While dissemination of the challenge virus to the brain was completely inhibited, replication in the lung with consequent lung pathology was not entirely controlled. Thus, intramuscular immunization was clearly enhanced by trans-complementation of the VSV-vectored vaccines by the VSV glycoprotein and led to protection from COVID-19, although not achieving sterilizing immunity.
Collapse
|
18
|
Wernike K, Drewes S, Mehl C, Hesse C, Imholt C, Jacob J, Ulrich RG, Beer M. No Evidence for the Presence of SARS-CoV-2 in Bank Voles and Other Rodents in Germany, 2020–2022. Pathogens 2022; 11:pathogens11101112. [PMID: 36297169 PMCID: PMC9610409 DOI: 10.3390/pathogens11101112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rodentia is the most speciose mammalian order, found across the globe, with some species occurring in close proximity to humans. Furthermore, rodents are known hosts for a variety of zoonotic pathogens. Among other animal species, rodents came into focus when the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spread through human populations across the globe, initially as laboratory animals to study the viral pathogenesis and to test countermeasures. Under experimental conditions, some rodent species including several cricetid species are susceptible to SARS-CoV-2 infection and a few of them can transmit the virus to conspecifics. To investigate whether SARS-CoV-2 is also spreading in wild rodent populations in Germany, we serologically tested samples of free-ranging bank voles (Myodes glareolus, n = 694), common voles (Microtus arvalis, n = 2), house mice (Mus musculus, n = 27), brown or Norway rats (Rattus norvegicus, n = 97) and Apodemus species (n = 8) for antibodies against the virus. The samples were collected from 2020 to 2022 in seven German federal states. All but one sample tested negative by a multispecies ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The remaining sample, from a common vole collected in 2021, was within the inconclusive range of the RBD-ELISA, but this result could not be confirmed by a surrogate virus neutralization test as the sample gave a negative result in this test. These results indicate that SARS-CoV-2 has not become highly prevalent in wild rodent populations in Germany.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Correspondence:
| | - Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Calvin Mehl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Christin Hesse
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Christian Imholt
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Jens Jacob
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, 48161 Münster, Germany
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
19
|
Blaurock C, Breithaupt A, Weber S, Wylezich C, Keller M, Mohl BP, Görlich D, Groschup MH, Sadeghi B, Höper D, Mettenleiter TC, Balkema-Buschmann A. Compellingly high SARS-CoV-2 susceptibility of Golden Syrian hamsters suggests multiple zoonotic infections of pet hamsters during the COVID-19 pandemic. Sci Rep 2022; 12:15069. [PMID: 36064749 PMCID: PMC9442591 DOI: 10.1038/s41598-022-19222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Golden Syrian hamsters (Mesocricetus auratus) are used as a research model for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Millions of Golden Syrian hamsters are also kept as pets in close contact to humans. To determine the minimum infective dose (MID) for assessing the zoonotic transmission risk, and to define the optimal infection dose for experimental studies, we orotracheally inoculated hamsters with SARS-CoV-2 doses from 1 * 105 to 1 * 10-4 tissue culture infectious dose 50 (TCID50). Body weight and virus shedding were monitored daily. 1 * 10-3 TCID50 was defined as the MID, and this was still sufficient to induce virus shedding at levels up to 102.75 TCID50/ml, equaling the estimated MID for humans. Virological and histological data revealed 1 * 102 TCID50 as the optimal dose for experimental infections. This compelling high susceptibility leading to productive infections in Golden Syrian hamsters must be considered as a potential source of SARS-CoV-2 infection for humans that come into close contact with pet hamsters.
