1
|
Li D, Huo X, Shen L, Qian M, Wang J, Mao S, Chen W, Li R, Zhu T, Zhang B, Liu K, Wu F, Bai Y. Astrocyte heterogeneity in ischemic stroke: Molecular mechanisms and therapeutic targets. Neurobiol Dis 2025; 209:106885. [PMID: 40139279 DOI: 10.1016/j.nbd.2025.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in adults, bringing a significant economic burden to the society and families. Despite significant advancements in stroke treatment, focusing solely on neurons is insufficient for improving disease progression and prognosis. Astrocytes are the most ubiquitous cells in the brain, and they undergo morphological and functional changes after brain insults, which has been known as astrocyte reactivity. Transcriptomics have shown that reactive astrocytes (RA) are heterogeneous, and they can be roughly classified into neurotoxic and neuroprotective types, thereby affecting the development of central nervous system (CNS) diseases. However, the relationship between stroke and reactive astrocyte heterogeneity has not been fully elucidated, and regulating the heterogeneity of astrocytes to play a neuroprotective role may provide a new perspective for the treatment of stroke. Here we systematically review current advancements in astrocyte heterogeneity following ischemic stroke, elucidate the molecular mechanisms underlying their activation, and further summarize promising therapeutic agents and molecular targets capable of modulating astrocyte heterogeneity.
Collapse
Affiliation(s)
- Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minjie Qian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jindou Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shijie Mao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjing Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Runheng Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Beicheng Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Kunxuan Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Feifei Wu
- Laboratory for Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Qiu W, Chen R, Pan L, Li Y, Xu Y, Li Y, Guo A, Huang W, Tan T, Li P, Xie C, Xu H, Lin L, Wang X. Edaravone dexborneol exerts anti-epileptic effects on rodent temporal lobe epilepsy by promoting NMDAR deactivation and inhibiting oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156558. [PMID: 40054180 DOI: 10.1016/j.phymed.2025.156558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Disease-modifying treatments with anti-epileptic effects are currently unavailable and urgently required for temporal lobe epilepsy (TLE). Combined therapy targeting multiple mechanisms may offer a promising anti-epileptic strategy, given the complex processes underlying epileptogenesis. PURPOSE This study evaluates the effects of Edaravone Dexbroneol, a combination of Edaravone and Dexborneol in 4:1, on rat and mouse TLE models and an in vitro epileptiform activity model. METHODS The Pilocarpine-induced rat TLE model and the Kainic acid-induced mouse TLE model were used to assess the in vivo effect of Edaravone and/or Dexbornel. Primary neurons were utilized to evaluate the in vitro effect of drugs using calcium imaging, electrophysiological and biochemical analyses, as well as RNA sequencing. RESULTS Treatment of Edaravone Dexbornel during the latent period significantly alleviated epileptic seizures in rodents, mitigated cognitive impairment, and inhibited neuronal loss and astrocytic activation. In vitro, Edaravone Dexborneol inhibited the action potentials and protected primary hippocampal neurons from Mg2+-free-induced neurite injury. All these effects were significantly more pronounced in the group treated with the Edaravone Dexborneol mixture compared to either drug used individually. Furthermore, Edaravone can significantly inhibit Mg2+-free-induced calcium oscillations in primary neurons, probably by promoting the deactivation of NMDA receptors. RNA sequencing and RT-PCR analysis revealed that synergetic regulation of lipid metabolism, oxidative stress, apoptosis, and calcium signaling probably underlay the neuroprotective effect of Edaravone Dexbornel on epileptic neurons. CONCLUSION Edaravone Dexborneol exhibits antiepileptic effects and may fill the gap in disease-modifying treatments for TLE.
Collapse
Affiliation(s)
- Wanhua Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Roumeng Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Lechen Pan
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Yiqian Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Yuchen Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Yuqian Li
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Ang Guo
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Wenting Huang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Peijun Li
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, PR China
| | - Chenglong Xie
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Huiqin Xu
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Xinshi Wang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Geriatric Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, Wenzhou, Zhejiang Province, PR China.
| |
Collapse
|
3
|
Long S, Wang Y. Association of TAB2 gene polymorphism with endometrial cancer susceptibility and clinical analysis. Turk J Obstet Gynecol 2025; 22:1-12. [PMID: 40062608 PMCID: PMC11894771 DOI: 10.4274/tjod.galenos.2025.24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025] Open
Abstract
Objective Transforming growth factor-β-activated kinase 1 binding protein 2 (TAB2) plays a vital role in inflammatory pathways. It has also been considered a potential target for the enhancement of the the antiestrogen effects. Previous evidence has indicated that TAB2 gene variants are associated with several diseases, whereas their potential correlation with endometrial cancer (EC) is unclear. This study aims to initially explore the association between TAB2 gene polymorphisms (rs237028 /AG, rs521845 T/G, and rs652921 T/C) and EC. Materials and Methods Polymerase chain reaction-restriction fragment length polymorphism was applied to determine the genotype composition and the allele frequencies of TAB2 gene variant polymorphisms in 270 EC patients and 294 healthy controls. Results The G allele of rs521845 was related to the increase of EC risk [p=0.08, odds ratio (OR): 0.72, 95% confidence interval (CI): 0.56-0.91]. Moreover, EC risk was associated with rs521845 in different genetic models (p=0.017, OR: 0.63, 95% CI: 0.44-0.91 in the codominant model; p=0.0051, OR: 0.61, 95% CI: 0.43-0.87 in the dominant model). For rs237028, the percentage of AG genotype in patients with highly differentiated tumours (G1) was significantly higher than that in moderately, poorly differentiated patients (G2/G3) (p=0.031, OR: 0.77, 95% CI: 0.45-1.30). Conclusion Our results showed that the rs521845 polymorphism of TAB2, was associated with EC risk, suggesting that TAB2 may play a crucial role in EC prognosis.
Collapse
Affiliation(s)
- Siyu Long
- Sichuan University, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center for Translational Medicine, Laboratory of Molecular Translational Medicine, Sichuan, China
- Sichuan University West China Second University Hospital, Clinic of Andrology/Sichuan Human Sperm Bank, Chengdu, China
| | - Yanyun Wang
- Sichuan University, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center for Translational Medicine, Laboratory of Molecular Translational Medicine, Sichuan, China
| |
Collapse
|
4
|
Li X, Cheng J, Guo K, Wan J, Wang C, Chen L, Xu N, Chen M. KGF-2 ameliorates UVB-triggered skin photodamage in mice by attenuating DNA damage and inflammatory response and mitochondrial dysfunction. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12993. [PMID: 39187972 DOI: 10.1111/phpp.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Long-term exposure to UVB induces DNA damage, inflammatory response, mitochondrial dysfunction, and apoptosis in skin cells, thus causing skin photodamage. Research has demonstrated the noteworthy antioxidant, anti-inflammatory, DNA repair, and mitochondrial protective properties of keratinocyte growth factor-2 (KGF-2). METHODS To examine the impact of KGF-2 on UVB-triggered skin photodamage in mice, hair-removed mice were initially exposed under UVB radiation and subsequently treated with KGF-2 hydrogel and repeated for 6 days. On day 7, the assessment of histopathological alterations, inflammation, DNA damage, mitochondrial function, and apoptosis in mouse skin was assessed. RESULTS It was found that KGF-2 could effectively relieve cutaneous photodamage symptoms and inhibit epidermal proliferation in mice. Meanwhile, KGF-2 was found to significantly reduce DNA damage, attenuate the inflammatory response, and inhibit the mitochondria-mediated intrinsic apoptotic pathway in the UVB-exposed mouse skin photodamage model. CONCLUSION To summarize, our results indicated that KGF-2 reduces the severity of mouse skin photodamage caused by UVB rays by attenuating DNA damage and the inflammatory response, besides inhibiting the mitochondria-mediated intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Xuenan Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jinli Cheng
- Department of Pharmacy, Nanjing Yuhua hospital, Nanjing, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
5
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Virijevic K, Vezmar M, Dronjak S. Sex-Related and Brain Regional Differences of URB597 Effects on Modulation of MAPK/PI3K Signaling in Chronically Stressed Rats. Mol Neurobiol 2024; 61:1495-1506. [PMID: 37725215 DOI: 10.1007/s12035-023-03649-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Gender differences exist in depression incidence and antidepressant efficacy. In addition to the neurotransmission theory of depression, inflammation and disrupted signaling pathways play crucial roles in the pathophysiology of depression. Endocannabinoids offer a novel approach to treat inflammatory and emotional disorders like depression. URB597, a FAAH inhibitor, reduces endocannabinoids breakdown. In this study, URB597 effects were investigated on the pro-inflammatory cytokine interleukin-1β (IL-1β), nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3), and mitogen-activated protein kinase (MAPK)/ phosphatidylinositol 3-hydroxy kinase/ protein kinase B (PI3K) signaling in the hippocampus and the medial prefrontal cortex (mPFC) of male and female rats subjected to chronic unpredictable stress (CUS). The results show that CUS induces depression-like behaviors, and the URB597 exhibited antidepressant-like effects inboth sexes. URB597 reduced the CUS-induced NLRP3 and IL-1β increase in the hippocampus and mPFC of both sexes. URB597 increased the reduced pERK1/2 levels in the mPFC of both sexes and hippocampus of CUS males. URB597 also prevented the increase in p38 phosphorylation after chronic stress in the mPFC of both sexes and in the hippocampus of the females. The CUS suppressed the downstream Akt phosphorylation in the mPFC and hippocampi of both sexes. URB597 produced an up-regulation of the pAkt in the hippocampus of the CUS animals but did not affect the pAkt in the mPFC. These data demonstrated a sexual dimorphism in the neural cell signaling, and in the effects of endocannabinoids, and indicated these dimorphisms are region-specific.
