1
|
Xiang Y, Liu Q, Liu K, Chen L, Chen F, Li T, Li S, Yu Q, Lv Q, Xiang Z. An exosome-based nanoplatform for siRNA delivery combined with starvation therapy promotes tumor cell death through autophagy, overcoming refractory KRAS-mutated tumors and restoring cetuximab chemosensitivity. Mater Today Bio 2025; 32:101732. [PMID: 40290881 PMCID: PMC12022660 DOI: 10.1016/j.mtbio.2025.101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Multi-drug combination therapy is one of the most effective strategies for the treatment of drug-resistant and advanced tumors. Modern nanodrug delivery systems are crucial for multi-drug combination therapy and gene therapy. However, research on direct injection of RNAi has not yielded significant results. Artificial vectors are emerging as promising delivery systemts for RNA for gene therapy. In this study, a multi-drug therapy system was built based on a biodegradable exosome nano-platform exploiting the protective and low immunogenic properties of exosomes for RNA. This work aimed to accomplish the co-delivery of siRNA and 3-Bromopyruvic acid (3BP) on an exosome nanoplatform, enhancing targeting by coupling cetuximab (CTX) to exosome membranes, resulting in a new nanomedicine Exo@siRNA/3BP-CTX (ERBC) engineered exosomes. The synthesis conditions were optimized to obtain stable, safe, and effective nanomedicines. Successful targeting of tumors with CTX inhibited KRAS oncogene expression and significantly reduced glucose uptake by cancer cells. This enhanced the starvation therapy effect of the energy deprivation agent 3BP, thus promoting excessive autophagy activation in cells and doubling apoptosis. However, ERBC combined with CTX therapy restored cellular chemosensitivity to CTX. These findings indicate that engineered exosomes with dual therapeutic activities is a promising approach for treating refractory KRAS-mutant cancers.
Collapse
Affiliation(s)
- Yurong Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Afiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
| | - Qiang Liu
- Department of Hepatobiliary Surgery, Suining First People's Hospital, 22 Youfang Street, 629000, Suining, China
| | - Kang Liu
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, 528 Shahe North Road, 400042, Kunming, China
| | - Liuxian Chen
- Department of Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, No.1 Medical College Road, 400016, Chongqing, China
| | - Fengjiao Chen
- Center for Clinical Molecular Medical Detection and Biobank, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
| | - Tao Li
- Department of Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, No.1 Medical College Road, 400016, Chongqing, China
| | - Siqi Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Afiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
| | - Qiang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Afiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
| | - Quan Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Afiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Afiliated Hospital of Chongqing Medical University, No.1 Youyi Road, 400000, Chongqing, China
| |
Collapse
|
2
|
Horiuchi N, Omer R, Sugino F, Ogino N, Inoue Y, Aslamuzzaman K, Suzuki T, Sebti SM, Ohkanda J. Design and Evaluation of Bivalent K-Ras Inhibitors That Target the CAAX Binding Site and the Acidic Surface of Farnesyltransferase and Geranylgeranyltransferase I. Chemistry 2025; 31:e202500306. [PMID: 40200839 PMCID: PMC12080315 DOI: 10.1002/chem.202500306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Mutant K-Ras drives cancer through its membrane localization, which requires posttranslational modification by farnesyltransferase (FTase). FTase attaches farnesyl to the K-Ras C-terminal CVIM tetrapeptide, enabling membrane binding. However, K-Ras can also undergo compensatory geranylgeranylation by geranylgeranyltransferase I (GGTase I), making FTase inhibition alone ineffective. Dual inhibition of FTase and GGTase I is necessary to fully block K-Ras localization and its cancer activity. We developed bivalent inhibitors targeting both FTase and GGTase I by binding to the CVIM (C = cysteine, V = valine, I = isoleucine, M = methionine) site and an adjacent acidic surface. A nonthiol CVIM peptidomimetic based on a piperidine scaffold showed potent FTase inhibition (Ki = 2.1 nM) with less effect on GGTase I (Ki = 210 nM). Adding cationic modules to this compound produced dual inhibitors with enhanced potency (Ki = 2-5 nM), significantly improving upon previous agents. These bivalent inhibitors effectively reduced mutant K-Ras cancer cell viability and inhibited K-Ras farnesylation and geranylgeranylation in cells. This dual-targeting approach shows promise for treating K-Ras-driven cancers.
Collapse
Affiliation(s)
- Naomi Horiuchi
- Academic AssemblyInstitute of AgricultureShinshu University8304 Minami‐MinowaKami‐InaNagano399–4598Japan
| | - Rania Omer
- Department of Pharmacology and ToxicologyMassey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Fumitoshi Sugino
- Academic AssemblyInstitute of AgricultureShinshu University8304 Minami‐MinowaKami‐InaNagano399–4598Japan
| | - Nanami Ogino
- Academic AssemblyInstitute of AgricultureShinshu University8304 Minami‐MinowaKami‐InaNagano399–4598Japan
| | | | - Kazi Aslamuzzaman
- Department of Pharmacology and ToxicologyMassey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Takeyuki Suzuki
- SANKENOsaka University8‐1 Mihogaoka, IbarakiOsaka567‐0047Japan
| | - Said M. Sebti
- Department of Pharmacology and ToxicologyMassey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Junko Ohkanda
- Academic AssemblyInstitute of AgricultureShinshu University8304 Minami‐MinowaKami‐InaNagano399–4598Japan
| |
Collapse
|
3
|
Kokori E, Olatunji G, Ogieuhi IJ, Ajayi YI, Akinmoju O, Akinboade A, Irumudomon JG, Omoworare OT, Ezeano C, Adebayo YA, Oyewo O, Aderinto N. The emerging role of Sotorasib plus Panitumumab combination therapy in colorectal cancer treatment. Int J Clin Oncol 2025; 30:867-877. [PMID: 40080361 DOI: 10.1007/s10147-025-02736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Colorectal cancer (CRC) poses a substantial global health challenge, ranking as the third most commonly diagnosed and second most fatal cancer worldwide. With an increasing incidence, particularly in older populations, CRC demands innovative therapeutic approaches to address the limitations of existing treatments. One critical target in CRC is the KRAS gene, which is frequently mutated and implicated in various cancer-related processes. This narrative review explores the promising role of Sotorasib plus Panitumumab combination therapy in CRC treatment. Combining Sotorasib with Panitumumab, an EGFR antagonist, offers a synergistic approach to comprehensively block KRAS and EGFR pathways, potentially overcoming resistance mechanisms observed in monotherapies. The review discusses the evolution of CRC treatment from traditional chemotherapy to the advent of targeted therapies like Bevacizumab and Cetuximab. It highlights the limitations of existing therapies, including resistance and toxicities, emphasising the urgency for innovative approaches. The CodeBreak clinical trials, specifically CodeBreak 101 and CodeBreak 300, provide a focal point for evaluating the efficacy of Sotorasib plus Panitumumab in patients with refractory KRAS G12C-mutated mCRC. Preliminary results demonstrate significant improvements in progression-free survival (PFS) and objective response rates, suggesting a paradigm shift in CRC treatment. The preliminary findings from the CodeBreak 300 trial signify a transformative impact of Sotorasib plus Panitumumab in refractory KRAS G12C-mutated mCRC. With a notable increase in PFS and objective response rates and a well-tolerated safety profile, this combination therapy emerges as a potential new standard of care. The results present an optimistic outlook for patients resistant to conventional therapies.
Collapse
Affiliation(s)
- Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - Yusuf Ismaila Ajayi
- Department of Medicine and Surgery, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olumide Akinmoju
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeola Akinboade
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | | | - Chimezirim Ezeano
- Health Science Center, University of North Texas, Fort Worth, Texas, USA
| | | | | | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
4
|
Zhang F, Wang B, Wu M, Zhang L, Ji M. Current status of KRAS G12C inhibitors in NSCLC and the potential for combination with anti-PD-(L)1 therapy: a systematic review. Front Immunol 2025; 16:1509173. [PMID: 40303413 PMCID: PMC12037499 DOI: 10.3389/fimmu.2025.1509173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
In recent years, precision medicine for non-small cell lung cancer (NSCLC) has made significant strides, particularly with advancements in diagnostic and therapeutic technologies. Targeted 7therapies and Anti-PD-(L)1 Therapies have emerged as vital treatment options, yet KRAS mutations, especially KRAS G12C, have been historically difficult to address. Due to the unique activation mechanism of KRAS G12C has led to the development of specific inhibitors, such as AMG 510 and MRTX849, which show promising therapeutic potential. However, results from the CodeBreaK 200 Phase III trial indicated that AMG 510 did not significantly improve overall survival compared to docetaxel. Resistance after prolonged use of KRAS G12C inhibitors continues to pose a challenge, prompting interest in new drugs and combination strategies. KRAS mutations can impair tumor-infiltrating T cell function and create an immunosuppressive tumor microenvironment, making the combination of KRAS G12C inhibitors with anti-PD-(L)1 therapies particularly appealing. Preliminary data suggest these combinations may enhance both survival and quality of life, though safety concerns remain a barrier. Ongoing research is crucial to refine treatment regimens and identify suitable patient populations. This review focuses on the development of KRAS G12C inhibitors in monotherapy and combination therapies for NSCLC, discussing major clinical trials and future research directions.
Collapse
Affiliation(s)
| | | | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
5
|
Yoon G, Suh J, Jo BS, Lee DW, Kim D, Choi M, Jeong EK, Lee HC, Shin HM, Kim YB, Seok S, Park YS, Chung CP, Lee JY, Park YJ. Rat Sarcoma (RAS)-Protein-Targeting Synthetic Cell-Penetrating Peptide as an Anticancer Biomaterial. Biomater Res 2025; 29:0175. [PMID: 40236954 PMCID: PMC11997307 DOI: 10.34133/bmr.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Various bioactive materials, including peptides, have become potential candidates for slowing cancer growth and metastasis. Among bioactive peptides, a synthetic cell-penetrating peptide referred to as rat sarcoma (RAS)-binding peptide (RBP) was suggested as a potential entity that targets RAS with high affinity in MDA-MB-231 cancer cells. This RAS binding further inhibits the RAS-rapidly accelerated fibrosarcoma (RAF) protein-protein interaction. The current study revealed that RBP effectively suppresses proliferation and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation by disrupting the RAS-RAF interaction. This intervention not only inhibits cell migration and invasion but also has substantial potential for preventing metastasis. The RAS-RAF-ERK1/2 pathway is a key target for anticancer drug development because of frequent ERK and mitogen-activated protein kinase activation in human cancers. MDA-MB-231, a triple-negative breast cancer cell line, harbors a G13D Kirsten rat sarcoma viral oncogene homolog mutation, making it resistant to many drugs. In addition to its in vitro antitumor activity, RBP was identified as a potent antagonist that substantially arrests tumor growth and invasiveness in in vivo chicken egg and mouse xenograft tumor models. Notably, histopathological analyses revealed increased immune cell infiltration and decreased Ki-67 expression, confirming the ability of RBP to inhibit tumor cell proliferation. Taken together, these findings highlight RBP as a therapeutic anticancer biomaterial capable of impeding the progression and metastasis of RAS-mutated cancers.