Collapse
Affiliation(s)
- Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald-Insel Riems, Germany
| | - Saskia Weber
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
20
|
Khoshnood S, Ghanavati R, Shirani M, Ghahramanpour H, Sholeh M, Shariati A, Sadeghifard N, Heidary M. Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Front Microbiol 2022; 13:984536. [PMID: 36118203 PMCID: PMC9470835 DOI: 10.3389/fmicb.2022.984536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
After about 2 years since the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Wuhan, China, in December 2019 that resulted in a worldwide pandemic, 6.2 million deaths have been recorded. As a result, there is an urgent need for the development of a safe and effective vaccine for coronavirus disease 2019 (COVID-19). Endeavors for the production of effective vaccines inexhaustibly are continuing. At present according to the World Health Organization (WHO) COVID-19 vaccine tracker and landscape, 153 vaccine candidates are developing in the clinical phase all over the world. Some new and exciting platforms are nucleic acid-based vaccines such as Pfizer Biontech and Moderna vaccines consisting of a messenger RNA (mRNA) encoding a viral spike protein in host cells. Another novel vaccine platform is viral vector vaccine candidates that could be replicating or nonreplicating. These types of vaccines that have a harmless viral vector like adenovirus contain a genome encoding the spike protein of SARS-CoV-2, which induces significant immune responses. This technology of vaccine manufacturing has previously been used in many human clinical trials conducted for adenoviral vector-based vaccines against different infectious agents, including Ebola virus, Zika virus, HIV, and malaria. In this paper, we have a review of nucleic acid-based vaccines that are passing their phase 3 and 4 clinical trials and discuss their efficiency and adverse effects.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- *Correspondence: Mohsen Heidary,
| |
Collapse
|
21
|
Kim JY, Săndulescu O, Preotescu LL, Rivera-Martínez NE, Dobryanska M, Birlutiu V, Miftode EG, Gaibu N, Caliman-Sturdza O, Florescu SA, Shi HJ, Streinu-Cercel A, Streinu-Cercel A, Lee SJ, Kim SH, Chang I, Bae YJ, Suh JH, Chung DR, Kim SJ, Kim MR, Lee SG, Park G, Eom JS. A Randomized Clinical Trial of Regdanvimab in High-Risk Patients with Mild-to-Moderate COVID-19. Open Forum Infect Dis 2022; 9:ofac406. [PMID: 36043180 PMCID: PMC9384635 DOI: 10.1093/ofid/ofac406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background We evaluated clinical effectiveness of regdanvimab (CT-P59), a severe acute respiratory syndrome coronavirus 2 neutralizing monoclonal antibody, in reducing disease progression and clinical recovery time in patients with mild-to-moderate coronavirus disease 2019 (COVID-19), primarily Alpha variant. Methods This was phase 3 of a phase 2/3 parallel-group, double-blind, randomized clinical trial. Outpatients with mild-to-moderate COVID-19 were randomized to single-dose regdanvimab 40 mg/kg (n = 656) or placebo (n = 659), alongside standard of care. The primary endpoint was COVID-19 disease progression up to day 28 among “high-risk” patients. Key secondary endpoints were disease progression (all randomized patients) and time to recovery (high-risk and all randomized patients). Results Of 1315 randomized patients, 880 were high risk; the majority were infected with Alpha variant. The proportion with disease progression was lower (14/446, 3.1% [95% confidence interval {CI}, 1.9%–5.2%] vs 48/434, 11.1% [95% CI, 8.4%–14.4%]; P < .001) and time to recovery was shorter (median, 9.27 days [95% CI, 8.27–11.05 days] vs not reached [95% CI, 12.35–not calculable]; P < .001) with regdanvimab than placebo. Consistent improvements were seen in all randomized and non-high-risk patients who received regdanvimab. Viral load reductions were more rapid with regdanvimab. Infusion-related reactions occurred in 11 patients (4/652 [0.6%] regdanvimab, 7/650 [1.1%] placebo). Treatment-emergent serious adverse events were reported in 5 of (4/652 [0.6%] regdanvimab and 1/650 [0.2%] placebo). Conclusions Regdanvimab was an effective treatment for patients with mild-to-moderate COVID-19, significantly reducing disease progression and clinical recovery time without notable safety concerns prior to the emergence of the Omicron variant. Clinical Trials Registration NCT04602000; 2020-003369-20 (EudraCT).
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Internal Medicine, Division of Infectious Diseases, Incheon Medical Center , Incheon , Republic of Korea
| | - Oana Săndulescu
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș,” Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Liliana Lucia Preotescu
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș,” Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | | | - Marta Dobryanska
- City Clinical Hospital 12 , Kiev , Ukraine
- Arensia Exploratory Medicine , Kyiv , Ukraine
| | - Victoria Birlutiu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Emergency Clinical County Hospital , Sibiu , Romania
| | - Egidia G Miftode
- Clinical Hospital of Infectious Diseases “Sfanta Parascheva,” University of Medicine and Pharmacy “Gr. T. Popa,” Iasi , Romania
| | - Natalia Gaibu
- IMSP Republican Clinical Hospital “T. Mosneaga,” ARENSIA EM , Chisinau , Moldova
| | | | - Simin Aysel Florescu
- Dr. Victor Babes Clinical Hospital for Tropical and Infectious Diseases , Bucharest , Romania
| | - Hye Jin Shi
- Department of Internal Medicine, Division of Infectious Diseases, Gil Medical Center, Gachon University College of Medicine , Incheon , Republic of Korea
| | - Anca Streinu-Cercel
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș,” Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Adrian Streinu-Cercel
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș,” Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | | | | | | | - Yun Ju Bae
- Celltrion, Inc. , Incheon , Republic of Korea
| | - Jee Hye Suh
- Celltrion, Inc. , Incheon , Republic of Korea
| | | | | | - Mi Rim Kim
- Celltrion, Inc. , Incheon , Republic of Korea
| | - Seul Gi Lee
- Celltrion, Inc. , Incheon , Republic of Korea
| | - Gahee Park
- Celltrion, Inc. , Incheon , Republic of Korea
| | - Joong Sik Eom
- Department of Internal Medicine, Division of Infectious Diseases, Gil Medical Center, Gachon University College of Medicine , Incheon , Republic of Korea
| |
Collapse
|
22
|
Gebre MS, Rauch S, Roth N, Gergen J, Yu J, Liu X, Cole AC, Mueller SO, Petsch B, Barouch DH. mRNA vaccines induce rapid antibody responses in mice. NPJ Vaccines 2022; 7:88. [PMID: 35915094 PMCID: PMC9340693 DOI: 10.1038/s41541-022-00511-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/01/2022] [Indexed: 12/05/2022] Open
Abstract
mRNA vaccines can be developed and produced quickly, making them prime candidates for immediate outbreak responses. Furthermore, clinical trials have demonstrated rapid protection following mRNA vaccination. Thus, we sought to investigate how quickly mRNA vaccines elicit antibody responses compared to other vaccine modalities. We first compared the immune kinetics of mRNA and DNA vaccines expressing SARS-CoV-2 spike in mice. We observed rapid induction of antigen-specific binding and neutralizing antibodies by day 5 following mRNA (4 µg/mouse), but not DNA (50 µg/mouse), immunization. Comparing innate responses hours post immunization, the mRNA vaccine induced increased levels of IL-5, IL-6, and MCP-1 cytokines which maybe promoting humoral responses downstream. We then evaluated the immune kinetics of an HIV-1 mRNA vaccine in comparison to DNA, protein, and rhesus adenovirus 52 (RhAd52) vaccines of the same HIV-1 envelope antigen in mice. Again, induction of envelope-specific antibodies was observed by day 5 following mRNA vaccination, whereas antibodies were detected by day 7–14 following DNA, protein, and RhAd52 vaccination. Thus, eliciting rapid humoral immunity may be a unique and advantageous property of mRNA vaccines for controlling infectious disease outbreaks.
