1
|
Mishra AK, Rodriguez M, Torres AY, Smith M, Rodriguez A, Bond A, Morrissey MA, Montell DJ. Hyperactive Rac stimulates cannibalism of living target cells and enhances CAR-M-mediated cancer cell killing. Proc Natl Acad Sci U S A 2023; 120:e2310221120. [PMID: 38109551 PMCID: PMC10756302 DOI: 10.1073/pnas.2310221120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
The 21kD GTPase Rac is an evolutionarily ancient regulator of cell shape and behavior. Rac2 is predominantly expressed in hematopoietic cells where it is essential for survival and motility. The hyperactivating mutation Rac2E62K also causes human immunodeficiency, although the mechanism remains unexplained. Here, we report that in Drosophila, hyperactivating Rac stimulates ovarian cells to cannibalize neighboring cells, destroying the tissue. We then show that hyperactive Rac2E62K stimulates human HL60-derived macrophage-like cells to engulf and kill living T cell leukemia cells. Primary mouse Rac2+/E62K bone-marrow-derived macrophages also cannibalize primary Rac2+/E62K T cells due to a combination of macrophage hyperactivity and T cell hypersensitivity to engulfment. Additionally, Rac2+/E62K macrophages non-autonomously stimulate wild-type macrophages to engulf T cells. Rac2E62K also enhances engulfment of target cancer cells by chimeric antigen receptor-expressing macrophages (CAR-M) in a CAR-dependent manner. We propose that Rac-mediated cell cannibalism may contribute to Rac2+/E62K human immunodeficiency and enhance CAR-M cancer immunotherapy.
Collapse
Affiliation(s)
- Abhinava K. Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Melanie Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Alba Yurani Torres
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Morgan Smith
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Anthony Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Meghan A. Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Denise J. Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
2
|
Zhang L, Chen Z, Li W, Liu Q, Wang Y, Chen X, Tian Z, Yang Q, An Y, Zhang Z, Mao H, Tang X, Lv G, Zhao X. Combined Immunodeficiency Caused by a Novel De Novo Gain-of-Function RAC2 Mutation. J Clin Immunol 2022; 42:1280-1292. [PMID: 35596857 DOI: 10.1007/s10875-022-01288-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 01/09/2023]
Abstract
Ras-related C3 botulinum toxin substrate 2 (RAC2) is a GTPase exclusively expressed in hematopoietic cells that acts as a pivotal regulator of several aspects of cell behavior via various cellular processes. RAC2 undergoes a tightly regulated GTP-binding/GTP-hydrolysis cycle, enabling it to function as a molecular switch. Mutations in RAC2 have been identified in 18 patients with different forms of primary immunodeficiency, ranging from phagocyte defects caused by dominant negative mutations to common variable immunodeficiency resulting from autosomal recessive loss-of-function mutations, or severe combined immunodeficiency due to dominant activating gain-of-function mutations. Here, we describe an 11-year-old girl with combined immunodeficiency presenting with recurrent respiratory infections and bronchiectasis. Immunological investigations revealed low T-cell receptor excision circle/K-deleting recombination excision circles numbers, lymphopenia, and low serum immunoglobulin G. Targeted next-generation sequencing identified a novel heterozygous mutation in RAC2, c.86C > G (p.P29R), located in the highly conserved Switch I domain. The mutation resulted in enhanced reactive oxygen species production, elevated F-actin content, and increased RAC2 protein expression in neutrophils, as well as increased cytokine production and a dysregulated phenotype in T lymphocytes. Furthermore, the dominant activating RAC2 mutation led to accelerated apoptosis with augmented intracellular active caspase 3, impaired actin polarization in lymphocytes and neutrophils, and diminished RAC2 polarization in neutrophils. We present a novel RAC2 gain-of-function mutation with implications for immunodeficiency and linked to functional dysregulation, including abnormal apoptosis and cell polarization arising from altered RAC2 expression. Thus, our findings broaden the spectrum of known RAC2 mutations and their underlying mechanisms.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, The Paediatric Academy of University of South China, Changsha, Hunan, China
| | - Zhi Chen
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Immunology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyan Li
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Liu
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhirui Tian
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Yang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huawei Mao
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ge Lv
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiaodong Zhao
- Department of Pediatric Research InstituteMinistry of Education Key Laboratory of Child Development and DisordersNational Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Lagresle-Peyrou C, Olichon A, Sadek H, Roche P, Tardy C, Da Silva C, Garrigue A, Fischer A, Moshous D, Collette Y, Picard C, Casanova JL, André I, Cavazzana M. A gain-of-function RAC2 mutation is associated with bone-marrow hypoplasia and an autosomal dominant form of severe combined immunodeficiency. Haematologica 2021; 106:404-411. [PMID: 31919089 PMCID: PMC7849581 DOI: 10.3324/haematol.2019.230250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023] Open
Abstract
Severe combined immunodeficiencies (SCIDs) constitute a heterogeneous group of life-threatening genetic disorders that typically present in the first year of life. They are defined by the absence of autologous T cells and the presence of an intrinsic or extrinsic defect in the B-cell compartment. In three newborns presenting with frequent infections and profound leukopenia, we identified a private, heterozygous mutation in the RAC2 gene (p.G12R). This mutation was de novo in the index case, who had been cured by hematopoietic stem cell transplantation but had transmitted the mutation to her sick daughter. Biochemical assays showed that the mutation was associated with a gain of function. The results of in vitro differentiation assays showed that RAC2 is essential for the survival and differentiation of hematopoietic stem/progenitor cells. Therefore, screening for RAC2 gain-of-function mutations should be considered in patients with a SCID phenotype and who lack a molecular diagnosis.
Collapse
Affiliation(s)
- Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Aurélien Olichon
- Cancer Research Center of Toulouse, CRCT, University of Toulouse, UPS, INSERM U1037, F-31037 Toulouse, France
| | - Hanem Sadek
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Philippe Roche
- Marseille Cancer Research Center, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, Team ISCB, F-13273 Marseille, France
| | - Claudine Tardy
- Cancer Research Center of Toulouse, CRCT, University of Toulouse, UPS, INSERM U1037, F-31037 Toulouse, France
| | - Cindy Da Silva
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Alexandrine Garrigue
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| | - Alain Fischer
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- College de France, F-75231 Paris, France
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
| | - Yves Collette
- Marseille Cancer Research Center, CRCM, Aix Marseille University, Institut Paoli-Calmettes, CNRS, INSERM, Team ISCB, F-13273 Marseille, France
| | - Capucine Picard
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- Study Center for Primary Immunodeficiencies, Assistance Publique–Hôpitaux de Paris (AP-HP), Necker- Enfants Malades University Hospital, F-75015 Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
| | - Jean Laurent Casanova
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, APHP, F- 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Isabelle André
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
| | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, F-75015 Paris, France
- Paris Descartes University – Sorbonne Paris Cité, Imagine Institute UMR1163, F-75015Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, F-75015 Paris, France
| |
Collapse
|
4
|
Fløyel T, Mirza AH, Kaur S, Frørup C, Yarani R, Størling J, Pociot F. The Rac2 GTPase contributes to cathepsin H-mediated protection against cytokine-induced apoptosis in insulin-secreting cells. Mol Cell Endocrinol 2020; 518:110993. [PMID: 32814070 DOI: 10.1016/j.mce.2020.110993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/01/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
The type 1 diabetes (T1D) risk locus on chromosome 15q25.1 harbors the candidate gene CTSH (cathepsin H). We previously demonstrated that CTSH regulates β-cell function in vitro and in vivo. CTSH overexpression protected insulin-secreting INS-1 cells against cytokine-induced apoptosis. The purpose of the present study was to identify the genes through which CTSH mediates its protective effects. Microarray analysis identified 63 annotated genes differentially expressed between CTSH-overexpressing INS-1 cells and control cells treated with interleukin-1β and interferon-γ for up to 16h. Permutation test identified 10 significant genes across all time-points: Elmod1, Fam49a, Gas7, Gna15, Msrb3, Nox1, Ptgs1, Rac2, Scn7a and Ttn. Pathway analysis identified the "Inflammation mediated by chemokine and cytokine signaling pathway" with Gna15, Ptgs1 and Rac2 as significant. Knockdown of Rac2 abolished the protective effect of CTSH overexpression on cytokine-induced apoptosis, suggesting that the small GTPase and T1D candidate gene Rac2 contributes to the anti-apoptotic effect of CTSH.
Collapse
Affiliation(s)
- Tina Fløyel
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark.
| | - Aashiq Hussain Mirza
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, Box 125, New York, NY, 10065, USA.
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark.
| | - Caroline Frørup
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark.
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark.
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark; Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark.
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, DK-2820, Gentofte, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
5
|
Hsu AP, Donkó A, Arrington ME, Swamydas M, Fink D, Das A, Escobedo O, Bonagura V, Szabolcs P, Steinberg HN, Bergerson J, Skoskiewicz A, Makhija M, Davis J, Foruraghi L, Palmer C, Fuleihan RL, Church JA, Bhandoola A, Lionakis MS, Campbell S, Leto TL, Kuhns DB, Holland SM. Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 2019; 133:1977-1988. [PMID: 30723080 PMCID: PMC6497516 DOI: 10.1182/blood-2018-11-886028] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 01/21/2023] Open
Abstract
Ras-related C3 botulinum toxin substrate 2 (RAC2), through interactions with reduced NAD phosphate oxidase component p67 phox , activates neutrophil superoxide production, whereas interactions with p21-activated kinase are necessary for fMLF-induced actin remodeling. We identified 3 patients with de novo RAC2[E62K] mutations resulting in severe T- and B-cell lymphopenia, myeloid dysfunction, and recurrent respiratory infections. Neutrophils from RAC2[E62K] patients exhibited excessive superoxide production, impaired fMLF-directed chemotaxis, and abnormal macropinocytosis. Cell lines transfected with RAC2[E62K] displayed characteristics of active guanosine triphosphate (GTP)-bound RAC2 including enhanced superoxide production and increased membrane ruffling. Biochemical studies demonstrated that RAC2[E62K] retains intrinsic GTP hydrolysis; however, GTPase-activating protein failed to accelerate hydrolysis resulting in prolonged active GTP-bound RAC2. Rac2+/E62K mice phenocopy the T- and B-cell lymphopenia, increased neutrophil F-actin, and excessive superoxide production seen in patients. This gain-of-function mutation highlights a specific, nonredundant role for RAC2 in hematopoietic cells that discriminates RAC2 from the related, ubiquitous RAC1.
