1
|
Go EJ, Ryu BR, Gim GJ, Shin YR, Kang MJ, Kim MJ, Baek JS, Lim JD. Regulation of Intestinal Barrier Function and Gut Microbiota by Hot Melt Extrusion-Drug Delivery System-Prepared Mulberry Anthocyanin in an Inflammatory Bowel Disease Model. Pharmaceuticals (Basel) 2025; 18:475. [PMID: 40283912 PMCID: PMC12030684 DOI: 10.3390/ph18040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Anthocyanins (ACNs) derived from mulberry (Morus alba L.) exhibit potent antioxidant and anti-inflammatory activities. However, their low stability and bioavailability in physiological environments limit their therapeutic potential. This study aimed to enhance the stability and controlled release ACNs using a hot-melt extrusion drug delivery system (HME-DDS) formulation, HME-MUL-F2, and evaluate its effects on gut barrier function and microbiota composition in a DSS-induced colitis model. Methods: The anthocyanin content of HME-MUL-F2 was quantified and compared with that of raw mulberry extract. The formulation's protective effects were assessed in Caco-2 and RAW 264.7 cells, confirming its biocompatibility and anti-inflammatory properties. The therapeutic efficacy was further evaluated in a dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) model, focusing on gut barrier integrity, inflammatory cytokine modulation, and gut microbiota composition. Results: HME-MUL-F2 significantly improved gut barrier function by upregulating tight junction proteins and reducing inflammatory cytokine levels in the colitis model. Moreover, the formulation modulated gut microbiota composition, promoting beneficial bacteria while suppressing pathogenic strains. HME-MUL-F2 administration led to a significant increase in the Bacteroidetes-to-Firmicutes ratio, which is associated with improved gut health. These results indicate that HME-MUL-F2 significantly enhances anthocyanin bioavailability, leading to improved gut health and potential therapeutic applications for inflammatory conditions. Conclusions: This study highlights the potential of HME technology for improving the stability, bioavailability, and therapeutic efficacy of anthocyanins. HME-MUL-F2 is a sustained-release formulation that enhances gut barrier function and modulates intestinal microbial balance in a DSS-induced inflammatory bowel disease model. These findings strongly suggest that the observed therapeutic effects of HME-MUL-F2 are primarily due to enhanced anthocyanin bioavailability and targeted delivery to the colon, although further clinical studies will provide more definitive confirmation.
Collapse
Affiliation(s)
- Eun-Ji Go
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.-J.G.); (B.R.R.); (Y.R.S.); (M.J.K.); (M.J.K.); (J.-S.B.)
| | - Byeong Ryeol Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.-J.G.); (B.R.R.); (Y.R.S.); (M.J.K.); (M.J.K.); (J.-S.B.)
- Institute of Cannabis Research, Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO 81001-4901, USA
| | - Gyeong Ju Gim
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Ye Rim Shin
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.-J.G.); (B.R.R.); (Y.R.S.); (M.J.K.); (M.J.K.); (J.-S.B.)
| | - Min Ji Kang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.-J.G.); (B.R.R.); (Y.R.S.); (M.J.K.); (M.J.K.); (J.-S.B.)
| | - Min Jun Kim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.-J.G.); (B.R.R.); (Y.R.S.); (M.J.K.); (M.J.K.); (J.-S.B.)
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.-J.G.); (B.R.R.); (Y.R.S.); (M.J.K.); (M.J.K.); (J.-S.B.)
- Department of Bio-Functional Material, Kangwon National University, Samcheok 25949, Republic of Korea
| | - Jung Dae Lim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.-J.G.); (B.R.R.); (Y.R.S.); (M.J.K.); (M.J.K.); (J.-S.B.)
- Department of Bio-Functional Material, Kangwon National University, Samcheok 25949, Republic of Korea
| |
Collapse
|
2
|
Csernus B, Pesti‐Asbóth G, Remenyik J, Biró S, Babinszky L, Stündl L, Oláh J, Vass N, Czeglédi L. Impact of Selected Natural Bioactive Substances on Immune Response and Tight Junction Proteins in Broiler Chickens. Vet Med Sci 2025; 11:e70175. [PMID: 40019349 PMCID: PMC11869566 DOI: 10.1002/vms3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 03/01/2025] Open
Abstract
This study was conducted to examine the effect of dietary natural compounds, such as β-glucan, carotenoids, oligosaccharides and anthocyanins, on immune response and tight junction proteins in broiler chickens. A total of 900 one-day-old chickens were allocated to five treatments in three floor pens (replicates) of 60 broilers per pen. Chickens were fed five diets: a control (basal) diet, a diet supplemented with β-glucan at 0.05%, or diets supplemented with carotenoids, oligosaccharides or anthocyanins at 0.5% of each compound. Male broilers were randomly selected for sample collections. On Day 25, plasma samples were collected from the brachial vein. On Day 26, six broilers were intraperitoneally injected with 2 mg of lipopolysaccharide per kg of body weight. Twelve hours later (Day 27), blood and ileum samples were collected to determine immune parameters and tight junction proteins using ELISA assays. The results showed that anthocyanin supplementation reduced the level of interleukin-1β compared to the lipopolysaccharide-injected control group (p = 0.047), which suggests that anthocyanin could partly alleviate the inflammation. Carotenoids reached a lower level of interleukin-6 compared to the β-glucan treatment (p = 0.0466). β-Glucan (p = 0.0382) and oligosaccharides (p = 0.0449) increased the level of plasma immunoglobulin G compared to the challenged control group, which may indicate an enhanced humoral immunity. Furthermore, β-glucan (except for occludin 2), carotenoids, oligosaccharides and anthocyanins increased (p < 0.05) the levels of ileal zonula occludens-1, occludin 1 and occludin 2 compared to the lipopolysaccharide-challenged control chickens. This may suggest that all the bioactive substances improved the gut barrier function. The plasma levels of tight junction proteins show higher concentrations in lipopolysaccharide-challenged groups compared to the non-challenged groups (p < 0.05). This may refer to the tight junction disruption and appearance in circulation as a reflection of lipopolysaccharide exposure.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Georgina Pesti‐Asbóth
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - László Babinszky
- Department of Animal Nutrition Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - János Oláh
- Farm and Regional Research Institute of DebrecenUniversity of DebrecenDebrecenHungary
| | - Nóra Vass
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| |
Collapse
|
3
|
Zhan X, Li Y, Song Z, Li X, Ye L, Lin M, Wang R, Sun L, Fang J, Chen D, Qi X. Comparative transcriptome analysis and transient assays revealed AaGST and AaBGAL, respectively, contribute to skin and flesh coloration in A. arguta. Gene 2025; 937:149143. [PMID: 39643145 DOI: 10.1016/j.gene.2024.149143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Actinidia arguta possesses different colors in the fruit skin and flesh, but the underlying mechanism has not yet been clarified. In this study, we conducted 36 samples RNA-seq to investigate the phenotypic expression of different fruit tissues (skin and flesh) in red and green A. arguta varieties during different coloring phases. GO and KEGG enrichment results of differentially expressed genes (DEGs) suggested that the red color of the skin and flesh was derived from anthocyanin transport and flesh softening, respectively. Weighted gene co-expression network analysis (WGCNA) revealed MEyellow and MEblack modules significantly correlated with skin and flesh coloration, and two genes, Glutathione S-transferases (AaGST) and β-galactosidases (AaBGAL), were identified as hub genes involved in different tissue-specific coloration. Transient overexpression in apples and kiwifruits confirmed the role of AaGST and AaBGAL in color formation. Our results preliminarily explore the mechanism of red color formation in different A. arguta fruit tissues and provide novel insights into red color formation.
Collapse
Affiliation(s)
- Xu Zhan
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhe Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaohan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lingshuai Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dixin Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China.
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China.
| |
Collapse
|
4
|
Biedermann L, Doulberis M, Schreiner P, Nielsen OH, The FO, Brand S, Burk S, Hruz P, Juillerat P, Krieger-Grübel C, Leu K, Leventhal GE, Misselwitz B, Scharl S, Schoepfer A, Seibold F, Herfarth H, Rogler G. Efficacy and Safety of Anthocyanin-Rich Extract in Patients with Ulcerative Colitis: A Randomized Controlled Trial. Nutrients 2024; 16:4197. [PMID: 39683589 PMCID: PMC11644667 DOI: 10.3390/nu16234197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Bilberries are effective in inducing clinical, endoscopic, and biochemical improvement in ulcerative colitis (UC) patients. The aim of this study was to investigate the efficacy of anthocyanin-rich extract (ACRE), the bioactive ingredient of bilberries, in a controlled clinical trial in moderate-to-severe UC. Methods: A multi-center, randomized, placebo-controlled, double-blind study with a parallel group was conducted. Initially, the study was planned for 100 patients; nevertheless, it prematurely ended due to COVID-19. Patients had moderate-to-severe active UC at screening (a Mayo score of 6-12, an endoscopic sub-score ≥ 2) and were randomized at baseline. The primary endpoint was a clinical response (week 8, a total Mayo score reduction ≥ 3 points). Fecal calprotectin (FC) and a centrally read endoscopic response were among the secondary endpoints. Results: Out of 48 patients (6 Swiss centers), 34 were randomized. Eighteen ACRE and eight placebo patients could be analyzed (per protocol set). Half (9/18) of ACRE patients and 3/8 of placebo patients responded clinically (p = 0.278). An improvement in the Mayo score was observed in the ACRE arm (77.8% vs. 62.5% placebo). FC dropped from 1049 ± 1139 to 557 ± 756 μg/g for ACRE but not for the placebo group (947 ± 1039 to 1040 ± 1179; p = 0.035). Serious adverse events were rare. Conclusions: ACRE treatment did not yield significant superiority to the placebo. Furthermore, the placebo response was unusually high. Moreover, there was a significant calprotectin decrease at the end of treatment, indicative of ACRE efficacy in UC.