Collapse
Affiliation(s)
- Milica Jankovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Kristina Virijevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Milica Vezmar
- Institute of Mental Health, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia.
| |
Collapse
|
6
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
7
|
Nam K, Dos Santos HT, Maslow F, Small T, Samuel RZ, Lei P, Andreadis ST, Baker OJ. Fibrin hydrogels fortified with FGF-7/10 and laminin-1 peptides promote regeneration of irradiated salivary glands. Acta Biomater 2023; 172:147-158. [PMID: 37844750 PMCID: PMC10908308 DOI: 10.1016/j.actbio.2023.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Ionizing radiation, commonly used for head and neck cancer treatment, typically damages the salivary glands, resulting in hyposalivation. The development of treatments to restore this lost function is crucial for improving the quality of life for patients suffering from this condition. To address this clinical need, we have developed an innovative hydrogel by chemically conjugating laminin-1 peptides (A99 and YIGSR) and growth factors, FGF-7 and FGF-10, to fibrin hydrogels. Our results demonstrate that FGF-7/10 and laminin-1 peptides fortified fibrin hydrogel [enhanced laminin-1 peptides fibrin hydrogel (Ep-FH)] promotes salivary gland regeneration and functionality by improving epithelial tissue organization, establishing a healthy network of blood vessels and nerves, while reducing fibrosis in a head and neck irradiated mouse model. These results indicate that fibrin hydrogel-based implantable scaffolds containing pro-regenerative signals promote sustained secretory function of irradiated salivary glands, offering a potential alternative treatment for hyposalivation in head and neck cancer patients undergoing radiation treatment. These unique findings emphasize the potential of fibrin hydrogel-based implantable scaffolds enriched with pro-regenerative signals in sustaining the secretory function of irradiated salivary glands and offer a promising alternative treatment for addressing hyposalivation in head and neck cancer patients undergoing radiation therapy. STATEMENT OF SIGNIFICANCE: Radiation therapies used to treat head and neck cancers often result in damaged salivary gland, leading to severe dryness of the oral cavity. In this study, we engineered FGF-7 and FGF-10 and immobilized them into L1p-FH. The resulting hydrogel, Ep-FH, restored irradiated salivary gland functionality by enhancing epithelial tissue organization, promoting the development of a healthy network of blood vessels and nerves as well as reduction of fibrosis.
Collapse
Affiliation(s)
- Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Harim T Dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Frank Maslow
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Travis Small
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Ronel Z Samuel
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States; Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Center of Cell, Gene and Tissue Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Olga J Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States; Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
8
|
Guo K, Huang W, Chen K, Huang P, Peng W, Shi R, He T, Zhang M, Wang H, Hu J, Wang X, Shentu Y, Xu H, Lin L. Fibroblast growth factor 10 ameliorates neurodegeneration in mouse and cellular models of Alzheimer's disease via reducing tau hyperphosphorylation and neuronal apoptosis. Aging Cell 2023; 22:e13937. [PMID: 37503695 PMCID: PMC10497839 DOI: 10.1111/acel.13937] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized with senile plaques formed by Aβ deposition, and neurofibrillary tangles composed of hyperphosphorylated tau protein, which ultimately lead to cognitive impairment. Despite the heavy economic and life burdens faced by the patients with AD, effective treatments are still lacking. Previous studies have reported the neuroprotective effects of FGF10 in CNS diseases, but its role in AD remains unclear. In this study, we demonstrated that FGF10 levels were reduced in the serum of AD patients, as well as in the brains of 3xTg-AD mice and APPswe-transfected HT22 cells, suggesting a close relationship between FGF10 and AD. Further investigations revealed that intranasal delivery of FGF10 improved cognitive functions in 3xTg-AD mice. Additionally, FGF10 treatment reduced tau hyperphosphorylation and neuronal apoptosis, thereby mitigating neuronal cell damage and synaptic deficits in the cortex and hippocampus of 3xTg-AD mice, as well as APPswe-transfected HT22 cells. Furthermore, we evaluated the therapeutic potential of FGF10 gene delivery for treating AD symptoms and pathologies. Tail vein delivery of the FGF10 gene using AAV9 improved cognitive and neuronal functions in 3xTg-AD mice. Similarly, endogenous FGF10 overexpression ameliorated tau hyperphosphorylation and neuronal apoptosis in the cortex and hippocampus of 3xTg-AD mice. Importantly, we confirmed that the FGFR2/PI3K/AKT signaling pathway was activated following intranasal FGF10 delivery and AAV9-mediated FGF10 gene delivery in 3xTg-AD mice and APPswe-transfected HT22 cells. Knockdown of FGFR2 attenuated the protective effect of FGF10. Collectively, these findings suggest that intranasal delivery of FGF10 and AAV9-mediated FGF10 gene delivery could be a promising disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Kaiming Guo
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain HealthWenzhouChina
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Kun Chen
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- Jinhua Maternity and Child Health Care HospitalJinhuaChina
| | - Pengkai Huang
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
| | - Wenshuo Peng
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruiqing Shi
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
| | - Tao He
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Mulan Zhang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hao Wang
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain HealthWenzhouChina
| | - Jian Hu
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
| | - Xinshi Wang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yangping Shentu
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huiqin Xu
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Li Lin
- School of Pharmaceutical SciencesWenzhou Medical University, University‐townWenzhouChina
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain HealthWenzhouChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
9
|
Wei L, Li X, Wei Q, Chen L, Xu L, Zhou P. Oxidative Stress-mediated Sprouty-related Protein with an EVH1 Domain 1 Down-regulation Contributes to Resisting Oxidative Injury in Microglia. Neuroscience 2023; 526:13-20. [PMID: 37343716 DOI: 10.1016/j.neuroscience.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Microglia play an ambiguous role in injury or repair after ischemia-reperfusion, and the induced oxidative stress serves as an important signal, mediates direct toxicity to nerve cells, and eventually simulates complex physiological processes such as activation of microglia to repair the damaged area. Herein, we show that sprouty-related protein with an EVH1 domain 1 (SPRED1) may act as a regulatory node in this phenomenon. The ischemic brain of an ischemia-reperfusion rat model constructed by middle cerebral artery occlusion (MCAO) showed an increase in oxidative stress and downregulation of SPRED1 expression. Hydrogen peroxide (H2O2)-simulated oxidative damage exerted a fluctuating regulatory effect on SPRED1 level in BV2 microglia, which is highly consistent with its regulatory effect on nuclear factor kappa B (NF-κB) transcription factor p65. Interestingly, SPRED1 overexpressed in BV2 cells did not exert any regulatory effect on p38 mitogen-activated protein kinase (MAPK), NF-κB p65, and pro-inflammatory cytokines. However, treatment of BV2 cells overexpressing SPRED1 with H2O2 led to significant changes in the above phenomena as well as their viability and apoptosis. In the absence of H2O2 induction, SPRED overexpression alone did not mediate such an effect. These findings indicate that SPRED1 tends to maintain intracellular homeostasis of signals, but the oxidative stress derived from ischemia-reperfusion can easily degrade SPRED1 and consequently re-activate these restricted signals and alter the behavior of microglia. Thus, our study reveals a novel role of SPRED1 in microglia in response to cerebral ischemia-induced oxidative stress.
Collapse
Affiliation(s)
- Li Wei
- Department of Blood Transfusion, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xin Li
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianfeng Wei
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lin Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Li Xu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
10
|
Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer's disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542316. [PMID: 37292815 PMCID: PMC10246004 DOI: 10.1101/2023.05.25.542316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.
Collapse
|
11
|
Kuo PC, Weng WT, Scofield BA, Paraiso HC, Bojrab P, Kimes B, Yu ICI, Yen JHJ. Interferon-β modulates microglial polarization to ameliorate delayed tPA-exacerbated brain injury in ischemic stroke. Front Immunol 2023; 14:1148069. [PMID: 37063896 PMCID: PMC10104603 DOI: 10.3389/fimmu.2023.1148069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved drug for the treatment of ischemic stroke. Delayed tPA administration is associated with increased risks of blood-brain barrier (BBB) disruption and hemorrhagic transformation. Studies have shown that interferon beta (IFNβ) or type I IFN receptor (IFNAR1) signaling confers protection against ischemic stroke in preclinical models. In addition, we have previously demonstrated that IFNβ can be co-administered with tPA to alleviate delayed tPA-induced adverse effects in ischemic stroke. In this study, we investigated the time limit of IFNβ treatment on the extension of tPA therapeutic window and assessed the effect of IFNβ on modulating microglia (MG) phenotypes in ischemic stroke with delayed tPA treatment. Mice were subjected to 40 minutes transient middle cerebral artery occlusion (MCAO) followed by delayed tPA treatment in the presence or absence of IFNβ at 3h, 4.5h or 6h post-reperfusion. In addition, mice with MG-specific IFNAR1 knockdown were generated to validate the effects of IFNβ on modulating MG phenotypes, ameliorating brain injury, and lessening BBB disruption in delayed tPA-treated MCAO mice. Our results showed that IFNβ extended tPA therapeutic window to 4.5h post-reperfusion in MCAO mice, and that was accompanied with attenuated brain injury and lessened BBB disruption. Mechanistically, our findings revealed that IFNβ modulated MG polarization, leading to the suppression of inflammatory MG and the promotion of anti-inflammatory MG, in delayed tPA-treated MCAO mice. Notably, these effects were abolished in MG-specific IFNAR1 knockdown MCAO mice. Furthermore, the protective effect of IFNβ on the amelioration of delayed tPA-exacerbated ischemic brain injury was also abolished in these mice. Finally, we identified that IFNβ-mediated modulation of MG phenotypes played a role in maintaining BBB integrity, because the knockdown of IFNAR1 in MG partly reversed the protective effect of IFNβ on lessening BBB disruption in delayed tPA-treated MCAO mice. In summary, our study reveals a novel function of IFNβ in modulating MG phenotypes, and that may subsequently confer protection against delayed tPA-exacerbated brain injury in ischemic stroke.