Collapse
Affiliation(s)
| | - Agnes Donkó
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | | | - Danielle Fink
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Omar Escobedo
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | - Paul Szabolcs
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Melanie Makhija
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | | | | | | | | - Joseph A Church
- Pediatric Allergy/Immunology, Children's Hospital Los Angeles, Los Angeles, CA
- Clinical Pediatrics, Keck School of Medicine of USC, Los Angeles, CA; and
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | | | - Sharon Campbell
- Biochemistry and Biophysics, UNC Lineberger Comprehensive Cancer Center, UNC, Chapel Hill, NC
| | - Thomas L Leto
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | | |
Collapse
|
6
|
Wu N, Ren D, Li S, Ma W, Hu S, Jin Y, Xiao S. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation. BMC Cancer 2018; 18:67. [PMID: 29321004 PMCID: PMC5763756 DOI: 10.1186/s12885-017-3908-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background Small GTP binding protein Rac1 is a component of NADPH oxidases and is essential for superoxide-induced cell death. Rac1 is activated by guanine nucleotide exchange factors (GEFs), and this activation can be blocked by regulator of chromosome condensation 2 (RCC2), which binds the switch regions of Rac1 to prevent access from GEFs. Methods Three cancer cell lines with up- or down-regulation of RCC2 were used to evaluate cell proliferation, apoptosis, Rac1 signaling and sensitivity to a group of nine chemotherapeutic drugs. RCC2 expression in lung cancer and ovarian cancer were studied using immunochemistry stain of tumor tissue arrays. Results Forced RCC2 expression in tumor cells blocked spontaneous- or Staurosporine (STS)-induced apoptosis. In contrast, RCC2 knock down in these cells resulted in increased apoptosis to STS treatment. The protective activity of RCC2 on apoptosis was revoked by a constitutively activated Rac1, confirming a role of RCC2 in apoptosis by regulating Rac1. In an immunohistochemistry evaluation of tissue microarray, RCC2 was over-expressed in 88.3% of primary lung cancer and 65.2% of ovarian cancer as compared to non-neoplastic lung and ovarian tissues, respectively. Because chemotherapeutic drugs can kill tumor cells by activating Rac1/JNK pathway, we suspect that tumors with RCC2 overexpression would be more resistant to these drugs. Tumor cells with forced RCC2 expression indeed had significant difference in drug sensitivity compared to parental cells using a panel of common chemotherapeutic drugs. Conclusions RCC2 regulates apoptosis by blocking Rac1 signaling. RCC2 expression in tumor can be a useful marker for predicting chemotherapeutic response.
Collapse
Affiliation(s)
- Nan Wu
- Department of Medical Genetics, Harbin Medical University, Harbin, China
| | - Dong Ren
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Su Li
- Department of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenli Ma
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaoyan Hu
- Children's Hospital of Soochow University, Suzhou, China
| | - Yan Jin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Bopp A, Wartlick F, Henninger C, Schwarz M, Kaina B, Fritz G. Rac1 promotes diethylnitrosamine (DEN)-induced formation of liver tumors. Carcinogenesis 2015; 36:378-89. [PMID: 25556150 DOI: 10.1093/carcin/bgu323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To elucidate the function of the Ras-homologous GTPase Rac1 in hepatocarcinogenesis induced by diethylnitrosamine (DEN), mice lacking hepatic Rac1 expression were treated with DEN and compared to the wild-type (WT). Rac1 knock-out (KO) mice were found to have a lower tumor yield as compared to Rac1 proficient mice. The small-sized tumors formed in the absence of Rac1 lack an activated Ras/Raf/mitogen-activated protein kinase pathway, as indicated by the absence of p-ERK expression. Apparently, Rac1 is required for Ras-driven oncogenic pathways. Moreover, tumors in Rac1 deficient mice were glutamine synthase (GS) negative. They displayed a high number of p-H3-positive and cyclinB1 expressing cells, pointing to a defect in mitotic progression. To elucidate the influence of Rac1 on mechanisms of tumor initiation, acute DEN-induced hepatic stress responses were monitored. Rac1 deficiency caused fairly complex, partially time-dependent, alterations in both basal and/or DEN-induced messenger RNA (mRNA) and protein levels of susceptibility-related genes. Basal protein expression of DNA repair factors Brca1 and DNA repair protein RAD51 homolog (Rad51) and the cell cycle regulatory factor p27 was enhanced in the absence of Rac1. Following DEN treatment, p21 mRNA and protein expression was stimulated independent of the Rac1 status. Lack of Rac1 increased mechanisms of the DNA damage response (DDR), as shown by elevated protein levels of p-ATR, p-p53 and γH2AX 24h after DEN treatment. The data show that Rac1 is essential for DEN-stimulated hepatocarcinogenesis. We hypothesize that it promotes tumor initiation by counteracting the elimination of initiated cells and, moreover, alleviates the outgrowth of transformed cells. Hence, pharmacological targeting of Rac1 could be suitable for chemoprevention.
Collapse
Affiliation(s)
- Anita Bopp
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Friedrich Wartlick
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Christian Henninger
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Michael Schwarz
- Institute of Pharmacology and Toxicology, University Tübingen, Wilhelmstrasse 76, D-72074 Tübingen, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany and
| | - Gerhard Fritz
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany,
| |
Collapse
|
8
|
Fattouh R, Guo CH, Lam GY, Gareau MG, Ngan BY, Glogauer M, Muise AM, Brumell JH. Rac2-deficiency leads to exacerbated and protracted colitis in response to Citrobacter rodentium infection. PLoS One 2013; 8:e61629. [PMID: 23613889 PMCID: PMC3628927 DOI: 10.1371/journal.pone.0061629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/12/2013] [Indexed: 02/04/2023] Open
Abstract
Recent genetic-based studies have implicated a number of immune-related genes in the pathogenesis of inflammatory bowel disease (IBD). Our recent genetic studies showed that RAC2 is associated with human IBD; however, its role in disease pathogenesis is unclear. Given Rac2's importance in various fundamental immune cell processes, we investigated whether a defect in Rac2 may impair host immune responses in the intestine and promote disease in the context of an infection-based (Citrobacter rodentium) model of colitis. In response to infection, Rac2(-/-) mice showed i) worsened clinical symptoms (days 13-18), ii) increased crypt hyperplasia at days 11 and 22 (a time when crypt hyperplasia was largely resolved in wild-type mice; WT), and iii) marked mononuclear cell infiltration characterized by higher numbers of T (CD3(+)) cells (day 22), compared to WT-infected mice. Moreover, splenocytes harvested from infected Rac2(-/-) mice and stimulated in vitro with C. rodentium lysate produced considerably higher levels of interferon-γ and interleukin-17A. The augmented responses observed in Rac2(-/-) mice did not appear to stem from Rac2's role in NADPH oxidase-driven reactive oxygen species production as no differences in crypt hyperplasia, nor inflammation, were observed in infected NOX2(-/-) mice compared to WT. Collectively, our findings demonstrate that Rac2(-/-) mice develop more severe disease when subjected to a C. rodentium-induced model of infectious colitis, and suggest that impaired Rac2 function may promote the development of IBD in humans.
Collapse
Affiliation(s)
- Ramzi Fattouh
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cong-Hui Guo
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Grace Y. Lam
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melanie G. Gareau
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bo-Yee Ngan
- Department of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Aleixo M. Muise
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Sickkids IBD Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John H. Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Sickkids IBD Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Billard MJ, Gruver AL, Sempowski GD. Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses. PLoS One 2011; 6:e17940. [PMID: 21437240 PMCID: PMC3060875 DOI: 10.1371/journal.pone.0017940] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/18/2011] [Indexed: 11/28/2022] Open
Abstract
Background Productive thymopoiesis is essential for a robust and healthy immune system.
Thymus unfortunately is acutely sensitive to stress resulting in involution
and decreased T cell production. Thymic involution is a complication of many
clinical settings, including infection, malnutrition, starvation, and
irradiation or immunosuppressive therapies. Systemic rises in
glucocorticoids and inflammatory cytokines are known to contribute to thymic
atrophy. Little is known, however, about intrathymic mechanisms that may
actively contribute to thymus atrophy or initiate thymic recovery following
stress events. Methodology/Principal Findings Phenotypic, histologic and transcriptome/pathway analysis of murine thymic
tissue during the early stages of endotoxemia-induced thymic involution was
performed to identify putative mechanisms that drive thymic involution
during stress. Thymus atrophy in this murine model was confirmed by
down-regulation of genes involved in T cell development, cell activation,
and cell cycle progression, correlating with observed phenotypic and
histologic thymus involution. Significant gene changes support the
hypothesis that multiple key intrathymic pathways are differentially
activated during stress-induced thymic involution. These included direct
activation of thymus tissue by LPS through TLR signaling, local expression
of inflammatory cytokines, inhibition of T cell signaling, and induction of
wound healing/tissue remodeling. Conclusions/Significance Taken together, these observations demonstrated that in addition to the
classic systemic response, a direct intrathymic response to endotoxin
challenge concurrently contributes to thymic involution during endotoxemia.