Collapse
Affiliation(s)
- Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
| | - Michael Doulberis
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
- Gastroklinik, Private Gastroenterological Practice, 8810 Horgen, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev and Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark;
| | - Frans Olivier The
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
| | - Stephan Brand
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland; (S.B.); (C.K.-G.)
| | - Sabine Burk
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
| | - Petr Hruz
- Department of Gastroenterology, Clarunis-University Center for Gastrointestinal and Liver Diseases, 4052 Basel, Switzerland;
| | - Pascal Juillerat
- Intesto Crohn and Colitis Center, 3012 Bern, Switzerland; (P.J.); (F.S.)
| | - Claudia Krieger-Grübel
- Department of Gastroenterology and Hepatology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland; (S.B.); (C.K.-G.)
| | - Kristin Leu
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
| | - Gabriel E. Leventhal
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Sylvie Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
| | - Alain Schoepfer
- Department of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Frank Seibold
- Intesto Crohn and Colitis Center, 3012 Bern, Switzerland; (P.J.); (F.S.)
| | - Hans Herfarth
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (L.B.); (M.D.); (P.S.); (F.O.T.); (S.B.); (K.L.); (S.S.)
| |
Collapse
|
5
|
Zheng L, Chen K, Xie Y, Huang J, Xia C, Bao YX, Bi H, Wang J, Zhou ZZ. Discovery of novel N 2-indazole derivatives as phosphodiesterase 4 inhibitors for the treatment of inflammatory bowel disease. Eur J Med Chem 2024; 277:116710. [PMID: 39098133 DOI: 10.1016/j.ejmech.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive condition with a significant global burden. Currently, available treatments primarily provide symptomatic relief and retard disease progression, yet they do not offer a cure and are frequently associated with adverse effects. Therefore, the discovery of new targets and therapeutic drugs for IBD is crucial. Phosphodiesterase 4 (PDE4) inhibitors have emerged as promising candidates in the search for effective IBD treatments, although dose-dependent side effects hamper their clinical utility. In this study, building upon heterocyclic biaryl derivatives (TPA16), we designed and synthesized a series of N2-substituted indazole-based PDE4D inhibitors, emphasizing improving safety profiles. An enzyme activity screening discovered an optimized compound, LZ-14 (Z21115), which exhibited high PDE4D7 (IC50 = 10.5 nM) inhibitory activity and good selectivity. More interestingly, LZ-14 has demonstrated promising effects in treating IBD in mouse models by improving the inflammatory response and colon injury. Furthermore, LZ-14 displayed low emetogenic potential in ketamine/xylazine anesthesia mice alternative models.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kun Chen
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yifan Xie
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaxi Huang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuang Xia
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Xia Bao
- Guangzhou Baiyunshan Pharmaceutical Co. Ltd., Guangzhou Baiyunshan Pharmaceutical General Factory, Guangzhou, China
| | - Huichang Bi
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jigang Wang
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Marino M, Rendine M, Venturi S, Porrini M, Gardana C, Klimis-Zacas D, Riso P, Del Bo' C. Red raspberry ( Rubus idaeus) preserves intestinal barrier integrity and reduces oxidative stress in Caco-2 cells exposed to a proinflammatory stimulus. Food Funct 2024; 15:6943-6954. [PMID: 38855989 DOI: 10.1039/d4fo01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Growing evidence showed the capacity of (poly)phenols to exert a protective role on intestinal health. Nevertheless, the existing findings are still heterogeneous and the underlying mechanisms remain unclear. This study investigated the potential benefits of a red raspberry (Rubus idaeus) powder on the integrity of the intestinal barrier, focusing on its ability to mitigate the effects of tumor necrosis factor-α (TNF-α)-induced intestinal permeability. Human colorectal adenocarcinoma cells (i.e., Caco-2 cells) were used as a model to assess the impact of red raspberry on intestinal permeability, tight junction expression, and oxidative stress. The Caco-2 cells were differentiated into polarized monolayers and treated with interferon-γ (IFN-γ) (10 ng mL-1) for 24 hours, followed by exposure to TNF-α (10 ng mL-1) in the presence or absence of red raspberry extract (1-5 mg mL-1). The integrity of the intestinal monolayer was evaluated using transepithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran (FITC-D) efflux assay. Markers of intestinal permeability (claudin-1, occludin, and zonula occludens-1 (ZO-1)) and oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG) and protein carbonyl) were assessed using ELISA kits. Treatment with red raspberry resulted in a significant counteraction of TEER value loss (41%; p < 0.01) and a notable reduction in the efflux of FITC-D (-2.5 times; p < 0.01). Additionally, red raspberry attenuated the levels of 8-OHdG (-48.8%; p < 0.01), mitigating the detrimental effects induced by TNF-α. Moreover, red raspberry positively influenced the expression of the integral membrane protein claudin-1 (+18%; p < 0.01), an essential component of tight junctions. These findings contribute to the growing understanding of the beneficial effects of red raspberry in the context of the intestinal barrier. The effect of red raspberry against TNF-α-induced intestinal permeability observed in our in vitro model suggests, for the first time, its potential as a dietary strategy to promote gastrointestinal health.
Collapse
Affiliation(s)
- Mirko Marino
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marco Rendine
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Samuele Venturi
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marisa Porrini
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Claudio Gardana
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | | | - Patrizia Riso
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Cristian Del Bo'
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
7
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
8
|
La Torre C, Loizzo MR, Frattaruolo L, Plastina P, Grisolia A, Armentano B, Cappello MS, Cappello AR, Tundis R. Chemical Profile and Bioactivity of Rubus idaeus L. Fruits Grown in Conventional and Aeroponic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1115. [PMID: 38674524 PMCID: PMC11053529 DOI: 10.3390/plants13081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Raspberry (Rubus idaeus L.) is a fruit of great interest due to its aroma, nutritional properties, and the presence of many bioactive compounds. However, differences among cultivation systems can affect its composition and, consequently, its potential bioactivity. Herein, for the first time, raspberries grown in an aeroponic system were investigated for their chemical profile and antioxidant and anti-inflammatory activity, as well as their enzyme (α-glucosidase and pancreatic lipase) inhibitory properties in comparison to wild and conventionally cultivated fruits. High-performance liquid chromatography coupled with diode array detection (HPLC-DAD) analyses revealed the presence of gallic acid, caffeic acid, chlorogenic acid, p-coumaric acid, ferulic acid, rutin, and catechin in all the samples. The extracts exhibited in vitro anti-inflammatory activity (inhibition of nitric oxide production) regardless of the cultivation method. Of particular interest is the ability of raspberries to inhibit pancreatic lipase. With the exception of the β-carotene bleaching test, the raspberries grown in conventional and aeroponic systems were more active in terms of antioxidants than wild fruits, as evidenced by the ABTS (IC50 in the range 1.6-3.4 μg/mL), DPPH (IC50 in the range 8.9-28.3 μg/mL), and FRAP tests (24.6-44.9 μM Fe(II)/g). The raspberries from aeroponic cultivation were generally able to exert the same bioactivity as those obtained from both conventionally cultivated and wild fruits, supporting the consideration that in the future, this technology could reshape agriculture by mitigating resource constraints, fostering sustainable practices and increasing yields.
Collapse
Affiliation(s)
- Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Antonio Grisolia
- Azienda Agricola Grisolia A., Contrada Campotenese sn, 87016 Morano Calabro, Italy;
| | - Biagio Armentano
- Azienda Agricola Armentano F., Contrada Campotenese, n. 64, 87016 Morano Calabro, Italy;
| | - Maria Stella Cappello
- Institute of Science of Food Production (ISPA), Italian National Research Council, 73100 Lecce, Italy;
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.L.T.); (M.R.L.); (L.F.); (P.P.); (A.R.C.)
| |
Collapse
|
9
|
Liu M, Li S, Guan M, Bai S, Bai W, Jiang X. Leptin pathway is a crucial target for anthocyanins to protect against metabolic syndrome. Crit Rev Food Sci Nutr 2024; 65:2046-2061. [PMID: 38567995 DOI: 10.1080/10408398.2024.2323093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The high prevalence of metabolic syndrome is threatening the health of populations all over the world. Contemporary work demonstrates that high leptin concentration is directly related to the development of metabolic syndrome such as obesity, fatty liver diseases, type 2 diabetes mellitus and cardiovascular diseases. Anthocyanins are a widespread group of dietary polyphenols, which can ameliorate chronic diseases related to metabolic syndrome. In addition, anthocyanins can regulate the leptin pathway in chronic metabolic diseases, however the potential mechanism between anthocyanin and leptin is complex and elusive. In this review paper, we have evaluated the bioactivity of anthocyanins on the mediation of leptin level and the upstream and downstream pathways in chronic metabolic diseases. Anthocyanins could regulate the hypertrophy of adipose tissue, and the expression of leptin level via mediating TNF-α, C/EBP, PPAR, CREB and SREBP-1. Anthocyanins promoted the leptin sensitivity by increasing the level of leptin receptor, phosphorylation of JAK2/STAT3, PI3K/AKT, and additionally ameliorated metabolic disorder related outcome, including oxidative stress, inflammation, lipid accumulation, insulin resistance and the balance of gut microbiota. However, direct evidence of anthocyanins treatment on leptin signal transduction is still limited which calls for future molecular binding and gene regulation test.