Collapse
Affiliation(s)
- Makda S Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | | | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaowen Liu
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Andrew C Cole
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | | | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
23
|
High viral loads: what drives fatal cases of COVID-19 in vaccinees? - an autopsy study. Mod Pathol 2022; 35:1013-1021. [PMID: 35365771 PMCID: PMC8974809 DOI: 10.1038/s41379-022-01069-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023]
Abstract
The rate of SARS-CoV-2 infections in vaccinees has become a relevant serious issue. This study aimed to determine the causes of death, histological organ alteration, and viral spread in relation to demographic, clinical-pathological, viral variants, and vaccine types for deceased individuals with proven SARS-CoV-2 infection after vaccination who died between January and November 2021. Twenty-nine consecutively collected cases were analyzed and compared to 141 nonvaccinated control cases. Autopsies were performed on 16 partially and 13 fully vaccinated individuals. Most patients were elderly and suffered from several relevant comorbidities. Real-time RT-PCR (RT-qPCR) identified a significantly increased rate of generalized viral dissemination within organ systems in vaccinated cases versus nonvaccinated cases (45% vs. 16%, respectively; P = 0.008) mainly with Ct-values of higher than 25 in non-respiratory samples. However, vaccinated cases also showed high viral loads, reaching Ct-values below 10, especially in the upper airways and lungs. This was accompanied by high rates of pulmonal bacterial or mycotic superinfections and the occurrence of immunocompromising factors, such as malignancies, immunosuppressive drug intake, or decreased immunoglobulin levels. All these findings were particularly accentuated in partially vaccinated patients compared to fully vaccinated individuals. The virus dissemination observed in our case study may indicate that patients with an impaired immune system have a decreased ability to eliminate the virus. However, the potential role of antibody-dependent enhancement must also be ruled out in future studies. Fatal cases of COVID-19 in vaccinees were rare and often associated with severe comorbidities or other immunosuppressive conditions.
Collapse
|
24
|
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. EXPLORATION (BEIJING, CHINA) 2022; 2:20210082. [PMID: 35941992 PMCID: PMC9349967 DOI: 10.1002/exp.20210082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continually poses a significant threat to the human race, and prophylactic vaccination is the most potent approach to end this pandemic. Nanotechnology is widely adopted during COVID-19 vaccine development, and the engineering of nanostructured materials such as nanoparticles has opened new possibilities in innovative vaccine development by improving the design and accelerating the development process. This review aims to comprehensively understand the current situation and prospects of nanotechnology-enabled vaccine development against the COVID-19 pandemic, with an emphasis on the interplay between nanotechnology and the host immune system.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| | - Kai Cui
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Academy of Medical ScienceZhengzhou UniversityZhengzhouHenanP. R. China
| | - Ulrich Costabel
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Department of PneumologyRuhrlandklinikUniversity Medicine EssenEssenGermany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| |
Collapse
|
25
|
Hein S, Herrlein ML, Mhedhbi I, Bender D, Haberger V, Benz N, Eisert J, Stingl J, Dreher M, Oberle D, Schulze J, Mache C, Budt M, Hildt C, Wolff T, Hildt E. Analysis of BNT162b2- and CVnCoV-elicited sera and of convalescent sera toward SARS-CoV-2 viruses. Allergy 2022; 77:2080-2089. [PMID: 34820854 DOI: 10.1111/all.15189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mRNA vaccine BNT162b2 (Comirnaty, BioNTech/Pfizer) and the vaccine candidate CVnCoV (Curevac) each encode a stabilized spike protein of SARS-CoV2 as antigen but differ with respect to the nature of the mRNA (modified versus unmodified nucleotides) and the mRNA amount (30 μg versus 12 μg RNA). This study characterizes antisera elicited by these two vaccines in comparison to convalescent sera. METHODS Sera from BNT162b2 vaccinated healthcare workers, and sera from participants of a phase I trial vaccinated with 2, 4, 6, 8, or 12 μg CVnCoV and convalescent sera from hospitalized patients were analyzed by ELISA, neutralization tests, surface plasmon resonance (SPR), and peptide arrays. RESULTS BNT162b2-elicited sera and convalescent sera have a higher titer of spike-RBD-specific antibodies and neutralizing antibodies as compared to the CVnCoV-elicited sera. For all analyzed sera a reduction in binding and neutralizing antibodies was found for the lineage B.1.351 variant of concern. SPR analyses revealed that the CVnCoV-elicited sera have a lower fraction of slow-dissociating antibodies. Accordingly, the CVnCoV sera almost fail to compete with the spike-ACE2 interaction. The significance of common VOC mutations K417N, E484K, or N501Y focused on linear epitopes was analyzed using a peptide array approach. The peptide arrays showed a strong difference between convalescent sera and vaccine-elicited sera. Specifically, the linear epitope at position N501 was affected by the mutation and elucidates the escape of viral variants to antibodies against this linear epitope. CONCLUSION These data reveal differences in titer, neutralizing capacity, and affinity of the antibodies between BNT162b2- and CVnCoV-elicited sera, which could contribute to the apparent differences in vaccine efficacy.