Collapse
Affiliation(s)
- Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Barbara A. Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Hallel C. Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Paul Bojrab
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Brandon Kimes
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - I-Chen Ivorine Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Jui-Hung Jimmy Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
- *Correspondence: Jui-Hung Jimmy Yen,
| |
Collapse
|
12
|
Parthasarathy G, Pattison MB, Midkiff CC. The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: likely intersectionality with other neurological conditions. J Neuroinflammation 2023; 20:10. [PMID: 36650549 PMCID: PMC9847051 DOI: 10.1186/s12974-022-02681-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lyme neuroborreliosis, caused by the bacterium Borrelia burgdorferi affects both the central and peripheral nervous systems (CNS, PNS). The CNS manifestations, especially at later stages, can mimic/cause many other neurological conditions including psychiatric disorders, dementia, and others, with a likely neuroinflammatory basis. The pathogenic mechanisms associated with Lyme neuroborreliosis, however, are not fully understood. METHODS In this study, using cultures of primary rhesus microglia, we explored the roles of several fibroblast growth factor receptors (FGFRs) and fibroblast growth factors (FGFs) in neuroinflammation associated with live B. burgdorferi exposure. FGFR specific siRNA and inhibitors, custom antibody arrays, ELISAs, immunofluorescence and microscopy were used to comprehensively analyze the roles of these molecules in microglial neuroinflammation due to B. burgdorferi. RESULTS FGFR1-3 expressions were upregulated in microglia in response to B. burgdorferi. Inhibition of FGFR 1, 2 and 3 signaling using siRNA and three different inhibitors showed that FGFR signaling is proinflammatory in response to the Lyme disease bacterium. FGFR1 activation also contributed to non-viable B. burgdorferi mediated neuroinflammation. Analysis of the B. burgdorferi conditioned microglial medium by a custom antibody array showed that several FGFs are induced by the live bacterium including FGF6, FGF10 and FGF12, which in turn induce IL-6 and/or CXCL8, indicating a proinflammatory nature. To our knowledge, this is also the first-ever described role for FGF6 and FGF12 in CNS neuroinflammation. FGF23 upregulation, in addition, was observed in response to the Lyme disease bacterium. B. burgdorferi exposure also downregulated many FGFs including FGF 5, 7, 9, 11, 13, 16, 20 and 21. Some of the upregulated FGFs have been implicated in major depressive disorder (MDD) or dementia development, while the downregulated ones have been demonstrated to have protective roles in epilepsy, Parkinson's disease, Alzheimer's disease, spinal cord injury, blood-brain barrier stability, and others. CONCLUSIONS In this study we show that FGFRs and FGFs are novel inducers of inflammatory mediators in Lyme neuroborreliosis. It is likely that an unresolved, long-term (neuro)-Lyme infection can contribute to the development of other neurologic conditions in susceptible individuals either by augmenting pathogenic FGFs or by suppressing ameliorative FGFs or both.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Melissa B Pattison
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
13
|
Huang W, Qiu W, Chen K, Ye S, Wang D, Hu J, Xu H, Lin L, Li X. Research progress of fibroblast growth factor in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:738-749. [PMID: 36915973 PMCID: PMC10262007 DOI: 10.3724/zdxbyxb-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenting Huang
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wanhua Qiu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Kun Chen
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Shasha Ye
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Dongxue Wang
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jian Hu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Huiqin Xu
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li Lin
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaokun Li
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
14
|
Wang Q, Shi Q, Liu L, Qian Y, Dong N. FGF10 mediates protective anti-oxidative effects in particulate matter-induced lung injury through Nrf2 and NF-κB signaling. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1203. [PMID: 36544647 PMCID: PMC9761170 DOI: 10.21037/atm-22-4389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Background Particulate matter (PM), a well-known environmental pollutant, is an independent risk factor associated with the morbidity of various respiratory diseases. Oxidative stress is an important pathophysiological mechanism related to PM exposure, which mediates redox-sensitive inflammatory signaling, leading to lung injury. Fibroblast growth factor 10 (FGF10), a paracrine fibroblast growth factor that mediates mesenchymal to epithelial signaling, participates in epithelial repair during lung injury. However, whether FGF10-mediated repair in PM-induced lung injury is related to the regulation of oxidative stress remains to be elucidated. Methods In vivo, the C57BL/6 mice were randomly divided, with intratracheal instillation of 5 mg/kg FGF10 1 h before 4 mg/kg PM for 2 consecutive days. In vitro, the BEAS-2B cells were pretreated with 10 ng/mL FGF10 before exposed to 200 µg/mL PM. Besides, the specific Nrf2 inhibitor ML385 was adopted in vitro. The harvested lung tissues were pathologic grading scored. The state of oxidative stress was assessed with dihydroethidium (DHE) staining, malondialdehyde (MDA) activity, hydrogen peroxide (H2O2) assays and reactive oxygen species (ROS). The contents of IL-6 and IL-8 in bronchoalveolar lavage (BAL) as well as culture supernatant were quantified by ELISA. The protein levels of nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling from lung tissue as well as cell lysate were determined by Western blot. Results In this study, recombinant FGF10 administration relieved the degree of lung injury, which is characterized by bronchitis, in a mouse model of PM exposure. In addition, reduced ROS levels, which are indicative of restrained oxidative stress, were also observed. Moreover, two redox-sensitive signaling pathways, Nrf2 and NF-κB, were found to be differentially regulated by FGF10. Using a cellular model of PM exposure, we found that the anti-inflammatory effect of FGF10 on NF-κB signaling was mediated through the regulation of oxidative stress. The anti-oxidative effect relied on the stimulation of Nrf2 signaling. Blockade of Nrf2 signaling with ML385 significantly compromised the anti-inflammatory effect of FGF10. Conclusions These results underscore that the protective anti-oxidative effects of FGF10 in lung injury are mediated by the stimulation of Nrf2 signaling and inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, China;,Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiangqiang Shi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;,Department of Respiratory Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China
| | - Li Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Qian
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nian Dong
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Bian J, Zhang B, Zhang Y, Tian Y, LiYin, WanyunZou. FGF 10 Inhibited Spinal Microglial Activation in Neuropathic Pain via PPAR-γ/NF-κB Signaling. Neuroscience 2022; 500:52-62. [DOI: 10.1016/j.neuroscience.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
16
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
17
|
Weng WT, Kuo PC, Scofield BA, Paraiso HC, Brown DA, Yu IC, Yen JH. 4-Ethylguaiacol Modulates Neuroinflammation and Promotes Heme Oxygenase-1 Expression to Ameliorate Brain Injury in Ischemic Stroke. Front Immunol 2022; 13:887000. [PMID: 35860274 PMCID: PMC9289724 DOI: 10.3389/fimmu.2022.887000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/12/2022] [Indexed: 12/05/2022] Open
Abstract
Ischemic stroke is caused by a sudden reduction in cerebral blood flow that subsequently induces a complex cascade of pathophysiological responses, leading to brain inflammation and irreversible infarction. 4-ethylguaiacol (4-EG) is reported to suppress inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects in ischemic stroke remains unexplored. We evaluated the therapeutic potential of 4-EG and examined the cellular and molecular mechanisms underlying the protective effects of 4-EG in ischemic stroke. The effect of 4-EG in ischemic stroke was determined by using a transient middle cerebral artery occlusion (MCAO) animal model followed by exploring the infarct size, neurological deficits, microglia activation, inflammatory cytokine production, blood-brain barrier (BBB) disruption, brain endothelial cell adhesion molecule expression, and microglial heme oxygenase-1 (HO-1) expression. Nrf2-/- and HO-1 inhibitor ZnPP-treated mice were also subjected to MCAO to evaluate the role of the Nrf2/HO-1 pathway in 4-EG-mediated protection in ischemic stroke. We found that 4-EG attenuated infarct size and neurological deficits, and lessened BBB disruption in ischemic stroke. Further investigation revealed that 4-EG suppressed microglial activation, peripheral inflammatory immune cell infiltration, and brain endothelial cell adhesion molecule upregulation in the ischemic brain. Finally, we identified that the protective effect of 4-EG in ischemic stroke was abolished in Nrf2-/- and ZnPP-treated MCAO mice. Our results identified that 4-EG confers protection against ischemic stroke and reveal that the protective effect of 4-EG in ischemic stroke is mediated through the induction of the Nrf2/HO1 pathway. Thus, our findings suggest that 4-EG could be developed as a novel therapeutic agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Barbara A. Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Hallel C. Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Dennis A. Brown
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, United States
| | - I-Chen Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| |
Collapse
|
18
|
Liu S, Jin Z, Xia R, Zheng Z, Zha Y, Wang Q, Wan X, Yang H, Cai J. Protection of Human Lens Epithelial Cells from Oxidative Stress Damage and Cell Apoptosis by KGF-2 through the Akt/Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6933812. [PMID: 35222803 PMCID: PMC8872674 DOI: 10.1155/2022/6933812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Oxidative stress exerts a significant influence on the pathogenesis of various cataracts by inducing degradation and aggregation of lens proteins and apoptosis of lens epithelial cells. Keratinocyte growth factor-2 (KGF-2) exerts a favorable cytoprotective effect against oxidative stress in vivo and in vitro. In this work, we investigated the molecular mechanisms of KGF-2 against hydrogen peroxide- (H2O2-) induced oxidative stress and apoptosis in human lens epithelial cells (HLECs) and rat lenses. KGF-2 pretreatment could reduce H2O2-induced cytotoxicity as well as reactive oxygen species (ROS) accumulation. KGF-2 also increases B-cell lymphoma-2 (Bcl-2), quinine oxidoreductase-1 (NQO-1), superoxide dismutase (SOD2), and catalase (CAT) levels while decreasing the expression level of Bcl2-associated X (Bax) and cleaved caspase-3 in H2O2-stimulated HLECs. LY294002, the phosphatidylinositol-3-kinase (PI3K)/Akt inhibitor, abolished KGF-2's effect to some extent, demonstrating that KGF-2 protected HLECs via the PI3K/Akt pathway. On the other hand, KGF-2 activated the Nrf2/HO-1 pathway by regulating the PI3K/Akt pathway. Silencing nuclear factor erythroid 2-related factor 2 (Nrf2) by targeted-siRNA and inhibiting heme oxygenase-1 (HO-1) through zinc protoporphyrin IX (ZnPP) significantly decreased cytoprotection of KGF-2. Furthermore, as revealed by lens organ culture assays, KGF-2 treatment decreased H2O2-induced lens opacity in a concentration-dependent manner. As demonstrated by these data, KGF-2 resisted H2O2-mediated apoptosis and oxidative stress in HLECs through Nrf2/HO-1 and PI3K/Akt pathways, suggesting a potential protective effect against the formation of cataracts.
Collapse
Affiliation(s)
- Shuyu Liu
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zi Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Ruyue Xia
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuoni Zheng
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yi Zha
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiang Wang
- Department of Ophthalmology, Ruian People's Hospital, Wenzhou 325000, China
| | - Xinbei Wan
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada H3A 1G1
| | - Hui Yang
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianqiu Cai
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
19
|
Shi Q, Wang Q, Liu L, Chen J, Wang B, Bellusci S, Chen C, Dong N. FGF10 protects against particulate matter (PM)-induced lung injury via regulation of endoplasmic reticulum stress. Int Immunopharmacol 2022; 105:108552. [PMID: 35114441 DOI: 10.1016/j.intimp.2022.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/08/2022] [Accepted: 01/16/2022] [Indexed: 11/05/2022]
Abstract
Exposure of the lungs to particulate matter (PM) leads to the development of respiratory disease and involves mechanisms such as oxydative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress. However, there are no effective therapies to treat PM-induced lung diseases. Fibroblast growth factor 10 (FGF10) is a multifunctional growth factor mediating mesenchymal-to-epithelial signaling and displaying a significant therapeutic potential following injury. The present research aims to investigate the regulatory mechanism of FGF10 on ER stress in PM-induced lung injury. PM-induced lung injury leads to peribronchial wall thickening and marked infiltration of inflammatory cells which is associated with increased secretion of inflammatory cytokines. The results show that FGF10 treatment attenuates PM-induced lung injury in vivo and reversed ER stress protein GRP78 and CHOP levels. Moreover, comparison of human bronchial epithelial cells cultured with PM and FGF10 vs PM alone shows sustained cell proliferation and restrained secretion of inflammatory cytokines supporting FGF10's protective role. Significantly, both ERK1/2 and PI3K/AKT inhibitors largely abolished the impact of FGF10 on PM-induced ER stress. Taken together, both in vivo and in vitro experiments showed that FGF10, via the activation of ERK1/2 and PI3K/AKT signaling, protects against PM-induced lung injury through the regulation of ER stress. Therefore, FGF10 represents a potential therapy for PM-induced lung injury.