Collapse
Affiliation(s)
- Maomao Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Siyu Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Meiyi Guan
- Department of Food Science and Engineering, International School, Jinan University, Guangzhou, P. R. China
| | - Shun Bai
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
10
|
Chen J, Jiang F, Xu N, Dong G, Jiang J, Wang M, Li C, Li R. Anthocyanin Extracted from Purple Sweet Potato Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice by Suppressing Pyroptosis and Altering Intestinal Flora Structure. J Med Food 2024; 27:110-122. [PMID: 38181190 DOI: 10.1089/jmf.2023.k.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
The objective of this study was to examine the impact and underlying mechanisms of pelargonidin-3-galactoside (Pg3gal) produced from purple sweet potatoes on colonic inflammation induced by dextran sulfate sodium (DSS) in a murine model of ulcerative colitis (UC). C57BL/6J mice were categorized into four groups (n = 6 per group): DSS+Pg3gal, control, control+Pg3gal, and DSS. Colitis was induced by providing free access to 3% DSS for 10 days. The DSS+Pg3gal model mice received DSS concurrently with intragastric Pg3gal (25 mg/kg). The health of the mice was carefully monitored on a regular basis, and scores for the Disease Activity Index (DAI) were documented. A histological assessment was conducted using hematoxylin and eosin staining to evaluate the extent of mucosal injury present. The expression levels of IL-6, NLRP3, ASC, cleaved-Caspase-1, TNF-α, N-GSDMS, and cleaved-IL-1β proteins were evaluated by Western blot analysis. The process of 16S rRNA sequencing was carried out to examine the composition and relative abundance of gut microbiotas within the intestines of the mice. The DAI results revealed that Pg3gal significantly attenuated the DSS-induced UC in mice. In addition, it successfully alleviated the decline in colon size, improved the condition of colonic tissue, and significantly inhibited the production of proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the colon tissues. Additionally, Pg3gal modulated the DSS-induced imbalanced gut microbiota, as evidenced by decreased Proteobacteria and Deferribacteres and simultaneous elevation in Firmicutes, Bacteroidetes, and Verrucomicrobia. In summary, Pg3gal alleviated DSS-induced UC by inhibiting pyroptosis in intestinal epithelial cells and enhancing the structural integrity of the gut microbiota.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nana Xu
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Guokai Dong
- Jiangsu Medical Engineering Research Center of Gene Detection and Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Jiebang Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng Wang
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, China
| | - Cong Li
- Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
11
|
Wu B, Cox AD, Chang H, Kennett M, Rosa C, Chopra S, Li S, Reddivari L. Maize near-isogenic lines with enhanced flavonoids alleviated dextran sodium sulfate-induced murine colitis via modulation of the gut microbiota. Food Funct 2023; 14:9606-9616. [PMID: 37814601 DOI: 10.1039/d3fo02953k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The rising incidence of inflammatory bowel disease (IBD) has necessitated the search for safe and effective novel therapeutic strategies. Dietary flavonoids exhibited antioxidant, antiproliferative, and anticarcinogenic activities in several model systems with proven abilities to reduce inflammation and oxidative stress, thus they could be promising therapeutic agents for IBD prevention/treatment. However, understanding the role of a specific class of compounds in foods that promote health is difficult because of the chemically complex food matrices. This study aimed to utilize four maize near-isogenic lines to determine the anti-colitis effects of specific classes of flavonoids, anthocyanins and/or phlobaphenes, in a whole-food matrix. Results showed that the intake of anthocyanin and phlobaphene-enriched maize diets effectively alleviated dextran sodium sulfate (DSS)-induced colitis in mice via reducing the intestinal permeability and restoring the barrier function. Anthocyanin diets were more effective in maintaining the crypt structure and muc2 protein levels and reducing inflammation. Bacterial communities of mice consuming diets enriched with anthocyanins and phlobaphenes were more similar to the healthy control compared to the DSS control group, suggesting the role of flavonoids in modulating the gut microbiota to retrieve intestinal homeostasis. Microbiota depletion rendered these compounds ineffective against colitis. Lower serum concentrations of several phenolic acids were detected in the microbiota-depleted mice, indicating that gut microbiota plays a role in flavonoid metabolism and bioavailability.
Collapse
Affiliation(s)
- Binning Wu
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Haotian Chang
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cristina Rosa
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - Shiyu Li
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
12
|
Zhang B, Yang YY, Zhao ZJ, Liu RD, Feng LL, Jiang MY, Yuan Y, Huang S, Li Z, Wang Q, Luo HB, Wu Y. Identification of Novel Quinolin-2(1 H)-ones as Phosphodiesterase 1 Inhibitors for the Treatment of Inflammatory Bowel Disease. J Med Chem 2023; 66:12468-12478. [PMID: 37584424 DOI: 10.1021/acs.jmedchem.3c01044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Phosphodiesterase 1 (PDE1) is a subfamily of PDE super enzyme families that can hydrolyze cyclic adenosine monophosphate and cyclic guanosine monophosphate simultaneously. Currently, the number of PDE1 inhibitors is relatively few, significantly limiting their application. Herein, a novel series of quinolin-2(1H)-ones were designed rationally, leading to compound 10c with an IC50 of 15 nM against PDE1C, high selectivity across other PDEs, and remarkable safety properties. Furthermore, we used the lead compound 10c as a chemical tool to explore whether PDE1 could work as a novel potential target for the treatment of inflammatory bowel disease (IBD), a disease which is a chronic, relapsing disorder of the gastrointestinal tract inflammation lacking effective treatment. Our results showed that administration of 10c exerted significant anti-IBD effects in the dextran sodium sulfate-induced mice model and alleviated the inflammatory response, indicating that PDE1 could work as a potent target for IBD.
Collapse
Affiliation(s)
- Bei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yi-Yi Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zheng-Jiong Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Run-Duo Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ling-Ling Feng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yijun Yuan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Quan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228 Hainan, China
- School of Pharmaceutical Sciences, Song Li' Academician Workstation of Hainan University, Yazhou Bay, Sanya 572000, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
14
|
Socha MW, Flis W, Wartęga M, Szambelan M, Pietrus M, Kazdepka-Ziemińska A. Raspberry Leaves and Extracts-Molecular Mechanism of Action and Its Effectiveness on Human Cervical Ripening and the Induction of Labor. Nutrients 2023; 15:3206. [PMID: 37513625 PMCID: PMC10383074 DOI: 10.3390/nu15143206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The gestational period is an incredibly stressful time for a pregnant woman. Pregnant patients constantly seek effective and reliable compounds in order to achieve a healthy labor. Nowadays, increasing numbers of women use herbal preparations and supplements during pregnancy. One of the most popular and most frequently chosen herbs during pregnancy is the raspberry leaf (Rubus idaeus). Raspberry extracts are allegedly associated with a positive effect on childbirth through the induction of uterine contractions, acceleration of the cervical ripening, and shortening of childbirth. The history of the consumption of raspberry leaves throughout pregnancy is vast. This review shows the current status of the use of raspberry leaves in pregnancy, emphasizing the effect on the cervix, and the safety profile of this herb. The majority of women apply raspberry leaves during pregnancy to induce and ease labor. However, it has not been possible to determine the exact effect of using raspberry extracts on the course of childbirth and the perinatal period. Additionally, it is unclear whether this herb has only positive effects. The currently available data indicate a weak effect of raspberry leaf extracts on labor induction and, at the same time, their possible negative impact on cervical ripening.
Collapse
Affiliation(s)
- Maciej W Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert's Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert's Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Anita Kazdepka-Ziemińska
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
| |
Collapse
|
15
|
Oteiza PI, Cremonini E, Fraga CG. Anthocyanin actions at the gastrointestinal tract: Relevance to their health benefits. Mol Aspects Med 2023; 89:101156. [PMID: 36379746 DOI: 10.1016/j.mam.2022.101156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
Abstract
Anthocyanins (AC) are flavonoids abundant in the human diet, which consumption has been associated to several health benefits, including the mitigation of cardiovascular disease, type 2 diabetes, non-alcoholic fatty liver disease, and neurological disorders. It is widely recognized that the gastrointestinal (GI) tract is not only central for food digestion but actively participates in the regulation of whole body physiology. Given that AC, and their metabolites reach high concentrations in the intestinal lumen after food consumption, their biological actions at the GI tract can in part explain their proposed local and systemic health benefits. In terms of mechanisms of action, AC have been found to: i) inhibit GI luminal enzymes that participate in the absorption of lipids and carbohydrates; ii) preserve intestinal barrier integrity and prevent endotoxemia, inflammation and oxidative stress; iii) sustain goblet cell number, immunological functions, and mucus production; iv) promote a healthy microbiota; v) be metabolized by the microbiota to AC metabolites which will be absorbed and have systemic effects; and vi) modulate the metabolism of GI-generated hormones. This review will summarize and discuss the latest information on AC actions at the GI tract and their relationship to overall health benefits.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
16
|
Ferreira SS, Martins-Gomes C, Nunes FM, Silva AM. Elderberry (Sambucus nigra L.) extracts promote anti-inflammatory and cellular antioxidant activity. Food Chem X 2022; 15:100437. [PMID: 36211754 PMCID: PMC9532789 DOI: 10.1016/j.fochx.2022.100437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Extracts of Sambucus nigra berries have anti-inflammatory and antioxidant effects. Elderberries prevented the oxidative damage induced by tert-butyl-hydroperoxide. Elderberries protect HepG2 and Caco-2 cells from t-BOOH-induced oxidative stress. Elderberry extracts prevented GSH depletion, ROS production, and DNA fragmentation. Elderberries can be considered a functional food or a sources of nutraceuticals.
Despite the high value of Portuguese elderberries, recognized for decades by European markets, only a few studies address their beneficial effects at cellular level. Aiming to explore the anti-inflammatory and the cellular antioxidant potential characterized extracts from the three main Portuguese elderberry cultivars (Sabugueiro, Sabugueira, Bastardeira) were used. Lipopolysaccharide-stimulated RAW 264.7 cells pre-exposed to elderberry extracts exhibited dose-dependent inhibition of nitric oxide release, evidencing anti-inflammatory activity. Concerning cellular antioxidant protection, HepG2 and Caco-2 cells pre-exposure to elderberry extracts (50 µg/mL) prevented up-to 90 % of tert-butyl hydroperoxide (t-BOOH)-induced toxicity. In Caco-2 cells, elderberry extracts prevented glutathione depletion, reactive oxygen species production, abnormal morphological changes and DNA fragmentation, in response to t-BOOH oxidative insult. Results demonstrated that elderberries have high potential in reducing cellular oxidative stress as well as in preventing inflammatory processes. Thus, elderberries have high potential as health promoters, acting as functional foods or as sources of nutraceuticals.
Collapse
Affiliation(s)
- Sandrine S. Ferreira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Chemistry, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Corresponding authors at: Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (F.M. Nunes). Department of Biology and Environment (DeBA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal (A.M. Silva).