Collapse
Affiliation(s)
- Sascha Hein
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Ines Mhedhbi
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Nuka Benz
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | - Jonathan Eisert
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| | - Julia Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH, Aachen, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Doris Oberle
- Division of Pharmacovigilance, Paul-Ehrlich-Institute, Langen, Germany
| | - Jessica Schulze
- Robert-Koch-Institut, Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Christin Mache
- Robert-Koch-Institut, Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Matthias Budt
- Robert-Koch-Institut, Influenza and Other Respiratory Viruses, Berlin, Germany
| | | | - Thorsten Wolff
- Robert-Koch-Institut, Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
26
|
Wussow F, Kha M, Faircloth K, Nguyen VH, Iniguez A, Martinez J, Park Y, Nguyen J, Kar S, Andersen H, Lewis MG, Chiuppesi F, Diamond DJ. COH04S1 and beta sequence-modified vaccine protect hamsters from SARS-CoV-2 variants. iScience 2022; 25:104457. [PMID: 35634578 PMCID: PMC9126022 DOI: 10.1016/j.isci.2022.104457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
COVID-19 vaccine efficacy is threatened by emerging SARS-CoV-2 variants of concern (VOC) with the capacity to evade protective neutralizing antibody responses. We recently developed clinical vaccine candidate COH04S1, a synthetic modified vaccinia Ankara vector (sMVA) co-expressing spike and nucleocapsid antigens based on the Wuhan-Hu-1 reference strain that showed potent efficacy to protect against ancestral SARS-CoV-2 in Syrian hamsters and non-human primates and was safe and immunogenic in healthy volunteers. Here, we demonstrate that intramuscular immunization of Syrian hamsters with COH04S1 and an analogous Beta variant-adapted vaccine candidate (COH04S351) elicits potent cross-reactive antibody responses and protects against weight loss, lower respiratory tract infection, and lung pathology following challenge with major SARS-CoV-2 VOC, including Beta and the highly contagious Delta variant. These results demonstrate efficacy of COH04S1 and a variant-adapted vaccine analog to confer cross-protective immunity against SARS-CoV-2 and its emerging VOC, supporting clinical investigation of these sMVA-based COVID-19 vaccine candidates.
Collapse
Affiliation(s)
- Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Katelyn Faircloth
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Vu H. Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yoonsuh Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jenny Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | - Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Don J. Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
27
|
Ghanam AR, Bryant WB, Miano JM. Of mice and human-specific long noncoding RNAs. Mamm Genome 2022; 33:281-292. [PMID: 35106622 PMCID: PMC8806012 DOI: 10.1007/s00335-022-09943-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
The number of human LncRNAs has now exceeded all known protein-coding genes. Most studies of human LncRNAs have been conducted in cell culture systems where various mechanisms of action have been worked out. On the other hand, efforts to elucidate the function of human LncRNAs in an in vivo setting have been limited. In this brief review, we highlight some strengths and weaknesses of studying human LncRNAs in the mouse. Special consideration is given to bacterial artificial chromosome transgenesis and genome editing. The integration of these technical innovations offers an unprecedented opportunity to complement and extend the expansive literature of cell culture models for the study of human LncRNAs. Two different examples of how BAC transgenesis and genome editing can be leveraged to gain insight into human LncRNA regulation and function in mice are presented: the random integration of a vascular cell-enriched LncRNA and a targeted approach for a new LncRNA immediately upstream of the ACE2 gene, which encodes the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent underlying the coronavirus disease-19 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Amr R Ghanam
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA
| | - William B Bryant
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA
| | - Joseph M Miano
- Vascular Biology Center, Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CL-3060, Augusta, GA, 30912, USA.