These findings are a substantial advancement over current understanding of
thymus response to stress and may lead to the development of novel
therapeutic approaches to ameliorate immune deficiency associated with
stress events.
Collapse
Affiliation(s)
- Matthew J. Billard
- Department of Biostatistics & Bioinformatics, Duke University Medical
Center, Durham, North Carolina, United States of America
| | - Amanda L. Gruver
- Department of Medicine, Department of Pathology, and the Duke University
Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,
United States of America
| | - Gregory D. Sempowski
- Department of Medicine, Department of Pathology, and the Duke University
Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,
United States of America
- * E-mail:
| |
Collapse
|
10
|
Ramgolam VS, DeGregorio SD, Rao GK, Collinge M, Subaran SS, Markovic-Plese S, Pardi R, Bender JR. T cell LFA-1 engagement induces HuR-dependent cytokine mRNA stabilization through a Vav-1, Rac1/2, p38MAPK and MKK3 signaling cascade. PLoS One 2010; 5:e14450. [PMID: 21206905 PMCID: PMC3012057 DOI: 10.1371/journal.pone.0014450] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 12/06/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Engagement of the β2 integrin, lymphocyte function-associated antigen-1 (LFA-1), results in stabilization of T cell mRNA transcripts containing AU-rich elements (AREs) by inducing rapid nuclear-to-cytosolic translocation of the RNA-stabilizing protein, HuR. However, little is known regarding integrin-induced signaling cascades that affect mRNA catabolism. This study examines the role of the GTPases, Rac 1 and Rac 2, and their downstream effectors, in the LFA-1-induced effects on mRNA. METHODOLOGY/PRINCIPAL FINDINGS Engagement of LFA-1 to its ligand, ICAM-1, in human peripheral T cells resulted in rapid activation of Rac1 and Rac2. siRNA-mediated knockdown of either Rac1 or Rac2 prevented LFA-1-stimulated stabilization of the labile transcripts encoding IFN-γ and TNF-α, and integrin mediated IFN-γ mRNA stabilization was absent in T cells obtained from Rac2 gene-deleted mice. LFA-1 engagement-induced translocation of HuR and stabilization of TNF- α mRNA was lost in Jurkat cells deficient in the Rac guanine nucleotide exchange factor Vav-1 (J.Vav1). The transfection of J.Vav1 cells with constitutively active Rac1 or Rac2 stabilized a labile β-globin reporter mRNA, in a HuR-dependent manner. Furthermore, LFA-1-mediated mRNA stabilization and HuR translocation in mouse splenic T cells was dependent on the phosphorylation of the mitogen-activated protein kinase kinase, MKK3, and its target MAP kinase p38MAPK, and lost in T cells obtained from MKK3 gene-deleted mice. CONCLUSIONS/SIGNIFICANCE Collectively, these results demonstrate that LFA-1-induced stabilization of ARE-containing mRNAs in T cells is dependent on HuR, and occurs through the Vav-1, Rac1/2, MKK3 and p38MAPK signaling cascade. This pathway constitutes a molecular switch that enhances immune and pro-inflammatory gene expression in T cells undergoing adhesion at sites of activation and effector function.
Collapse
Affiliation(s)
- Vinod S. Ramgolam
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Scott D. DeGregorio
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gautham K. Rao
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mark Collinge
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sharmila S. Subaran
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Silva Markovic-Plese
- Department of Neurology and of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ruggero Pardi
- Department of Molecular Pathology, Universitá Vita-Salute School of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Jeffrey R. Bender
- Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Departments of Medicine (Cardiovascular Medicine) and Immunobiology, Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
11
|
Smits K, Iannucci V, Stove V, Van Hauwe P, Naessens E, Meuwissen PJ, Ariën KK, Bentahir M, Plum J, Verhasselt B. Rho GTPase Cdc42 is essential for human T-cell development. Haematologica 2010; 95:367-75. [PMID: 20207844 PMCID: PMC2833065 DOI: 10.3324/haematol.2009.006890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/29/2009] [Accepted: 08/25/2009] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Rho GTPases are involved in the regulation of many cell functions, including some related to the actin cytoskeleton. Different Rho GTPases have been shown to be important for T-cell development in mice. However, their role in human T-cell development has not yet been explored. DESIGN AND METHODS We examined the expression and activation of Rho GTPases along different stages of T-cell development in the human thymus. Early stage human thymocytes were transduced with constitutively active and dominant negative mutants of different Rho GTPases to explore their role in human T-cell development, as analyzed in fetal thymus organ cultures. The use of these mutants as well as Rho GTPase-specific inhibitors allowed us to explore the role of GTPases in thymocyte migration. RESULTS We found that the expression of several Rho GTPases is differently regulated during successive stages of T-cell development in man, suggesting a specific role in human thymopoiesis. In chimeric fetal thymus organ culture, T-cell development was not or only mildly affected by expression of dominant negative Rac1 and Rac2, but was severely impaired in the presence of dominant negative Cdc42, associated with enhanced apoptosis and reduced proliferation. Kinetic analysis revealed that Cdc42 is necessary in human T-cell development both before and after expression of the pre-T-cell receptor. Using inhibitors and retrovirally transferred mutants of the aforementioned Rho GTPases, we showed that only Rac1 is necessary for migration of different thymocyte subsets, including the early CD34(+) fraction, towards stromal cell-derived factor-1 alpha. Constitutively active mutants of Rac1, Rac2 and Cdc42 all impaired migration towards stromal cell-derived factor-1 alpha and T-cell development to different degrees. CONCLUSIONS This is the first report on Rho GTPases in human T-cell development, showing the essential role of Cdc42. Our data suggest that enhanced apoptotic death and reduced proliferation rather than disturbed migration explains the decreased thymopoiesis induced by dominant negative Cdc42.
Collapse
Affiliation(s)
- Kaatje Smits
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| | - Veronica Iannucci
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| | - Veronique Stove
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| | | | - Evelien Naessens
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| | - Pieter J. Meuwissen
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| | - Kevin K. Ariën
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| | - Mostafa Bentahir
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| | - Jean Plum
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent and
| |
Collapse
|
12
|
Abstract
Rho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho GTPase functions in blood cell development and regulation by gene targeting of individual Rho GTPases in mice has allowed a genetic understanding of their physiologic roles in hematopoietic progenitors and mature lineages. In particular, mouse gene-targeting studies have provided convincing evidence that individual members of the Rho GTPase family are essential regulators of cell type-specific functions and stimuli-specific pathways in regulating hematopoietic stem cell interaction with bone marrow niche, erythropoiesis, and red blood cell actin dynamics, phagocyte migration and killing, and T- and B-cell maturation. In addition, deregulation of Rho GTPase family members has been associated with multiple human hematologic diseases such as neutrophil dysfunction, leukemia, and Fanconi anemia, raising the possibility that Rho GTPases and downstream signaling pathways are of therapeutic value. In this review we discuss recent genetic studies of Rho GTPases in hematopoiesis and several blood lineages and the implications of Rho GTPase signaling in hematologic malignancies, immune pathology. and anemia.
Collapse
|
13
|
Abstract
Rho family GTPases, and the proteins that regulate them, have important roles in many cellular processes, including cell division, survival, migration and adhesion. Although most of our understanding of these proteins has come from studies using cell lines, more recent gene targeting studies in mice are providing insights into the in vivo function of these proteins. Here we review recent progress revealing crucial roles for these proteins in lymphocyte development, activation, differentiation and migration. The emerging picture shows that Rho family GTPases transduce signals from receptors for antigens, chemokines and cytokines, as well as adhesion molecules and pattern recognition receptors, and that they function as focal points for crosstalk between different signalling pathways.
Collapse
|
14
|
Dumont C, Corsoni-Tadrzak A, Ruf S, de Boer J, Williams A, Turner M, Kioussis D, Tybulewicz VLJ. Rac GTPases play critical roles in early T-cell development. Blood 2009; 113:3990-8. [PMID: 19088377 PMCID: PMC2673125 DOI: 10.1182/blood-2008-09-181180] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/14/2008] [Indexed: 01/11/2023] Open
Abstract
The Rac1 and Rac2 GTPases play important roles in many processes including cytoskeletal reorganization, proliferation, and survival, and are required for B-cell development. Previous studies had shown that deficiency in Rac2 did not affect T-cell development, whereas the function of Rac1 in this process has not been investigated. We now show that simultaneous absence of both GTPases resulted in a very strong developmental block at the pre-TCR checkpoint and in defective positive selection. Unexpectedly, deficiency of Rac1 and Rac2 also resulted in the aberrant survival of thymocytes lacking expression of TCR beta, showing hallmarks of hyperactive Notch signaling. Furthermore, we found a similar novel phenotype in the absence of Vav1, Vav2, and Vav3, which function as guanine nucleotide exchange factors for Rac1 and Rac2. These results show that a pathway containing Vav and Rac proteins may negatively regulate Notch signaling during early thymic development.