Collapse
Affiliation(s)
- Qiangqiang Shi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Qiang Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Li Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Junjie Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Beibei Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany.
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Nian Dong
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
20
|
Ding P, Chen W, Yan X, Zhang J, Li C, Zhang G, Wang Y, Li Y. BMPER alleviates ischemic brain injury by protecting neurons and inhibiting neuroinflammation via Smad3-Akt-Nrf2 pathway. CNS Neurosci Ther 2021; 28:593-607. [PMID: 34904361 PMCID: PMC8928915 DOI: 10.1111/cns.13782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Bone morphogenetic proteins (BMPs) are a group of proteins related to bone morphogenesis. BMP‐binding endothelial regulator (BMPER), a secreted protein that interacts with BMPs, is known to be involved in ischemic injuries. Here, we explored the effects of BMPER on cerebral ischemia and its mechanism of action. Methods A mouse model of brain ischemia was induced by middle cerebral artery occlusion (MCAO). An in vitro ischemic model was established by subjecting primary cultured neurons to oxygen‐glucose deprivation/reperfusion (OGD/R). Serum levels of BMPs/BMPER were measured in MCAO mice and in patients with acute ischemic stroke (AIS). Brain damages were compared between BMPER‐ and vehicle‐treated mice. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence staining were performed to examine neuroinflammation and cell death. BMPER‐related pathways were assessed by Western blotting. Results BMPER level was elevated in MCAO mice and AIS patients. BMPER administration reduced mortality, infarct size, brain edema, and neurological deficit after MCAO. Neuroinflammation and cell death after ischemia were alleviated by BMPER both in vivo and in vitro. BMPER activated the Smad3/Akt/Nrf2 pathway in OGD/R‐challenged neurons. Conclusion BMPER is a neuroprotective hormone that alleviates ischemic brain injury via activating the Smad3/Akt/Nrf2 pathway. These findings may provide potential therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Peng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Anesthesiology, PLA 983 Hospital, Tianjin, China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaodi Yan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jinxiang Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Wang
- Department of Anesthesiology & Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation 2021; 18:276. [PMID: 34838047 PMCID: PMC8627624 DOI: 10.1186/s12974-021-02325-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia.
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
22
|
Hubert F, Payan SM, Pelce E, Bouchard L, Sturny R, Lenfant N, Mottola G, Collart F, Kelly RG, Rochais F. FGF10 promotes cardiac repair through a dual cellular mechanism increasing cardiomyocyte renewal and inhibiting fibrosis. Cardiovasc Res 2021; 118:2625-2637. [PMID: 34755840 DOI: 10.1093/cvr/cvab340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Promoting cardiomyocyte renewal represents a major therapeutic approach for heart regeneration and repair. Our study aims to investigate the relevance of FGF10 as a potential target for heart regeneration. METHODS AND RESULTS Our results first reveal that Fgf10 levels are upregulated in the injured ventricle after MI. Adult mice with reduced Fgf10 expression subjected to MI display impaired cardiomyocyte proliferation and enhanced cardiac fibrosis, leading to a worsened cardiac function and remodeling post-MI. In contrast, conditional Fgf10 overexpression post-MI revealed that, by enhancing cardiomyocyte proliferation and preventing scar-promoting myofibroblast activation, FGF10 preserves cardiac remodeling and function. Moreover, FGF10 activates major regenerative pathways including the regulation of Meis1 expression levels, the Hippo signaling pathway and a pro-glycolytic metabolic switch. Finally, we demonstrate that elevated FGF10 levels in failing human hearts correlate with reduced fibrosis and enhanced cardiomyocyte proliferation. CONCLUSIONS Altogether, our study shows that FGF10 promotes cardiac regeneration and repair through two cellular mechanisms: elevating cardiomyocyte renewal and limiting fibrosis. This study thus identifies FGF10 as a clinically relevant target for heart regeneration and repair in man.
Collapse
Affiliation(s)
- Fabien Hubert
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Sandy M Payan
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Edeline Pelce
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France.,Department of Cardiac Surgery, Timone Hospital, AP-HM, Marseille, France
| | | | - Rachel Sturny
- Aix Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | | - Giovanna Mottola
- Aix-Marseille Univ, C2VN, INSERM 1263, INRAE 1260, Marseille, France.,Laboratory of Biochemistry, Timone Hospital, Marseille, France
| | - Frédéric Collart
- Department of Cardiac Surgery, Timone Hospital, AP-HM, Marseille, France
| | - Robert G Kelly
- Aix Marseille Univ, CNRS UMR 7288, IBDM, Marseille, France
| | | |
Collapse
|
23
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
24
|
Jang SY, Choi SH, Kikkawa D, Lee EJ, Yoon JS. Association of fibroblast growth factor 10 with the fibrotic and inflammatory pathogenesis of Graves' orbitopathy. PLoS One 2021; 16:e0255344. [PMID: 34383782 PMCID: PMC8360584 DOI: 10.1371/journal.pone.0255344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose The role of fibroblast growth factor (FGF) in orbital fibroblasts (OFs) is rarely known. In this study, we investigated the effect of FGF10 on fibrosis and the inflammation mechanism of Graves′ orbitopathy (GO). Methods Orbital tissue from GO (n = 15) and non-GO (n = 15) was obtained for this study. The mRNA and protein expression levels of FGF10 and FGF receptor 2b (FGFR2b) in orbital tissue were determined by real-time polymerase chain reaction, western blot analysis, and confocal microscopy. The effects of FGF10 on transforming growth factor (TGF)-β1 induced fibrotic proteins and interleukin (IL)-1β- or tumor necrosis factor (TNF)-α- induced inflammatory proteins were investigated using recombinant human (rh) FGF10 and small interfering (si) RNA transfection against FGF10. Results FGF10 and FGFR2b mRNA expression levels were significantly lower in GO orbital tissues than in non-GO orbital tissues (p = 0.009 and 0.005, respectively). Immunostaining of FGF10 in orbital adipose tissues showed differences in FGF10 expression between GO and control samples. Immunostaining of FGF10 was very weak in the orbital tissues of GO patients. TGF-β1-induced fibronectin, collagen Iα, α-smooth muscle actin protein expression in GO OFs was attenuated by rhFGF10 treatment and increased by knockdown of FGF10 via siFGF10 transfection. Similarly, IL-1β- or TNF-α-induced IL-6, IL-8, and cyclooxygenase-2 protein production in GO OFs was either blocked by rhFGF10 treatment or further upregulated by inhibition of FGF10 via siFGF10 transfection. Conclusions Our data demonstrate that FGF10 has beneficial effects on the inflammatory and fibrotic mechanisms of GO in primary cultured OFs, providing new insights into GO pathology and the discovery of FGF10 as a promising novel therapeutic application for the treatment of GO.
Collapse
Affiliation(s)
- Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Don Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, University of California San Diego, La Jolla, California, United States of America
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
25
|
Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer's: a Comprehensive Review. Neurotox Res 2021; 39:1589-1612. [PMID: 34169405 DOI: 10.1007/s12640-021-00381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases such as stroke and Alzheimer's disease (AD) are two inter-related disorders that affect the neurons in the brain and central nervous system. Alzheimer's is a disease by undefined origin and causes. Stroke and its most common type, ischemic stroke (IS), occurs due to the blockade of cerebral blood vessels. As an important feature, both of disorders are associated with irreversible damages to the brain and nervous system. In this regard, finding common signaling pathways and the same molecular origin between these two diseases may be a promising way for their solution. On the basis of literature appraisal, the most common signaling cascades implicated in the pathogenesis of AD and stroke including notch, autophagy, inflammatory, and insulin signaling pathways were reviewed. Furthermore, current therapeutic strategies including natural and synthetic pharmaceuticals aiming modulation of respective signaling factors were scrutinized to ameliorate neural deficits in AD and stroke. Taken together, digging deeper in the common connections and signal targeting can be greatly helpful in understanding and unified treating of these disorders.
Collapse
|
26
|
Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of Action, Role in Parkinson's Disease, and Therapeutics. Front Pharmacol 2021; 12:675725. [PMID: 34234672 PMCID: PMC8255968 DOI: 10.3389/fphar.2021.675725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with severe disability and adverse effects on life quality. In PD, motor dysfunction can occur, such as quiescence, muscle stiffness, and postural instability. PD is also associated with autonomic nervous dysfunction, sleep disorders, psychiatric symptoms, and other non-motor symptoms. Degeneration of dopaminergic neurons in the substantia nigra compact (SNPC), Lewy body, and neuroinflammation are the main pathological features of PD. The death or dysfunction of dopaminergic neurons in the dense part of the substantia nigra leads to dopamine deficiency in the basal ganglia and motor dysfunction. The formation of the Lewy body is associated with the misfolding of α-synuclein, which becomes insoluble and abnormally aggregated. Astrocytes and microglia mainly cause neuroinflammation, and the activation of a variety of pro-inflammatory transcription factors and regulatory proteins leads to the degeneration of dopaminergic neurons. At present, PD is mainly treated with drugs that increase dopamine concentration or directly stimulate dopamine receptors. Fibroblast growth factor (FGF) is a family of cellular signaling proteins strongly associated with neurodegenerative diseases such as PD. FGF and its receptor (FGFR) play an essential role in the development and maintenance of the nervous system as well as in neuroinflammation and have been shown to improve the survival rate of dopaminergic neurons. This paper summarized the mechanism of FGF and its receptors in the pathological process of PD and related signaling pathways, involving the development and protection of dopaminergic neurons in SNPC, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. It provides a reference for developing drugs to slow down or prevent the potential of PD.