Collapse
Affiliation(s)
- Gookjin Yoon
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
| | - Jinsook Suh
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
| | - Beom Soo Jo
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Dong Woo Lee
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Deogil Kim
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Moonsil Choi
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Eui Kyun Jeong
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Hoo Cheol Lee
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Hye Min Shin
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Yu-Bin Kim
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Sanghui Seok
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences,
Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chong Pyung Chung
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
- School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
| | - Jue-Yeon Lee
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative Biotechnology and Dental Research Institute, School of Dentistry,
Seoul National University, Seoul 03080, Republic of Korea
- Research Institute,
Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul 03127, Republic of Korea
| |
Collapse
|
6
|
Baskin A, Soudah N, Gilad N, Halevi N, Darlyuk-Saadon I, Schoffman H, Engelberg D. All intrinsically active Erk1/2 mutants autophosphorylate threonine207/188, a plausible regulator of the TEY motif phosphorylation. J Biol Chem 2025; 301:108509. [PMID: 40222547 DOI: 10.1016/j.jbc.2025.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
The extracellular-activated kinases 1 & 2 (Erk1/2) are catalytically active when dually phosphorylated on a TEY motif located at the activation loop. In human patients with cardiac hypertrophy, Erk1/2 are phosphorylated on yet another activation loop's residue, T207/188. Intrinsically active variants of Erk1/2, mutated at R84/65, are also (auto)phosphorylated on T207/188. It is not known whether T207/188 phosphorylation is restricted to these cases, nor how it affects Erks' activity. We report that T207/188 phosphorylation is not rare, as we found that: 1) All known auto-activated Erk1/2 variants are phosphorylated on T207/188. 2) It occurs in various cell lines and mouse tissues. 3) It is extremely high in patients with skeletal muscle atrophies or myopathies. We propose that T207/188 controls the permissiveness of the TEY motif for phosphorylation because T207/188-mutated Erk1/2 and the yeast Erk/Mpk1 were efficiently dually phosphorylated when expressed in HEK293 or yeast cells, respectively. The T207/188-mutated Mpk1 was not TEY-phosphorylated in cells knocked out for MEKs, suggesting that its enhanced phosphorylation in wild-type cells is MEK-dependent. Thus, as T207/188-mutated Erk1/2 and Mpk1 recruit MEKs, the role of T207/188 is to impede MEKs' ability to phosphorylate Erks. T207/188 also impedes autophosphorylation as recombinant Erk2 mutated at T188 is spontaneously autophosphorylated, although exclusively on Y185. The role of T207/188 in regulating activation loop phosphorylation may be common to most Ser/Thr kinases, as 86% of them (in the human kinome) possess T207/188 orthologs, and 160 of them were already reported to be phosphorylated on this residue.
Collapse
Affiliation(s)
- Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Soudah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Neriya Halevi
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Hanan Schoffman
- Stein Family Mass Spectrometry Unit, The Research Infrastructure Center, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Geng C, Zeng J, Deng X, Xia F, Xu X. Molecular Dynamics Investigation into the Stability of KRas and CRaf Multimeric Complexes. J Phys Chem B 2025; 129:3306-3316. [PMID: 40126127 DOI: 10.1021/acs.jpcb.4c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In the Ras/Raf/MAPK signaling pathway, Ras and Raf proteins interact synergistically to form a tetrameric complex. NMR experiments have demonstrated that Ras dimerizes in solution and binds stably to Raf, forming Ras·Raf complexes. In this study, we constructed the ternary and quaternary complexes of KRas and CRaf based on crystal structures, denoted as (KRas)2·CRaf and (KRas)2·(CRaf)2, respectively. Molecular dynamics (MD) simulations were performed to investigate the stability of these complexes, while hydrogen bonds as well as salt bridges formed at the protein-protein interaction interfaces were analyzed based on simulation trajectories. The results revealed that the KRas·CRaf complex is more stable in explicit solvent compared with the KRas dimer. Formation of the stable quaternary complex (KRas)2·(CRaf)2 might be attributed to the association of two binary KRas·CRaf complexes. Additionally, MD simulations of the KRasG12D·CRaf complex revealed a stable and extended binding site at the KRas-CRaf interaction interface. This binding site was identified as a potential therapeutic target to block abnormal signal transmission in the pathway.
Collapse
Affiliation(s)
- Chongli Geng
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen University, 361003 Xiamen, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Zeng Q, Li L, Chang T, Sun Y, Zheng B, Xue L, Liu C, Li X, Huang R, Gu J, An Z, Yao H, Zhou D, Fan J, Dai Y. Phosphorylation of POU3F3 Mediated Nuclear Translocation Promotes Proliferation in Non-Small Cell Lung Cancer through Accelerating ATP5PF Transcription and ATP Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411503. [PMID: 39932442 PMCID: PMC11967767 DOI: 10.1002/advs.202411503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Indexed: 04/05/2025]
Abstract
Targeting oxidative phosphorylation (OXPHOS) through inhibiting the electron transport chain (ETC) has shown promising pre-clinical efficacy in cancer therapy. Although aerobic glycolysis is a hallmark of cancer, emerging evidence suggest OXPHOS is frequently enhanced, providing metabolic advantages for cell proliferation, metastasis, and drug resistance in a variety of aggressive cancer types including non-small cell lung cancer (NSCLC), yet the underlying molecular mechanisms remain elusive. Here it is reported that POU-domain containing family protein POU3F3 is translocated into the nuclei of NSCLC cell lines harboring mutant RAS, where it activates transcription of ATP5PF, an essential component of mitochondrial ATP synthase and consequent ATP production, leading to enhanced NSCLC proliferation and migration. Moreover, it is further found out that ERK1 phosphorylates POU3F3 at the S393 site in the cytoplasm and promotes the nuclear translocation of POU3F3 via receptor importin β1 in RAS mutant NSCLC cells. Mechanistically, RNA sequencing analysis combined with chromatin immunoprecipitation (ChIP) assay revealed that POU3F3 binds to the promoter of ATP5PF, leading to enhanced ATP5PF transcription and ATP production. Together, this study uncovers a novel RAS-POU3F3-ATP5PF axis in facilitating NSCLC progression, providing a new perspective on the understanding of molecular mechanisms for NSCLC progression.
Collapse
Affiliation(s)
- Qi‐Gang Zeng
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Le Li
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Tao Chang
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Yong Sun
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Bin Zheng
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Ling‐Na Xue
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Chao‐Ling Liu
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| | - Xia‐Qing Li
- Institute of Nephrology and Blood PurificationThe First Affiliated HospitalJinan UniversityGuangdong510632China
- Nephrology departmentThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityGuangdong517000China
| | - Ruo‐Tong Huang
- Department of Metabolism, Digestion, and ReproductionFaculty of MedicineImperial College LondonLondonW12 0NNUK
| | - Jia‐Xin Gu
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Zhao‐Rong An
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Hao‐Tao Yao
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
| | - Dan‐Yang Zhou
- Department of RespiratoryNanjing First HospitalNanjing Medical UniversityJiangsu210012China
| | - Jun Fan
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
- Department of Medical Biochemistry and Molecular BiologySchool of MedicineJinan UniversityGuangdong510632China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University)Ministry of EducationGuangdong510632China
| | - Yong Dai
- Nanhai hospital of Traditional Chinese MedicineJinan UniversityGuangdong528200China
| |
Collapse
|
9
|
Daya T, Breytenbach A, Gu L, Kaur M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159578. [PMID: 39542394 DOI: 10.1016/j.bbalip.2024.159578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic cancer remains one of the most lethal cancers due to late diagnosis and high chemoresistance. Despite recent progression in the development of chemotherapies, immunotherapies, and potential nanoparticles-based approaches, the success rate of therapeutic response is limited which is further compounded by cancer drug resistance. Understanding of emerging biological and molecular pathways causative of pancreatic cancer's aggressive and chemoresistance is vital to improve the effectiveness of existing therapeutics and to develop new therapies. One such under-investigated and relatively less explored area of research is documenting the effect that lipids, specifically cholesterol, and its metabolism, impose on pancreatic cancer. Dysregulated cholesterol metabolism has a profound role in supporting cellular proliferation, survival, and promoting chemoresistance and this has been well established in various other cancers. Thus, we aimed to provide an in-depth review focusing on the significance of cholesterol metabolism in pancreatic cancer and relevant genes at play, molecular processes contributing to cellular cholesterol homeostasis, and current research efforts to develop new cholesterol-targeting therapeutics. We highlight the caveats, weigh in different experimental therapeutic strategies, and provide possible suggestions for future research highlighting cholesterol's importance as a therapeutic target against pancreatic cancer resistance and cancer progression.
Collapse
Affiliation(s)
- Tasvi Daya
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Andrea Breytenbach
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
10
|
Li Y, Huang W, Guo L, Sun Q. Ras S89D mutation induced allosteric changes that promoted its nucleotide exchange and signaling activation. Int J Biol Macromol 2025; 294:139538. [PMID: 39778822 DOI: 10.1016/j.ijbiomac.2025.139538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The small GTPase Ras is among the most frequently mutated genes and its mutations often drive oncogenesis across various cancers. While the role of NRas phosphorylation at S89 in the context of a Q61R mutation in melanoma genesis remains controversial, the impact of S89 phosphorylation on NRas function has not been fully elucidated. In this study, we employed the S89D phosphorylation-mimetic mutation and demonstrated that the S89D mutation alone activated all Ras isoforms by increasing the GTP-bound population, thereby promoting ERK phosphorylation and cell proliferation. The S89D mutant retained unaltered hydrolysis kinetics and GTP/GDP relative affinity but exhibited an accelerated intrinsic nucleotide exchange rate, due to impaired nucleotide binding. A 1.2 Å crystal structure of the S89D mutant revealed substantial local conformational changes, as well as alterations propagating to the nucleotide-binding pocket, providing a structural basis for the observed biochemical properties. Collectively, these findings established that the S89D mutation activated Ras by enhancing intrinsic nucleotide exchange, offering new insights into Ras allostery.
Collapse
Affiliation(s)
- Yuling Li
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenxin Huang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
11
|
Sobhani N, Pittacolo M, D’Angelo A, Marchegiani G. Recent Anti-KRAS G12D Therapies: A "Possible Impossibility" for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:704. [PMID: 40002297 PMCID: PMC11853620 DOI: 10.3390/cancers17040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer, able to thrive in a challenging tumor microenvironment. Current standard therapies, including surgery, radiation, chemotherapy, and chemoradiation, have shown a dismal survival prognosis, resulting in less than a year of life in the metastatic setting. Methods: The pressing need to find better therapeutic methods brought about the discovery of new targeted therapies against the infamous KRAS mutations, the major oncological drivers of PDAC. Results: The most common KRAS mutation is KRASG12D, which causes a conformational change in the protein that constitutively activates downstream signaling pathways driving cancer hallmarks. Novel anti-KRASG12D therapies have been developed for solid-organ tumors, including small compounds, pan-RAS inhibitors, protease inhibitors, chimeric T cell receptors, and therapeutic vaccines. Conclusions: This comprehensive review summarizes current knowledge on the biology of KRAS-driven PDAC, the latest therapeutic options that have been experimentally validated, and developments in ongoing clinical trials.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matteo Pittacolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| | - Alberto D’Angelo
- Department of Medicine, Northern General Hospital, Sheffield S5 7AT, UK;
| | - Giovanni Marchegiani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy;
| |
Collapse
|
12
|
Takeda M, Yoshida S, Inoue T, Sekido Y, Hata T, Hamabe A, Ogino T, Miyoshi N, Uemura M, Yamamoto H, Doki Y, Eguchi H. The Role of KRAS Mutations in Colorectal Cancer: Biological Insights, Clinical Implications, and Future Therapeutic Perspectives. Cancers (Basel) 2025; 17:428. [PMID: 39941797 PMCID: PMC11816235 DOI: 10.3390/cancers17030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer mortality globally, with KRAS mutations occurring in 30-40% of cases, contributing to poor prognosis and resistance to anti-EGFR therapy. This review explores the biological significance, clinical implications, and therapeutic targeting of KRAS mutations in CRC. Methods: A comprehensive analysis of the existing literature and clinical trials was performed, highlighting the role of KRAS mutations in CRC pathogenesis, their impact on prognosis, and recent advancements in targeted therapies. Specific attention was given to emerging therapeutic strategies and resistance mechanisms. Results: KRAS mutations drive tumor progression through persistent activation of MAPK/ERK and PI3K/AKT signaling pathways. These mutations influence the tumor microenvironment, cancer stem cell formation, macropinocytosis, and cell competition. KRAS-mutant CRC exhibits poor responsiveness to anti-EGFR monoclonal antibodies and demonstrates primary and acquired resistance to KRAS inhibitors. Recent breakthroughs include the development of KRAS G12C inhibitors (sotorasib and adagrasib) and promising agents targeting G12D mutations. However, response rates in CRC remain suboptimal compared to other cancers, necessitating combination therapies and novel approaches, such as vaccines, nucleic acid-based therapeutics, and macropinocytosis inhibitors. Conclusions: KRAS mutations are central to CRC pathogenesis and present a significant therapeutic challenge. Advances in KRAS-targeted therapies offer hope for improved outcomes, but resistance mechanisms and organ-specific differences limit efficacy. Continued efforts in personalized treatment strategies and translational research are critical for overcoming these challenges and improving patient survival.