Collapse
Affiliation(s)
- Celine Dumont
- Division of Immune Cell Biology, Medical Research Council (MRC) National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang MC, Tullo AB, Hillarby MC. Increased Rac2 mRNA expression in peripheral blood during human corneal graft rejection. Eye (Lond) 2009; 23:461-9. [PMID: 18849916 DOI: 10.1038/eye.2008.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Allograft rejection is the main cause of graft failure in human corneal transplantation, for which underlying pathomechanism is not yet clear. We compared gene expression in the peripheral blood of patients who after undergoing corneal transplantation experienced graft rejection with those patients who accepted grafts. METHODS Sixty-six patients who underwent corneal transplantation were studied including 18 patients who suffered subsequent graft rejection. cDNA array technology was used to survey and quantify transcript expression. A semiquantitative reverse transcriptase-PCR (RT-PCR) was used to confirm the gene expression pattern measured by a cDNA array of selected genes. RESULTS Among 265 genes present on the array, eight genes were found to be differentially expressed. Four genes (Rac 2, RhoA, paxillin, and CD18) were further analysed by semiquantitative RT-PCR, and significant differences in mRNA expression levels in the rejection group were confirmed. CONCLUSIONS Our study demonstrated that the expression of Rac2 mRNA was upregulated in the peripheral blood of patients experiencing corneal transplantation rejection compared to those patients who had no rejection episodes. In addition, three genes, RhoA, paxillin, and CD18, showed decreased expression in rejecting patients. cDNA array technology provides a potentially useful approach to identify novel genes that might participate in pathogenic pathways during corneal graft rejection.
Collapse
Affiliation(s)
- M-C Huang
- Department of Medical Genetics, University of Manchester, UK
| | | | | |
Collapse
|
16
|
Guo F, Cancelas JA, Hildeman D, Williams DA, Zheng Y. Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development. Blood 2008; 112:1767-75. [PMID: 18579797 PMCID: PMC2518885 DOI: 10.1182/blood-2008-01-132068] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 06/09/2008] [Indexed: 02/02/2023] Open
Abstract
Rac GTPases have been implicated in the regulation of diverse functions in various blood cell lineages, but their role in T-cell development is not well understood. We have carried out conditional gene targeting to achieve hematopoietic stem cell (HSC)- or T-cell lineage-specific deletion of Rac1 or Rac1/Rac2 by crossbreeding the Mx-Cre or Lck-Cre transgenic mice with Rac1(loxp/loxp) or Rac1(loxp/loxp);Rac2(-/-) mice. We found that (1) HSC deletion of both Rac1 and Rac2 inhibited production of common lymphoid progenitors (CLPs) in bone marrow and suppressed T-cell development in thymus and peripheral organs, whereas deletion of Rac1 moderately affected CLP production and T-cell development. (2) T cell-specific deletion of Rac1 did not affect T-cell development, whereas deletion of both Rac1 and Rac2 reduced immature CD4(+)CD8(+) and mature CD4(+) populations in thymus as well as CD4(+) and CD8(+) populations in spleen. (3) The developmental defects of Rac1/Rac2 knockout T cells were associated with proliferation, survival, adhesion, and migration defects. (4) Rac1/Rac2 deletion suppressed T-cell receptor-mediated proliferation, IL-2 production, and Akt activation in thymocytes. Thus, Rac1 and Rac2 have unique roles in CLP production and share a redundant but essential role in later stages of T-cell development by regulating survival and proliferation signals.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, OH, USA
| | | | | | | | | |
Collapse
|
17
|
Gelderman KA, Hultqvist M, Olsson LM, Bauer K, Pizzolla A, Olofsson P, Holmdahl R. Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal 2007; 9:1541-67. [PMID: 17678439 DOI: 10.1089/ars.2007.1569] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) are chronic diseases that cannot be prevented or cured If the pathologic basis of such disease would be known, it might be easier to develop new drugs interfering with critical pathway. Genetic analysis of animal models for autoimmune diseases can result in discovery of proteins and pathways that play key function in pathogenesis, which may provide rationales for new therapeutic strategies. Currently, only the MHC class II is clearly associated with human RA and animal models for RA. However, recent data from rats and mice with a polymorphism in Ncf1, a member of the NADPH oxidase complex, indicate a role for oxidative burst in protection from arthritis. Oxidative burst-activating substances can treat and prevent arthritis in rats, as efficiently as clinically applied drugs, suggesting a novel pathway to a therapeutic target in human RA. Here, the authors discuss the role of oxygen radicals in regulating the immune system and autoimmune disease. It is proposed that reactive oxygen species set the threshold for T cell activation and thereby regulate chronic autoimmune inflammatory diseases like RA. In the light of this new hypothesis, new possibilities for preventive and therapeutic treatment of chronic inflammatory diseases are discussed.
Collapse
Affiliation(s)
- Kyra A Gelderman
- Unit for Medical Inflammation Research, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Jin S, Ray RM, Johnson LR. Rac1 mediates intestinal epithelial cell apoptosis via JNK. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1137-47. [PMID: 16798728 DOI: 10.1152/ajpgi.00031.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apoptosis plays a key role in the maintenance of a constant cell number and a low incidence of cancer in the mucosa of the intestine. Although the small GTPase Rac1 has been established as an important regulator of migration of intestinal epithelial cells, whether Rac1 is also involved in apoptosis is unclear. The present study tested the hypothesis that Rac1 mediates TNF-alpha-induced apoptosis in IEC-6 cells. Rac1 is activated during TNF-alpha-induced apoptosis as judged by the level of GTP-Rac1, the level of microsomal membrane-associated Rac1, and lamellipodia formation. Although expression of constitutively active Rac1 does not increase apoptosis in the basal condition, inhibition of Rac1 either by NSC-23766 (Rac1 inhibitor) or expression of dominant negative Rac1 protects cells from TNF-alpha-induced apoptosis by inhibiting caspase-3, -8, and -9 activities. Inhibition of Rac1 before the administration of apoptotic stimuli significantly prevents TNF-alpha-induced activation of JNK1/2, the key proapoptotic regulator in IEC-6 cells. Inhibition of Rac1 does not modulate TNF-alpha-induced ERK1/2 and Akt activation. Inhibition of ERK1/2 and Akt activity by U-0126 and LY-294002, respectively, increased TNF-alpha-induced apoptosis. However, inhibition of Rac1 significantly decreased apoptosis in the presence of ERK1/2 and Akt inhibitors, similar to the effect observed with NSC-23766 alone in response to TNF-alpha. Thus, Rac1 inhibition protects cells independently of ERK1/2 and Akt activation during TNF-alpha-induced apoptosis. Although p38 MAPK is activated in response to TNF-alpha, inhibition of p38 MAPK did not decrease apoptosis. Rac1 inhibition did not alter p38 MAPK activity. Thus, these results indicate that Rac1 mediates apoptosis via JNK and plays a key role in proapoptotic pathways in intestinal epithelial cells.
Collapse
Affiliation(s)
- Shi Jin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
19
|
Mahadevan D, Spier C, Della Croce K, Miller S, George B, Riley C, Warner S, Grogan TM, Miller TP. Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther 2006; 4:1867-79. [PMID: 16373702 DOI: 10.1158/1535-7163.mct-05-0146] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To glean biological differences and similarities of peripheral T-cell lymphoma-not otherwise specified [PTCL-NOS] to diffuse large B-cell lymphoma (DLBCL), a transcriptosome analysis was done on five PTCL-NOS and four DLBCL patients and validated by quantitative real-time reverse transcription-PCR on 10 selected genes. Normal peripheral blood T cells, peripheral blood B cells, and lymph node were used as controls. The resultant gene expression profile delineated distinct "tumor profile signatures" for PTCL-NOS and DLBCL. Several highly overexpressed genes in both PTCL-NOS and DLBCL involve the immune network, stroma, angiogenesis, and cell survival cascades that make important contributions to lymphomagenesis. Inflammatory chemokines and their receptors likely play a central role in these complex interrelated pathways: CCL2 and CXCR4 in PTCL-NOS and CCL5 and CCR1 in DLBCL. Highly overexpressed oncogenes unique to PTCL-NOS are SPI1, STK6, alpha-PDGFR, and SH2D1A, whereas in DLBCL they are PIM1, PIM2, LYN, BCL2A1, and RAB13. Oncogenes common to both lymphomas are MAFB, MET, NF-kappaB2, LCK, and LYN. Several tumor suppressors are also down-regulated (TPTE, MGC154, PTCH, ST5, and SUI1). This study illustrates the relevance of tumor-stroma immune trafficking and identified potential novel prognostic markers and targets for therapeutic intervention.
Collapse
MESH Headings
- Base Sequence
- DNA Primers
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/pathology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Oligonucleotide Array Sequence Analysis
- Oncogenes
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Daruka Mahadevan
- Department of Medicine, Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Klinger MB, Guilbault B, Kay RJ. The RhoA- and CDC42-specific exchange factor Dbs promotes expansion of immature thymocytes and deletion of double-positive and single-positive thymocytes. Eur J Immunol 2004; 34:806-816. [PMID: 14991610 DOI: 10.1002/eji.200324400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Specific members of the Rho family of GTPases exert unique influences on thymocyte proliferation, differentiation and deletion. Dbs is a guanine nucleotide exchange factor which is expressed throughout thymocyte development and is able to activate the Rho family GTPases CDC42, RhoA and RhoG. Transgenic mice expressing an activated form of Dbs had increased numbers of double-negative thymocytes. The Dbs transgene promoted expansion of double-negative thymocytes in the absence of pre-TCR, but had no effect on pre-TCR-dependent differentiation of double-negative thymocytes into double-positive thymocytes. Transgenic double-positive thymocytes were proliferative in vivo, but were also susceptible to apoptosis in vivo and in vitro. The transgenic single-positive thymocytes had attenuated proliferative responses following TCR ligation, and were depleted rather than expanded during culture in the presence of anti-CD3. When expressing a positively selectable TCR, transgenic double-positive thymocytes were increased in number and activated, but the output of single-positive thymocytes was reduced. Transgenic double-positive thymocytes were acutely sensitive to deletion by TCR ligation in vivo. These results indicate that activation of Dbs has the potential to promote proliferation throughout thymocyte development, but also sensitizes double-positive and single-positive thymocytes to deletion.