Collapse
Affiliation(s)
- Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
27
|
Marega M, Chen C, Bellusci S. Cross-Talk Between Inflammation and Fibroblast Growth Factor 10 During Organogenesis and Pathogenesis: Lessons Learnt From the Lung and Other Organs. Front Cell Dev Biol 2021; 9:656883. [PMID: 34136479 PMCID: PMC8201783 DOI: 10.3389/fcell.2021.656883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
The adult human lung is constantly exposed to irritants like particulate matter, toxic chemical compounds, and biological agents (bacteria and viruses) present in the external environment. During breathing, these irritants travel through the bronchi and bronchioles to reach the deeper lung containing the alveoli, which constitute the minimal functional respiratory units. The local biological responses in the alveoli that follow introduction of irritants need to be tightly controlled in order to prevent a massive inflammatory response leading to loss of respiratory function. Cells, cytokines, chemokines and growth factors intervene collectively to re-establish tissue homeostasis, fight the aggression and replace the apoptotic/necrotic cells with healthy cells through proliferation and/or differentiation. Among the important growth factors at play during inflammation, members of the fibroblast growth factor (Fgf) family regulate the repair process. Fgf10 is known to be a key factor for organ morphogenesis and disease. Inflammation is influenced by Fgf10 but can also impact Fgf10 expression per se. Unfortunately, the connection between Fgf10 and inflammation in organogenesis and disease remains unclear. The aim of this review is to highlight the reported players between Fgf10 and inflammation with a focus on the lung and to propose new avenues of research.
Collapse
Affiliation(s)
- Manuela Marega
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Member of the German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Member of the German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Shen Y, Xue C, You G, Liu C. miR-9 alleviated the inflammatory response and apoptosis in caerulein-induced acute pancreatitis by regulating FGF10 and the NF-κB signaling pathway. Exp Ther Med 2021; 22:795. [PMID: 34093751 PMCID: PMC8170642 DOI: 10.3892/etm.2021.10227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) have been implicated in the development of acute pancreatitis (AP). However, the role and potential mechanism of miR-9 in AP progression remains unclear. Caerulein-treated AR42J cells were used as a cellular model of AP. Results revealed caerulein triggered an inflammatory response by promoting the secretion of inflammatory cytokines [tumor necrosis factor-α, interleukin (IL) 1β and IL-6], as evidenced by ELISA. Furthermore, caerulein-induced apoptosis was reported by flow cytometry and western blot assays. Additionally, miR-9 expression was downregulated by caerulein treatment, as demonstrated by reverse transcription quantitative PCR. However, miR-9 overexpression reduced the inflammatory response and apoptosis in caerulein-treated AR42J cells. miR-9 knockdown resulted in opposite effects. Furthermore, fibroblast growth factor (FGF) 10 was validated to be targeted via miR-9 by luciferase, RNA immunoprecipitation and RNA pull-down assays. Results demonstrated increased FGF10 expression in caerulein-treated AR42J cells and that FGF10 overexpression exacerbated the caerulein-induced inflammatory response and apoptosis, while its knockdown had the opposite effect. Additionally, FGF10 reversed the effect of miR-9 on caerulein-induced injury in AR42J cells. Results demonstrated that miR-9 inhibited the expression of the nuclear factor κB (NF-κB) pathway-related proteins by downregulating FGF10. As a result, miR-9 decreased inflammatory response and apoptosis in caerulein-treated AR42J cells by targeting FGF10 and blocking NF-κB signaling, suggesting that miR-9 may serve as a novel target for AP treatment.
Collapse
Affiliation(s)
- Yang Shen
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Chengjun Xue
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Guoli You
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Cui Liu
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| |
Collapse
|
29
|
Dordoe C, Chen K, Huang W, Chen J, Hu J, Wang X, Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol 2021; 12:671131. [PMID: 33967812 PMCID: PMC8102031 DOI: 10.3389/fphar.2021.671131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the leading cause of death worldwide, and its treatment remains a challenge. Complex pathological processes are involved in stroke, which causes a reduction in the supply of oxygen and energy to the brain that triggers subsequent cascade events, such as oxidative stress, inflammatory responses and apoptosis, resulting in brain injury. Stroke is a devastating disease for which there are few treatments, but physical rehabilitation can help improve stroke recovery. Although there are very few treatments for stroke patients, the discovery of fibroblast growth factors (FGFs) in mammals has led to the finding that FGFs can effectively treat stroke in animal models. As presented in this review, FGFs play essential roles by functioning as homeostatic factors and controlling cells and hormones involved in metabolism. They could be used as effective therapeutic agents for stroke. In this review, we will discuss the pharmacological actions of FGFs on multiple targets, including their ability to directly promote neuron survival, enhance angiogenesis, protect against blood-brain barrier (BBB) disruption, and regulate microglial modulation, in the treatment of ischemic stroke and their theoretical mechanisms and actions, as well as the therapeutic potential and limitations of FGFs for the clinical treatment of stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
30
|
Hou Q, Chen H, Liu Q, Yan X. FGF10 Attenuates Experimental Traumatic Brain Injury through TLR4/MyD88/NF-κB Pathway. Cells Tissues Organs 2021; 209:248-256. [PMID: 33440393 DOI: 10.1159/000511381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
Traumatic brain injury (TBI) can induce neuronal apoptosis and neuroinflammation, resulting in substantial neuronal damage and behavioral disorders. Fibroblast growth factors (FGFs) have been shown to be critical mediators in tissue repair. However, the role of FGF10 in experimental TBI remains unknown. In this study, mice with TBI were established via weight-loss model and validated by increase of modified neurological severity scores (mNSS) and brain water content. Secondly, FGF10 levels were elevated in mice after TBI, whereas intraventricular injection of Ad-FGF10 decreased mNSS score and brain water content, indicating the remittance of neurological deficit and cerebral edema in TBI mice. In addition, neuronal damage could also be ameliorated by stereotactic injection of Ad-FGF10. Overexpression of FGF10 increased protein expression of Bcl-2, while it decreased Bax and cleaved caspase-3/PARP, and improved neuronal apoptosis in TBI mice. In addition, Ad-FGF10 relieved neuroinflammation induced by TBI and significantly reduced the level of interleukin 1β/6, tumor necrosis factor α, and monocyte chemoattractant protein-1. Moreover, Ad-FGF10 injection decreased the protein expression level of Toll-like receptor 4 (TLR4), MyD88, and phosphorylation of NF-κB (p-NF-κB), suggesting the inactivation of the TLR4/MyD88/NF-κB pathway. In conclusion, overexpression of FGF10 could ameliorate neurological deficit, neuronal apoptosis, and neuroinflammation through inhibition of the TLR4/MyD88/NF-κB pathway, providing a potential therapeutic strategy for brain injury in the future.
Collapse
Affiliation(s)
- Qinhan Hou
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou City, China
| | - Hongmou Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou City, China,
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou City, China
| | - Xianlei Yan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou City, China
| |
Collapse
|
31
|
Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, Fan J, Li Y, Li W, Dong Y, Shen E, Gong W, Wang X, Yu Y, Maeng YJ, Li X, Lee KY, Jin L, Cong W. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol 2021; 40:101859. [PMID: 33445067 PMCID: PMC7806526 DOI: 10.1016/j.redox.2021.101859] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major complication of liver surgery and transplantation. IRI leads to hepatic parenchymal cell death, resulting in liver failure, and lacks effective therapeutic approaches. Fibroblast growth factor 10 (FGF10) is a paracrine factor which is well-characterized with respect to its pro-proliferative effects during embryonic liver development and liver regeneration, but its role in hepatic IRI remains unknown. In this study, we investigated the role of FGF10 in liver IRI and identified signaling pathways regulated by FGF10. In a mouse model of warm liver IRI, FGF10 was highly expressed during the reperfusion phase. In vitro experiments demonstrated that FGF10 was primarily secreted by hepatic stellate cells and acted on hepatocytes. The role of FGF10 in liver IRI was further examined using adeno-associated virus-mediated gene silencing and overexpression. Overexpression of FGF10 alleviated liver dysfunction, reduced necrosis and inflammation, and protected hepatocytes from apoptosis in the early acute injury phase of IRI. Furthermore, in the late phase of IRI, FGF10 overexpression also promoted hepatocyte proliferation. Meanwhile, gene silencing of FGF10 had the opposite effect. Further studies revealed that overexpression of FGF10 activated nuclear factor-erythroid 2-related factor 2 (NRF2) and decreased oxidative stress, mainly through activation of the phosphatidylinositol-3-kinase/AKT pathway, and the protective effects of FGF10 overexpression were largely abrogated in NRF2 knockout mice. These results demonstrate the protective effects of FGF10 in liver IRI, and reveal the important role of NRF2 in FGF10-mediated hepatic protection during IRI. FGF10 is markedly upregulated in the early phase of liver IRI. FGF10 overexpression exerts great potential in ameliorating hepatic IRI. FGF10 knockdown significantly aggravates hepatic IRI. FGF10 overexpression activates PI3K/AKT-NRF2 signaling and thus ameliorates hepatic IRI. NRF2 knockout abrogates the protective effects of FGF10 overexpression during liver IRI.
Collapse
Affiliation(s)
- Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Mei Xue
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xuebo Pan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xinchu Yi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yuankuan Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Wanqian Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yetong Dong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xuejiao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yoo Jae Maeng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea.
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
32
|
He J, Zhang N, Zhu Y, Jin R, Wu F. MSC spheroids-loaded collagen hydrogels simultaneously promote neuronal differentiation and suppress inflammatory reaction through PI3K-Akt signaling pathway. Biomaterials 2020; 265:120448. [PMID: 33068892 DOI: 10.1016/j.biomaterials.2020.120448] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
It is critical for the clinical success to take the anti-inflammatory function into consideration when integrating the neurogenesis into the nerve repair materials. To this aim, we prepared mesenchymal stem cell (MSC) spheroids-loaded collagen (Col) hydrogels with combined superior anti-inflammatory efficacy and neurogenic activity. The size of the MSC spheroids showed a strong modulation effect on both functions, and the MSC spheroids-100 sample exhibited the best neuronal and anti-inflammatory potentials. The observed dual functions were likely based on the elevated intrinsic cell-cell contacts and cell-extracellular matrix interactions from the MSC spheroids. MSC self-assembly as spheroids expedited the secretions of endogenous trophic factors and extracellular matrix (ECM), which was beneficial to drive neural stem cell differentiation into the neuronal lineage. In addition, the formation of the MSC spheroids secreted more amounts and types of cytokines as well as immunomodulatory paracrine factors to suppress LPS-induced inflammatory reaction. LC-MS/MS analysis further demonstrated that MSC spheroids contributed to the activation of neuroactive ligand-receptor interaction, thereby triggering downstream PI3K-Akt signal pathway, which was likely due to the acceleration of ECM-receptor interaction, gap junction and tight junction. Importantly, inhibiting Akt pathway significantly suppressed the neuronal differentiation, indicating that PI3K-Akt signal pathway was critically involved in the Col-MSC spheroid hydrogel mediated neuroprotection and neurogenesis. Such findings not only provided a simple approach for improving MSC-based therapies for neuron-related diseases, but also shed insight on understanding the underlying mechanisms of MSC-mediated neuronal differentiation.