Collapse
Affiliation(s)
- Mitsunobu Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Villarreal OE, Xu Y, Tran H, Machado A, Prescod D, Anderson A, Minelli R, Peoples M, Martinez AH, Lee HM, Wong CW, Fowlkes N, Kanikarla P, Sorokin A, Alshenaifi J, Coker O, Lin K, Bristow C, Viale A, Shen JP, Parseghian C, Marszalek JR, Corcoran R, Kopetz S. Adaptive Plasticity Tumor Cells Modulate MAPK-Targeting Therapy Response in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634215. [PMID: 39896605 PMCID: PMC11785218 DOI: 10.1101/2025.01.22.634215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
MAPK pathway inhibitors (MAPKi) are increasingly used in the treatment of advanced colorectal cancer, but often produce short-lived responses in patients. Although acquired resistance by de novo mutations in tumors have been found to reduce response in some patients, additional mechanisms underlying the limited response durability of MAPK targeting therapy remain unknown. Here, we denote new contributory tumor biology and provide insight on the impact of tumor plasticity on therapy response. Analysis of MAPKi treated patients revealed activation of stemness programs and increased ASCL2 expression, which are associated with poor outcomes. Greater ASCL2 with MAPKi treatment was also seen in patient-derived CRC models, independent of driver mutations. We find ASCL2 denotes a distinct cell population, arising from phenotypic plasticity, with a proliferative, stem-like phenotype, and decreased sensitivity to MAPKi therapy, which were named adaptive plasticity tumor (APT) cells. MAPK pathway suppression induces the APT phenotype in cells, resulting in APT cell enrichment in tumors and limiting therapy response in preclinical and clinical data. APT cell depletion improved MAPKi treatment efficacy and extended MAPKi response durability in mice. These findings uncover a cellular program that mitigates the impact of MAPKi therapies and highlights the importance of addressing tumor plasticity to improve clinical outcomes.
Collapse
|
14
|
Su C, Xue Y, Fan S, Sun X, Si Q, Gu Z, Wang J, Deng R. Ferroptosis and its relationship with cancer. Front Cell Dev Biol 2025; 12:1423869. [PMID: 39877159 PMCID: PMC11772186 DOI: 10.3389/fcell.2024.1423869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Marked by iron buildup and lipid peroxidation, ferroptosis is a relatively new regulatory cell death (RCD) pathway. Many diseases like cancer, myocardial ischemia-reperfusion injury (MIRI), neurological disorders and acute renal failure (AKI) are corelated with ferroptosis. The main molecular processes of ferroptosis discovered yet will be presented here, along with the approaches in which it interacts with tumour-associated signaling pathways and its uses in systemic therapy, radiation therapy, and immunotherapy managing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Runzhi Deng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Menon NA, Kumar CD, Ramachandran P, Blaize B, Gautam M, Cordani M, Lekha Dinesh Kumar. Small-molecule inhibitors of WNT signalling in cancer therapy and their links to autophagy and apoptosis. Eur J Pharmacol 2025; 986:177137. [PMID: 39551337 DOI: 10.1016/j.ejphar.2024.177137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cancer represents an intricate and heterogeneous ailment that evolves from a multitude of epigenetic and genetic variations that disrupt normal cellular function. The WNT/β-catenin pathway is essential in maintaining the balance between cell renewal and differentiation in various tissues. Abnormal activation of this pathway can lead to uncontrolled cell growth and initiate cancer across a variety of tissues such as the colon, skin, liver, and ovary. It enhances characteristics that lead to cancer progression, including angiogenesis, invasion and metastasis. Processes like autophagy and apoptosis which regulate cell death and play a crucial role in maintaining cellular equilibrium are also intimately linked with WNT/ β-catenin pathway. Thus, targeting WNT pathway has become a key strategy in developing antitumor therapies. Employing small molecule inhibitors has emerged as a targeted therapy to improve the clinical outcome compared to conventional cancer treatments. Many strategies using small molecule inhibitors for modulating the WNT/β-catenin pathway, such as hindering WNT ligands' secretion or interaction, disrupting receptor complex, and blocking the nuclear translocation of β-catenin have been investigated. These interventions have shown promise in both preclinical and clinical settings. This review provides a comprehensive understanding of the role of WNT/β-catenin signalling pathway's role in cancer, emphasizing its regulation of autophagy and apoptosis. Our goal is to highlight the potential of specific small molecule inhibitors targeting this pathway, fostering the development of novel, tailored cancer treatments.
Collapse
Affiliation(s)
- Nayana A Menon
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore, 632004, Tamil Nadu, India
| | - Pournami Ramachandran
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Britny Blaize
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Mridul Gautam
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
16
|
Kim DE, Oh HJ, Kim HJ, Kim YB, Kim ST, Yim H. Synergistic two-step inhibition approach using a combination of trametinib and onvansertib in KRAS and TP53-mutated colorectal adenocarcinoma. Biomed Pharmacother 2025; 182:117796. [PMID: 39731938 DOI: 10.1016/j.biopha.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Colorectal malignancies associated with KRAS and TP53 mutations led us to investigate the effects of combination therapy targeting KRAS, MEK1, or PLK1 in colorectal cancer. MEK1 is downstream of RAS in the MAPK pathway, whereas PLK1 is a mitotic kinase of the cell cycle activated by MAPK and regulated by p53. Bioinformatics analysis revealed that patients with colorectal cancer had a high expression of MAP2K1 and PLK1. Furthermore, PLK1 and MEK1 activity in human colorectal adenocarcinoma (COAD) tissues was found to be highly upregulated compared to healthy tissues. To determine the sensitivity of KRAS or/and TP53-mutated cancer to KRAS, MEK1, or PLK1-targeted therapy, the inhibitors salirasib, trametinib, volasertib, and onvansertib were used in COAD cells with different KRAS and TP53 status. The results showed that combinations with trametinib and PLK1 inhibitors were more potent than combinations with salirasib. A combination of MEK1 and PLK1 inhibitors exhibited significant therapeutic effects on KRAS or/and TP53-mutated COAD cells. Notably, the combination of trametinib and onvansertib effectively suppressed tumor growth in a xenograft mouse model of KRAS and TP53-mutated COAD. This treatment induced G1 and G2/M arrest, respectively, and showed the strongest synergistic effect in KRAS and TP53-mutated SW48 cells expressing mutant KRASG13D and transduced with TP53 shRNA, ultimately leading to apoptotic cell death. These effects are attributed to two-step inhibition mechanism that blocks the MAPK signaling pathway and disrupts mitosis in KRAS and TP53-mutated COAD cells.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seung-Tae Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
17
|
Urtecho SB, Provenzano L, Spagnoletti A, Bottiglieri A, Pircher C, Massa G, Sposetti C, Proto C, Brambilla M, Occhipinti M, Mazzeo L, Beninato T, Leporati R, Giani C, Cavalli C, Serino R, Prina MM, Bassetti A, Nasca V, di Mauro RM, Abate A, Manglaviti S, Dumitrascu AD, Liberti GD, Cassano TS, Ganzinelli M, Wu S, Garassino MC, de Braud FGM, Russo GL, Prelaj A. Decoding KRAS mutation in non-small cell lung cancer patients receiving immunotherapy: A retrospective institutional comparison and literature review. Lung Cancer 2025; 199:108051. [PMID: 39740426 DOI: 10.1016/j.lungcan.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION KRAS mutation the most common molecular alteration in advanced non-small cell lung cancer (NSCLC) and is associated with an unfavourable prognosis, largely due to the lack of targeted therapeutic options for the majority of the KRAS mutated isoforms. The landscape of NSCLC treatment has expanded with the introduction of immune checkpoint inhibitors (ICIs). Nonetheless, data regarding the efficacy of ICI in NSCLC patients harbouring KRAS mutations are conflicting. This study aimed to compare clinical outcomes of ICIs in advanced NSCLC with different isoforms of KRAS mutations. METHODS A retrospective study was conducted on 143 patients with advanced NSCLC harbouring different KRAS mutation and treated with immune checkpoint inhibitors (ICI) between December 2020 and July 2022 at "Fondazione IRCCS Istituto Nazionale dei Tumori" in Milan. Log-rank and Cox Hazard methods were used for survival analysis. RESULTS We evaluated 143 patients with advanced non-small cell lung cancer (NSCLC) harboring KRAS mutations. The most common mutation was G12C (41 %), followed by G12V (23.7 %) and G12D (11.8 %). The G12C mutation was notably associated with a higher incidence of bone metastases (42 %). Immunotherapy was administered as monotherapy in 54.5 % of cases, while 69 % received it as part of a first-line combination with chemotherapy. Co-mutations were detected in 52 % of patients, with Q61 (63 %) and G12C (58 %) being the most prevalent. Among these, 24 % had STK11 co-mutations, and 29 % had TP53 co-mutations. No significant differences in overall survival (OS) or progression-free survival (PFS) were observed across different KRAS subtypes. The longest OS was seen in patients with Q61 (46.5 months), 13X (31.8 months), and G12C (28.7 months). The highest overall response rate (ORR) of 73 % was observed in the G12D group, particularly with the combination of chemoimmunotherapy, where stable disease was the most common outcome at 40 %. The median duration of response (DOR) was 7.4 months across both treatments. The longest DOR was seen in the G12V group at 10.2 months, with no significant difference between treatments. In contrast, the shortest DOR was in the G12A group, with 1.54 months in those treated with combination therapy compared to 2.57 months with single-agent therapy. Regarding co-mutations, patients with STK11 co-mutations had a higher median OS than those without (39.7 vs. 26.1 months), but this was not statistically significant (p = 1). Similarly, TP53 co-mutations were associated with a lower median OS (19.1 vs. 26.1 months, p = 0.7), though this too was not statistically significant. Importantly, bone metastases emerged as a significant adverse prognostic factor, nearly doubling the risk of mortality (HR: 2.81, p < 0.001), regardless of KRAS subtype or co-mutation status. CONCLUSION KRAS mutation subtypes demonstrate varying clinical outcomes. Although no statistically significant differences were observed in overall survival (OS) or progression-free survival (PFS), bone metastases were identified as a significant adverse prognostic factor, nearly doubling the risk of mortality (HR: 2.72, p < 0.001) regardless of KRAS subtype or co-mutation status. These findings underscore the importance of personalized treatment approaches tailored to the genetic profiles of patients with advanced NSCLC.