Collapse
Affiliation(s)
- Mark B Klinger
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- present address: Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94122, USA
| | - Benoit Guilbault
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Robert J Kay
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Vigorito E, Bell S, Hebeis BJ, Reynolds H, McAdam S, Emson PC, McKenzie A, Turner M. Immunological function in mice lacking the Rac-related GTPase RhoG. Mol Cell Biol 2004; 24:719-29. [PMID: 14701744 PMCID: PMC343784 DOI: 10.1128/mcb.24.2.719-729.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RhoG is a low-molecular-weight GTPase highly expressed in lymphocytes that activates gene transcription and promotes cytoskeletal reorganization in vitro. To study the in vivo function of RhoG, we generated mice homozygous for a targeted disruption of the RhoG gene. Despite the absence of RhoG, the development of B and T lymphocytes was unaffected. However, there was an increase in the level of serum immunoglobulin G1 (IgG1) and IgG2b as well as a mild increase of the humoral immune response to thymus-dependent antigens. In addition, B- and T-cell proliferation in response to antigen receptor cross-linking was slightly increased. Although RhoG deficiency produces a mild phenotype, our experiments suggest that RhoG may contribute to the negative regulation of immune responses. The lack of a strong phenotype could indicate a functional redundancy of RhoG with other Rac proteins in lymphocytes.
Collapse
Affiliation(s)
- Elena Vigorito
- Laboratory of Lymphocyte Signaling and Development, Molecular Immunology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Samstag Y, Nebl G. Interaction of cofilin with the serine phosphatases PP1 and PP2A in normal and neoplastic human T lymphocytes. ADVANCES IN ENZYME REGULATION 2004; 43:197-211. [PMID: 12791392 DOI: 10.1016/s0065-2571(02)00031-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-University, Im Neuenheimer Feld 305, D-69120, Heidelberg, Germany.
| | | |
Collapse
|
23
|
Leung K, Nagy A, Gonzalez-Gomez I, Groffen J, Heisterkamp N, Kaartinen V. Targeted Expression of Activated Rac3 in Mammary Epithelium Leads to Defective Postlactational Involution and Benign Mammary Gland Lesions. Cells Tissues Organs 2003; 175:72-83. [PMID: 14605486 DOI: 10.1159/000073751] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2003] [Indexed: 11/19/2022] Open
Abstract
Rac3, a novel member of the Rho subfamily of the small GTPases, is frequently activated in cultured breast cancer cells and has been shown to mediate its effect via the p21-activated kinase (Pak) pathway. In order to evaluate these findings in vivo, we generated transgenic mice that express human constitutively active V12Rac under the control of the mouse mammary tumor virus (MMTV) promoter, which targets the transgene expression to the mammary epithelium. V12Rac3 expression could be detected during the first pregnancy, and the transgenic mammary gland tissues displayed an elevated Pak1 phosphorylation. Although milk proteins, beta-casein and whey acidic protein were expressed and milk fat globules accumulated normally during pregnancy, 60% of transgenic mothers failed to nurse their pups. Surprisingly, although full lactational differentiation was never achieved in transgenic mice, gland involution was incomplete. For 5 days after weaning, involution was normal, but thereafter, epithelial islands characteristic of this early stage of involution persisted for months. The apoptotic index decreased after 5 days, and these glands were associated with increased p38 MAPK phosphorylation. Nine months postpartum, the transgenic mammary glands still demonstrated a large amount of persistent epithelial islands and abnormally large ducts with lymphocyte infiltration, whereas the tissues of non-transgenic controls had returned to their normal 'virgin-like' phenotype. These data show that sustained activation of Rac3 in the mammary epithelium leads to impaired mammary gland physiology and results in the formation of mammary gland lesions.
Collapse
MESH Headings
- Animals
- Atrophy/genetics
- Atrophy/metabolism
- Cell Death/genetics
- Disease Models, Animal
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Targeting
- Humans
- Lactation/genetics
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/physiopathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/physiopathology
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- Pregnancy
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases/metabolism
- Transgenes/genetics
- Up-Regulation/genetics
- p21-Activated Kinases
- p38 Mitogen-Activated Protein Kinases
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Karen Leung
- Developmental Biology Program, Department of Pathology and Laboratory Medicine, Childrens Hospital Los Angeles Research Institute, Los Angeles, CA 90027, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zhang B, Zhang Y, Shacter E. Caspase 3-mediated inactivation of rac GTPases promotes drug-induced apoptosis in human lymphoma cells. Mol Cell Biol 2003; 23:5716-25. [PMID: 12897143 PMCID: PMC166330 DOI: 10.1128/mcb.23.16.5716-5725.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Rac members of the Rho family GTPases control signaling pathways that regulate diverse cellular activities, including cytoskeletal organization, gene transcription, and cell transformation. Rac is implicated in apoptosis, but little is known about the mechanism by which it responds to apoptotic stimuli. Here we demonstrate that endogenous Rac GTPases are caspase 3 substrates that are cleaved in human lymphoma cells during drug-induced apoptosis. Cleavage of Rac1 occurs at two unconventional caspase 3 sites, VVGD11/G and VMVD47/G, and results in inactivation of the GTPase and effector functions of the protein (binding to the p21-activated protein kinase PAK1). Expression of caspase 3-resistant Rac1 mutants in the cells suppresses drug-induced apoptosis. Thus, proteolytic inactivation of Rac GTPases represents a novel, irreversible mechanism of Rac downregulation that allows maximal cell death following drug treatment.
Collapse
Affiliation(s)
- Baolin Zhang
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
25
|
Abstract
Guanine nucleotide binding proteins rapidly cycle between a guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound state, and they operate as binary switches that control cell activation in response to environmental cues. GTPases adopt different conformations when binding GTP vs. GDP. The GTP-bound state is generally considered to be the active conformation that allows GTPases to interact with downstream effectors and thereby initiate downstream signaling pathways, which regulate many important biological processes. Many members of the Ras family of GTPases, notably Ras and Rap1A, and the Rho family GTPases, Cdc42Hs, Rac1, Rac2 and RhoA, are important components of signal transduction pathways used by antigen receptors, costimulatory, cytokine and chemokine receptors to regulate the immune response. This review discusses current knowledge and ideas about the regulation and function of these GTPases in lymphocytes.
Collapse
Affiliation(s)
- Doreen Ann Cantrell
- Division of Cell Biology and Immunology, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, UK.
| |
Collapse
|
26
|
Otsuki Y, Tanaka M, Kamo T, Kitanaka C, Kuchino Y, Sugimura H. Guanine nucleotide exchange factor, Tiam1, directly binds to c-Myc and interferes with c-Myc-mediated apoptosis in rat-1 fibroblasts. J Biol Chem 2003; 278:5132-5140. [PMID: 12446731 DOI: 10.1074/jbc.m206733200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor c-Myc is important for the control of cell growth, cell cycle progression, neoplasia, and apoptotic cell death. Recently, c-Myc-binding proteins, which bind either to the N-terminal domain or the C-terminal domain of c-Myc, have been proposed as the key molecules to realize the mechanisms of these multiple c-Myc functions. We report in the present study on another protein, Tiam1, which is a specific guanine nucleotide exchange factor of Rac1 and which binds to c-Myc and modulates several of its biological functions. We were able to detect the direct binding and in vivo association between c-Myc and Tiam1. The necessary role in this interaction of the Myc box II of c-Myc was revealed in the cell extracts. The additional discovery of the intranuclear localization of Tiam1 in Rat1 cells and in neuronal cells of the mouse brain suggests this interaction may occur in the nucleus. Overexpression of Tiam1 repressed the luciferase activity of c-Myc and also inhibited the c-Myc apoptotic activity through this protein-protein interaction. Taken together, we concluded that Tiam1 is another c-Myc regulator, working in the nuclei to control c-Myc-related apoptosis.
Collapse
Affiliation(s)
- Yoshiro Otsuki
- First Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Vigorito E, Billadeu DD, Savoy D, McAdam S, Doody G, Fort P, Turner M. RhoG regulates gene expression and the actin cytoskeleton in lymphocytes. Oncogene 2003; 22:330-42. [PMID: 12545154 DOI: 10.1038/sj.onc.1206116] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RhoG, a member of the Rho family of GTPases, has been implicated as a regulator of the actin cytoskeleton. In this study, we show a novel function for the small GTPase RhoG on the regulation of the interferon-gamma promoter and nuclear factor of activated T cells (NFAT) gene transcription in lymphocytes. Optimal function of RhoG for the expression of these genes requires a calcium signal, normally provided by the antigen receptor. In addition, RhoG potentiation of NFAT requires the indirect activity of Rac and Cdc42; however, pathways distinct from those activated by Rac and Cdc42 mediate RhoG activation of NFAT-dependent transcription. Using effector domain mutants of RhoG we found that its ability to potentiate NFAT-dependent transcription correlates with its capacity to increase actin polymerization, supporting the suggestion that NFAT-dependent transcription is an actin-dependent process. RhoG also promotes T-cell spreading on fibronectin, a property that is independent of its ability to enhance NFAT-dependent transcription. Hence, these results implicate RhoG in leukocyte trafficking and the control of gene expression induced in response to antigen encounter.