Collapse
Affiliation(s)
- Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yue Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Deng LC, Alinejad T, Bellusci S, Zhang JS. Fibroblast Growth Factors in the Management of Acute Kidney Injury Following Ischemia-Reperfusion. Front Pharmacol 2020; 11:426. [PMID: 32322205 PMCID: PMC7156585 DOI: 10.3389/fphar.2020.00426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemia-reperfusion injury (IRI), which is triggered by a transient reduction or cessation of blood flow followed by reperfusion, is a significant cause of acute kidney injury (AKI). IRI can lead to acute cell death, tissue injury, and even permanent organ dysfunction. In the clinic, IRI contributes to a higher morbidity and mortality and is associated with an unfavorable prognosis in AKI patients. Unfortunately, effective clinical drugs to protect patients against the imminent risk of renal IRI or treat already existing AKI are still lacking. Fibroblast growth factors (FGFs) are important regulators of key biological and pathological processes, such as embryonic development, metabolic homeostasis and tumorigenesis through the regulation of cell differentiation, migration, proliferation and survival. Accumulating evidence suggests that altered expression of endogenous FGFs is associated with IRI and could be instrumental in mediating the repair process. Therefore, FGFs have been proposed as potential biomarkers in the clinic. More importantly, exogenous FGF ligands have been reported to protect against renal IRI and display promising features for therapy. In this review, we summarize the evidence and mechanisms of AKI following IRI with a focus on the therapeutic capacity of several members of the FGF family to treat AKI after IRI.
Collapse
Affiliation(s)
- Lian-Cheng Deng
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tahereh Alinejad
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin-San Zhang
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
34
|
Tan X, Yu L, Yang R, Tao Q, Xiang L, Xiao J, Zhang JS. Fibroblast Growth Factor 10 Attenuates Renal Damage by Regulating Endoplasmic Reticulum Stress After Ischemia-Reperfusion Injury. Front Pharmacol 2020; 11:39. [PMID: 32116715 PMCID: PMC7019113 DOI: 10.3389/fphar.2020.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
Renal ischemia–reperfusion (I/R) injury is a predominant cause of acute kidney injury (AKI), the pathologic mechanism of which is highly complex involving reactive oxygen species (ROS) accumulation, inflammatory response, autophagy, apoptosis as well as endoplasmic reticulum (ER) stress. Fibroblast growth factor 10 (FGF10), as a multifunctional growth factor, plays crucial roles in embryonic development, adult homeostasis, and regenerative medicine. Herein, we investigated the molecular pathways underlying the protective effect of FGF10 on renal I/R injury using Sprague–Dawley rats. Results showed that administration of FGF10 not only effectively inhibited I/R-induced activation of Caspase-3 and expression of Bax, but also alleviated I/R evoked expression of ER stress-related proteins in the kidney including CHOP, GRP78, XBP-1, and ATF-4 and ATF-6. The protective effect of FGF10 against apoptosis and ER stress was recapitulated by in vitro experiments using oxidative damaged NRK-52E cells induced by tert-Butyl hydroperoxide (TBHP). Significantly, U0126, a selective noncompetitive inhibitor of MAP kinase kinases (MKK), largely abolished the protective role of FGF10. Taken together, both in vivo and in vitro experiments indicated that FGF10 attenuates I/R-induced renal epithelial apoptosis by suppressing excessive ER stress, which is, at least partially, mediated by the activation of the MEK–ERK1/2 signaling pathway. Therefore, our present study revealed the therapeutic potential of FGF10 on renal I/R injury.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lixia Yu
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Ruo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianyu Tao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lijun Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
35
|
Aquaporin 4 Blockade Attenuates Acute Lung Injury Through Inhibition of Th17 Cell Proliferation in Mice. Inflammation 2020; 42:1401-1412. [PMID: 30945038 DOI: 10.1007/s10753-019-01002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a syndrome characterized by damage to the alveolar-capillary wall, pulmonary edema and recruitment of inflammatory cells. Previous studies have indicated that aquaporin 4 (AQP4) plays a key role in brain edema formation and resolution. However, the role of AQP4 in the development and progression of ALI is not clear and needs to be resolved. In our current study, mouse ALI was induced by intratracheal instillation of lipopolysaccharide (LPS) at a concentration of 30 mg/kg. For the inhibition of AQP4, 200 mg/kg of TGN-020 (Sigma, USA) was administered intraperitoneally every 6 h starting at 30 min before intratracheal instillation of LPS. The results of the present work indicate, for the first time, that mice treated with the AQP4 inhibitor TGN-020 had attenuated LPS-induced lung injury, reduced proinflammatory cytokine release (including IL-1α, IL-1β, IL-6, TNF-α, IL-23, and IL-17A), and an improved survival rate. Additionally, we found that the attenuated lung injury scores, increased survival rate, and decreased BALF total protein concentration in TGN-020-treated mice were all abrogated by rIL-17A administration. Furthermore, TGN-020 treatment downregulated the phosphorylation of PI3K and Akt, increased the expression of SOCS3, and decreased the expression of p-STAT3 and RORγt. In conclusion, inhibition of AQP4 by TGN-020 has a detectable protective effect against lung tissue injury induced by LPS, and this effect is associated with inhibition of IL-17A through the downregulation of the PI3K/Akt signaling pathway and upregulation of SOCS3 protein.
Collapse
|
36
|
Silencing of Tenascin-C Inhibited Inflammation and Apoptosis Via PI3K/Akt/NF-κB Signaling Pathway in Subarachnoid Hemorrhage Cell Model. J Stroke Cerebrovasc Dis 2020; 29:104485. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/22/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
|
37
|
Dong L, Li R, Li D, Wang B, Lu Y, Li P, Yu F, Jin Y, Ni X, Wu Y, Yang S, Lv G, Li X, Xiao J, Wang J. FGF10 Enhances Peripheral Nerve Regeneration via the Preactivation of the PI3K/Akt Signaling-Mediated Antioxidant Response. Front Pharmacol 2019; 10:1224. [PMID: 31680984 PMCID: PMC6805699 DOI: 10.3389/fphar.2019.01224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
The process of axonal regeneration after peripheral nerve injury (PNI) is slow and mostly incomplete. Previous studies have investigated the neuroprotective effects of fibroblast growth factor 10 (FGF10) against spinal cord injury and cerebral ischemia brain injury. However, the role of FGF10 in peripheral nerve regeneration remains unknown. In this study, we aimed to investigate the underlying therapeutic effects of FGF10 on nerve regeneration and functional recovery after PNI and to explore the associated mechanism. Our results showed that FGF10 administration promoted axonal regeneration and functional recovery after nerve damage. Moreover, exogenous FGF10 treatment also prevented SCs from excessive oxidative stress-induced apoptosis, which was probably related to the activation of phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling. The inhibition of the PI3K/Akt pathway by the specific inhibitor LY294002 partially reversed the therapeutic effects of FGF10 both in vivo and in vitro. Thus, from our perspective, FGF10 may be a promising therapeutic drug for repairing sciatic nerve damage through countering excessive oxidative stress-induced SC apoptosis.
Collapse
Affiliation(s)
- Lvpeng Dong
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Duohui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Beini Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingfeng Lu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peifeng Li
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangzheng Yu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonglong Jin
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Ni
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Shengnan Yang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Guanxi Lv
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Wang D, Zhou W, Chen J, Wei W. Upstream regulators of phosphoinositide 3-kinase and their role in diseases. J Cell Physiol 2019; 234:14460-14472. [PMID: 30710358 DOI: 10.1002/jcp.28215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K), a crucial signaling molecule, is regulated by various upstream regulators. Traditionally, receptor tyrosine kinases and G protein-coupled receptor are regarded as its principle upstream regulators; however, recent reports have indicated that spleen tyrosine kinase, β-arrestin2, Janus kinase, and RAS can also perform this role. Dysregulation of PI3K is common in the progression of various diseases, including, but not limited to, tumors, Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, and acute myelogenous leukemia. The aim of this review is to provide a perspective on PI3K-related diseases examining both the classical and nonclassical upstream regulators of PI3K in detail.