Collapse
Affiliation(s)
- S Berenice Urtecho
- Medical Oncology Department, Fundacion Instituto Valenciano de Oncologia (IVO)
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Andrea Spagnoletti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Achille Bottiglieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Pircher
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giacomo Massa
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Caterina Sposetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudia Proto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Brambilla
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Occhipinti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Mazzeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, Italy
| | - Teresa Beninato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Giani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Cavalli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Serino
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Anna Bassetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Nasca
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosa Maria di Mauro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alice Abate
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Manglaviti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andra Diana Dumitrascu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgia Di Liberti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Teresa Serra Cassano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ganzinelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sulin Wu
- Department of Medicine, University of Chicago, Chicago, IL
| | - Marina Chiara Garassino
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Medicine, University of Chicago, Chicago, IL
| | - Filippo G M de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Department of Oncology and Hemato-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Milan, Italy
| |
Collapse
|
18
|
Lu W, Zeng R, Pan M, Zhou Y, Tang H, Shen W, Tang Y, Lei P. Pharmacokinetics, bioavailability, and tissue distribution of MRTX1133 in rats using UHPLC-MS/MS. Front Pharmacol 2024; 15:1509319. [PMID: 39749200 PMCID: PMC11693508 DOI: 10.3389/fphar.2024.1509319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction MRTX1133 is a selective and reversible small molecule inhibitor of KRAS (G12D), which significantly delays the progression of solid tumors. However, no study on the absorption, distribution, and excretion of MRTX1133. Methods A fast ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry method was developed for the determination of MRTX1133 in rat plasma, tissue homogenate, and urine. The method applied to the pharmacokinetics, bioavailability, tissue distribution, and excretion of MRTX1133 after oral administration (25 mg/kg) and intravenous administration (5 mg/kg). Results The calibration curve for MRTX1133 in plasma and other homogenates was linear, with r 2 > 0.99. The intra- and inter-day accuracies were ranged from 85% to 115% and precision were within ± 10%. The matrix effect and recovery were within ± 15 %. The Cmax of MRTX1133 was 129.90 ± 25.23 ng/mL at 45 min after oral administration. The plasma half-life (t1/2) of MRTX1133 was 1.12 ± 0.46 h after oral administration and 2.88 ± 1.08 after intravenous administration. Its bioavailability was 2.92%. Furthermore, MRTX1133 was widely distributed in all the main organs, including liver, kidney, lung, spleen, heart, pancreas, and intestine. MRTX1133 was still detectable in liver, kidney, lung, spleen, heart, and pancreas after 24 h. The excretion ratio of prototype MRTX1133 through kidney was 22.59% ± 3.22% after 24 h. Conclusions MRTX1133 was quickly absorbed, and widely distributed in the main organs. This study provided a reference for the quantitative determination of MTRX1133 in preclinical or clinical trials.
Collapse
Affiliation(s)
- Wei Lu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Rong Zeng
- Department of Health Management, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Pan
- Department of Cardiovascular Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Huijuan Tang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanying Shen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yijun Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Pan Lei
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
19
|
Warnecke B, Nagasaka M. Adagrasib in the Treatment of KRAS p.G12C Positive Advanced NSCLC: Design, Development and Place in Therapy. Drug Des Devel Ther 2024; 18:5673-5683. [PMID: 39654605 PMCID: PMC11626957 DOI: 10.2147/dddt.s466217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
One of the most common mutations seen in lung cancers are mutations in Kristen Rat Sarcoma Viral Oncogene Homolog (KRAS), observed in 25-30% of patients with NSCLC. Mutations in KRAS result in oncogenesis via persistent activation of the MAPK/ERK pathways. Although once thought to be "undruggable", KRAS p.G12C inhibitors such as sotorasib and adagrasib have been developed. This paper focuses on adagrasib, the second KRAS p.G12C inhibitor to obtain regulatory approval by the FDA and describes the details on its study design, development and current place in therapy.
Collapse
Affiliation(s)
- Brian Warnecke
- Department of Medicine, University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
- Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
20
|
Dirven I, Pierre E, Vander Mijnsbrugge AS, Vounckx M, Kessels JI, Neyns B. Regorafenib Combined with BRAF/MEK Inhibitors for the Treatment of Refractory Melanoma Brain Metastases. Cancers (Basel) 2024; 16:4083. [PMID: 39682270 DOI: 10.3390/cancers16234083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND There are no active treatment options for patients with progressive melanoma brain metastases (MBM) failing immune checkpoint blockade (ICB) and BRAF/MEK inhibitors (BRAF/MEKi). Regorafenib (REGO), an oral multi-kinase inhibitor (incl. RAF-dimer inhibition), can overcome adaptive resistance to BRAF/MEKi in preclinical models. METHODS This is a single-center retrospective case series of patients with refractory MBM treated with REGO plus BRAF/MEKi (compassionate use). RESULTS A total of 22 patients were identified (18 BRAF-mutant, 4 NRASQ61-mutant; 19 with progressive MBM; 11 on corticosteroids). Thirteen BRAFV600-mutant patients were progressing on BRAF/MEKi at the time of REGO association. BRAF-mutant patients received REGO (40-80 mg once daily) combined with BRAF/MEKi, NRAS-mutant patients were treated with REGO + MEKi (+low-dose BRAFi to mitigate skin-toxicity). Grade 3 TRAE included arterial hypertension (n = 4) and maculopapular rash (n = 3). There were no G4/5 TRAE. In BRAF-mutant patients, overall and intracranial objective response rates (overall ORR and IC-ORR) were 11 and 29%, and overall and intracranial disease control rates (overall DCR and IC-DCR) were 44 and 59%, respectively. In NRAS-mutant patients overall ORR and IC-ORR were 0 and 25% and overall DCR and IC-DCR were 25 and 50%, respectively. The median PFS and OS were, respectively, 7.1 and 16.4 weeks in BRAF-mutant and 8.6 and 10.1 weeks in NRAS-mutant patients. CONCLUSIONS In heavily pretreated patients with refractory MBM, REGO combined with BRAF/MEKi demonstrated promising anti-tumor activity with an acceptable safety profile. In BRAFV600-mutant melanoma patients, responses cannot solely be attributed to BRAF/MEKi rechallenge. Further investigation in a prospective trial is ongoing to increase understanding of the efficacy.
Collapse
Affiliation(s)
- Iris Dirven
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Eden Pierre
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - An-Sofie Vander Mijnsbrugge
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Manon Vounckx
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Jolien I Kessels
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Bart Neyns
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
21
|
Huang B, Cao D, Yuan X, Xiong Y, Chen B, Wang Y, Niu X, Tian R, Huang H. USP7 deubiquitinates KRAS and promotes non-small cell lung cancer. Cell Rep 2024; 43:114917. [PMID: 39499616 DOI: 10.1016/j.celrep.2024.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
RAS oncogenic mutations are pivotal drivers of tumorigenesis. Ubiquitination modulates RAS functions, including activation, stability, and localization. While several E3 ligases regulate RAS ubiquitination, RAS deubiquitination remains less understood. Our study reveals that ubiquitin-specific protease 7 (USP7) directly deubiquitinates KRAS, stabilizing it and promoting the proliferation of non-small cell lung cancer (NSCLC) cells. Mechanistically, USP7 binds KRAS via its TRAF domain and removes the K48-linked polyubiquitin chains from residue K147. In addition, USP7 also stabilizes oncogenic KRAS mutants through deubiquitination. In lung cancer tissues, high USP7 expression is positively correlated with KRAS and is associated with lower patient survival rates. Moreover, USP7 inhibitors suppress NSCLC cell proliferation, particularly in cells resistant to the KRAS-G12C inhibitor AMG510. In conclusion, our findings identify USP7 as a key deubiquitinase regulating RAS stability, and targeting USP7 is a promising strategy to counteract KRAS inhibitor resistance in NSCLC.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Dan Cao
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Xiao Yuan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Bingzhang Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; College of Chemistry, Jilin University, Changchun 130023, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| |
Collapse
|
22
|
Chen Y, Xu W, Jin H, Zhang M, Liu S, Liu Y, Zhang H. Nutritional Glutamine-Modified Iron-Delivery System with Enhanced Endocytosis for Ferroptosis Therapy of Pancreatic Tumors. ACS NANO 2024; 18:31846-31868. [PMID: 39512234 DOI: 10.1021/acsnano.4c08083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Heterogeneous reprogrammed nutrient metabolic networks formed by oncogenes exhibit the potential for exploring novel druggable targets and developing innovative anticancer therapeutics. Herein, based on the heterogeneous metabolic characteristics of glutamine (Gln) addiction in pancreatic cancer cells, an iron-delivery system (IDS) with enhanced endocytosis is designed for efficient ferroptosis therapy. The IDS is characterized by Gln modification and can be recognized as a source of Gln nutrients for efficient endocytic uptake by pancreatic tumor cells. Because the IDS is flexible to combine with amino acid-like components, the IDS with enhanced endocytosis is further produced by loading the Gln transporter inhibitor of V9302. V9302 is capable of suppressing molecular Gln uptake via transporter ASCT2, which generates Gln deprivation to direct metabolic reprogramming of cancer cells and enhances cellular uptake of Gln-modified IDS via RAS-stimulated macropinocytosis. The enhanced endocytosis and high iron content of IDS facilitate ferroptosis in mice pancreatic tumor models; thus, an amino acid-like ferroptosis inducer of l-buthionine sulfoximine (BSO) is further combined. The enhanced endocytosis resulting from the synergism of Gln and V9302 enables the efficient delivery of iron and BSO for ferroptosis tumor therapy. This work provides an alternative approach for enhancing intracellular drug delivery of the tumors with heterogeneous nutrient metabolism by virtue of combining nutrient-modified nanodrugs with the corresponding nutrient transporter inhibitors.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenzhe Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mengsi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
23
|
Yang X, Wu H. RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms. J Hematol Oncol 2024; 17:108. [PMID: 39522047 PMCID: PMC11550559 DOI: 10.1186/s13045-024-01631-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Variants in the RAS family (HRAS, NRAS and KRAS) are among the most common mutations found in cancer. About 19% patients with cancer harbor RAS mutations, which are typically associated with poor clinical outcomes. Over the past four decades, KRAS has long been considered an undruggable target due to the absence of suitable small-molecule binding sites within its mutant isoforms. However, recent advancements in drug design have made RAS-targeting therapies viable, particularly with the approval of direct KRASG12C inhibitors, such as sotorasib and adagrasib, for treating non-small cell lung cancer (NSCLC) with KRASG12C mutations. Other KRAS-mutant inhibitors targeting KRASG12D are currently being developed for use in the clinic, particularly for treating highly refractory malignancies like pancreatic cancer. Herein, we provide an overview of RAS signaling, further detailing the roles of the RAS signaling pathway in carcinogenesis. This includes a summary of RAS mutations in human cancers and an emphasis on therapeutic approaches, as well as de novo, acquired, and adaptive resistance in various malignancies.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Hong Wu
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China.