Collapse
Affiliation(s)
- Elena Vigorito
- Laboratory for Lymphocyte Signalling and Development, Molecular Immunology Programme, The Babraham Institute, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Bodmer D, Brors D, Pak K, Gloddek B, Ryan A. Rescue of auditory hair cells from aminoglycoside toxicity by Clostridium difficile toxin B, an inhibitor of the small GTPases Rho/Rac/Cdc42. Hear Res 2002; 172:81-6. [PMID: 12361869 DOI: 10.1016/s0378-5955(02)00514-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hair cells (HCs) are the most vulnerable elements in the cochlea and damage to them is the most common cause of sensorineural hearing loss. Understanding the intracellular events that lead to the death of HCs is a key to developing protective strategies. Recently, it has been shown that the c-Jun-N-terminal kinase (JNK) pathway is activated in HCs in response to aminoglycosides (J. Neurosci. 20 (2000) 43). We have studied the upstream events leading to JNK activation in aminoglycoside toxicity in vitro. The small GTPases Rac and Cdc42 are well known upstream activators of JNK in other cell types. Clostridium difficile toxin B monoglucosylates all members of the Rho GTPase subfamily (Rho, Rac and Cdc42 isoforms) and inhibits GTP binding by steric interference (Nature 341 (1989) 209). Organ of Corti explants from p5 rat basal turns were maintained in tissue culture and treated with C. difficile toxin B for 12 h. They were then treated with toxin B plus gentamicin for 72 h. Significantly less HC death was observed compared to with gentamicin alone. Toxin B alone had no effect on HCs at the highest concentration used. Using antibodies against phospho-c-Jun, we observed background immunoreactivity in control explants, strong staining of outer hair cell nuclei in gentamicin treated explants, and weaker immunostaining in explants treated with gentamicin and C. difficile toxin B. We conclude that Rho family small GTPases play a role in aminoglycoside toxicity signaling as upstream activators of the JNK signaling pathway.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Surgery, Division of Otolaryngology, UCSD School of Medicine and VA Medical Center, 9500 Gilman Drive #0666, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
29
|
Croker BA, Handman E, Hayball JD, Baldwin TM, Voigt V, Cluse LA, Yang FC, Williams DA, Roberts AW. Rac2-deficient mice display perturbed T-cell distribution and chemotaxis, but only minor abnormalities in T(H)1 responses. Immunol Cell Biol 2002; 80:231-40. [PMID: 12067410 DOI: 10.1046/j.1440-1711.2002.01077.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The haematopoietic-specific RhoGTPase, Rac2, has been indirectly implicated in T-lymphocyte development and function, and as a pivotal regulator of T Helper 1 (T(H)1) responses. In other haematopoietic cells it regulates cytoskeletal rearrangement downstream of extracellular signals. Here we demonstrate that Rac2 deficiency results in an abnormal distribution of T lymphocytes in vivo and defects in T-lymphocyte migration and filamentous actin generation in response to chemoattractants in vitro. To investigate the requirement for Rac2 in IFN-gamma production and TH1 responses in vivo, Rac2-deficient mice were challenged with Leishmania major and immunized with ovalbumin-expressing cytomegalovirus. Despite a minor skewing towards a T(H)2 phenotype, Rac2-deficient mice displayed no increased susceptibility to L. major infection. Cytotoxic T-lymphocyte responses to cytomegalovirus and ovalbumin were also normal. Although Rac2 is required for normal T-lymphocyte migration, its role in the generation of T(H)1 responses to infection in vivo is largely redundant.
Collapse
Affiliation(s)
- Ben A Croker
- Divisions of Cancer, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, South Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jeong HG, Cho HJ, Chang IY, Yoon SP, Jeon YJ, Chung MH, You HJ. Rac1 prevents cisplatin-induced apoptosis through down-regulation of p38 activation in NIH3T3 cells. FEBS Lett 2002; 518:129-34. [PMID: 11997032 DOI: 10.1016/s0014-5793(02)02674-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, the role of V12-Rac1 in the cisplatin-induced apoptosis was investigated. Cisplatin-induced apoptosis is associated with cytochrome c release, which can be inhibited by V12-Rac1 expression. The analysis of mitogen-activated protein kinase activity indicated that V12-Rac1 expression led to a decrease in p38 activity after exposure to cisplatin but not c-jun N-terminal kinase and extracellular signal-regulated kinase. Using pharmacological inhibitors, it was found that only p38 is a critical mediator in the cisplatin-induced apoptosis of NIH3T3 cells. This suggests that V12-Rac1 can stimulate the anti-apoptotic signaling pathway in response to cisplatin, and that decreased p38 activity caused by V12-Rac1 expression in cisplatin-treated NIH3T3 cells is crucial for V12-Rac1-dependent cell survival.
Collapse
Affiliation(s)
- Hye-Gwang Jeong
- Research Center for Proteineous Materials, Chosun University, 375 Seusuk-dong, 501-759, Kwangju, South Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Murga C, Zohar M, Teramoto H, Gutkind JS. Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB. Oncogene 2002; 21:207-16. [PMID: 11803464 DOI: 10.1038/sj.onc.1205036] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Revised: 09/25/2001] [Accepted: 10/09/2001] [Indexed: 12/12/2022]
Abstract
Small GTPases of the Rho family play a central role in cellular processes that involve the reorganization of the actin-based cytoskeleton. Rho-related GTPases, which include Rac and Cdc42, can also regulate gene expression often through the activation of kinase cascades leading to enhanced activity of stress activated protein kinases (SAPKs), including JNK and p38 MAP kinases. As SAPKs are implicated in programmed cell death, these observations suggest that Rho GTPases may promote the initiation of the apoptotic process. However, recent reports suggest that Rho GTPases can have either a protective or a pro-apoptotic role, depending on the particular cellular context. In an effort to explore the molecular mechanisms underlying these divergent biological activities, we asked whether there was indeed a correlation between the ability to induce SAPKs and apoptosis by Rho family members. We found that although constitutively activated (Q61L) mutants of Rac1, Cdc42, and RhoG, a Rac1 related GTPase of unknown function, potently induce JNK in COS 7 cells, none of these GTPases could induce apoptosis, nor enhance uv-induced cell death. In contrast, Rac1 and RhoG efficiently protected cells from uv-induced apoptosis. Furthermore, we provide evidence that Rac1 and RhoG can activate both apoptotic and anti-apoptotic pathways. Whereas the former is mediated through JNK, the latter is independent on the transcriptional activation of NF-kappaB, a pro-survival pathway, but results from the direct interaction of these GTPases with phosphatidylinositol 3-kinase (PI3K) and the stimulation of Akt. Together, these findings indicate that members of the Rho family of small GTP-binding proteins can provoke the concomitant stimulation of two counteracting signaling pathways, and that their balance ultimately determines the ability of these GTPases to promote cell survival or death.
Collapse
Affiliation(s)
- Cristina Murga
- Oral and Pharyngeal Cancer Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland, MD 20892-4330, USA
| | | | | | | |
Collapse
|
32
|
Gingras MC, Champagne C, Roy M, Lavoie JN. Cytoplasmic death signal triggered by SRC-mediated phosphorylation of the adenovirus E4orf4 protein. Mol Cell Biol 2002; 22:41-56. [PMID: 11739721 PMCID: PMC134208 DOI: 10.1128/mcb.22.1.41-56.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In transformed cells, the adenovirus E4orf4 death factor works in part by inducing a Src-mediated cytoplasmic apoptotic signal leading to caspase-independent membrane blebbing and cell death. Here we show that Src-family kinases modulate E4orf4 phosphorylation on tyrosine residues. Mutation of tyrosines 26, 42, and 59 to phenylalanines inhibited Src-induced phosphorylation of E4orf4 in vivo and in vitro but had no effect on the molecular association of E4orf4 with Src. However, in contrast to wild-type E4orf4, the nonphosphorylatable E4orf4 mutant was unable to modulate Src-dependent phosphorylation and was deficient in recruiting a subset of tyrosine-phosphorylated proteins. Indeed, the Src substrates cortactin and p62dok were found to associate with wild-type E4orf4 but not with the nonphosphorylatable E4orf4. Importantly, the nonphosphorylatable mutant E4orf4 was preferentially distributed in the cell nucleus, was unable to induce membrane blebbing, and had a highly impaired killing activity. Conversely, an activated form of E4orf4 was obtained by mutation of tyrosine 42 to glutamic acid. This pseudophosphorylated mutant E4orf4 was enriched in the cytoplasm and plasma membrane, showed increased binding to phosphotyrosine-containing proteins, and induced a dramatic blebbing phenotype associated with increased cell death. Altogether, our findings strongly suggest that Src-mediated phosphorylation of adenovirus type 2 E4orf4 is critical to promoting its cytoplasmic and membrane localization and is required for the transduction of E4orf4-Src-dependent induction of membrane blebbing. We propose that E4orf4 acts in part by uncoupling Src-dependent signals to drive the formation of a signaling complex that triggers a cytoplasmic death signal.