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Corresponding authors at: Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (F.M. Nunes). Department of Biology and Environment (DeBA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal (A.M. Silva).
| |
Collapse
|
17
|
Gu X, Zhao L, Tan J, Zhang Q, Fu L, Li J. Characterization of a novel β-agarase from Antarctic macroalgae-associated bacteria metagenomic library and anti-inflammatory activity of the enzymatic hydrolysates. Front Microbiol 2022; 13:972272. [PMID: 36118221 PMCID: PMC9478344 DOI: 10.3389/fmicb.2022.972272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
An agarase gene (aga1904) that codes a protein with 640 amino acids was obtained from the metagenomic library of macroalgae-associated bacteria collected from King George Island, Antarctica. Gene aga1904 was expressed in Escherichia coli BL21 (DE3) and recombinant Aga1904 was purified by His Bind Purification kit. The optimal temperature and pH for the activity of Aga1904 were 50°C and 6.0, respectively. Fe3+ and Cu2+ significantly inhibited the activity of Aga1904. The Vmax and Km values of recombinant Aga1904 were 108.70 mg/ml min and 6.51 mg/ml, respectively. The degradation products of Aga1904 against agarose substrate were mainly neoagarobiose, neoagarotetraose, and neoagarohexaose analyzed by thin layer chromatography. The cellular immunoassay of enzymatic hydrolysates was subsequently carried out, and the results showed that agaro-oligosaccharides dominated by neoagarobiose significantly inhibited key pro-inflammatory markers including, nitric oxide (NO), interleukins 6 (IL-6), and tumor necrosis factor α (TNF-α). This work provides a promising candidate for development recombinant industrial enzyme to prepare agaro-oligosaccharides, and paved up a new path for the exploitation of natural anti-inflammatory agent in the future.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Luying Zhao
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiaojiao Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qian Zhang
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Liping Fu
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jiang Li
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- *Correspondence: Jiang Li,
| |
Collapse
|
18
|
Ngamsamer C, Sirivarasai J, Sutjarit N. The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules 2022; 12:biom12060852. [PMID: 35740977 PMCID: PMC9230453 DOI: 10.3390/biom12060852] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity has become a serious public health epidemic because of its associations with chronic conditions such as type 2 diabetes mellitus, hypertension, cardiovascular disease, and cancer. Obesity triggers inflammation marked by the secretion of low-grade inflammatory cytokines including interleukin-6, C-reactive protein, and tumor necrosis factor-α, leading to a condition known as “meta-inflammation”. Currently, there is great interest in studying the treatment of obesity with food-derived bioactive compounds, which have low toxicity and no severe adverse events compared with pharmacotherapeutic agents. Here, we reviewed the beneficial effects of the bioactive compounds known as anthocyanins on obesity-induced inflammation. Foods rich in anthocyanins include tart cherries, red raspberries, black soybeans, blueberries, sweet cherries, strawberries and Queen Garnet plums. These anthocyanin-rich foods have been evaluated in cell culture, animal, and clinical studies, and found to be beneficial for health, reportedly reducing inflammatory markers. One factor in the development of obesity-related inflammation may be dysbiosis of the gut microbiome. Therefore, we focused this review on the in vitro and in vivo effects of anthocyanins on inflammation and the gut microbiota in obesity.
Collapse
Affiliation(s)
- Chanya Ngamsamer
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, 10400, Thailand;
| | - Jintana Sirivarasai
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand;
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand;
- Correspondence:
| |
Collapse
|
19
|
Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries ( Rubus idaeus): A General Review. Antioxidants (Basel) 2022; 11:antiox11061192. [PMID: 35740089 PMCID: PMC9230908 DOI: 10.3390/antiox11061192] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Raspberries (Rubus idaeus) possess a wide phenolic family profile; this serves the role of self-protection for the plant. Interest in these compounds have significantly increased, since they have been classified as nutraceuticals due to the positive health effects provided to consumers. Extensive chemical, in vitro and in vivo studies have been performed to prove and validate these benefits and their possible applications as an aid when treating several chronic degenerative diseases, characterized by oxidative stress and an inflammatory response. While many diseases could be co-adjuvanted by the intake of these phenolic compounds, this review will mainly discuss their effects on cancer. Anthocyanins and ellagitannins are known to provide a major antioxidant capacity in raspberries. The aim of this review is to summarize the current knowledge concerning the phenolic compound family of raspberries, and topics discussed include their characterization, biosynthesis, bioavailability, cytotoxicity, antioxidant and anti-inflammatory activities.
Collapse
|
20
|
Binary Effects of Gynostemma Gold Nanoparticles on Obesity and Inflammation via Downregulation of PPARγ/CEPBα and TNF-α Gene Expression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092795. [PMID: 35566145 PMCID: PMC9104634 DOI: 10.3390/molecules27092795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoscience is a multidisciplinary skill with elucidated nanoscale particles and their advantages in applications to various fields. Owing to their economical synthesis, biocompatible nature, and widespread biomedical and environmental applications, the green synthesis of metal nanoparticles using medicinal plants has become a potential research area in biomedical research and functional food formulations. Gynostemma pentaphyllum (GP) has been extensively used in traditional Chinese medicine to cure several diseases, including diabetes mellitus (DM). This is the first study in which we examined the efficacy of G. pentaphyllum gold nanoparticles (GP-AuNPs) against obesity and related inflammation. GP extract was used as a capping agent to reduce Au2+ to Au0 to form stable gold nanoparticles. The nanoparticles were characterized by using UV–VIS spectroscopy, and TEM images were used to analyze morphology. In contrast, the existence of the functional group was measured using FTIR, and size and shape were examined using XRD analysis. In vitro analysis on GP-AuNPs was nontoxic to RAW 264.7 cells and 3T3-L1 cells up to a specific concentration. It significantly decreased lipid accumulation in 3T3-L1 obese and reduced NO production in Raw 264.7 macrophage cells. The significant adipogenic genes PPARγ and CEPBα and a major pro-inflammatory cytokine TNF-α expression were quantified using RT-PCR. The GP-AuNPs decreased the face of these genes remarkably, revealing the antiadipogenic and anti-inflammatory activity of our synthesized GP-AuNPs. This study represents thorough research on the antiobesity effect of Gynostemma pentaphyllum gold nanoparticles synthesized using a green approach and the efficacy instead of related inflammatory responses.
Collapse
|
21
|
Chen M, Liang J, Wang Y, Liu Y, Zhou C, Hong P, Zhang Y, Qian ZJ. A new benzaldehyde from the coral-derived fungus Aspergillus terreus C23-3 and its anti-inflammatory effects via suppression of MAPK signaling pathway in RAW264.7 cells. J Zhejiang Univ Sci B 2022; 23:230-240. [PMID: 35261218 DOI: 10.1631/jzus.b2100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Marine fungi are important members of the marine microbiome, which have been paid growing attention by scientists in recent years. The secondary metabolites of marine fungi have been reported to contain rich and diverse compounds with novel structures (Chen et al., 2019). Aspergillus terreus, the higher level marine fungus of the Aspergillus genus (family of Trichocomaceae, order of Eurotiales, class of Eurotiomycetes, phylum of Ascomycota), is widely distributed in both sea and land. In our previous study, the coral-derived A. terreus strain C23-3 exhibited potential in producing other biologically active (with antioxidant, acetylcholinesterase inhibition, and anti-inflammatory activity) compounds like arylbutyrolactones, territrems, and isoflavones, and high sensitivity to the chemical regulation of secondary metabolism (Yang et al., 2019, 2020; Nie et al., 2020; Ma et al., 2021). Moreover, we have isolated two different benzaldehydes, including a benzaldehyde with a novel structure, from A. terreus C23-3 which was derived from Pectinia paeonia of Xuwen, Zhanjiang City, Guangdong Province, China.
Collapse
Affiliation(s)
- Minqi Chen
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Jinyue Liang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Wang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yayue Liu
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Zhang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China. .,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China. , .,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China. , .,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China. ,
| |
Collapse
|
22
|
Development of a Sericin Hydrogel to Deliver Anthocyanins from Purple Waxy Corn Cob (Zea mays L.) Extract and In Vitro Evaluation of Anti-Inflammatory Effects. Pharmaceutics 2022; 14:pharmaceutics14030577. [PMID: 35335953 PMCID: PMC8951468 DOI: 10.3390/pharmaceutics14030577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Sericin-alginate hydrogel formulations with purple waxy corn (Zea mays L.) cob extract (PWCC) for topical anti-inflammatory application are developed and evaluated. The physical properties such as viscosity, pH, and anthocyanin release are examined and in vitro anti-inflammatory activities, such as NO inhibition and IL-6, IL-1β, TNF-α, iNOS, and COX-2 expression, are evaluated in LPS-stimulated RAW 264.7 murine macrophages. The sericin-alginate hydrogel is prepared by physical crosslinking through the ionic interaction of the polymers combined with anthocyanin from PWCC at pH 6.5. The hydrogel formulation with 2.00% w/v sericin, 0.20% w/v alginate, and 0.15% w/v PWCC (SN6) shows a suitable viscosity for topical treatment, the highest nitric oxide inhibition (79.43%), no cytotoxicity, and reduced expression of IL-6, IL-1β, and TNF-α mediators. Moreover, the SN6 formulation displays a sustained anthocyanin release over 8–12 h, which correlates with the Korsmeyer–Peppas model. The FT-IR spectrum of SN6 confirmed interaction of the sericin polymer with anthocyanins from PWCC via H-bonding by the shifted peak of amide I and amide III. In addition, the anthocyanin is stable in sericin hydrogels under heating-cooling storage conditions. Therefore, we suggest that this hydrogel formulation has potential as an anti-inflammatory agent. The formulation will be further investigated for in vivo studies and clinical trials in the future.