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
24
|
Varona M, Dobson DP, Napolitano JG, Thomas R, Ochoa JL, Russell DJ, Crittenden CM. High Resolution Ion Mobility Enables the Structural Characterization of Atropisomers of GDC-6036, a KRAS G12C Covalent Inhibitor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2586-2595. [PMID: 39051157 DOI: 10.1021/jasms.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
GDC-6036 is a covalent KRAS G12C inhibitor that demonstrates high potency and selectivity. Structurally, GDC-6036 consists of several motifs that make the analytical characterization of this molecule challenging, including a highly basic pyrrolidine motif bonded to a quinazoline ring via an ether bond and an atropisomeric carbon-carbon bond between functionalized pyridine and quinazoline groups. Structurally, the desired atropisomer was synthesized via an atroposelective Negishi coupling with very high yield. However, having a direct way to analyze and confirm the presence of the atropisomeric species remained challenging in routine analytical workflows. In this study, both variable temperature nuclear magnetic resonance (VT-NMR) and two different approaches of in-line ion mobility coupled to liquid chromatography mass spectrometry (LC-MS) workflows were evaluated for the characterization of GDC-6036 and its undesired atropisomer (Compound B) to support synthetic route development. Briefly, both VT-NMR and traveling wave ion mobility spectrometry (TWIMS) enabled by structures for lossless ion manipulation (SLIM) technology coupled to high resolution MS (HRMS) are able to elucidate the structures of the atropisomers in a complex mixture. Drift tube IMS (DTIMS) was also evaluated, but lacked the resolving power to demonstrate separation between the two species in a mixture, but did show slight differences in their arrival times when multiplexed and injected separately. The determined resolving power (Rp) by multiplexing the ions via DTIMS was 67.3 and 60.5 for GDC-6036 and Compound B, respectively, while the two peak resolving power (Rpp) was determined to be 0.41, indicating inadequate resolution between the two species. Alternatively, the SLIM-IM studies showed Rp of 103.8 and 99.4, with a Rpp of 2.64, indicating good separation between the atropisomers. Furthermore, the CCS/z for GDC-6036 and Compound B was determined to be 231.2 Å2/z and 235.0 Å2/z, respectively. Quantitative experiments demonstrate linearity (R2 >0.99) for both GDC-6036 and Compound B while maintaining separation via SLIM-IM. Spike recoveries of one atropisomer relative to the other yielded strong recoveries (98.7% to 102.5%) while maintaining reproducibility (<7% RSD). The study herein describes the analytical process for evaluating new technologies and strategies for implementation in routine biopharmaceutical characterization workflows.
Collapse
Affiliation(s)
- Marcelino Varona
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P Dobson
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - José G Napolitano
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rekha Thomas
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jessica L Ochoa
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David J Russell
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher M Crittenden
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
25
|
Zheng Y, Li J, Xu D, Liu L, Li Y, Yi J, Dong J, Pang D, Tang H. Tunneling nanotubes mediate KRas transport: Inducing tumor heterogeneity and altering cellular membrane mechanical properties. Acta Biomater 2024; 185:312-322. [PMID: 38969079 DOI: 10.1016/j.actbio.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Mutation in oncogene KRas plays a crucial role in the occurrence and progression of numerous malignant tumors. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. We hypothesize that oncogene KRas mutations are intrinsic to alterations in cellular mechanics that promote malignant tumor generation and progression. Here, we demonstrate the use of optical tweezers coupled with a confocal fluorescence imaging system and gene interference technique to reveal that the mutant KRas protein can be transported between homogeneous and heterogeneous tumor cells by tunneling nanotubes (TNTs), resulting in a significant reduction of membrane tension and acceleration of membrane phospholipid flow in the recipient cells. Simultaneously, the changes in membrane mechanical properties of the tumor cells also enhance the metastatic and invasive ability of the tumors, which further contribute to the deterioration of the tumors. This finding helps to clarify the association between oncogene mutations and changes in the mechanical properties of tumor cells, which provides a theoretical basis for the development of cancer treatment strategies. STATEMENT OF SIGNIFICANCE: Here, we present a laser confocal fluorescence system integrated with optical tweezers to observe the transfer of mutant KRasG12D protein from mutant cells to wild-type cells through TNTs. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. Our results demonstrate a significant decrease in membrane tension and an increase in membrane phospholipid flow in recipient cells. These alterations in mechanical properties augment the migration and invasive capabilities of tumor cells, contributing to tumor malignancy. Our findings propose that cellular mechanical properties could serve as new markers for tumor development, and targeting membrane tension may hold potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Yawen Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jiangtao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Dadi Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Yuyao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jiayao Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Daiwen Pang
- College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Hongwu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
26
|
Makk-Merczel K, Varga D, Hajdinák P, Szarka A. The interlacing anticancer effect of pharmacologic ascorbate, chloroquine, and resveratrol. Biofactors 2024; 50:980-996. [PMID: 38488303 DOI: 10.1002/biof.2050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Currently, a diagnosis with KRAS mutant pancreatic ductal adenocarcinoma (PDAC) means a death warrant, so finding efficient therapeutic options is a pressing issue. Here, we presented that pharmacologic ascorbate, chloroquine and resveratrol co-treatment exerted a synergistic cytotoxic effect on PDAC cell lines. The observed synergistic cytotoxicity was a general feature in all investigated cancer cell lines independent of the KRAS mutational status and seems to be independent of the autophagy inhibitory effect of chloroquine. Furthermore, it seems that apoptosis and necroptosis are also not likely to play any role in the cytotoxicity of chloroquine. Both pharmacologic ascorbate and resveratrol caused double-strand DNA breaks accompanied by cell cycle arrest. It seems resveratrol-induced cytotoxicity is independent of reactive oxygen species (ROS) generation and accompanied by a significant elevation of caspase-3/7 activity, while pharmacologic ascorbate-induced cytotoxicity shows strong ROS dependence but proved to be caspase-independent. Our results are particularly important since ascorbate and resveratrol are natural compounds without significant harmful effects on normal cells, and chloroquine is a known antimalarial drug that can easily be repurposed.
Collapse
Affiliation(s)
- Kinga Makk-Merczel
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dóra Varga
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Hajdinák
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
27
|
Ramos MC, Crespo-Sueiro G, de Pedro N, Griñán-Lisón C, Díaz C, Pérez-Victoria I, González-Menéndez V, Castillo F, Pérez Del Palacio J, Tormo JR, Choquesillo-Lazarte D, Marchal JA, Vicente F, Fernández-Godino R, Genilloud O, Reyes F. Onychocolone A produced by the fungus Onychocola sp. targets cancer stem cells and stops pancreatic cancer progression by inhibiting MEK2-dependent cell signaling. Biomed Pharmacother 2024; 177:117018. [PMID: 38908208 DOI: 10.1016/j.biopha.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Pancreatic cancer (PC) shows a high fatality rate that can only be faced with a combination of surgery and chemotherapy or palliative treatment in the case of advanced patients. Besides, PC tumors are enriched with subpopulations of cancer stem cells (CSCs) that are resistant to the existing chemotherapeutic agents, which raises an important need for the identification of new drugs. To fill this gap, we have tested the anti-tumoral activity of microbial extracts, which chemical diversity offers a broad spectrum of potential new bioactive compounds. Extracts derived from the fungus Onychocola sp. CF-107644 were assayed via high throughput screening followed by bioassay-guided fractionation and resulted in the identification and isolation of six benzophenone derivatives with antitumoral activity: onychocolones A-F (#1-6). The structures of the compounds were established by spectroscopic methods, including ESI-TOF MS, 1D and 2D NMR analyses and X-ray diffraction. Compounds #1-4 significantly inhibited the growth of the pancreas tumoral cell lines, with low-micromolar Median Effective Doses (ED50s). Compound #1 (onychocolone A) was prioritized for further profiling due to its pro-apoptotic effect, which was further validated on 3D spheroids and pancreatic CSCs. Protein expression assays showed that the effect was mechanistically linked to the inhibition of MEK onco-signaling pathway. The efficacy of onychocolone A was also demonstrated in vivo by the reduction of tumor growth in a pancreatic xenograft mouse model generated by CSCs. Altogether, the data support that onychocolone A is a promising new small molecule for hit-to-lead development of a new treatment for PC.
Collapse
Affiliation(s)
- Maria C Ramos
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain.
| | - Gloria Crespo-Sueiro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Carmen Griñán-Lisón
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Víctor González-Menéndez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Francisco Castillo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Jose Pérez Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Jose R Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC, University of Granada, Avenida de las Palmeras 4, Armilla, Granada 18100, Spain
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada 18016, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Rosario Fernández-Godino
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, Granada 18016, Spain.
| |
Collapse
|
28
|
Bannoura SF, Khan HY, Uddin MH, Mohammad RM, Pasche BC, Azmi AS. Targeting guanine nucleotide exchange factors for novel cancer drug discovery. Expert Opin Drug Discov 2024; 19:949-959. [PMID: 38884380 PMCID: PMC11380440 DOI: 10.1080/17460441.2024.2368242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Guanine nucleotide exchange factors (GEFs) regulate the activation of small GTPases (G proteins) of the Ras superfamily proteins controlling cellular functions. Ras superfamily proteins act as 'molecular switches' that are turned 'ON' by guanine exchange. There are five major groups of Ras family GTPases: Ras, Ran, Rho, Rab and Arf, with a variety of different GEFs regulating their GTP loading. GEFs have been implicated in various diseases including cancer. This makes GEFs attractive targets to modulate signaling networks controlled by small GTPases. AREAS COVERED In this review, the roles and mechanisms of GEFs in malignancy are outlined. The mechanism of guanine exchange activity by GEFs on a small GTPase is illustrated. Then, some examples of GEFs that are significant in cancer are presented with a discussion on recent progress in therapeutic targeting efforts using a variety of approaches. EXPERT OPINION Recently, GEFs have emerged as potential therapeutic targets for novel cancer drug development. Targeting small GTPases is challenging; thus, targeting their activation by GEFs is a promising strategy. Most GEF-targeted drugs are still in preclinical development. A deeper biological understanding of the underlying mechanisms of GEF activity and utilizing advanced technology are necessary to enhance drug discovery for GEFs in cancer.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husain Yar Khan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Boris C Pasche
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
29
|
Dehghanian F, Ghahnavieh LE, Nilchi AN, Khalilian S, Joonbakhsh R. Breast cancer drug resistance: Decoding the roles of Hippo pathway crosstalk. Gene 2024; 916:148424. [PMID: 38588933 DOI: 10.1016/j.gene.2024.148424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The most significant factors that lead to cancer-related death in breast cancer (BC) patients include drug resistance, migration, invasion, and metastasis. Several signaling pathways are involved in the development of BC. The different types of BC are initially sensitive to chemotherapy, and drug resistance can occur through multiple molecular mechanisms. Regardless of developing targeted Therapy, due to the heterogenic nature and complexity of drug resistance, it is a major clinical challenge with the low survival rate in BC patients. The deregulation of several signaling pathways, particularly the Hippo pathway (HP), is one of the most recent findings about the molecular mechanisms of drug resistance in BC, which are summarized in this review. Given that HP is one of the recent cancer research hotspots, this review focuses on its implication in BC drug resistance. Unraveling the different molecular basis of HP through its crosstalk with other signaling pathways, and determining the effectiveness of HP inhibitors can provide new insights into possible therapeutic strategies for overcoming chemoresistance in BC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Amirhossein Naghsh Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Rezvan Joonbakhsh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| |
Collapse
|
30
|
Mendiratta G, Liarakos D, Tong M, Ito S, Ke E, Goshua G, Stites EC. Cancer research is not correlated with driver gene mutation burdens. MED 2024; 5:832-838.e4. [PMID: 38908369 DOI: 10.1016/j.medj.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Cancer research is pursued with the goal of positively impacting patients with cancer. Decisions regarding how to allocate research funds reflect a complex balancing of priorities and factors. Even though these are subjective decisions, they should be made with consideration of all available objective facts. An accurate estimate of the affected cancer patient population by mutation is one variable that has only recently become available to inform funding decisions. METHODS We compared the overall incident burden of mutations within each cancer-associated gene with two measures of cancer research efforts: research grant funding amounts and numbers of academic manuscripts. We ask to what degree the aggregate set of cancer research efforts reflects the relative burdens of the different cancer genetic drivers. We thoroughly investigate the design of our queries to ensure that the presented results are robust and conclusions are well justified. FINDINGS We find cancer research is generally not correlated with the relative burden of mutation within the different genetic drivers of cancer. CONCLUSIONS We suggest that cancer research would benefit from incorporating, among other factors, an epidemiologically informed mutation-estimate baseline into a larger framework for funding and research allocation decisions. FUNDING This work was supported in part by the National Institutes of Health (NIH) P30CA014195 and NIH DP2AT011327.