| |
Collapse
|
28
|
Kim HJ, Seo SK, Park HY. Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. J Control Release 2022; 345:405-416. [PMID: 35314261 DOI: 10.1016/j.jconrel.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
The successful translation of mRNA vaccines slows down the spread of viral infectious diseases, which may be accomplished by developing novel chemically modified nucleotides (or nucleosides) and highly efficient, safe mRNA delivery vehicles. Delivery vehicles protect vulnerable antigen mRNA and increase the uptake of mRNA into antigen-presenting cells in the peripheral tissue or lymph nodes. This review introduces essential characteristics of mRNA vaccines (e.g., particle sizes, colloidal stability, surface charges/endosomal escape ability, and ligand conjugation) that may be used to generate high immune responses against foreign antigens. The significance and mechanism of each characteristic are described based on the results obtained from in vitro and in vivo studies. We also discuss the development of next generation delivery vehicles for future mRNA vaccines.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Su Kyoung Seo
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
29
|
Salleh MZ, Norazmi MN, Deris ZZ. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2. PeerJ 2022; 10:e13083. [PMID: 35287350 PMCID: PMC8917804 DOI: 10.7717/peerj.13083] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, hundreds of millions of people have been infected worldwide. There have been unprecedented efforts in acquiring effective vaccines to confer protection against the disease. mRNA vaccines have emerged as promising alternatives to conventional vaccines due to their high potency with the capacity for rapid development and low manufacturing costs. In this review, we summarize the currently available vaccines against SARS-CoV-2 in development, with the focus on the concepts of mRNA vaccines, their antigen selection, delivery and optimization to increase the immunostimulatory capability of mRNA as well as its stability and translatability. We also discuss the host immune responses to the SARS-CoV-2 infection and expound in detail, the adaptive immune response upon immunization with mRNA vaccines, in which high levels of spike-specific IgG and neutralizing antibodies were detected after two-dose vaccination. mRNA vaccines have been shown to induce a robust CD8+T cell response, with a balanced CD4+ TH1/TH2 response. We further discuss the challenges and limitations of COVID-19 mRNA vaccines, where newly emerging variants of SARS-CoV-2 may render currently deployed vaccines less effective. Imbalanced and inappropriate inflammatory responses, resulting from hyper-activation of pro-inflammatory cytokines, which may lead to vaccine-associated enhanced respiratory disease (VAERD) and rare cases of myocarditis and pericarditis also are discussed.
Collapse
Affiliation(s)
- Mohd Zulkifli Salleh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| | - Zakuan Zainy Deris
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| |
Collapse
|
30
|
Afkhami S, D'Agostino MR, Zhang A, Stacey HD, Marzok A, Kang A, Singh R, Bavananthasivam J, Ye G, Luo X, Wang F, Ang JC, Zganiacz A, Sankar U, Kazhdan N, Koenig JFE, Phelps A, Gameiro SF, Tang S, Jordana M, Wan Y, Mossman KL, Jeyanathan M, Gillgrass A, Medina MFC, Smaill F, Lichty BD, Miller MS, Xing Z. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 2022; 185:896-915.e19. [PMID: 35180381 PMCID: PMC8825346 DOI: 10.1016/j.cell.2022.02.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/28/2022]
Abstract
The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hannah D Stacey
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Art Marzok
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jegarubee Bavananthasivam
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Gluke Ye
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Xiangqian Luo
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fuan Wang
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jann C Ang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Uma Sankar
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Natallia Kazhdan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joshua F E Koenig
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Allyssa Phelps
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Steven F Gameiro
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shangguo Tang
- Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Manel Jordana
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Karen L Mossman
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Maria Fe C Medina
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Matthew S Miller
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Zhou Xing
- McMaster Immunology Research Centre, M.G. DeGroote Institute for Infectious Disease Research, Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
31
|
Taina-González L, de la Fuente M. The Potential of Nanomedicine to Unlock the Limitless Applications of mRNA. Pharmaceutics 2022; 14:460. [PMID: 35214191 PMCID: PMC8879057 DOI: 10.3390/pharmaceutics14020460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The year 2020 was a turning point in the way society perceives science. Messenger RNA (mRNA) technology finally showed and shared its potential, starting a new era in medicine. However, there is no doubt that commercialization of these vaccines would not have been possible without nanotechnology, which has finally answered the long-term question of how to deliver mRNA in vivo. The aim of this review is to showcase the importance of this scientific milestone for the development of additional mRNA therapeutics. Firstly, we provide a full description of the marketed vaccine formulations and disclose LNPs' pharmaceutical properties, including composition, structure, and manufacturing considerations Additionally, we review different types of lipid-based delivery technologies currently in preclinical and clinical development, namely lipoplexes and cationic nanoemulsions. Finally, we highlight the most promising clinical applications of mRNA in different fields such as vaccinology, immuno-oncology, gene therapy for rare genetic diseases and gene editing using CRISPR Cas9.