Collapse
Affiliation(s)
- Dandan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
39
|
Ding Y, He J, Huang J, Yu T, Shi X, Zhang T, Yan G, Chen S, Peng C. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol 2019; 54:1995-2004. [PMID: 31081045 PMCID: PMC6521938 DOI: 10.3892/ijo.2019.4777] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Harmine (HM) is a β-carboline alkaloid found in multiple medicinal plants. It has been used in folk medicine for anticancer therapy; however, the molecular mechanism of HM on human breast cancer remains unclear. Transcriptional co-activator with PDZ-binding motif (TAZ), also known as WW domain-containing transcription regulator 1, serves an important role in the carcinogenesis and progression of breast cancer. The aim of the present study was to elucidate the potential anticancer activity and mechanism of HM in breast cancer, in vitro and in vivo. Cell proliferation was measured using a CCK-8 assay, apoptotic activity was detected by flow cytometry and DAPI staining, and cell migration was examined using a wound healing assay. The expression of proteins, including extracellular signal-regulate kinase (Erk), phosphorylated (p-) Erk, protein kinase B (Akt), p-Akt, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), were determined by western blotting. The mRNA expression of TAZ was detected using reverse transcription-quantitative polymerase chain reaction analysis. The expression of proteins in mouse tumor tissues were examined by immunohistochemistry. HM significantly suppressed cellular proliferation and migration, promoted apoptosis in vitro and inhibited tumor growth in vivo. In addition, HM significantly decreased the expression of TAZ, p-Erk, p-Akt and Bcl-2, but increased that of Bax. The overexpression of TAZ in breast cancer cells inhibited the antitumor effect of HM. In conclusion, HM was found to induce apoptosis and prevent the proliferation and migration of human breast cancer cell lines, possibly via the downregulation of TAZ.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Juan Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Tong Yu
- Department of Traditional Chinese Medicine, Humanwell Healthcare (Group) Co., Ltd., Wuhan, Hubei 430075, P.R. China
| | - Xiaoyan Shi
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Tianzhu Zhang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ge Yan
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
40
|
Bu J, Shi S, Wang HQ, Niu XS, Zhao ZF, Wu WD, Zhang XL, Ma Z, Zhang YJ, Zhang H, Zhu Y. Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway. Neural Regen Res 2019; 14:605-612. [PMID: 30632500 PMCID: PMC6352603 DOI: 10.4103/1673-5374.247465] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acacetin (5,7-dihydroxy-4'-methoxyflavone), a potential neuroprotective agent, has an inhibitory effect on lipopolysaccharide-induced neuroinflammatory reactions. However, whether acacetin has an effect on inflammatory corpuscle 3 (NLRP3) after cerebral ischemia-reperfusion injury has not been fully determined. This study used an improved suture method to establish a cerebral ischemia-reperfusion injury model in C57BL/6 mice. After ischemia with middle cerebral artery occlusion for 1 hour, reperfusion with intraperitoneal injection of 25 mg/kg of acacetin (acacetin group) or an equal volume of saline (0.1 mL/10 g, middle cerebral artery occlusion group) was used to investigate the effect of acacetin on cerebral ischemia-reperfusion injury. Infarct volume and neurological function scores were determined by 2,3,5-triphenyltetrazolium chloride staining and the Zea-Longa scoring method. Compared with the middle cerebral artery occlusion group, neurological function scores and cerebral infarction volumes were significantly reduced in the acacetin group. To understand the effect of acacetin on microglia-mediated inflammatory response after cerebral ischemia-reperfusion injury, immunohistochemistry for the microglia marker calcium adapter protein ionized calcium-binding adaptor molecule 1 (Iba1) was examined in the hippocampus of ischemic brain tissue. In addition, tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in ischemic brain tissue of mice was quantified by enzyme-linked immunosorbent assay. Expression of Iba1, tumor necrosis factor-α, interleukin-1β and interleukin-6 was significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Western blot assay results showed that expression of Toll-like receptor 4, nuclear factor kappa B, NLRP3, procaspase-1, caspase-1, pro-interleukin-1β, and interleukin-1β were significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Our findings indicate that acacetin has a protective effect on cerebral ischemia-reperfusion injury, and its mechanism of action is associated with inhibition of microglia-mediated inflammation and the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Juan Bu
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shen Shi
- Laboratory Animal Research Center, Center for Disease Control and Prevention, Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui-Qin Wang
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Shan Niu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zong-Feng Zhao
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wei-Dong Wu
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Ling Zhang
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhi Ma
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan-Jun Zhang
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui Zhang
- Clinical Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yi Zhu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
41
|
Tan X, Zhu H, Tao Q, Guo L, Jiang T, Xu L, Yang R, Wei X, Wu J, Li X, Zhang JS. FGF10 Protects Against Renal Ischemia/Reperfusion Injury by Regulating Autophagy and Inflammatory Signaling. Front Genet 2018; 9:556. [PMID: 30532765 PMCID: PMC6265307 DOI: 10.3389/fgene.2018.00556] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a common cause of acute kidney injury (AKI), which is associated with high mortality and poor outcomes. Autophagy plays important roles in the homeostasis of renal tubular cells (RTCs) and is implicated in the pathogenesis of AKI, although its role in the process is complex and controversial. Fibroblast growth factor 10 (FGF10), a multifunctional FGF family member, was reported to exert protective effect against cerebral ischemia injury and myocardial damage. Whether FGF10 has similar beneficial effect, and if so whether autophagy is associated with the potential protective activity against AKI has not been investigated. Herein, we report that FGF10 treatment improved renal function and histological integrity in a rat model of renal I/R injury. We observed that FGF10 efficiently reduced I/R-induced elevation in blood urea nitrogen, serum creatinine as well as apoptosis induction of RTCs. Interestingly, autophagy activation following I/R was suppressed by FGF10 treatment based on the immunohistochemistry staining and immunoblot analyses of LC3, Beclin-1 and SQSTM1/p62. Moreover, combined treatment of FGF10 with Rapamycin partially reversed the renoprotective effect of FGF10 suggesting the involvement of mTOR pathway in the process. Interestingly, FGF10 also inhibited the release of HMGB1 from the nucleus to the extracellular domain and regulated the expression of inflammatory cytokines such as TNF-α, IL-1β and IL-6. Together, these results indicate that FGF10 could alleviate kidney I/R injury by suppressing excessive autophagy and inhibiting inflammatory response and may therefore have the potential to be used for the prevention and perhaps treatment of I/R-associated AKI.
Collapse
Affiliation(s)
- Xiaohua Tan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Qingdao University Medical College, Qingdao, China
| | - Hongmei Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianyu Tao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lisha Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianfang Jiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Le Xu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ruo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiayu Wei
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
42
|
Liu WJ, Wang XD, Wu W, Huang X. Relationship between depression and blood cytokine levels in lung cancer patients. Med Sci (Paris) 2018; 34 Focus issue F1:113-115. [PMID: 30403185 DOI: 10.1051/medsci/201834f119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To study the correlation between depression and blood cytokine levels in lung cancer patients. METHODS 92 patients with advanced lung cancer were evaluated for depression using the scoring index of depression self-rating scale. Lack of depression (n=24), mild depression (n=45), and moderate depression (n=23) were found in the cohort. Meanwhile, 40 healthy subjects were selected as the control group. The levels of IL-10, IL-6, IL-8, and TNF-α in each group were detected by sandwich enzyme-linked immunosorbent assays, and their correlation with the degree of depression was analyzed. RESULTS The levels of IL-10, IL-6, IL-8, and TNF-α were all higher than those in the control group (P<0.05). Moreover, the depression statuses of patients with lung cancer were positively correlated with IL-10, IL-6, and TNF-α levels (r = 0.705, 0.301, and 0.446, P<0.01); however, the level of IL-8 was not relevant (r=0.136, p>0.05). CONCLUSION Serum levels of IL-10, IL-6, and TNF-α are associated with depression scoring in patients with lung cancer.
Collapse
Affiliation(s)
- Wen-Juan Liu
- MD, Department of Psychological Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai (200032), China
| | - Xiao-Dan Wang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Wu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shangai 200032, China
| | - Xiao Huang
- MD, Department of Psychological Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai (200032), China
| |
Collapse
|
43
|
HDAC9 promotes brain ischemic injury by provoking IκBα/NF-κB and MAPKs signaling pathways. Biochem Biophys Res Commun 2018; 503:1322-1329. [PMID: 30031609 DOI: 10.1016/j.bbrc.2018.07.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
Ischemic stroke is an acute cerebrovascular disease due to poor blood flow to the brain. Nevertheless, there is still no effective therapy for it and the pathology contributing to ischemic stroke is not fully understood. Histone Deacetylase 9 (HDAC9) is a class IIa chromatin-modifying enzyme. HDAC9 gene region is a leading risk locus for large artery atherosclerotic stroke. However, the mechanisms linking HDAC9 to ischemic remain elusive. In the study, we attempted to explore HDAC9-associated inflammatory response using the wild type (WT) and HDAC9-knockout (KO) mice with brain ischemic injury. The results indicated that WT mice with ischemia brain exhibited higher expression levels of HDAC9. HDAC9 depletion resulted in a decreased infarct volume and an improved neurological function in mice after ischemic reperfusion (I/R) injury. I/R injury markedly enhanced GFAP and Iba-1 expressions in cortex and HDAC9 knockout significantly reversed this up-regulation. Loss of HDAC9 inhibited the release of inducible NO-synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and IL-18 in cortex, hippocampus and hypothalamus of mice with I/R injury, which occurred at the transcription levels. Furthermore, the inhibitory actions of HDAC9 deficiency were associated with the down-regulation of phosphorylated-IκBα, phosphorylated-nuclear factor-kappa B (NF-κB), and p-mitogen-activated protein kinases (MAPKs), including phosphorylated-p38, phosphorylated-extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated-c-Jun N-terminal kinase (JNK). Importantly, the in vitro study indicated that HDAC9 inhibition-reduced inflammation and activation of IκBα/NF-κB were restored by promoting MAPKs activity in LPS-stimulated cells. Our findings suggest that HDAC9 inhibition showed neuroprotective effects on ischemic stroke by restraining inflammation, which might help develop new and effective strategies for the therapeutic interventions in ischemic stroke.
Collapse
|
44
|
Kurtys E, Casteels C, Real CC, Eisel ULM, Verkuyl JM, Broersen LM, Klein HC, Dierckx RAJO, Doorduin J, de Vries EFJ. Therapeutic effects of dietary intervention on neuroinflammation and brain metabolism in a rat model of photothrombotic stroke. CNS Neurosci Ther 2018; 25:36-46. [PMID: 29804326 PMCID: PMC6436598 DOI: 10.1111/cns.12976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION A possible target for stroke management is modulation of neuroinflammation. Evidence suggests that food components may exert anti-inflammatory properties and thus may reduce stroke-induced brain damage. AIM To investigate the efficacy of a diet, containing anti-inflammatory ingredients, as treatment for focal ischemic brain damage induced by photothrombotic stroke in the somatosensory cortex of rats. RESULTS Brain lesions were surrounded by strong astrogliosis on both day 7 and day 21 after stroke and were accompanied by a trend toward globally decreased glucose metabolism on day 7. The investigational diet applied 2 weeks before the ischemia did not affect astrocyte activation on day 7, but reduced it at day 21. The investigational diet applied immediately after the ischemia, increased astrocyte activation on day 7 and completely reversed this effect on day 21. Moreover, postischemic intervention increased glucose metabolism in somatosensory cortex ipsilateral to the lesion on day 7. CONCLUSION This study reveals potentially beneficial effects of a diet containing elevated amounts of anti-inflammatory nutrients on the recovery from ischemic brain damage. Therefore, dietary intervention can be considered as an adjuvant therapy for recovery from this brain pathology.