Collapse
Affiliation(s)
- Gaurav Mendiratta
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Liarakos
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Melinda Tong
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Satoko Ito
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eugene Ke
- Department of Surgery, Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - George Goshua
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA; Center for Outcomes Research and Evaluation, Yale School of Medicine, New Haven, CT 06510, USA
| | - Edward C Stites
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
31
|
Zeng L, Liu X, Geng C, Gao X, Liu L. Ferroptosis in cancer (Review). Oncol Lett 2024; 28:304. [PMID: 38774452 PMCID: PMC11106693 DOI: 10.3892/ol.2024.14437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
Ferroptosis is a type of programmed cell death depending on iron and reactive oxygen species. This unique cell death process has attracted a great deal of attention in the field of cancer research over the past decade. Research on the association of ferroptosis signal pathways and cancer development indicated that targeting ferroptosis has great potential for cancer therapy. In the present study, the latest research progress of ferroptosis was reviewed, focusing on the relationship between ferroptosis and the development of cancer, in order to further promote the clinical application of ferroptosis in cancer.
Collapse
Affiliation(s)
- Liyi Zeng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaohui Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chengjie Geng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
32
|
Zhao XC, Ma RF, Liu H, Shan P, Bao J, Zhang H. Grifolin Induces Cell Death of Human Lung Cancer A549 Cell Line via Inhibiting KRAS-Mediated Multiple Signaling Pathways. Chem Biodivers 2024; 21:e202400792. [PMID: 38738487 DOI: 10.1002/cbdv.202400792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
In the current work, grifolin was obtained from the twigs and leaves of Daphne genkwa for the first time and displayed significant growth inhibition against human lung carcinoma A549 cells. Subsequent in vitro antitumor evaluation revealed that grifolin could induce remarkable cell apoptosis and G0/G1 phase arrest, as well as block cell migration and invasion. In addition, grifolin also disrupted cellular energy metabolism by inducing reactive oxygen species, reducing adenosine triphosphate and mitochondrial membrane potential, and damaging DNA synthesis. Further RNA-seq analysis demonstrated that treatment of grifolin on A549 cells led to gene enrichment in MAPK, PI3K/Akt and NF-κB signaling pathways, all of which were inhibited by grifolin according to immunoblotting experiments. Further mechanistical studies disclosed that the expression of a key upstream protein KRAS was also blocked, and the cell death triggered by grifolin could be rescued by a RAS activator ML-099. Moreover, pretreatment of ML-099 on A549 cells could reverse the grifolin-induced downregulation of key proteins in the three aforementioned pathways. These findings indicate that grifolin could induce cell death in A549 cell line by inhibiting KRAS-mediated multiple signaling pathways.
Collapse
Affiliation(s)
- Xue-Chun Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China E-mail: bio_(H. Zhang) (J. Bao
| | - Ren-Fen Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China E-mail: bio_(H. Zhang) (J. Bao
| | - Hu Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China E-mail: bio_(H. Zhang) (J. Bao
| | - Peipei Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China E-mail: bio_(H. Zhang) (J. Bao
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China E-mail: bio_(H. Zhang) (J. Bao
| |
Collapse
|
33
|
Singh M, Morris VK, Bandey IN, Hong DS, Kopetz S. Advancements in combining targeted therapy and immunotherapy for colorectal cancer. Trends Cancer 2024; 10:598-609. [PMID: 38821852 DOI: 10.1016/j.trecan.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal cancer posing significant clinical challenges. CRC management traditionally involves surgery, often coupled with chemotherapy. However, unresectable or metastatic CRC (mCRC) presents a complex challenge necessitating innovative treatment strategies. Targeted therapies have emerged as the cornerstone of treatment in such cases, with interventions tailored to specific molecular attributes. Concurrently, immunotherapies have revolutionized cancer treatment by harnessing the immune system to combat malignant cells. This review explores the evolving landscape of CRC treatment, focusing on the synergy between immunotherapies and targeted therapies, thereby offering new avenues for enhancing the effectiveness of therapy for CRC.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irfan N Bandey
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
34
|
Ryan MB, Quade B, Schenk N, Fang Z, Zingg M, Cohen SE, Swalm BM, Li C, Özen A, Ye C, Ritorto MS, Huang X, Dar AC, Han Y, Hoeflich KP, Hale M, Hagel M. The Pan-RAF-MEK Nondegrading Molecular Glue NST-628 Is a Potent and Brain-Penetrant Inhibitor of the RAS-MAPK Pathway with Activity across Diverse RAS- and RAF-Driven Cancers. Cancer Discov 2024; 14:1190-1205. [PMID: 38588399 PMCID: PMC11215411 DOI: 10.1158/2159-8290.cd-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
Alterations in the RAS-MAPK signaling cascade are common across multiple solid tumor types and are a driver for many cancers. NST-628 is a potent pan-RAF-MEK molecular glue that prevents the phosphorylation and activation of MEK by RAF, overcoming the limitations of traditional RAS-MAPK inhibitors and leading to deep durable inhibition of the pathway. Cellular, biochemical, and structural analyses of RAF-MEK complexes show that NST-628 engages all isoforms of RAF and prevents the formation of BRAF-CRAF heterodimers, a differentiated mechanism from all current RAF inhibitors. With a potent and durable inhibition of the RAF-MEK signaling complex as well as high intrinsic permeability into the brain, NST-628 demonstrates broad efficacy in cellular and patient-derived tumor models harboring diverse MAPK pathway alterations, including orthotopic intracranial models. Given its functional and pharmacokinetic mechanisms that are differentiated from previous therapies, NST-628 is positioned to make an impact clinically in areas of unmet patient need. Significance: This study introduces NST-628, a molecular glue having differentiated mechanism and drug-like properties. NST-628 treatment leads to broad efficacy with high tolerability and central nervous system activity across multiple RAS- and RAF-driven tumor models. NST-628 has the potential to provide transformative clinical benefits as both monotherapy and vertical combination anchor.
Collapse
Affiliation(s)
| | | | | | - Zhong Fang
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | | | | | - Chun Li
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | - Chaoyang Ye
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | - Xin Huang
- Nested Therapeutics, Cambridge, Massachusetts.
| | - Arvin C. Dar
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Yongxin Han
- Nested Therapeutics, Cambridge, Massachusetts.
| | | | | | | |
Collapse
|
35
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Lu DD, Yuan L, Wang ZZ, Zhao JJ, Du YH, Ning N, Chen GQ, Huang SC, Yang Y, Zhang Z, Nan Y. To explore the mechanism of Yigong San anti-gastric cancer and immune regulation. World J Gastrointest Oncol 2024; 16:1965-1994. [PMID: 38764819 PMCID: PMC11099436 DOI: 10.4251/wjgo.v16.i5.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION YGS has the effect of anti-gastric cancer and immune regulation.
Collapse
Affiliation(s)
- Dou-Dou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Zhao-Zhao Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Jun Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Hua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Qing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shi-Cong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
37
|
Peng WB, Li YP, Zeng Y, Chen K. Transglutaminase 2 serves as a pathogenic hub gene of KRAS mutant colon cancer based on integrated analysis. World J Gastrointest Oncol 2024; 16:2074-2090. [PMID: 38764826 PMCID: PMC11099438 DOI: 10.4251/wjgo.v16.i5.2074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Colon cancer is acknowledged as one of the most common malignancies worldwide, ranking third in United States regarding incidence and mortality. Notably, approximately 40% of colon cancer cases harbor oncogenic KRAS mutations, resulting in the continuous activation of epidermal growth factor receptor signaling. AIM To investigate the key pathogenic genes in KRAS mutant colon cancer holds considerable importance. METHODS Weighted gene co-expression network analysis, in combination with additional bioinformatics analysis, were conducted to screen the key factors driving the progression of KRAS mutant colon cancer. Meanwhile, various in vitro experiments were also conducted to explore the biological function of transglutaminase 2 (TGM2). RESULTS Integrated analysis demonstrated that TGM2 acted as an independent prognostic factor for progression-free survival. Immunohistochemical analysis on tissue microarrays revealed that TGM2 was associated with an elevated probability of perineural invasion in patients with KRAS mutant colon cancer. Additionally, biological roles of the key gene TGM2 was also assessed, suggesting that the downregulation of TGM2 attenuated the proliferation, invasion, and migration of the KRAS mutant colon cancer cell line. CONCLUSION This study underscores the potential significance of TGM2 in the progression of KRAS mutant colon cancer. This insight not only offers a theoretical foundation for therapeutic approaches but also highlights the need for additional clinical trials and fundamental research to support our preliminary findings.
Collapse
Affiliation(s)
- Wei-Bin Peng
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Yu-Ping Li
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Yong Zeng
- First People’s Hospital of Foshan, Foshan 528000, Guangdong Province, China
| | - Kai Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, Guangdong Province, China
| |
Collapse
|
38
|
Sun JW, Zou J, Zheng Y, Yuan H, Xie YZY, Wang XN, Ou TM. Design, synthesis, and evaluation of novel quindoline derivatives with fork-shaped side chains as RNA G-quadruplex stabilizers for repressing oncogene NRAS translation. Eur J Med Chem 2024; 271:116406. [PMID: 38688064 DOI: 10.1016/j.ejmech.2024.116406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
NRAS mutation is the second most common oncogenic factor in cutaneous melanoma. Inhibiting NRAS translation by stabilizing the G-quadruplex (G4) structure with small molecules seems to be a potential strategy for cancer therapy due to the NRAS protein's lack of a druggable pocket. To enhance the effects of previously reported G4 stabilizers quindoline derivatives, we designed and synthesized a novel series of quindoline derivatives with fork-shaped side chains by introducing (alkylamino)alkoxy side chains. Panels of experimental results showed that introducing a fork-shaped (alkylamino)alkoxy side chain could enhance the stabilizing abilities of the ligands against NRAS RNA G-quadruplexes and their anti-melanoma activities. One of them, 10b, exhibited good antitumor activity in the NRAS-mutant melanoma xenograft mouse model, showing the therapeutic potential of this kind of compounds.