Collapse
|
23
|
Li F, Yan H, Jiang L, Zhao J, Lei X, Ming J. Cherry Polyphenol Extract Ameliorated Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice by Suppressing Wnt/β-Catenin Signaling Pathway. Foods 2021; 11:foods11010049. [PMID: 35010176 PMCID: PMC8750665 DOI: 10.3390/foods11010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and nonspecific inflammatory disease of the colon and rectum, and its etiology remains obscure. Cherry polyphenols showed potential health-promoting effects. However, both the protective effect and mechanism of cherry polyphenols on UC are still unclear. This study aimed to investigate the potential role of the free polyphenol extract of cherry in alleviating UC and its possible mechanism of action. Our study revealed that the free polyphenol extract of cherry management significantly alleviated UC symptoms, such as weight loss, colon shortening, the thickening of colonic mucous layer, etc. The free polyphenol extract of cherry treatment also introduced a significant reduction in levels of malondialdehyde (MDA), myeloperoxidase (MPO) and nitric oxide (NO), while causing a significant elevation in levels of catalase (CAT), glutathione (GSH-Px), superoxide dismutase (SOD), as well as the downregulation of pro-inflammatory cytokines. This indicated that such positive effects were performed through reducing oxidative damage or in a cytokine-specific manner. The immunofluorescence analysis of ZO-1 and occludin proteins declared that the free polyphenol extract of cherry had the potential to prompt intestinal barrier function. The reduced expression levels of β-catenin, c-myc, cyclin D1 and GSK-3β suggested that the cherry extract performed its positive effect on UC by suppressing the Wnt/β-ctenin pathway. This finding may pave the way into further understanding the mechanism of cherry polyphenols ameliorating ulcerative colitis.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Huiming Yan
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
- Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China
- Correspondence: or ; Tel.: +86-023-68251298; Fax: +86-023-68251947
| |
Collapse
|
24
|
Mudd AM, Gu T, Munagala R, Jeyabalan J, Fraig M, Egilmez NK, Gupta RC. Berry anthocyanidins inhibit intestinal polyps and colon tumors by modulation of Src, EGFR and the colon inflammatory environment. Oncoscience 2021; 8:120-133. [PMID: 34926717 PMCID: PMC8664094 DOI: 10.18632/oncoscience.548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer is the third most common form of cancer diagnosed and the third leading class for cancer-related deaths. Given the prevalence of colon cancer worldwide, further insight into developing novel and effective prevention and treatment strategies are warranted. The family of plant pigments known as the anthocyanins has been identified with a variety of health benefits including chemopreventive and therapeutic effects. A limitation to current clinical applications of anthocyanins is the high doses that are required. In order to overcome this limitation, we tested the active moiety, anthocyanidins for chemopreventive and therapeutic effects against colorectal cancer in vivo and in vitro. Treatment with native anthocyanidin mixture (Anthos) from bilberry yielded significant antiproliferative activity against colon cancer cells. Anthos treatment led to significant reductions in polyp and tumor counts in vivo. Reduced Src and EGFR phosphorylation was observed with Anthos treatment, which correlated with downstream targets such as PD-L1 and modulation of the colon inflammatory environment. These results provide a promising outlook on the impact of berry Anthos for the treatment and prevention of familial adenomatous polyposis and colorectal cancer. Results from this study also provide novel mechanistic insight into the chemopreventive and therapeutic activities of Anthos.
Collapse
Affiliation(s)
- Ashley M Mudd
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.,These authors contributed equally to this work
| | - Tao Gu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA.,These authors contributed equally to this work
| | - Radha Munagala
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jeyaprakash Jeyabalan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mostafa Fraig
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
25
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
26
|
Chen S, Yang X, Wei Z, Zhang Y, Huang Y, Shi Z, Zhang Z, Wang J, Zhang H, Ma J, Xiao X, Niu M. Establishment of an anti-inflammation-based bioassay for the quality control of the 13-component TCM formula (Lianhua Qingwen). PHARMACEUTICAL BIOLOGY 2021; 59:537-545. [PMID: 33941036 PMCID: PMC8110188 DOI: 10.1080/13880209.2021.1917627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Owing to the complexity of chemical ingredients in traditional Chinese medicine (TCM), it is difficult to maintain quality and efficacy by relying only on chemical markers. OBJECTIVE Lianhua Qingwen capsule (LHQW) was selected as an example to discuss the feasibility of a bioassay for quality control. MATERIALS AND METHODS Network pharmacology was used to screen potential targets in LHQW with respect to its anti-inflammatory effects. An in vitro cell model was used to validate the prediction. An anti-inflammatory bioassay was established for the quality evaluation of LHQW in 40 batches of marketed products and three batches of destructed samples. RESULTS The tumor necrosis factor/interleukin-6 (TNF/IL-6) pathway via macrophage was selected as the potential target of LHQW. The IC50 value of LHQW on RAW 264.7 was 799.8 μg/mL. LHQW had significant inhibitory effects on the expression of IL-6 in a dose-dependent manner (p < 0.05). The anti-inflammatory biopotency of LHQW was calculated based on the inhibitory bioactivity on IL-6. The biopotency of 40 marketed samples ranged from 404 U/μg to 2171 U/μg, with a coefficient of variation (CV) of 37.91%. By contrast, the contents of forsythin indicated lower CV (28.05%) than the value of biopotency. Moreover, the biopotencies of destructed samples declined approximate 50%, while the contents of forsythin did not change. This newly established bioassay revealed a better ability to discriminate the quality variations of LHQW as compared to the routine chemical determination. CONCLUSIONS A well-established bioassay may have promising ability to reveal the variance in quality of TCM.
Collapse
Affiliation(s)
- Shuaishuai Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xiaojuan Yang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ziying Wei
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yanru Zhang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
- College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Ying Huang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zhuo Shi
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ziteng Zhang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Haizhu Zhang
- College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Jianli Ma
- Department of Pharmacy, The Fourth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
SHIN KS, SEO H, LEE SJ, SUNG S, HWANG D. Polysaccharide isolated from Korean-style soy sauce activates macrophages via the MAPK and NK-κB pathways. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.06121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | | | - Dahyun HWANG
- Hoseo University, Republic of Korea; Hoseo University, Republic of Korea
| |
Collapse
|
28
|
Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Quiles JL, Mezzetti B, Xiao J, Giampieri F, Battino M. The efficacy of berries against lipopolysaccharide-induced inflammation: A review. Trends Food Sci Technol 2021; 117:74-91. [DOI: 10.1016/j.tifs.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
An Insight into Anti-Inflammatory Activities and Inflammation Related Diseases of Anthocyanins: A Review of Both In Vivo and In Vitro Investigations. Int J Mol Sci 2021; 22:ijms222011076. [PMID: 34681733 PMCID: PMC8540239 DOI: 10.3390/ijms222011076] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Anthocyanin is a type of flavonoid pigment widely present in fruits and vegetables. It can not only be used as natural pigment, but also has a variety of health functions, for instance, anti-oxidant, anti-inflammatory, anti-tumor, and neuroprotective activities. Persistent proinflammatory status is a major factor in the development, progression, and complications of chronic diseases. Not surprisingly, there are thus many food ingredients that can potentially affect inflammation related diseases and many studies have shown that anthocyanins play an important role in inflammatory pathways. In this paper, the inflammation related diseases (such as, obesity, diabetes, cardiovascular disease, and cancer) of anthocyanins are introduced, and the anti-inflammatory effect of anthocyanins is emphatically introduced. Moreover, the anti-inflammatory mechanism of anthocyanins is elaborated from the aspects of NF-κB, toll like receptor, MAPKs, NO, and ROS and the main efficacy of anthocyanins in inflammation and related diseases is determined. In conclusion, this review aims to get a clear insight into the role of anthocyanins in inflammation related diseases.
Collapse
|
30
|
Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med 2021; 172:152-166. [PMID: 34087429 DOI: 10.1016/j.freeradbiomed.2021.05.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis develops due to lipid accumulation in the arterial wall and sclerosis as result of increased hyperlipidemia, oxidative stress, lipid oxidation, and protein oxidation. However, improving antioxidant status through diet may prevent the progression of atherosclerotic cardiovascular disease. It is believed that polyphenol-rich plants contribute to the inverse relationship between fruit and vegetable intake and chronic disease. Anthocyanins are flavonoid polyphenols with antioxidant properties that have been associated with reduced risk of cardiovascular disease. The consumption of anthocyanins increases total antioxidant capacity, antioxidant defense enzymes, and HDL antioxidant properties by several measures in preclinical and clinical populations. Anthocyanins appear to impart antioxidant actions via direct antioxidant properties, as well as indirectly via inducing intracellular Nrf2 activation and antioxidant gene expression. These actions counter oxidative stress and inflammatory signaling in cells present in atherosclerotic plaques, including macrophages and endothelial cells. Overall, anthocyanins may protect against atherosclerosis and cardiovascular disease through their effects on cellular antioxidant status, oxidative stress, and inflammation; however, their underlying mechanisms of action appear to be complex and require further elucidation.
Collapse
Affiliation(s)
- Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
31
|
Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14070690. [PMID: 34358116 PMCID: PMC8308553 DOI: 10.3390/ph14070690] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the consumption of natural-based foods, including beans, fruits, legumes, nuts, oils, vegetables, spices, and whole grains, has been encouraged. This fact is essentially due to their content in bioactive phytochemicals, with the phenolic compounds standing out. Among them, anthocyanins have been a target of many studies due to the presence of catechol, pyrogallol, and methoxy groups in their chemical structure, which confer notable scavenging, anti-apoptotic, and anti-inflammatory activities, being already recommended as supplementation to mitigate or even attenuate certain disorders, such as diabetes, cancer, and cardiovascular and neurological pathologies. The most well-known anthocyanins are cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside. They are widespread in nature, being present in considerable amounts in red fruits and red vegetables. Overall, the present review intends to discuss the most recent findings on the potential health benefits from the daily intake of anthocyanin-rich foods, as well as their possible pharmacological mechanisms of action. However, before that, some emphasis regarding their chemical structure, dietary sources, and bioavailability was done.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (A.R.N.); (G.A.)
| | - Ana R. Nunes
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (A.R.N.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Edifício do ICNAS, Pólo 3, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (A.R.N.); (G.A.)
| | - Luís R. Silva
- CICS–UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (A.R.N.); (G.A.)