Collapse
Affiliation(s)
- Laura Taina-González
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- Universidad de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- Cancer Network Research (CIBERONC), 28029 Madrid, Spain
- DIVERSA Technologies, 15782 Santiago de Compostela, Spain
| |
Collapse
|
32
|
Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14020398. [PMID: 35214130 PMCID: PMC8876479 DOI: 10.3390/pharmaceutics14020398] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
The world raced to develop vaccines to protect against the rapid spread of SARS-CoV-2 infection upon the recognition of COVID-19 as a global pandemic. A broad spectrum of candidates was evaluated, with mRNA-based vaccines emerging as leaders due to how quickly they were available for emergency use while providing a high level of efficacy. As a modular technology, the mRNA-based vaccines benefitted from decades of advancements in both mRNA and delivery technology prior to the current global pandemic. The fundamental lessons of the utility of mRNA as a therapeutic were pioneered by Dr. Katalin Kariko and her colleagues, perhaps most notably in collaboration with Drew Weissman at University of Pennsylvania, and this foundational work paved the way for the development of the first ever mRNA-based therapeutic authorized for human use, COMIRNATY®. In this Special Issue of Pharmaceutics, we will be honoring Dr. Kariko for her great contributions to the mRNA technology to treat diseases with unmet needs. In this review article, we will focus on the delivery platform, the lipid nanoparticle (LNP) carrier, which allowed the potential of mRNA therapeutics to be realized. Similar to the mRNA technology, the development of LNP systems has been ongoing for decades before culminating in the success of the first clinically approved siRNA-LNP product, ONPATTRO®, a treatment for an otherwise fatal genetic disease called transthyretin amyloidosis. Lessons learned from the siRNA-LNP experience enabled the translation into the mRNA platform with the eventual authorization and approval of the mRNA-LNP vaccines against COVID-19. This marks the beginning of mRNA-LNP as a pharmaceutical option to treat genetic diseases.
Collapse
|
33
|
Muñoz-Fontela C, Widerspick L, Albrecht RA, Beer M, Carroll MW, de Wit E, Diamond MS, Dowling WE, Funnell SGP, García-Sastre A, Gerhards NM, de Jong R, Munster VJ, Neyts J, Perlman S, Reed DS, Richt JA, Riveros-Balta X, Roy CJ, Salguero FJ, Schotsaert M, Schwartz LM, Seder RA, Segalés J, Vasan SS, Henao-Restrepo AM, Barouch DH. Advances and gaps in SARS-CoV-2 infection models. PLoS Pathog 2022; 18:e1010161. [PMID: 35025969 PMCID: PMC8757994 DOI: 10.1371/journal.ppat.1010161] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Lina Widerspick
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Randy A. Albrecht
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Miles W. Carroll
- National Infection Service, Public Health England, Salisbury, United Kingdom
- Pandemic Sciences Centre, Nuffield Department of Medicine, Oxford University, United Kingdom
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William E. Dowling
- Coalition for Epidemic Preparedness Innovations (CEPI), Washington, Washington, DC, United States of America
| | - Simon G. P. Funnell
- National Infection Service, Public Health England, Salisbury, United Kingdom
| | - Adolfo García-Sastre
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | - Rineke de Jong
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Juergen A. Richt
- Kansas State University, College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | | | - Chad J. Roy
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | | | - Michael Schotsaert
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, and Departament de Sanitat i Anatomia animals, Facultat de Veterinària, UAB, Barcelona, Spain
| | - Seshadri S. Vasan
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Australia
| | | | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Brüssow H. mRNA vaccines against COVID-19: a showcase for the importance of microbial biotechnology. Microb Biotechnol 2022; 15:135-148. [PMID: 34788497 PMCID: PMC8652446 DOI: 10.1111/1751-7915.13974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Pfizer-BioNTech and Moderna developed in record time mRNA vaccines against COVID-19 of high efficacy. The modest protection achieved with a similarly designed mRNA from CureVac underlines the importance of biotechnological details in formulation such as replacement of uridine by pseudouridine in the mRNA encoding the SARS-CoV-2 spike protein or the lipid composition of the nanoparticle coating the mRNA. Phase 3 vaccine trials and vaccine studies in special subject groups as well observational studies in whole populations confirmed the real-world vaccine efficacy against symptomatic disease, particularly against severe COVID-19 cases and to a lesser extent against mild SARS-CoV-2 infections. mRNA vaccine protection extended also to the alpha and beta variant viruses. The surge of delta variants led to an increase of infections and cases even in populations which achieved high vaccine coverage. This efficacy decline resulted to a lesser extent from a weaker neutralization of the delta variant but mostly from a waning vaccine protection over time. Data from Israel documented the efficacy of a third 'booster' injection 5 months after the second injection in older segments of the population. Adverse reactions consisted of transient injection site pain, headache, muscle pain, fatigue, fever and chills. Extensive surveillance studies documented a good safety profile revealing only a non-significant increase in transient facial nerve paralysis and a significant, but modest increase in myocarditis in vaccinated young males that was lower than the myocarditis risk induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Harald Brüssow