Collapse
Affiliation(s)
- Jia-Wei Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Zou
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Zheng
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Yuan
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuan-Ze-Yu Xie
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Na Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Wasko UN, Jiang J, Dalton TC, Curiel-Garcia A, Edwards AC, Wang Y, Lee B, Orlen M, Tian S, Stalnecker CA, Drizyte-Miller K, Menard M, Dilly J, Sastra SA, Palermo CF, Hasselluhn MC, Decker-Farrell AR, Chang S, Jiang L, Wei X, Yang YC, Helland C, Courtney H, Gindin Y, Muonio K, Zhao R, Kemp SB, Clendenin C, Sor R, Vostrejs WP, Hibshman PS, Amparo AM, Hennessey C, Rees MG, Ronan MM, Roth JA, Brodbeck J, Tomassoni L, Bakir B, Socci ND, Herring LE, Barker NK, Wang J, Cleary JM, Wolpin BM, Chabot JA, Kluger MD, Manji GA, Tsai KY, Sekulic M, Lagana SM, Califano A, Quintana E, Wang Z, Smith JAM, Holderfield M, Wildes D, Lowe SW, Badgley MA, Aguirre AJ, Vonderheide RH, Stanger BZ, Baslan T, Der CJ, Singh M, Olive KP. Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer. Nature 2024; 629:927-936. [PMID: 38588697 PMCID: PMC11111406 DOI: 10.1038/s41586-024-07379-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- DNA Copy Number Variations
- Drug Resistance, Neoplasm/drug effects
- Genes, myc
- Guanosine Triphosphate/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors
- Treatment Outcome
- Xenograft Model Antitumor Assays
- Mutation
Collapse
Affiliation(s)
- Urszula N Wasko
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tanner C Dalton
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alvaro Curiel-Garcia
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - A Cole Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Bianca Lee
- Revolution Medicines, Redwood City, CA, USA
| | - Margo Orlen
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Sha Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephen A Sastra
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmine F Palermo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Marie C Hasselluhn
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda R Decker-Farrell
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Xing Wei
- Revolution Medicines, Redwood City, CA, USA
| | - Yu C Yang
- Revolution Medicines, Redwood City, CA, USA
| | | | | | | | | | | | - Samantha B Kemp
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Cynthia Clendenin
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Rina Sor
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - William P Vostrejs
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Priya S Hibshman
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber M Amparo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor Hennessey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew G Rees
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | | | - Lorenzo Tomassoni
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Basil Bakir
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura E Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K Barker
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John A Chabot
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael D Kluger
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gulam A Manji
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Y Tsai
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea Califano
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- J. P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
- Chan Zuckerberg Biohub New York, New York, NY, USA
| | | | | | | | | | | | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael A Badgley
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert H Vonderheide
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Ben Z Stanger
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center, Philadelphia, PA, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kenneth P Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
40
|
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Corcoran RB, Do KT, Kim JE, Cleary JM, Parikh AR, Yeku OO, Xiong N, Weekes CD, Veneris J, Ahronian LG, Mauri G, Tian J, Norden BL, Michel AG, Van Seventer EE, Siravegna G, Camphausen K, Chi G, Fetter IJ, Brugge JS, Chen H, Takebe N, Penson RT, Juric D, Flaherty KT, Sullivan RJ, Clark JW, Heist RS, Matulonis UA, Liu JF, Shapiro GI. Phase I/II Study of Combined BCL-xL and MEK Inhibition with Navitoclax and Trametinib in KRAS or NRAS Mutant Advanced Solid Tumors. Clin Cancer Res 2024; 30:1739-1749. [PMID: 38456660 PMCID: PMC11061595 DOI: 10.1158/1078-0432.ccr-23-3135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE MEK inhibitors (MEKi) lack monotherapy efficacy in most RAS-mutant cancers. BCL-xL is an anti-apoptotic protein identified by a synthetic lethal shRNA screen as a key suppressor of apoptotic response to MEKi. PATIENTS AND METHODS We conducted a dose escalation study (NCT02079740) of the BCL-xL inhibitor navitoclax and MEKi trametinib in patients with RAS-mutant tumors with expansion cohorts for: pancreatic, gynecologic (GYN), non-small cell lung cancer (NSCLC), and other cancers harboring KRAS/NRAS mutations. Paired pretreatment and day 15 tumor biopsies and serial cell-free (cf)DNA were analyzed. RESULTS A total of 91 patients initiated treatment, with 38 in dose escalation. Fifty-eight percent had ≥3 prior therapies. A total of 15 patients (17%) had colorectal cancer, 19 (11%) pancreatic, 15 (17%) NSCLC, and 32 (35%) GYN cancers. The recommended phase II dose (RP2D) was established as trametinib 2 mg daily days 1 to 14 and navitoclax 250 mg daily days 1 to 28 of each cycle. Most common adverse events included diarrhea, thrombocytopenia, increased AST/ALT, and acneiform rash. At RP2D, 8 of 49 (16%) evaluable patients achieved partial response (PR). Disease-specific differences in efficacy were noted. In patients with GYN at the RP2D, 7 of 21 (33%) achieved a PR and median duration of response 8.2 months. No PRs occurred in patients with colorectal cancer, NSCLC, or pancreatic cancer. MAPK pathway inhibition was observed in on-treatment tumor biopsies. Reductions in KRAS/NRAS mutation levels in cfDNA correlated with clinical benefit. CONCLUSIONS Navitoclax in combination with trametinib was tolerable. Durable clinical responses were observed in patients with RAS-mutant GYN cancers, warranting further evaluation in this population.
Collapse
Affiliation(s)
- Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Khanh T. Do
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jeong E. Kim
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aparna R. Parikh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Oladapo O. Yeku
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Niya Xiong
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Colin D. Weekes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Veneris
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Leanne G. Ahronian
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Gianluca Mauri
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Department of Hematology Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Jun Tian
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alexa G. Michel
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Emily E. Van Seventer
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Giulia Siravegna
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kyle Camphausen
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Gary Chi
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Isobel J. Fetter
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Helen Chen
- National Institute of Health, National Cancer Institute, Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, Bethesda, Maryland
| | - Naoko Takebe
- National Institute of Health, National Cancer Institute, Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, Bethesda, Maryland
| | - Richard T. Penson
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Keith T. Flaherty
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ryan J. Sullivan
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey W. Clark
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rebecca S. Heist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joyce F. Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
42
|
Rubinson DA, Tanaka N, Fece de la Cruz F, Kapner KS, Rosenthal MH, Norden BL, Barnes H, Ehnstrom S, Morales-Giron AA, Brais LK, Lemke CT, Aguirre AJ, Corcoran RB. Sotorasib Is a Pan-RASG12C Inhibitor Capable of Driving Clinical Response in NRASG12C Cancers. Cancer Discov 2024; 14:727-736. [PMID: 38236605 PMCID: PMC11061598 DOI: 10.1158/2159-8290.cd-23-1138] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
KRASG12C inhibitors, like sotorasib and adagrasib, potently and selectively inhibit KRASG12C through a covalent interaction with the mutant cysteine, driving clinical efficacy in KRASG12C tumors. Because amino acid sequences of the three main RAS isoforms-KRAS, NRAS, and HRAS-are highly similar, we hypothesized that some KRASG12C inhibitors might also target NRASG12C and/or HRASG12C, which are less common but critical oncogenic driver mutations in some tumors. Although some inhibitors, like adagrasib, were highly selective for KRASG12C, others also potently inhibited NRASG12C and/or HRASG12C. Notably, sotorasib was five-fold more potent against NRASG12C compared with KRASG12C or HRASG12C. Structural and reciprocal mutagenesis studies suggested that differences in isoform-specific binding are mediated by a single amino acid: Histidine-95 in KRAS (Leucine-95 in NRAS). A patient with NRASG12C colorectal cancer treated with sotorasib and the anti-EGFR antibody panitumumab achieved a marked tumor response, demonstrating that sotorasib can be clinically effective in NRASG12C-mutated tumors. SIGNIFICANCE These studies demonstrate that certain KRASG12C inhibitors effectively target all RASG12C mutations and that sotorasib specifically is a potent NRASG12C inhibitor capable of driving clinical responses. These findings have important implications for the treatment of patients with NRASG12C or HRASG12C cancers and could guide design of NRAS or HRAS inhibitors. See related commentary by Seale and Misale, p. 698. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Douglas A. Rubinson
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Noritaka Tanaka
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ferran Fece de la Cruz
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kevin S. Kapner
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Michael H. Rosenthal
- Dana Farber Cancer Institute and Brigham and Women's Hospital, Department of Radiology, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Haley Barnes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sara Ehnstrom
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alvin A. Morales-Giron
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lauren K. Brais
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew J. Aguirre
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Cheng K, Zhou Z, Chen Q, Chen Z, Cai Y, Cai H, Wu S, Gao P, Cai Y, Zhou J, Wang X, Wu Z, Peng B. CDK4/6 inhibition sensitizes MEK inhibition by inhibiting cell cycle and proliferation in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:8389. [PMID: 38600093 PMCID: PMC11006845 DOI: 10.1038/s41598-024-57417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to most chemotherapy drugs, leading to poor chemotherapy efficacy. Recently, Trametinib and Palbociclib have promising prospects in the treatment of pancreatic cancer. This article aims to explore the effects of Trametinib on pancreatic cancer and address the underlying mechanism of resistance as well as its reversal strategies. The GDSC (Genomics of Drug Sensitivity in Cancer) and CTD2 (Cancer Target Discovery and Development) were utilized to screen the potential drug candidate in PDAC cell lines. The dose-increase method combined with the high-dose shock method was applied to induce the Trametinib-resistant PANC-1 and MIA PaCa-2 cell lines. The CCK8 proliferation assay, colony formation assay, flow cytometry, and western blot were conducted to verify the inhibitory effect of Trametinib and Palbociclib. RNA-seq was performed in resistant PDAC cell lines to find the differential expression genes related to drug resistance and predict pathways leading to the reversal of Trametinib resistance. The GDSC and CTD2 database screening revealed that Trametinib demonstrates a significant inhibitory effect on PDAC. We found that Trametinib has a lower IC50 than Gemcitabine in PDAC cell lines. Both Trametinib and Gemcitabine can decrease the proliferation capacity of pancreatic cells, induce cell cycle arrest, and increase apoptosis. Simultaneously, the phosphorylation of the AKT and ERK pathways were inhibited by the treatment of Trametinib. In addition, the RNA-seq of Trametinib-induced resistance PDAC cell lines reveals that the cyclin-dependent kinase (CDK)-RB-E2F regulatory axis and G2/M DNA damage checkpoint might lead the drug resistance. Besides, the combination of Trametinib with Palbociclib could inhibit the proliferation and cell cycle of both resistant cells lines and also restore the sensitivity of drug-resistant cells to Trametinib. Last but not least, the interferon-α and interferon-γ expression were upregulated in resistance cell lines, which might lead to the reversal of drug resistance. The study shows Trametinib has a critical inhibitory effect on PDAC. Besides, the combination of Trametinib with Palbociclib can inhibit the proliferation of PDAC-resistant cells.
Collapse
Affiliation(s)
- Ke Cheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zijian Zhou
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiangxing Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zixin Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - He Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shangdi Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Pan Gao
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yunqiang Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhong Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China.
| | - Bing Peng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Abstract
RAS family variants-most of which involve KRAS-are the most commonly occurring hotspot mutations in human cancers and are associated with a poor prognosis. For almost four decades, KRAS has been considered undruggable, in part due to its structure, which lacks small-molecule binding sites. But recent developments in bioengineering, organic chemistry and related fields have provided the infrastructure to make direct KRAS targeting possible. The first successes occurred with allele-specific targeting of KRAS p.Gly12Cys (G12C) in non-small cell lung cancer, resulting in regulatory approval of two agents-sotorasib and adagrasib. Inhibitors targeting other variants beyond G12C have shown preliminary antitumor activity in highly refractory malignancies such as pancreatic cancer. Herein, we outline RAS pathobiology with a focus on KRAS, illustrate therapeutic approaches across a variety of malignancies, including emphasis on the 'on' and 'off' switch allele-specific and 'pan' RAS inhibitors, and review immunotherapeutic and other key combination RAS targeting strategies. We summarize mechanistic understanding of de novo and acquired resistance, review combination approaches, emerging technologies and drug development paradigms and outline a blueprint for the future of KRAS therapeutics with anticipated profound clinical impact.