Collapse
Affiliation(s)
- Marie-Claude Gingras
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CHUQ, Québec, G1R 2J6, Canada
| | | | | | | |
Collapse
|
33
|
Morley SC, Bierer BE. The actin cytoskeleton, membrane lipid microdomains, and T cell signal transduction. Adv Immunol 2001; 77:1-43. [PMID: 11293114 DOI: 10.1016/s0065-2776(01)77013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- S C Morley
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
34
|
Stappenbeck TS, Gordon JI. Extranuclear sequestration of phospho-Jun N-terminal kinase and distorted villi produced by activated Rac1 in the intestinal epithelium of chimeric mice. Development 2001; 128:2603-14. [PMID: 11493576 DOI: 10.1242/dev.128.13.2603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we used a genetic mosaic system to conduct an in vivo analysis of the effects of Rac1 activation on the developing intestinal epithelium (Stappenbeck, T. S. and Gordon, J. I. (2000) Development127, 2629-2642). Expression of a constitutively active human Rac1 (Rac1Leu61) in the 129/Sv-derived small intestinal epithelium of C57Bl/6-ROSA26↔129/Sv chimeric mice led to precocious differentiation of some lineages with accompanying alterations in their apical actin. We have now explored the underlying mechanisms. Rac1Leu61 leads to accumulation of the 46 kDa form of phosphorylated Jun N-terminal kinase (p-Jnk) in the apical cytoplasm, but not in the nucleus of E18.5 proliferating and differentiating intestinal epithelial cells. The effect is cell-autonomous, selective for this mitogen-activated protein kinase family member, and accompanied by apical cytoplasmic accumulation of p21-activated kinase. c-Jun, a downstream nuclear target of p-Jnk, does not show evidence of enhanced phosphorylation, providing functional evidence for cytoplasmic sequestration of p-Jnk in Rac1Leu61-expressing epithelium. In adult chimeras, Rac1 activation augments cell proliferation in crypts of Lieberkühn, without a compensatory change in basal apoptosis and produces a dramatic, very unusual widening of villi. These results reveal a novel in vivo paradigm for Rac1 activation involving p-Jnk-mediated signaling at a distinctive extra-nuclear site, with associated alterations in the actin cytoskeleton. They also provide a new perspective about the determinants of small intestinal villus morphogenesis.
Collapse
Affiliation(s)
- T S Stappenbeck
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
35
|
Abstract
Rho family members play a critical role in malignant transformation. Anchorage-independent growth and the ability to avoid apoptosis caused by loss of anchorage (anoikis) are important features of transformed cells. Here we show that constitutive activation of Rac1 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. Constitutively active Rac1-V12 decreases DNA fragmentation and caspase activity by 50% in MDCK cells kept in suspension. In addition, expression of Rac1-V12 in MDCK cells in suspension conditions causes an increase in the number of surviving cells. We also investigated the signaling pathways that are activated by Rac1 to stimulate cell survival. We show that expression of Rac1-V12 in MDCK cells in suspension stimulates a number of signaling cascades that have been implicated in the control of cell survival, including the p42/44 ERK, p38, protein kinase B, and nuclear factor kappaB pathways. Using specific chemical or protein inhibitors of these respective pathways, we show that Rac1-mediated cell survival strongly depends on phosphatidylinositol 3-kinase activity and that activation of ERK, p38, and NF-kappaB are largely dispensable for Rac1 survival signaling. In conclusion, these studies demonstrate that Rac1 can suppress apoptosis in epithelial cells in anchorage-independent conditions and suggest a potential role for Rac1-mediated survival signaling in cell transformation.
Collapse
Affiliation(s)
- S J Coniglio
- Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | |
Collapse
|
36
|
Ruggieri R, Chuang YY, Symons M. The Small GTPase Rac Suppresses Apoptosis Caused by Serum Deprivation in Fibroblasts. Mol Med 2001. [DOI: 10.1007/bf03402212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
37
|
Abstract
Ras and Rho GTPases are among the best studied signaling molecules in molecular biology. Essential cellular processes, such as cell growth, lipid metabolism, cytoarchitecture, membrane trafficking, transcriptional regulation, apoptosis, and response to genotoxic agents, are directly modulated by different members of this superfamily of proteins. Not until recently have we begun to understand the physiological implications of Ras and Rho GTPases, linking them to processes such as embryonic development, tissue remodeling, tumorigenesis and metastasis. In this sense, uncontrolled activation, due to overexpression of different members of the Rho family in a variety of tissues, leads to uncontrolled proliferation and invasiveness of human tumors. In this review, an attempt to briefly integrate recent findings in transcriptional regulation by Rho GTPases in the context of carcinogenesis and metastasis as well as apoptosis is made.
Collapse
Affiliation(s)
- S Aznar
- Instituto de Investigaciones Biomédicas, CSIC, Arturo Duperier 4, 28029, Madrid, Spain
| | | |
Collapse
|
38
|
Krawczyk C, Penninger JM. Molecular motors involved in T cell receptor clusterings. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Connie Krawczyk
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| | - Josef M. Penninger
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| |
Collapse
|
39
|
Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 2000; 30:3422-31. [PMID: 11093160 DOI: 10.1002/1521-4141(2000012)30:12<3422::aid-immu3422>3.0.co;2-j] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cofilin, an actin-depolymerizing protein, is essential for the functional dynamics of the actin cytoskeleton and for cell viability. In unstimulated human peripheral blood T lymphocytes cofilin is phosphorylated and localized in the cytoplasm. Following co-stimulation through accessory receptors (e.g. CD2 or CD28) - however, not following TCR/CD3 stimulation alone - cofilin undergoes dephosphorylation. The subcellular localization as well as the actin-binding activity of cofilin are regulated by the phosphorylation state of serine-3. Thus, only the dephosphorylated form of cofilin associates with the actin cytoskeleton and possesses the capability to translocate into the nucleus. Recently, LIM-kinase 1 was shown to inactivate cofilin through phosphorylation. Here, we have identified the functional counterparts of LIM-kinase 1: the serine/threonine phosphatases of type 1 and type 2A not only associate with cofilin but also dephosphorylate this 19-kDa protein and thereby mediate cofilin activation. In malignant T lymphoma cells, activation of these phosphatases occurs spontaneously, independent of external stimuli. In untransformed human peripheral blood T lymphocytes, these phosphatases function through a cyclosporin A/FK506-resistant co-stimulatory signaling pathway which is common for the accessory receptors CD2 and CD28. This co-stimulatory signaling pathway is also not affected by a series of other clinically established immunosuppressive drugs (i.e. rapamycin, dexamethasone, leflunomide or mycophenolic acid).
Collapse
Affiliation(s)
- A Ambach
- Institute for Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Embade N, Valerón PF, Aznar S, López-Collazo E, Lacal JC. Apoptosis induced by Rac GTPase correlates with induction of FasL and ceramides production. Mol Biol Cell 2000; 11:4347-58. [PMID: 11102528 PMCID: PMC15077 DOI: 10.1091/mbc.11.12.4347] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Rho proteins, members of the Ras superfamily of GTPases, are critical elements in signal transduction pathways governing cell proliferation and cell death. Different members of the family of human Rho GTPases, including RhoA, RhoC, and Rac1, participate in the regulation of apoptosis in response to cytokines and serum deprivation in different cell systems. Here, we have characterized the mechanism of apoptosis induced by Rac1 in NIH 3T3 cells. It requires protein synthesis and caspase-3 activity, but it is independent of the release of cytochrome c from mitochondria. Moreover, an increase in mitochondria membrane potential and the production of reactive oxygen species was observed. Rac1-induced apoptosis was related to the simultaneous increase in ceramide production and synthesis of FasL. Generation of FasL may be mediated by transcriptional regulation involving both c-Jun amino terminal kinase as well as nuclear factor-kappa B-dependent signals. None of these signals, ceramides or FasL, was sufficient to induce apoptosis in the parental cell line, NIH 3T3 cells. However, any of them was sufficient to induce apoptosis in the Rac1-expressing cells. Finally, inhibition of FasL signaling drastically reduced apoptosis by Rac1. Thus, Rac1 seems to induce apoptosis by a complex mechanism involving the generation of ceramides and the de novo synthesis of FasL. These results suggest that apoptosis mediated by Rac1 results from a signaling mechanism that involves biochemical and transcriptional events under control of Rac1.
Collapse
Affiliation(s)
- N Embade
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Arrieumerlou C, Randriamampita C, Bismuth G, Trautmann A. Rac is involved in early TCR signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3182-9. [PMID: 10975833 DOI: 10.4049/jimmunol.165.6.3182] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The GTPase Rac controls signaling pathways often related to actin polymerization in various cell types. In T lymphocytes, Rac is activated by Vav, a major component of the multiprotein transduction complex associated to the TCR. Although profound signaling defects have been observed in Vav-deficient mice, a role of Rac in the corresponding early TCR signaling has not been tested directly. This question was investigated in Jurkat T cells transfected with either a dominant-negative (RacN17) or a constitutively active (RacV12) form of Rac. In T cells expressing either RacN17 or RacV12, the anti-CD3-induced Ca2+ response and production of inositol-1,4,5-trisphosphate were inhibited. The basal level of phosphatidylinositol-4,5-bisphosphate was not significantly diminished by Rac mutants. The major inhibitory effect of Rac mutants on Ca2+ signaling is exerted on the activity of phospholipase C-gamma and, before that, on the phosphorylation of ZAP-70 and of the linker molecule for activation of T cells, LAT. An anti-CD3-induced increase in actin polymerization was observed in control cells but not in cells transfected with a Rac mutant. In addition, latrunculin, which binds to monomeric actin, simultaneously inhibited basal and CD3-induced actin polymerization and Ca2+ signaling. These findings suggest a link between the effects exerted by Rac mutants on cortical actin polymerization and on TCR signaling. Rac cycling between its GTP- and GDP-bound states is necessary for this signaling. Alterations observed in early TCR-dependent signals suggest that Rac contributes to the assembly of the TCR-associated multiprotein transduction complex.
Collapse
Affiliation(s)
- C Arrieumerlou
- Laboratoire d'Immunologie Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7627, Centre Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
42
|
Li B, Yu H, Zheng W, Voll R, Na S, Roberts AW, Williams DA, Davis RJ, Ghosh S, Flavell RA. Role of the guanosine triphosphatase Rac2 in T helper 1 cell differentiation. Science 2000; 288:2219-22. [PMID: 10864872 DOI: 10.1126/science.288.5474.2219] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T helper 1 (TH1) cells mediate cellular immunity, whereas TH2 cells potentiate antiparasite and humoral immunity. We used a complementary DNA subtraction method, representational display analysis, to show that the small guanosine triphosphatase Rac2 is expressed selectively in murine TH1 cells. Rac induces the interferon-gamma (IFN-gamma) promoter through cooperative activation of the nuclear factor kappa B and p38 mitogen-activated protein kinase pathways. Tetracycline-regulated transgenic mice expressing constitutively active Rac2 in T cells exhibited enhanced IFN-gamma production. Dominant-negative Rac inhibited IFN-gamma production in murine T cells. Moreover, T cells from Rac2-/- mice showed decreased IFN-gamma production under TH1 conditions in vitro. Thus, Rac2 activates TH1-specific signaling and IFN-gamma gene expression.