- Correspondence: ; Tel.: +351-275-329-077
| |
Collapse
|
32
|
Tsay TB, Chang WH, Hsu CM, Chen LW. Mechanical ventilation enhances Acinetobacter baumannii-induced lung injury through JNK pathways. Respir Res 2021; 22:159. [PMID: 34022899 PMCID: PMC8140754 DOI: 10.1186/s12931-021-01739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients in intensive care units (ICUs) often received broad-spectrum antibiotic treatment and Acinetobacter baumannii (A.b.) and Pseudomonas aeruginosa (P.a.) were the most common pathogens causing ventilator-associated pneumonia (VAP). This study aimed to examine the effects and mechanism of mechanical ventilation (MV) on A.b.-induced lung injury and the involvement of alveolar macrophages (AMs). METHODS C57BL/6 wild-type (WT) and c-Jun N-terminal kinase knockout (JNK1-/-) mice received MV for 3 h at 2 days after nasal instillation of A.b., P.a. (1 × 106 colony-forming unit, CFU), or normal saline. RESULTS Intranasal instillation of 106 CFU A.b. in C57BL/6 mice induced a significant increase in total cells and protein levels in the bronchoalveolar lavage fluid (BALF) and neutrophil infiltration in the lungs. MV after A.b. instillation increases neutrophil infiltration, interleukin (IL)-6 and vascular cell adhesion molecule (VCAM) mRNA expression in the lungs and total cells, IL-6 levels, and nitrite levels in the BALF. The killing activity of AMs against A.b. was lower than against P.a. The diminished killing activity was parallel with decreased tumor necrosis factor-α production by AMs compared with A.b. Inducible nitric oxide synthase inhibitor, S-methylisothiourea, decreased the total cell number in BALF on mice receiving A.b. instillation and ventilation. Moreover, MV decreased the A.b. and P.a. killing activity of AMs. MV after A.b. instillation induced less total cells in the BALF and nitrite production in the serum of JNK1-/- mice than those of WT mice. CONCLUSION A.b. is potent in inducing neutrophil infiltration in the lungs and total protein in the BALF. MV enhances A.b.-induced lung injury through an increase in the expression of VCAM and IL-6 levels in the BALF and a decrease in the bacteria-killing activity of AMs. A lower inflammation level in JNK1-/- mice indicates that A.b.-induced VAP causes lung injury through JNK signaling pathway in the lungs.
Collapse
MESH Headings
- Acinetobacter Infections/enzymology
- Acinetobacter Infections/microbiology
- Acinetobacter Infections/pathology
- Acinetobacter baumannii/pathogenicity
- Animals
- Cells, Cultured
- Disease Models, Animal
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lung/enzymology
- Lung/microbiology
- Lung/pathology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/microbiology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 8/genetics
- Mitogen-Activated Protein Kinase 8/metabolism
- Neutrophil Infiltration
- Nitric Oxide Synthase Type II/metabolism
- Pneumonia, Ventilator-Associated/enzymology
- Pneumonia, Ventilator-Associated/microbiology
- Pneumonia, Ventilator-Associated/pathology
- Respiration, Artificial/adverse effects
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
- Ventilator-Induced Lung Injury/enzymology
- Ventilator-Induced Lung Injury/microbiology
- Ventilator-Induced Lung Injury/pathology
- Mice
Collapse
Affiliation(s)
- Tzyy-Bin Tsay
- Department of Surgery, Kaohsiung Armed Forces General Hospital Zuoying Branch, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Wei Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Surgery, Kaohsiung Veterans General Hospital, 386, Ta-Chung 1st Road, Kaohsiung, Taiwan.
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
33
|
Giampieri F, Cianciosi D, Ansary J, Elexpuru-Zabaleta M, Forbes-Hernandez TY, Battino M. Immunoinflammatory effects of dietary bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:295-336. [PMID: 33745515 DOI: 10.1016/bs.afnr.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation is a key mechanism of the immune system that can be elicited by several factors, among them several chemical, physical and biological agents. Once stimulated, the inflammatory response activates a series of signaling pathways and a number of immune cells which promote, in a very coordinated manner, the neutralization of the infectious agent. However, if uncontrolled, the inflammatory status may become chronic leading, potentially, to tissue damage and disease onset. Several risk factors are associated with the development of chronic inflammation and, among these factors, diet plays an essential role. In this chapter the effects of some dietary bioactive compounds, including micronutrients, omega-3 fatty acids, nucleotides and polyphenols, on the immunoinflammatory responses in different cellular, animal and human studies have been summarized.
Collapse
Affiliation(s)
- Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Johura Ansary
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | | | - Tamara Y Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
34
|
Wang L, Jiang G, Jing N, Liu X, Li Q, Liang W, Liu Z. Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiota. Food Funct 2021; 11:3180-3190. [PMID: 32211663 DOI: 10.1039/d0fo00255k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The undesirable low response rate is a major hurdle to garnering the maximum potential of immune checkpoint inhibitors in cancer treatments. Recent advances in exploring the effects of intestinal flora on the medical efficacy of immune checkpoint blockade have shed new light on the application of immune checkpoint inhibitors. Inspired by the prebiotic role of anthocyanin-rich extracts, we propose using bilberry anthocyanin extracts to modulate the composition of gut microbiota and eventually, promote the efficiency of immune checkpoint inhibitors. This study demonstrates the effectiveness of orally administered bilberry anthocyanin extracts in enhancing the anti-tumor efficiency of the PD-L1 antibody in the experimental mouse MC38 tumor model. We observed an increase in the fecal abundance of Clostridia and Lactobacillus johnsonii and improved effective community diversity. These findings reinforce the importance of intestinal flora composition and open up unprecedented opportunities in using natural compounds to enhance the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Luoyang Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. and Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China
| | - Guoqiang Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. and Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China
| | - Nan Jing
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. and Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China
| | - Xuerun Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. and Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China
| | - Qicheng Li
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. and Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing 100084, China
| |
Collapse
|
35
|
Land Lail H, Feresin RG, Hicks D, Stone B, Price E, Wanders D. Berries as a Treatment for Obesity-Induced Inflammation: Evidence from Preclinical Models. Nutrients 2021; 13:nu13020334. [PMID: 33498671 PMCID: PMC7912458 DOI: 10.3390/nu13020334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation that accompanies obesity is associated with the infiltration of metabolically active tissues by inflammatory immune cells. This propagates a chronic low-grade inflammation associated with increased signaling of common inflammatory pathways such as NF-κB and Toll-like receptor 4 (TLR4). Obesity-associated inflammation is linked to an increased risk of chronic diseases, including type 2 diabetes, cardiovascular disease, and cancer. Preclinical rodent and cell culture studies provide robust evidence that berries and their bioactive components have beneficial effects not only on inflammation, but also on biomarkers of many of these chronic diseases. Berries contain an abundance of bioactive compounds that have been shown to inhibit inflammation and to reduce reactive oxygen species. Therefore, berries represent an intriguing possibility for the treatment of obesity-induced inflammation and associated comorbidities. This review summarizes the anti-inflammatory properties of blackberries, blueberries, strawberries, and raspberries. This review highlights the anti-inflammatory mechanisms of berries and their bioactive components that have been elucidated through the use of preclinical models. The primary mechanisms mediating the anti-inflammatory effects of berries include a reduction in NF-κB signaling that may be secondary to reduced oxidative stress, a down-regulation of TLR4 signaling, and an increase in Nrf2.
Collapse
|
36
|
Dias R, Pereira CB, Pérez-Gregorio R, Mateus N, Freitas V. Recent advances on dietary polyphenol's potential roles in Celiac Disease. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Yao L, Yang P, Luo W, Li S, Wu Y, Cai N, Bi D, Li H, Han Q, Xu X. Macrophage-stimulating activity of European eel (Anguilla anguilla) peptides in RAW264.7 cells mediated via NF-κB and MAPK signaling pathways. Food Funct 2020; 11:10968-10978. [PMID: 33283791 DOI: 10.1039/d0fo02497j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
European eel (Anguilla anguilla) is considered to be a vital commercial fish species. In this study, the effect and molecular mechanism of bioactive peptides from European eel on macrophage-stimulating activity in RAW264.7 cells were investigated. Eel peptide (EP) markedly induced NO and iNOS production and promoted TNF-α and IL-6 secretion in a concentration-dependent manner. Moreover, EP dose-dependently activated NF-κB and MAPK signaling pathways in RAW264.7 cells. In addition, EP was purified using a Sephadex A-25 column and a Bio-Gel P-6 column, and the fraction (Fr-1-1) showing the strongest NO-inducing activity was obtained. Then, the molecular weights of the components in Fr-1-1 were analyzed by LC-MS/MS and found to range from 700 to 1900 Da for the majority of components, which suggested that Fr-1-1 mainly consisted of peptides containing 8-20 amino acid residues. Overall, our results indicated that EP from Anguilla anguilla activated macrophages and could be used as a potential nutraceutical or pharmaceutical.
Collapse
Affiliation(s)
- Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
An Anthocyanin-Rich Extract Obtained from Portuguese Blueberries Maintains Its Efficacy in Reducing Microglia-Driven Neuroinflammation after Simulated Digestion. Nutrients 2020; 12:nu12123670. [PMID: 33260540 PMCID: PMC7761390 DOI: 10.3390/nu12123670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Dietary polyphenols are multi-target compounds that have been considered promising candidates in strategies for the mitigation of neurological diseases, acting particularly through reduction of microglia-driven neuroinflammation. In this study, an anthocyanin-rich extract obtained from Portuguese blueberries was subjected to a simulated gastrointestinal digestion; after chemical characterisation, the potential of both non-digested and digested extracts to combat neuroinflammation was evaluated using a microglia N9 cell line. Although the extracts have markedly different chemical composition, both were efficient in reducing the production of either key inflammatory markers or reactive oxygen species and in enhancing reduced glutathione levels in activated cells. Furthermore, this protection was shown to be related to the suppression of nuclear factor kappa B (NF-kB) activation, and to a signal transducer and activator of transcription 1 (STAT1)-independent mechanism. These results demonstrate that the anthocyanin extract, after simulated digestion, maintains its efficacy against neuroinflammation, and can, therefore, assume a relevant role in prevention of neuroinflammation-related neurological disorders.