Collapse
Affiliation(s)
- Ewelina Kurtys
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cindy Casteels
- Molecular Small Animal Imaging Center, Catholic University Leuven, Leuven, Belgium
| | - Caroline C Real
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, University of Groningen, GELIFES, Groningen, The Netherlands
| | | | | | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Xu L, Long J, Shi C, Zhang N, Lv Y, Feng J, Xuan A, He X, Li Q, Bai Y, Liu S, Long D. Effect of leukocyte inhibitory factor on neuron differentiation from human induced pluripotent stem cell-derived neural precursor cells. Int J Mol Med 2018; 41:2037-2049. [PMID: 29393372 PMCID: PMC5810244 DOI: 10.3892/ijmm.2018.3418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/05/2018] [Indexed: 12/27/2022] Open
Abstract
Direct derivation of human induced pluripotent stem cells into neural precursor cells and differentiation of these into neurons holds great promise in the cell therapy of neuro-degenerative diseases. However, the availability and survival rate of neurons requires improvement. In the present study, it was found that the addition of 5 ng/ml leukocyte inhibitory factor (LIF) during the process of differentiation significantly improved the expression of neuron-specific class III β-tubulin (TUJ1) and microtubule-associated protein 2 (MAP2), as detected by immunofluorescence and western blotting. In addition, LIF improved the cell viability, increased the expression of phosphorylated-protein kinase B (AKT), downregulated the expression of proinflammatory cytokines, including interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α), and upregulated the expression of anti-inflammatory cytokines, including interleukin-10 (IL-10) and transforming growth factor-β (TGF-β). After adding the phosphatidylinositol 3-kinase (PI3K)/AKT signaling inhibitor LY294002 or wortmannin to the LIF differentiation group, LIF-induced changes in the protein expression of TUJ1 and MAP2 were reversed, but this effect could not be prevented by rapamycin, a mechanistic target of rapamycin signaling inhibitor. The expression of cytokines associated with inflammation and cell viability was reversed by LY294002 and wortmannin, but not by rapamycin. In conclusion, LIF could improve neuronal differentiation and survival through the activation of PI3K/AKT signaling and the anti-inflammatory effect. The anti-inflammatory effect may be mediated by the activation of PI3K/AKT.
Collapse
Affiliation(s)
- Liping Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jingyi Long
- Institute of Neuroscience and The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Chun Shi
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Nianping Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ying Lv
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Junda Feng
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaosong He
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Qingqing Li
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yinshan Bai
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Shanshan Liu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Dahong Long
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
46
|
de Seabra Rodrigues Dias IR, Mok SWF, Gordillo-Martínez F, Khan I, Hsiao WWL, Law BYK, Wong VKW, Liu L. The Calcium-Induced Regulation in the Molecular and Transcriptional Circuitry of Human Inflammatory Response and Autoimmunity. Front Pharmacol 2018; 8:962. [PMID: 29358919 PMCID: PMC5766673 DOI: 10.3389/fphar.2017.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis synovial fibroblasts (RASFs) are fundamental effector cells in RA driving the joint inflammation and deformities. Celastrol is a natural compound that exhibits a potent anti-arthritic effect promoting endoplasmic reticulum (ER) stress mediated by intracellular calcium (Ca2+) mobilization. Ca2+ is a second messenger regulating a variety of cellular processes. We hypothesized that the compound, celastrol, affecting cytosolic Ca2+ mobilization could serve as a novel strategy to combat RA. To address this issue, celastrol was used as a molecular tool to assay the inflammatory gene expression profile regulated by Ca2+. We confirmed that celastrol treatment mobilized cytosolic Ca2+ in patient-derived RASFs. It was found that 23 genes out of 370 were manipulated by Ca2+ mobilization using an inflammatory and autoimmunity PCR array following independent quantitative PCR validation. Most of the identified genes were downregulated and categorized into five groups corresponding to their cellular responses participating in RA pathogenesis. Accordingly, a signaling network map demonstrating the possible molecular circuitry connecting the functions of the products of these genes was generated based on literature review. In addition, a bioinformatics analysis revealed that celastrol-induced Ca2+ mobilization gene expression profile showed a novel mode of action compared with three FDA-approved rheumatic drugs (methotrexate, rituximab and tocilizumab). To the best of our knowledge, this is a pioneer work charting the Ca2+ signaling network on the regulation of RA-associated inflammatory gene expression.
Collapse
Affiliation(s)
| | - Simon W F Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Flora Gordillo-Martínez
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wendy W L Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Y K Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent K W Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
47
|
Song Z, Han X, Shen L, Zou H, Zhang B, Liu J, Gong A. PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3β pathway in vitro. Exp Cell Res 2018; 363:179-187. [PMID: 29305963 DOI: 10.1016/j.yexcr.2018.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/03/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023]
Abstract
The failure of neuronal proliferation and differentiation is a major obstacle for neural repair and regeneration after traumatic central nervous system (CNS) injury. PTEN acts as an intrinsic brake on the neuronal cells, but its roles and mechanism still remain to be clarified. Herein, for the first time we confirmed that PTEN had a dual effect on the neuronal cells in vitro. Firstly, we found that PTEN knockdown significantly promoted cell proliferation and differentiation. Then, PTEN knockdown activated PI3K/Akt and Wnt/β-catenin pathways in vitro. Further evidence revealed that GSK3β as a key node involved in PTEN controlling cell proliferation and differentiation in PC12 cells. In addition, we identified that PTEN-GSK3β pathway modulated neuronal proliferation via β-catenin. Taken together, these results suggest that PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3β pathway that it may be a promising therapeutic approach for CNS injury.
Collapse
Affiliation(s)
- Zhiwen Song
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xiu Han
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Liming Shen
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hongjun Zou
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Jinbo Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
48
|
Zhang Y, Li K, Ying Y, Chen B, Hao K, Chen B, Zheng Y, Lyu J, Tong X, Chen X, Wang Y, Zhan Z, Zhang W, Wang Z. C21 steroid-enriched fraction refined from Marsdenia tenacissima inhibits hepatocellular carcinoma through the coordination of Hippo-Yap and PTEN-PI3K/AKT signaling pathways. Oncotarget 2017; 8:110576-110591. [PMID: 29299170 PMCID: PMC5746405 DOI: 10.18632/oncotarget.22833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Marsdenia tenacissimae extraction (MTE), a traditional herbal medicine, has exhibited anti-tumor effects on a variety of cancers. However, its effectiveness and the mechanism of action in Hepatocellular carcinoma (HCC) has not been fully understood. In the present study, we demonstrate that C21 steroid-enriched fraction from MTE, which contains five main C21 steroids (FR5) exhibits obvious pharmacological activities on HCC cells in vitro and in vivo. FR5 induces apoptosis and inhibits proliferation and migration of HepG2 and Bel7402 cells in a dose and time dependent manner. Furthermore, in HCC cells, we found that FR5 inhibits Hippo pathway, leading to inactivation of YAP and increase of PTEN. Enhanced PTEN results in the inhibition of PI3K/AKT signaling pathway, inhibiting cell proliferation by FR5 and FR5-induced apoptosis. Moreover, it was proved that FR5 treatment could inhibit tumor growth in a HCC xenograft mouse model, and immunohistochemistry results showed FR5 treatment resulted in down-regulation of Bcl-2 and YAP, and up-regulation of PTEN and PI3K. Taken together, we found that FR5 effectively inhibits proliferation and induces apoptosis of HCC cells through coordinated inhibition of YAP in the Hippo pathway and AKT in the PI3K-PTEN-mTOR pathway, and suggest FR5 as a potential therapy for HCC.
Collapse
Affiliation(s)
- Yu Zhang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Kaiqiang Li
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Youmin Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bingyu Chen
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Boxu Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu Zheng
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jianxin Lyu
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiangming Tong
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaopan Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Ying Wang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Zhajun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Zhang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Zhen Wang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
49
|
Chen J, Wang Z, Zheng Z, Chen Y, Khor S, Shi K, He Z, Wang Q, Zhao Y, Zhang H, Li X, Li J, Yin J, Wang X, Xiao J. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death Dis 2017; 8:e3090. [PMID: 28981091 PMCID: PMC5682656 DOI: 10.1038/cddis.2017.490] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
Therapeutics used to treat central nervous system (CNS) injury were designed to repair neurites and inhibit cell apoptosis. Previous studies have shown that neuron-derived FGF10 exerts potential neuroprotective effects after cerebral ischemia injury. However, little is known about the role of endogenous FGF10 in the recovery process after spinal cord injury (SCI). In this study, we found that FGF10 is mainly produced by neuron and microglia/macrophages, and its expression is increased after SCI. Exogenous treatment of FGF10 improved functional recovery after injury by reducing apoptosis, as well as repairing neurites via FGFR2/PI3K/Akt pathway. On another hand, inhibiting the PI3K/Akt pathway with LY294002 partially reversed the therapeutic effects of FGF10. In addition, small interfering RNA knockdown of FGFR2 suppressed PI3K/Akt pathway activation by FGF10 and abolished its anti-apoptotic and neurite repair effects in vitro. Furthermore, FGF10 treatment inhibited the activation and proliferation of microglia/macrophages through regulation of TLR4/NF-κB pathway, and attenuated the release of pro-inflammatory cytokines after SCI. Thus, the increased expression of FGF10 after acute SCI is an endogenous self-protective response, suggesting that FGF10 could be a potential treatment for CNS injury.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - ZengMing Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - KeSi Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZiLi He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingzheng Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Yin
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Tetramethylpyrazine Analogue CXC195 Protects Against Dopaminergic Neuronal Apoptosis via Activation of PI3K/Akt/GSK3β Signaling Pathway in 6-OHDA-Induced Parkinson's Disease Mice. Neurochem Res 2016; 42:1141-1150. [PMID: 28005221 DOI: 10.1007/s11064-016-2148-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder and characterized by motor system disorders resulting in loss of dopaminergic (DA) neurons. CXC195, a novel tetramethylpyrazine derivative, has been shown strongest neuroprotective effects due to its anti-apoptotic activity. However, whether CXC195 protects against DA neuronal damage in PD and the mechanisms underlying its beneficial effects are unknown. The purpose of our study was to investigate the potential neuroprotective role of CXC195 and to elucidate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced mouse model of PD. CXC195 administration improved DA neurodegeneration in PD mice induced by 6-OHDA. Our further findings confirmed treatment of CXC195 at the dose of 10 mg/kg significantly inhibited the apoptosis by decreasing the level of cleaved caspase-3 and Bax, and increasing the level of Bcl-2 in 6-OHDA-lesioned mice. Meanwhile, 6-OHDA also decreased the amount of phosphorylated Akt while increased GSK-3β activity (the amount of phosphorylated GSK-3β at Ser9 was decreased) which was prevented by CXC195. Wortmannin, a specific PI3K inhibitor, dramatically abolished the changes induced by CXC195. Our study firstly demonstrated that CXC195 protected against DA neurodegeneration in 6-OHDA-induced PD model by its anti-apoptotic properties and PI3K/Akt/GSK3β signaling pathway was involved in it.
Collapse
|