Collapse
Affiliation(s)
- B Li
- Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stappenbeck TS, Gordon JI. Rac1 mutations produce aberrant epithelial differentiation in the developing and adult mouse small intestine. Development 2000; 127:2629-42. [PMID: 10821761 DOI: 10.1242/dev.127.12.2629] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mouse small intestinal epithelium undergoes continuous renewal throughout life. Previous studies suggest that differentiation of this epithelium is regulated by instructions that are received as cells migrate along crypt-villus units. The nature of the instructions and their intracellular processing remain largely undefined. In this report, we have used genetic mosaic analysis to examine the role of Rac1 GTPase-mediated signaling in controlling differentiation. A constitutively active mutation (Rac1Leu61) or a dominant negative mutation (Rac1Asn17) was expressed in the 129/Sv embryonic stem cell-derived component of the small intestine of C57Bl/6-ROSA26<->129/Sv mice. Rac1Leu61 induces precocious differentiation of members of the Paneth cell and enterocytic lineages in the proliferative compartment of the fetal gut, without suppressing cell division. Forced expression of the dominant negative mutation inhibits epithelial differentiation, without affecting cell division, and slows enterocytic migration along crypt-villus units. The effects produced by Rac1Leu61 or Rac1Asn17 in the 129/Sv epithelium do not spread to adjacent normal C57Bl/6 epithelial cells. These results provide in vivo evidence that Rac1 is involved in the import and intracellular processing of signals that control differentiation of a mammalian epithelium.
Collapse
Affiliation(s)
- T S Stappenbeck
- Departments of Molecular Biology and Pharmacology and Pathology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
44
|
Yang FC, Kapur R, King AJ, Tao W, Kim C, Borneo J, Breese R, Marshall M, Dinauer MC, Williams DA. Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 2000; 12:557-68. [PMID: 10843388 DOI: 10.1016/s1074-7613(00)80207-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mast cells generated from Rac2-deficient (-/-) mice demonstrated defective actin-based functions, including adhesion, migration, and degranulation. Rac2(-/-) mast cells generated lower numbers and less mast cell colonies in response to growth factors and were deficient in vivo. Rac2(-/-) mast cells demonstrated a significant reduction in growth factor-induced survival, which correlated with the lack of activation of Akt and significant changes in the expression of the Bcl-2 family members BAD and Bcl-XL, in spite of a 3-fold induction of Rac1 protein. These results suggest that Rac2 plays a unique role in multiple cellular functions and describe an essential role for Rac2 in growth factor-dependent survival and expression of BAD/Bcl-XL.
Collapse
Affiliation(s)
- F C Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Na S, Li B, Grewal IS, Enslen H, Davis RJ, Hanke JH, Flavell RA. Expression of activated CDC42 induces T cell apoptosis in thymus and peripheral lymph organs via different pathways. Oncogene 1999; 18:7966-74. [PMID: 10637507 DOI: 10.1038/sj.onc.1203122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CDC42, a Ras-related small GTP binding protein, is involved in diverse cellular functions in lymphocytes. We generated transgenic mice expressing constitutively active murine CDC42 (Q61L) under the control of the human CD2 promoter. Transgenic mice showed smaller thymi with a dramatic reduction of CD4+CD8+, CD4+ and CD8+ thymocytes and with increase of CD4-CD8- thymocytes at CD25-CD44+ and CD25+ stage. A high percentage of the transgenic thymocytes were apoptotic, explaining the reduction of cellularity and size of the thymus. Mature T cells (TCR alphabeta+) in peripheral lymph organs, spleen and lymph node, were also dramatically reduced, and exhibited massive apoptosis. Expression of Fas and Fas ligand on both thymocytes and peripheral T cells was upregulated in transgenic mice, but the increased apoptosis in the thymus was independent of Fas (CD95), whereas peripheral spleen and lymph node T cell apoptosis was Fas dependent. Thus, activated CDC42 triggers distinct apoptotic pathways in thymocytes and peripheral T cells.
Collapse
Affiliation(s)
- S Na
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, CT 06520-8011, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Spontaneous Apoptosis in Lymphocytes From Patients With Wiskott-Aldrich Syndrome: Correlation of Accelerated Cell Death and Attenuated Bcl-2 Expression. Blood 1999. [DOI: 10.1182/blood.v94.11.3872.423k37_3872_3882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, eczema, and a progressive deterioration of immune function. WAS is caused by mutations in an intracellular protein, WASP, that is involved in signal transduction and regulation of actin cytoskeleton rearrangement. Because immune dysfunction in WAS may be due to an accelerated destruction of lymphocytes, we examined the susceptibility to apoptosis of resting primary lymphocytes isolated from WAS patients in the absence of exogenous apoptogenic stimulation. We found that unstimulated WAS lymphocytes underwent spontaneous apoptosis at a greater frequency than unstimulated normal lymphocytes. Coincident with increased apoptotic susceptibility, WAS lymphocytes had markedly attenuated Bcl-2 expression, whereas Bax expression did not differ. A negative correlation between the frequency of spontaneous apoptosis and the level of Bcl-2 expression was demonstrated. These data indicate that accelerated lymphocyte destruction by spontaneous induction of apoptosis may be one pathogenic mechanism by which the progressive immunodeficiency in WAS patients develops.
Collapse
|
47
|
Spontaneous Apoptosis in Lymphocytes From Patients With Wiskott-Aldrich Syndrome: Correlation of Accelerated Cell Death and Attenuated Bcl-2 Expression. Blood 1999. [DOI: 10.1182/blood.v94.11.3872] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, eczema, and a progressive deterioration of immune function. WAS is caused by mutations in an intracellular protein, WASP, that is involved in signal transduction and regulation of actin cytoskeleton rearrangement. Because immune dysfunction in WAS may be due to an accelerated destruction of lymphocytes, we examined the susceptibility to apoptosis of resting primary lymphocytes isolated from WAS patients in the absence of exogenous apoptogenic stimulation. We found that unstimulated WAS lymphocytes underwent spontaneous apoptosis at a greater frequency than unstimulated normal lymphocytes. Coincident with increased apoptotic susceptibility, WAS lymphocytes had markedly attenuated Bcl-2 expression, whereas Bax expression did not differ. A negative correlation between the frequency of spontaneous apoptosis and the level of Bcl-2 expression was demonstrated. These data indicate that accelerated lymphocyte destruction by spontaneous induction of apoptosis may be one pathogenic mechanism by which the progressive immunodeficiency in WAS patients develops.
Collapse
|
48
|
Marx A, Müller-Hermelink HK. From basic immunobiology to the upcoming WHO-classification of tumors of the thymus. The Second Conference on Biological and Clinical Aspects of Thymic Epithelial Tumors and related recent developments. Pathol Res Pract 1999; 195:515-33. [PMID: 10483582 DOI: 10.1016/s0344-0338(99)80001-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Second Conference on Biological and Clinical Aspects of Thymic Epithelial Tumors in Leiden, The Netherlands, 1998, set the stage for an interdisciplinary meeting of immunologists, pathologists and members of various clinical disciplines to exchange their recent findings in the field of thymus-related biology, pathology, and medicine. The contributions covered such diverse subjects as the role of transcription factors and cytokines in the development of the thymic microenvironment, thymic T, B and NK cell development, the pathogenesis of myasthenia gravis and other thymoma-associated autoimmunities, the pathology of thymic epithelial tumors and germ cell neoplasms, and new approaches to their diagnosis and treatment. This editorial will briefly sum up the data presented at the Conference and will comment on related novel findings that have been reported since then. Because it was also at the Leiden Conference, that the proposal of the WHO committee for the classification of thymic tumors was discussed for the first time, a description of the upcoming WHO Classification of Tumors of the Thymus is given with emphasis on the diagnostic criteria of thymic epithelial tumors, that should now be termed as type A, AB, B1-3 and type C thymomas, to make pathological and clinical studies comparable in the future.
Collapse
|
49
|
Benard V, Bokoch GM, Diebold BA. Potential drug targets: small GTPases that regulate leukocyte function. Trends Pharmacol Sci 1999; 20:365-70. [PMID: 10462759 DOI: 10.1016/s0165-6147(99)01367-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Leukocytes are not only important mediators of innate immunity, but they also induce and perpetuate inflammatory responses that are harmful to the host. Although inflammatory mediators activate leukocytes through a common heterotrimeric G protein (Gi) signalling intermediate, many downstream inflammatory functions are regulated by distinct small GTPases, which suggests that pharmacological modulation of small GTPase activity would be useful in developing specific anti-inflammatory therapies. The recent identification of multiple small GTPase effectors, the recognition of the role of GTPase regulatory proteins in directing downstream signalling from small GTPases, and detailed structural information on the GTPases themselves suggests new possibilities for the development of effective and selective anti-inflammatory drugs.
Collapse
Affiliation(s)
- V Benard
- Departments of Immunology and Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
50
|
Altman A, Deckert M. The function of small GTPases in signaling by immune recognition and other leukocyte receptors. Adv Immunol 1999; 72:1-101. [PMID: 10361572 DOI: 10.1016/s0065-2776(08)60017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|