Collapse
|
39
|
Kang K, Liao X, Li Q, Chen J, Niu Y, Zeng Y, Xia S, Zeng L, Liu S, Gou D. A novel tonicity-responsive microRNA miR-23a-5p modulates renal cell survival under osmotic stress through targeting heat shock protein 70 HSPA1B. Am J Physiol Cell Physiol 2020; 320:C225-C239. [PMID: 33206547 DOI: 10.1152/ajpcell.00441.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing evidence that microRNAs (miRNAs) are implicated in cellular adaptation to osmotic stress, but the underlying osmosignaling pathways are still not completely understood. In this study, we found that a passenger strand miRNA, miR-23a-5p, was significantly downregulated in response to high NaCl treatment in mouse inner medullary collecting duct cells (mIMCD3) through an miRNA profiling assay. The decrease of miR-23a-5p is hypertonicity-dependent and osmotolerant cell type-specific. Knockdown of miR-23a-5p increased cellular survival and proliferation in mIMCD3. In contrast, miR-23a-5p overexpression repressed cell viability and proliferation under hypertonic stress. RNA deep-sequencing revealed that a heat shock protein 70 (HSP70) isoform, HSP70 member 1B (HSPA1B), was significantly increased under hypertonic treatment. Based on the prediction analysis by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and TargetScan, and a further validation via a dual-luciferase assay, HSPA1B was identified as a potential target of miR-23a-5p. Overexpressed miR-23a-5p suppressed HSPA1B, whereas downregulated miR-23a-5p promoted HSPA1B expression in mIMCD3. In addition, an in vivo study demonstrated that there is a reverse correlation between the levels of miR-23a-5p and HSPA1B in mouse renal inner medulla (papilla) that is exposed to extremely high osmolality. In summary, this study elucidates that passenger strand miR-23a-5p is a novel tonicity-responsive miRNA. The downregulation of miR-23a-5p facilitates cellular adaptation to hypertonic stress in mammalian renal cells through modulating HSPA1B.
Collapse
Affiliation(s)
- Kang Kang
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - Xiaoyun Liao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Qing Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Yan Zeng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Sijian Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Le Zeng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Shide Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Deming Gou
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China.,Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
40
|
Gu I, Brownmiller C, Stebbins NB, Mauromoustakos A, Howard L, Lee SO. Berry Phenolic and Volatile Extracts Inhibit Pro-Inflammatory Cytokine Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB Signaling Pathway. Antioxidants (Basel) 2020; 9:antiox9090871. [PMID: 32942640 PMCID: PMC7554842 DOI: 10.3390/antiox9090871] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are a rich source of phytochemicals, especially phenolics well known for protective activity against many chronic diseases. Berries also contain a complex mixture of volatile compounds that are responsible for the unique aromas of berries. However, there is very limited information on the composition and potential health benefits of berry volatiles. In this study, we isolated phenolic and volatile fractions from six common berries and characterized them by HPLC/HPLC-MS and GC/GC-MS, respectively. Berry phenolic and volatile fractions were evaluated for an anti-inflammatory effect using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells by measuring levels of pro-inflammatory cytokines and the nuclear factor-kappa B (NF-κB) signaling pathway. Results showed that LPS-induced excessive production of nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which were inhibited by berry phenolic and volatile extracts. Moreover, berry phenolic and volatile extracts reduced the nuclear translocation of NF-κB by blocking the phosphorylation of p65 and degradation of IκBα. These findings showed that berry volatiles from six berries had comparable anti-inflammatory effects to berry phenolics through the suppression of pro-inflammatory mediators and cytokines expression via NF-κB down-regulation, despite being present in the fruit at a lower concentration.
Collapse
Affiliation(s)
- Inah Gu
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Cindi Brownmiller
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Nathan B. Stebbins
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Andy Mauromoustakos
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Luke Howard
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Sun-Ok Lee
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
- Correspondence: ; Tel.: +1-479-575-6921
| |
Collapse
|
41
|
Dharmawansa KS, Hoskin DW, Rupasinghe HPV. Chemopreventive Effect of Dietary Anthocyanins against Gastrointestinal Cancers: A Review of Recent Advances and Perspectives. Int J Mol Sci 2020; 21:ijms21186555. [PMID: 32911639 PMCID: PMC7554903 DOI: 10.3390/ijms21186555] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Anthocyanins are a group of dietary polyphenols, abundant mainly in fruits and their products. Dietary interventions of anthocyanins are being studied extensively related to the prevention of gastrointestinal (GI) cancer, among many other chronic disorders. This review summarizes the hereditary and non-hereditary characteristics of GI cancers, chemistry, and bioavailability of anthocyanins, and the most recent findings of anthocyanin in GI cancer prevention through modulating cellular signaling pathways. GI cancer-preventive attributes of anthocyanins are primarily due to their antioxidative, anti-inflammatory, and anti-proliferative properties, and their ability to regulate gene expression and metabolic pathways, as well as induce the apoptosis of cancer cells.
Collapse
Affiliation(s)
- K.V. Surangi Dharmawansa
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Microbiology and Immunology, and Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Correspondence: ; Tel.: +1-902-893-6623
| |
Collapse
|
42
|
Poulsen NB, Lambert MNT, Jeppesen PB. The Effect of Plant Derived Bioactive Compounds on Inflammation: A Systematic Review and Meta‐Analysis. Mol Nutr Food Res 2020; 64:e2000473. [DOI: 10.1002/mnfr.202000473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/24/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Nikolaj Bech Poulsen
- Department of Clinical Medicine, Aarhus University Hospital Aarhus University Palle Juul‐Jensens Boulevard 165 Aarhus N 8200 Denmark
| | - Max Norman Tandrup Lambert
- Department of Clinical Medicine, Aarhus University Hospital Aarhus University Palle Juul‐Jensens Boulevard 165 Aarhus N 8200 Denmark
| | - Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University Hospital Aarhus University Palle Juul‐Jensens Boulevard 165 Aarhus N 8200 Denmark
| |
Collapse
|
43
|
Valdez JC, Cho J, Bolling BW. Aronia berry inhibits disruption of Caco-2 intestinal barrier function. Arch Biochem Biophys 2020; 688:108409. [DOI: 10.1016/j.abb.2020.108409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
|
44
|
Lee JW, Lee SM, Chun J, Im JP, Seo SK, Ha N, Il Choi Y, Kim JS. Novel Histone Deacetylase 6 Inhibitor CKD-506 Inhibits NF-κB Signaling in Intestinal Epithelial Cells and Macrophages and Ameliorates Acute and Chronic Murine Colitis. Inflamm Bowel Dis 2020; 26:852-862. [PMID: 31895948 DOI: 10.1093/ibd/izz317] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Selective blocking of HDAC6 has become a promising strategy in treating inflammatory bowel disease. CKD-506 is a novel isoform-selective inhibitor of histone deacetylase 6. The present study was performed to evaluate the effect of CKD-506 on the NF-κB signaling pathway in intestinal epithelial cells (IECs) and macrophages and on murine models of acute and chronic colitis. METHODS RAW264RAW264.7 murine macrophages and COLO 205 human IECs were pretreated with CKD-506 and then stimulated with lipopolysaccharides (LPS). Cytokine expression of TNF-α, interleukin (IL)-6, IL-8, and IL-10 was measured by ELISA. The effect of CKD-506 on NF-κB signaling was evaluated by Western blotting of IκBα phosphorylation/degradation and electrophoretic mobility shift assay. In vivo studies were performed using a dextran sulfate sodium (DSS)-induced acute colitis model, a chronic colitis model in IL-10 knockout mice, and an adoptive transfer model. Colitis was quantified by the disease activity index, colon length, and histopathologic evaluation. RESULTS CKD-506 suppressed the expression of pro-inflammatory cytokines such as IL-6, IL-8, and TNF-α in IECs and macrophages. CKD-506 strongly inhibited IκBα phosphorylation/degradation and the DNA-binding activity of NF-κB. Oral administration of CKD-506 attenuated DSS-induced acute colitis and chronic colitis in IL-10-/- and adoptive transfer models. CKD-506 ameliorated weight loss, disease activity, and histopathologic score in colitis mice and downregulated IκBα phosphorylation and pro-inflammatory cytokine production significantly. CONCLUSIONS CKD-506 blocked NF-κB signaling in IECs and macrophages and ameliorated experimental acute and chronic murine colitis models, which suggests that CKD-506 is a promising candidate for inflammatory bowel disease treatment as a small molecular medicine.
Collapse
Affiliation(s)
- Jung Won Lee
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Soung-Min Lee
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Jaeyoung Chun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Young Il Choi
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
45
|
Wu B, Bhatnagar R, Indukuri VV, Chopra S, March K, Cordero N, Chopra S, Reddivari L. Intestinal Mucosal Barrier Function Restoration in Mice by Maize Diet Containing Enriched Flavan-4-Ols. Nutrients 2020; 12:E896. [PMID: 32218287 PMCID: PMC7230161 DOI: 10.3390/nu12040896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD), a chronic intestinal inflammatory condition, awaits safe and effective preventive strategies. Naturally occurring flavonoid compounds are promising therapeutic candidates against IBD due to their great antioxidant potential and ability to reduce inflammation and improve immune signaling mediators in the gut. In this study, we utilized two maize near-isogenic lines flavan-4-ols-containing P1-rr (F+) and flavan-4-ols-lacking p1-ww (F-) to investigate the anti-inflammatory property of flavan-4-ols against carboxymethylcellulose (CMC)-induced low-grade colonic inflammation. C57BL/6 mice were exposed to either 1% CMC (w/v) or water for a total of 15 weeks. After week six, mice on CMC treatment were divided into four groups. One group continued on the control diet. The second and third groups were supplemented with F+ at 15% or 25% (w/w). The fourth group received diet supplemented with F- at 15%. Here we report that mice consuming F+(15) and F+(25) alleviated CMC-induced increase in epididymal fat-pad, colon histology score, pro-inflammatory cytokine interleukin 6 expression and intestinal permeability compared to mice fed with control diet and F-(15). F+(15) and F+(25) significantly enhanced mucus thickness in CMC exposed mice (p < 0.05). These data collectively demonstrated the protective effect of flavan-4-ol against colonic inflammation by restoring intestinal barrier function and provide a rationale to breed for flavan-4-ols enriched cultivars for better dietary benefits.