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenLeuvenBelgium
| |
Collapse
|
35
|
Gebre MS, Rauch S, Roth N, Yu J, Chandrashekar A, Mercado NB, He X, Liu J, McMahan K, Martinot A, Martinez DR, Giffin V, Hope D, Patel S, Sellers D, Sanborn O, Barrett J, Liu X, Cole AC, Pessaint L, Valentin D, Flinchbaugh Z, Yalley-Ogunro J, Muench J, Brown R, Cook A, Teow E, Andersen H, Lewis MG, Boon ACM, Baric RS, Mueller SO, Petsch B, Barouch DH. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature 2022; 601:410-414. [PMID: 34794169 PMCID: PMC8770133 DOI: 10.1038/s41586-021-04231-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022]
Abstract
The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in humans1. CV2CoV is a second-generation mRNA vaccine containing non-modified nucleosides but with optimized non-coding regions and enhanced antigen expression. Here we report the results of a head-to-head comparison of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in non-human primates. We immunized 18 cynomolgus macaques with two doses of 12 μg lipid nanoparticle-formulated CVnCoV or CV2CoV or with sham (n = 6 per group). Compared with CVnCoV, CV2CoV induced substantially higher titres of binding and neutralizing antibodies, memory B cell responses and T cell responses as well as more potent neutralizing antibody responses against SARS-CoV-2 variants, including the Delta variant. Moreover, CV2CoV was found to be comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. Although CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tracts. Binding and neutralizing antibody titres were correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in non-human primates.
Collapse
Affiliation(s)
- Makda S Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xuan He
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Amanda Martinot
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - David R Martinez
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Hope
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Patel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Sellers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Owen Sanborn
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowen Liu
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Andrew C Cole
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph S Baric
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
36
|
Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature 2021; 602:307-313. [PMID: 34937050 PMCID: PMC8828469 DOI: 10.1038/s41586-021-04342-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022]
Abstract
Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models—the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals. The Alpha variant of SARS-CoV-2 outcompetes progenitor SARS-CoV-2 in upper respiratory tract replication competition in vivo.
Collapse
|
37
|
Liu Y, Zhou X, Liu X, Jiang X. The immunology and immunotherapy for COVID-19. Expert Rev Mol Med 2021; 23:e24. [PMID: 34915958 PMCID: PMC8723987 DOI: 10.1017/erm.2021.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and significantly impacts the world economy and daily life. Symptoms of COVID-19 range from asymptomatic to fever, dyspnoea, acute respiratory distress and multiple organ failure. Critical cases often occur in the elderly and patients with pre-existing conditions. By binding to the angiotensin-converting enzyme 2 receptor, SARS-CoV-2 can enter and replicate in the host cell, exerting a cytotoxic effect and causing local and systemic inflammation. Currently, there is no specific treatment for COVID-19, and immunotherapy has consistently attracted attention because of its essential role in boosting host immunity to the virus and reducing overwhelming inflammation. In this review, we summarise the immunopathogenic features of COVID-19 and highlight recent advances in immunotherapy to illuminate ideas for the development of new potential therapies.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinsheng Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Liu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Machado BAS, Hodel KVS, Fonseca LMDS, Mascarenhas LAB, Andrade LPCDS, Rocha VPC, Soares MBP, Berglund P, Duthie MS, Reed SG, Badaró R. The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines (Basel) 2021; 9:1345. [PMID: 34835276 PMCID: PMC8623509 DOI: 10.3390/vaccines9111345] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, vaccine development using ribonucleic acid (RNA) has become the most promising and studied approach to produce safe and effective new vaccines, not only for prophylaxis but also as a treatment. The use of messenger RNA (mRNA) as an immunogenic has several advantages to vaccine development compared to other platforms, such as lower coast, the absence of cell cultures, and the possibility to combine different targets. During the COVID-19 pandemic, the use of mRNA as a vaccine became more relevant; two out of the four most widely applied vaccines against COVID-19 in the world are based on this platform. However, even though it presents advantages for vaccine application, mRNA technology faces several pivotal challenges to improve mRNA stability, delivery, and the potential to generate the related protein needed to induce a humoral- and T-cell-mediated immune response. The application of mRNA to vaccine development emerged as a powerful tool to fight against cancer and non-infectious and infectious diseases, for example, and represents a relevant research field for future decades. Based on these advantages, this review emphasizes mRNA and self-amplifying RNA (saRNA) for vaccine development, mainly to fight against COVID-19, together with the challenges related to this approach.