Collapse
Affiliation(s)
- Anupriya Singhal
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
45
|
Tonello M, Baratti D, Sammartino P, Di Giorgio A, Robella M, Sassaroli C, Framarini M, Valle M, Macrì A, Graziosi L, Coccolini F, Lippolis PV, Gelmini R, Deraco M, Biacchi D, Aulicino M, Vaira M, De Franciscis S, D'Acapito F, Carboni F, Milone E, Donini A, Fugazzola P, Faviana P, Sorrentino L, Pizzolato E, Cenzi C, Del Bianco P, Sommariva A. Prognostic value of specific KRAS mutations in patients with colorectal peritoneal metastases. ESMO Open 2024; 9:102976. [PMID: 38613907 PMCID: PMC11033065 DOI: 10.1016/j.esmoop.2024.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND There is little evidence on KRAS mutational profiles in colorectal cancer (CRC) peritoneal metastases (PM). This study aims to determine the prevalence of specific KRAS mutations and their prognostic value in a homogeneous cohort of patients with isolated CRC PM treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. MATERIALS AND METHODS Data were collected from 13 Italian centers, gathered in a collaborative group of the Italian Society of Surgical Oncology. KRAS mutation subtypes have been correlated with clinical and pathological characteristics and survival [overall survival (OS), local (peritoneal) disease-free survival (LDFS) and disease-free survival (DFS)]. RESULTS KRAS mutations occurred in 172 patients (47.5%) out of the 362 analyzed. Two different prognostic groups of KRAS mutation subtypes were identified: KRASMUT1 (G12R, G13A, G13C, G13V, Q61H, K117N, A146V), median OS > 120 months and KRASMUT2 (G12A, G12C, G12D, G12S, G12V, G13D, A59E, A59V, A146T), OS: 31.2 months. KRASMUT2 mutations mainly occurred in the P-loop region (P < 0.001) with decreased guanosine triphosphate (GTP) hydrolysis activity (P < 0.001) and were more frequently related to size (P < 0.001) and polarity change (P < 0.001) of the substituted amino acid (AA). When KRASMUT1 and KRASMUT2 were combined with other known prognostic factors (peritoneal cancer index, completeness of cytoreduction score, grading, signet ring cell, N status) in multivariate analysis, KRASMUT1 showed a similar survival rate to KRASWT patients, whereas KRASMUT2 was independently associated with poorer prognosis (hazard ratios: OS 2.1, P < 0.001; DFS 1.9, P < 0.001; LDFS 2.5, P < 0.0001). CONCLUSIONS In patients with CRC PM, different KRAS mutation subgroups can be determined according to specific codon substitution, with some mutations (KRASMUT1) that could have a similar prognosis to wild-type patients. These findings should be further investigated in larger series.
Collapse
Affiliation(s)
- M Tonello
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, Padua
| | - D Baratti
- Peritoneal Surface Malignancy Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - P Sammartino
- Cytoreductive Surgery and HIPEC Unit, Department of Surgery 'Pietro Valdoni', Sapienza University of Rome, Rome
| | - A Di Giorgio
- Surgical Unit of Peritoneum and Retroperitoneum, Fondazione Policlinico Universitario A. Gemelli, Rome
| | - M Robella
- Surgical Oncology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin
| | - C Sassaroli
- Integrated Medical Surgical Research in Peritoneal Surface Malignancy, Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale IRCCS, Naples
| | - M Framarini
- General and Oncologic Department of Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì
| | - M Valle
- Peritoneal Tumours Unit, IRCCS, Regina Elena Cancer Institute, Rome
| | - A Macrì
- Peritoneal and Retroperitonel Surgical Unit-University Hospital 'G. Martino' Messina
| | - L Graziosi
- General and Emergency Surgery Department, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia
| | - F Coccolini
- General Emergency and Trauma Surgery, Bufalini Hospital, Cesena; General Emergency and Trauma Surgery, Pisa University Hospital, Pisa
| | - P V Lippolis
- General and Peritoneal Surgery, Department of Surgery, Hospital University Pisa (AOUP), Pisa
| | - R Gelmini
- General and Oncological Surgery Unit, AOU of Modena University of Modena and Reggio Emilia
| | - M Deraco
- Peritoneal Surface Malignancy Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - D Biacchi
- Cytoreductive Surgery and HIPEC Unit, Department of Surgery 'Pietro Valdoni', Sapienza University of Rome, Rome
| | - M Aulicino
- Surgical Unit of Peritoneum and Retroperitoneum, Fondazione Policlinico Universitario A. Gemelli, Rome
| | - M Vaira
- Surgical Oncology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin
| | - S De Franciscis
- Colorectal Surgical Oncology, Abdominal Oncology Department, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale IRCCS, Naples
| | - F D'Acapito
- General and Oncologic Department of Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì
| | - F Carboni
- Peritoneal Tumours Unit, IRCCS, Regina Elena Cancer Institute, Rome
| | - E Milone
- Peritoneal and Retroperitonel Surgical Unit-University Hospital 'G. Martino' Messina
| | - A Donini
- General and Emergency Surgery Department, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia
| | - P Fugazzola
- General surgery, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - P Faviana
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa
| | - L Sorrentino
- General and Oncological Surgery Unit, AOU of Modena University of Modena and Reggio Emilia
| | - E Pizzolato
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, Padua
| | - C Cenzi
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - P Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - A Sommariva
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, Padua.
| |
Collapse
|
46
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
47
|
Tong X, Patel AS, Kim E, Li H, Chen Y, Li S, Liu S, Dilly J, Kapner KS, Zhang N, Xue Y, Hover L, Mukhopadhyay S, Sherman F, Myndzar K, Sahu P, Gao Y, Li F, Li F, Fang Z, Jin Y, Gao J, Shi M, Sinha S, Chen L, Chen Y, Kheoh T, Yang W, Yanai I, Moreira AL, Velcheti V, Neel BG, Hu L, Christensen JG, Olson P, Gao D, Zhang MQ, Aguirre AJ, Wong KK, Ji H. Adeno-to-squamous transition drives resistance to KRAS inhibition in LKB1 mutant lung cancer. Cancer Cell 2024; 42:413-428.e7. [PMID: 38402609 DOI: 10.1016/j.ccell.2024.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
KRASG12C inhibitors (adagrasib and sotorasib) have shown clinical promise in targeting KRASG12C-mutated lung cancers; however, most patients eventually develop resistance. In lung patients with adenocarcinoma with KRASG12C and STK11/LKB1 co-mutations, we find an enrichment of the squamous cell carcinoma gene signature in pre-treatment biopsies correlates with a poor response to adagrasib. Studies of Lkb1-deficient KRASG12C and KrasG12D lung cancer mouse models and organoids treated with KRAS inhibitors reveal tumors invoke a lineage plasticity program, adeno-to-squamous transition (AST), that enables resistance to KRAS inhibition. Transcriptomic and epigenomic analyses reveal ΔNp63 drives AST and modulates response to KRAS inhibition. We identify an intermediate high-plastic cell state marked by expression of an AST plasticity signature and Krt6a. Notably, expression of the AST plasticity signature and KRT6A at baseline correlates with poor adagrasib responses. These data indicate the role of AST in KRAS inhibitor resistance and provide predictive biomarkers for KRAS-targeted therapies in lung cancer.
Collapse
Affiliation(s)
- Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ayushi S Patel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eejung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongjun Li
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yueqing Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and biomedical sciences program, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin S Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ningxia Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Laura Hover
- Monoceros Biosystems, LLC, San Diego, CA 92129, USA
| | - Suman Mukhopadhyay
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Fiona Sherman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Khrystyna Myndzar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Priyanka Sahu
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juntao Gao
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing 100084, China
| | - Minglei Shi
- Institute of Medical Innovation, Peking University Third Hospital, Beijing 100191, China
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Thian Kheoh
- Mirati Therapeutics, San Diego, CA 92121, USA
| | | | - Itai Yanai
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Institute of Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Andre L Moreira
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Peter Olson
- Mirati Therapeutics, San Diego, CA 92121, USA
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China.
| |
Collapse
|
48
|
Shang Y, Fu S, Hao Q, Ying H, Wang J, Shen T. Multiple medicinal chemistry strategies of targeting KRAS: State-of-the art and future directions. Bioorg Chem 2024; 144:107092. [PMID: 38271825 DOI: 10.1016/j.bioorg.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
KRAS is the most frequently mutated oncogene and drives the development and progression of malignancies, most notably non-small cell lung cancer (NSCLS), pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). However, KRAS proteins have maintained the reputation of being "undruggable" due to the lack of suitable deep pockets on its surface. One major milestone for KRAS inhibition was the discovery of the covalent inhibitors bond to the allosteric switch-II pocket of the KRASG12C protein. To date, the FDA has approved two KRASG12C inhibitors, sotorasib and adagrasib, for the treatment of patients with KRASG12C-driven cancers. Researchers have paid close attention to the development of inhibitors for other KRAS mutations and upstream regulatory factors. The KRAS targeted drug discovery has entered a state of rapid development. This article has aimed to present the current state of the art of drug development in the KRAS field. We systematically summarize recent advances in the discovery and optimization processes of direct KRAS inhibitors (including KRASG12C, KRASG12D, KRASG12A and KRASG12R inhibitors), indirect KRAS inhibitors (SOS1 and SHP2 inhibitors), pan-KRAS inhibitors, as well as proteolysis-targetingchimeras degrades and molecular chaperone modulators from the perspective of medicinal chemistry. We also discuss the current challenges and opportunities of KRAS inhibition and hope to shed light on future KRAS drug discovery.
Collapse
Affiliation(s)
- Yanguo Shang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shengnan Fu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
49
|
Lu X, Jin J, Wu Y, Liu X, Liang X, Lin J, Sun Q, Qin J, Zhang W, Luan X. Progress in RAS-targeted therapeutic strategies: From small molecule inhibitors to proteolysis targeting chimeras. Med Res Rev 2024; 44:812-832. [PMID: 38009264 DOI: 10.1002/med.21993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/14/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023]
Abstract
As a widely considerable target in chemical biology and pharmacological research, rat sarcoma (RAS) gene mutations play a critical driving factor in several fatal cancers. Despite the great progress of RAS subtype-specific inhibitors, rapid acquired drug resistance could limit their further clinical applications. Proteolysis targeting chimera (PROTAC) has emerged as a powerful tool to handle "undruggable" targets and exhibited significant therapeutic benefit for the combat of drug resistance. Owing to unique molecular mechanism and binding kinetics, PROTAC is expected to become a feasible strategy to break the bottleneck of classical RAS inhibitors. This review aims to discuss the current advances of RAS inhibitors and especially focus on PROTAC strategy targeting RAS mutations and their downstream effectors for relevant cancer treatment.
Collapse
Affiliation(s)
- Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Liu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyan Sun
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jiangjiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Sharma V, Kumar A, Rawat R, Gulati M, Behl T, Khalid A, Najmi A, Zoghebi K, A Halawi M, Mohan S. Computational insights into KRAS G12C inhibition: exploring possible repurposing of Azacitidine and Ribavirin. J Biomol Struct Dyn 2024:1-11. [PMID: 38415708 DOI: 10.1080/07391102.2024.2321237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Kirsten rat sarcoma (KRAS) stands out as the most prevalent mutated oncogene, playing a crucial role in the initiation and progression of various cancer types, including colorectal, lung and pancreatic cancer. The oncogenic modifications of KRAS are intricately linked to tumor development and are identified in 22% of cancer patients. This has spurred the necessity to explore inhibition mechanisms, with the aim of investigating and repurposing existing drugs for diagnosing cancers dependent on KRAS G12C In this investigation, 26 nucleoside-based drugs were collected from literature to assess their effectiveness against KRAS G12C. The study incorporates in-silico molecular simulations and molecular docking examinations of these nucleoside-derived drugs with the KRAS G12C protein using Protein Data Bank (PDB) ID: 5V71. The docking outcomes indicated that two drugs, Azacitidine and Ribavirin, exhibited substantial binding affinities of -8.7 and -8.3 kcal/mol, respectively. These drugs demonstrated stability in binding to the active site of the protein during simulation studies. Root mean square deviation (RMSD) analyses indicated that the complexes closely adhered to an equilibrium RMSD value ranging from 0.17 to 0.2 nm. Additionally, % occupancies, bond angles and the length of hydrogen bonds were calculated. These findings suggest that Azacitidine and Ribavirin may potentially serve as candidates for repurposing in individuals with KRAS-dependent cancers.
Collapse
Affiliation(s)
- Vishakha Sharma
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar, India
| | - Ravi Rawat
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo,Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- National Center for Research, Medicinal and Aromatic Plants Research Institute, Khartoum, Sudan
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India
| |
Collapse
|