Collapse
Affiliation(s)
- Binning Wu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA; (B.W.); (R.B.)
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Rohil Bhatnagar
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA; (B.W.); (R.B.)
| | - Vijaya V. Indukuri
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Shara Chopra
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Kylie March
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Nina Cordero
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA; (B.W.); (R.B.)
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lavanya Reddivari
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA; (B.W.); (R.B.)
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
de Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu Rev Food Sci Technol 2020; 11:145-182. [PMID: 32126181 DOI: 10.1146/annurev-food-032519-051729] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing consumer demand for natural colors in foods. However, there is a limited number of available natural food sources for use by the food industry because of technical and regulatory limitations. Natural colors are less stable and have less vibrant hues compared to their synthetic color counterparts. Natural pigments also have known health benefits that are seldom leveraged by the food industry. Betalains, carotenoids, phycocyanins, and anthocyanins are major food colorants used in the food industry that have documented biological effects, particularly in the prevention and management of chronic diseases such as diabetes, obesity, and cardiovascular disease. The color industry needs new sources of stable, functional, and safe natural food colorants. New opportunities include sourcing new colors from microbial sources and via the use of genetic biotechnology. In all cases, there is an imperative need for toxicological evaluation to pave the way for their regulatory approval.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801, USA;
| | - Qiaozhi Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kayla Penta
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing & Nutrition Sciences and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
47
|
Han Y, Xiao H. Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. Annu Rev Food Sci Technol 2020; 11:119-143. [DOI: 10.1146/annurev-food-111519-014337] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intake of whole foods, such as fruits and vegetables, may confer health benefits to the host. The beneficial effects of fruits and vegetables were mainly attributed to their richness in polyphenols and microbiota-accessible carbohydrates (MACs). Components in fruits and vegetables modulate composition and associated functions of the gut microbiota, whereas gut microbiota can transform components in fruits and vegetables to produce metabolites that are bioactive and important for health. The progression of multiple diseases, such as obesity and inflammatory bowel disease, is associated with diet and gut microbiota. Although the exact causality between these diseases and specific members of gut microbiota has not been well characterized, accumulating evidence supported the role of fruits and vegetables in modulating gut microbiota and decreasing the risks of microbiota-associated diseases. This review summarizes the latest findings on the effects of whole fruits and vegetables on gut microbiota and associated diseases.
Collapse
Affiliation(s)
- Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
48
|
Hurst RD, Lyall KA, Wells RW, Sawyer GM, Lomiwes D, Ngametua N, Hurst SM. Daily Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants for 5 Weeks Supports Exercise Recovery Through the Management of Oxidative Stress and Inflammation: A Randomized Placebo Controlled Pilot Study. Front Nutr 2020; 7:16. [PMID: 32175326 PMCID: PMC7056812 DOI: 10.3389/fnut.2020.00016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Regular exercise is essential to a healthy lifestyle but evokes an oxidative and inflammatory stress. Depending upon its intensity and duration this can result in either beneficial adaptive changes or underlying tissue damage that impacts upon long-term health and individual sporting training schedules. Functional foods containing plant bioactives have potential to support exercise through management of the detrimental aspects of exercise and complement ergonomic adaptive benefits. Aim: Previously we reported that a single consumption of a 3.2 mg/kg New Zealand blackcurrant anthocyanin-rich extract (BAE) 1 h before a 30 min rowing exercise attenuated moderate exercise-mediated oxidative stress and supported innate immunity. Here we evaluate whether the efficacy of a single consumption of BAE 1 h prior to exercise is changed after extended daily BAE consumption for 5 weeks. Results: On week 1, a single consumption of BAE 1 h before a 30 min row mediated a significant (p < 0.05) 46% reduction in post-exercise-induced malondialdehyde (MDA) by 2 h compared to a 30% reduction in the placebo group. Similar efficacy was observed 5 weeks later after daily consumption of BAE. In addition, daily BAE consumption for 5 weeks improved the efficacy to (a) resolve acute inflammation, and (b) increased plasma IL-10, salivary beta-defensin 2 (BD2) and secretory IgA. Although no change in plasma antioxidant capacity was detected, a significant (p < 0.009) positive correlation between plasma IL-10 and plasma antioxidant capacity (R 2 = 0.35) was observed on week 6 after 5 week BAE consumption suggesting IL-10 influences antioxidant properties. Using a differentiated myotubule cell-line revealed that whilst IL-10 had no direct antioxidant neutralizing action, longer-term exposure (24 h) attenuated 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH)-induced myotubule oxidative stress, supporting a putative role for IL-10 in the modulation of cellular antioxidant systems. Conclusions: Daily consumption of BAE for 5 weeks serves to enhance the exercise recovery effectiveness of a single consumption of BAE and promotes beneficial/protective antioxidant/anti-inflammatory cellular events that facilitate exercise recovery.
Collapse
Affiliation(s)
- Roger D. Hurst
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Kirsty A. Lyall
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Hamilton, New Zealand
| | - Robyn W. Wells
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Hamilton, New Zealand
| | - Gregory M. Sawyer
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Dominic Lomiwes
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Nayer Ngametua
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| | - Suzanne M. Hurst
- Food Innovation Portfolio, The New Zealand Institute for Plant & Food Research Ltd., Palmerston North, New Zealand
| |
Collapse
|
49
|
Csernus B, Biró S, Babinszky L, Komlósi I, Jávor A, Stündl L, Remenyik J, Bai P, Oláh J, Pesti-Asbóth G, Czeglédi L. Effect of Carotenoids, Oligosaccharides and Anthocyanins on Growth Performance, Immunological Parameters and Intestinal Morphology in Broiler Chickens Challenged with Escherichia coli Lipopolysaccharide. Animals (Basel) 2020; 10:E347. [PMID: 32098265 PMCID: PMC7070938 DOI: 10.3390/ani10020347] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate the effect of carotenoid, oligosaccharide and anthocyanin supplementation in broiler diets under Escherichia coli lipopolysaccharide (LPS) challenge. Ross 308 chickens were fed 5 diets: basal diet (control diet), diet supplemented with β-glucan in 0.05% (positive control) and diets with 0.5% carotenoid-, oligosaccharide- or anthocyanin contents. On the 26th days of age, chickens were challenged intraperitoneally 2 mg LPS per kg of body weight. 12 h after injection, birds were euthanized, then spleen and ileum samples were collected. LPS induced increased relative mRNA expression of splenic (p = 0.0445) and ileal (p = 0.0435) interleukin-1β (IL-1β), which was lower in the spleen in carotenoid (p = 0.0114), oligosaccharide (p = 0.0497) and anthocyanin (p = 0.0303)-treated chickens compared to LPS-injected control birds. Dietary supplementation of carotenoids also decreased relative gene expression of splenic interleukin-6 (IL-6) (p = 0.0325). In the ileum, β-glucan supplementation showed lower relative mRNA expression of toll-like receptor 5 (TLR-5) (p = 0.0387) compared to anthocyanin treatment. Gene expression of both splenic and ileal interferon-α (IFN-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4) and toll-like receptor 5 (TLR-5) were not influenced by dietary supplements. In conclusion, carotenoids, oligosaccharides and anthocyanins could partially mitigate the immune stress caused by LPS challenge. All of the compounds impacted longer villus height (p < 0.0001), villus height:crypt depth ratios were higher after β-glucan (p < 0.0001) and anthocyanin (p = 0.0063) supplementations and thickened mucosa was observed in β-glucan (p < 0.0001), oligosaccharide (p < 0.0001) and anthocyanin (p = 0.048) treatments. All of these findings could represent a more effective absorption of nutrients.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Institute of Microbiomics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Babinszky
- Department of Feed and Food Biotechnology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Komlósi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - András Jávor
- Department of Laboratory of Animal Genetics, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - János Oláh
- Farm and Regional Research Institute of Debrecen, University of Debrecen, 4032 Debrecen, Hungary;
| | - Georgina Pesti-Asbóth
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
50
|
Bernardi S, Del Bo' C, Marino M, Gargari G, Cherubini A, Andrés-Lacueva C, Hidalgo-Liberona N, Peron G, González-Dominguez R, Kroon P, Kirkup B, Porrini M, Guglielmetti S, Riso P. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1816-1829. [PMID: 31265272 DOI: 10.1021/acs.jafc.9b02283] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Increasing evidence links intestinal permeability (IP), a feature of the intestinal barrier, to several pathological or dysfunctional conditions. Several host and environmental factors, including dietary factors, can affect the maintenance of normal IP. In this regard, food bioactives, such as polyphenols, have been proposed as potential IP modulators, even if the mechanisms involved are not yet fully elucidated. The aim of the present paper is to provide a short overview of the main evidence from in vitro and in vivo studies supporting the role of polyphenols in modulating IP and briefly discuss future perspectives in this research area.
Collapse
Affiliation(s)
- Stefano Bernardi
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento , Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-l'Istituto Nazionale Ricovero e Cura Anziani (INRCA) , 60127 Ancona , Italy
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Gregorio Peron
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Raúl González-Dominguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences , University of Barcelona , 08028 Barcelona , Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) , Instituto de Salud Carlos III , 08028 Barcelona , Spain
| | - Paul Kroon
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Benjamin Kirkup
- Quadram Institute Bioscience , Norwich Research Park, Norwich NR4 7UQ , United Kingdom
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , 20122 Milan , Italy
| |
Collapse
|