Collapse
Affiliation(s)
- Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Luís Alberto Brêda Mascarenhas
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Leone Peter Correia da Silva Andrade
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Vinícius Pinto Costa Rocha
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Peter Berglund
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Malcolm S. Duthie
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Steven G. Reed
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| |
Collapse
|
39
|
Gebre MS, Rauch S, Roth N, Gergen J, Yu J, Liu X, Cole AC, Mueller SO, Petsch B, Barouch DH. mRNA Vaccines Induce Rapid Antibody Responses in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.01.466863. [PMID: 34751269 PMCID: PMC8575139 DOI: 10.1101/2021.11.01.466863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
mRNA vaccines can be developed and produced quickly, making them attractive for immediate outbreak responses. Furthermore, clinical trials have demonstrated rapid protection following mRNA vaccination. We sought to investigate how quickly mRNA vaccines elicit antibody responses compared to other vaccine modalities. We first examined immune kinetics of mRNA and DNA vaccines expressing SARS-CoV-2 spike in mice. We observed rapid induction of antigen-specific binding and neutralizing antibodies by day 5 following mRNA, but not DNA, immunization. The mRNA vaccine also induced increased levels of IL-5, IL-6 and MCP-1. We then evaluated immune kinetics of an HIV-1 mRNA vaccine in comparison to DNA, protein, and rhesus adenovirus 52 (RhAd52) vaccines with the same HIV-1 envelope antigen in mice. Induction of envelope-specific antibodies was observed by day 5 following mRNA vaccination, whereas antibodies were detected by day 7-14 following DNA, protein, and RhAd52 vaccination. Eliciting rapid humoral immunity may be an advantageous property of mRNA vaccines for controlling infectious disease outbreaks. IMPORTANCE mRNA vaccines can be developed and produced in record time. Here we demonstrate induction of rapid antibody responses by mRNA vaccines encoding two different viral antigens by day 5 following immunization in mice. The rapid immune kinetics of mRNA vaccines can be an advantageous property that makes them well suited for rapid control of infectious disease outbreaks.
Collapse
Affiliation(s)
- Makda S. Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaowen Liu
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Andrew C. Cole
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
40
|
Wuertz KM, Barkei EK, Chen WH, Martinez EJ, Lakhal-Naouar I, Jagodzinski LL, Paquin-Proulx D, Gromowski GD, Swafford I, Ganesh A, Dong M, Zeng X, Thomas PV, Sankhala RS, Hajduczki A, Peterson CE, Kuklis C, Soman S, Wieczorek L, Zemil M, Anderson A, Darden J, Hernandez H, Grove H, Dussupt V, Hack H, de la Barrera R, Zarling S, Wood JF, Froude JW, Gagne M, Henry AR, Mokhtari EB, Mudvari P, Krebs SJ, Pekosz AS, Currier JR, Kar S, Porto M, Winn A, Radzyminski K, Lewis MG, Vasan S, Suthar M, Polonis VR, Matyas GR, Boritz EA, Douek DC, Seder RA, Daye SP, Rao M, Peel SA, Joyce MG, Bolton DL, Michael NL, Modjarrad K. A SARS-CoV-2 spike ferritin nanoparticle vaccine protects hamsters against Alpha and Beta virus variant challenge. NPJ Vaccines 2021; 6:129. [PMID: 34711815 PMCID: PMC8553838 DOI: 10.1038/s41541-021-00392-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 μg) or low (0.2 μg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Kathryn McGuckin Wuertz
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Erica K Barkei
- Veterinary Pathology Division, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ines Lakhal-Naouar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Linda L Jagodzinski
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gregory D Gromowski
- Virus Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isabella Swafford
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Akshaya Ganesh
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Ming Dong
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caitlin Kuklis
- Virus Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Virus Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Anderson
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Janice Darden
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Heather Hernandez
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hannah Grove
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Holly Hack
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rafael de la Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stasya Zarling
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - James F Wood
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey W Froude
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew Gagne
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elham Bayat Mokhtari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Prakriti Mudvari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Andrew S Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey R Currier
- Virus Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | | | | | - Sandhya Vasan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mehul Suthar
- Emory Vaccine Center, Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Seder
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sharon P Daye
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheila A Peel
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Diane L Bolton
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
41
|
Meekins DA, Gaudreault NN, Richt JA. Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses 2021; 13:1993. [PMID: 34696423 PMCID: PMC8540328 DOI: 10.3390/v13101993] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is the etiological agent responsible for the ongoing COVID-19 pandemic, which continues to spread with devastating effects on global health and socioeconomics. The susceptibility of domestic and wild animal species to infection is a critical facet of SARS-CoV-2 ecology, since reverse zoonotic spillover events resulting in SARS-CoV-2 outbreaks in animal populations could result in the establishment of new virus reservoirs. Adaptive mutations in the virus to new animal species could also complicate ongoing mitigation strategies to combat SARS-CoV-2. In addition, animal species susceptible to SARS-CoV-2 infection are essential as standardized preclinical models for the development and efficacy testing of vaccines and therapeutics. In this review, we summarize the current findings regarding the susceptibility of different domestic and wild animal species to experimental SARS-CoV-2 infection and provide detailed descriptions of the clinical disease and transmissibility in these animals. In addition, we outline the documented natural infections in animals that have occurred at the human-animal interface. A comprehensive understanding of animal susceptibility to SARS-CoV-2 is crucial to inform public health, veterinary, and agricultural systems, and to guide environmental policies.
Collapse
Affiliation(s)
- David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| |
Collapse
|