1
|
Wan L, Li S, Du J, Li A, Zhan Y, Zhu W, Zheng P, Qiao D, Nie C, Pan Q. Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases. ACS Biomater Sci Eng 2025; 11:2502-2527. [PMID: 40276988 DOI: 10.1021/acsbiomaterials.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Polyphenols, which are compounds characterized by the presence of phenolic hydroxyl groups, are abundantly found in natural plants and exist in highly complex forms within living organisms. As some of the most prevalent compounds in nature, polyphenols possess significant medicinal value due to their unique structural features, particularly their therapeutic efficacy in antitumor, anti-inflammatory, and antibacterial applications. In the context of inflammation therapy, polyphenolic compounds can inhibit the excessive release of inflammatory mediators from inflammatory cells, thereby mitigating inflammation. Furthermore, these compounds exhibit strong antioxidant properties, enabling them to scavenge free radicals and reactive oxygen species (ROS), reduce oxidative stress-related damage, and exert anti-inflammatory effects. Due to their multiple phenolic hydroxyl groups and their ability to chelate various metals, polyphenols are extensively utilized in the synthesis of self-assembled nanoparticles for the treatment of various diseases. Numerous studies have demonstrated that the therapeutic profile of nanoparticles formed through self-assembly with metal ions surpasses that of polyphenolic compounds alone. This Review will focus on the self-assembly of different polyphenolic compounds with various metal ions to generate nanoparticles, their characterization, and their therapeutic applications in inflammation-related diseases, providing researchers with new insights into the synthetic study of metal-polyphenol nanocomposites and their biological applications.
Collapse
Affiliation(s)
- Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shizhe Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jiawei Du
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Anqi Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yujie Zhan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cunpeng Nie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
2
|
Subaş T, Badem M, Kanbolat Ş, Özgen U, Şener SÖ, Yazıcı G, Şeker Mİ. Lipid Metabolism-Related Enzyme Inhibition and Antioxidant Potential of the Extracts and Phytochemical Compounds from Trachystemon orientalis (L.) D.Don. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:114. [PMID: 40293665 PMCID: PMC12037426 DOI: 10.1007/s11130-025-01358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Trachystemon orientalis (L.) D.Don is a perennial herb extensively utilized for culinary purposes and the treatment of numerous ailments. Hyperlipidemia is a significant risk factor for atherosclerosis, diabetes, obesity, and coronary heart disease. The inhibition of pancreatic lipase (PL) and cholesterol esterase (CE) aims to mitigate problems associated with lipid metabolism disorders by decreasing hyperlipidemia. In this context, enhancing antioxidant capability is an additional objective. This study assessed the PL and CE inhibitory actions of extracts and compounds from the aerial parts of T. orientalis, utilizing ferric reducing antioxidant power (FRAP) and cupric-reducing antioxidant capacity (CUPRAC) assays to measure antioxidant capabilities. Rosmarinic acid, a combination of rosmarinic acid and danshensu (phenolic acids), and β-sitosterol (phytosterol) were isolated. β-sitosterol (IC50: 41.698 ± 1.982 µg/mL, 14.249 ± 1.209 µg/mL, respectively) followed by rosmarinic acid (IC50: 48.213 ± 2.490 µg/mL, 21.941 ± 3.785 µg/mL, respectively) demonstrated significant inhibitory effects on PL and CE. Additionally, rosmarinic acid (FRAP: 1274.400 ± 1.633 µM TEAC, CUPRAC: 1801.389 ± 5.500 µM TEAC) and its combination with danshensu (FRAP: 1405.067 ± 4.491, CUPRAC: 2174.167 ± 9.647 µM TEAC) exhibited high antioxidant activity. The ethyl acetate subextract (TOE) from which rosmarinic acid was isolated showed considerable enzyme inhibitory (IC50: 47.577 ± 0.931 µg/mL, 12.443 ± 1.233 µg/mL, for PL and CE inhibition, respectively) and antioxidant activity (FRAP: 1770.021 ± 4.583, CUPRAC: 2189.167 ± 5.401 µM TEAC). T. orientalis has been identified as a promising natural resource for the management of lipid metabolism-related disorders and for enhancing antioxidant activity.
Collapse
Affiliation(s)
- Tuğba Subaş
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, 61080, Turkey.
| | - Merve Badem
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Şeyda Kanbolat
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Ufuk Özgen
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Sıla Özlem Şener
- Department of Pharmacognosy, Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Gül Yazıcı
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Mevlüde İlknur Şeker
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, 61080, Turkey
| |
Collapse
|
3
|
Lu X, Sun Y, Zhang Z, Sun Z, Wang S, Xu E. Regulation of pyroptosis by natural products in ulcerative colitis: mechanisms and therapeutic potential. Front Pharmacol 2025; 16:1573684. [PMID: 40271055 PMCID: PMC12014637 DOI: 10.3389/fphar.2025.1573684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Ulcerative colitis (UC), a chronic inflammatory bowel disease, is driven by dysregulated immune responses and persistent intestinal inflammation. Pyroptosis, a caspase/gasdermin-mediated inflammatory cell death that exacerbates mucosal damage through excessive cytokine release and epithelial barrier disruption. Although pyroptosis is considered to be a key mechanism in the pathogenesis of UC, the systematic assessment of the role of natural products in targeting the pyroptosis pathway remains a critical research gap. The purpose of this review is to investigate the regulatory effects of natural products on pyroptosis in UC and elucidate the mechanisms of action and potential therapeutic effects. Key findings highlight polyphenols (e.g., resveratrol), flavonoids (e.g., Quercetin), and terpenoids as promising agents that inhibit NLRP3 inflammasome activation, suppress gasdermin D cleavage, and restore barrier integrity, thereby reducing pro-inflammatory cytokine release in preclinical UC models. Current evidence shows enhanced efficacy and safety when these compounds are combined with standard therapies, but clinical translation requires overcoming three key barriers: limited human trial data, uncharacterized polypharmacology, and suboptimal pharmacokinetics needing formulation refinement. Future research should prioritize standardized animal-to-human translational models, mechanistic studies on synergistic pathways, and rigorous clinical validation to harness the full potential of natural products in pyroptosis-targeted UC therapies.
Collapse
Affiliation(s)
- Xiaobei Lu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yapeng Sun
- Department of Proctology, Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhaoyi Zhang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhigang Sun
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shaohui Wang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Erping Xu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Alla C, Ali A, Mehiou A, Salhi Y, Bouanani N, Legssyer A, Ziyyat A. Phytochemical Composition of Ziziphus lotus (L.) Lam and Its Impact on the Metabolic Syndrome: A Review. Adv Pharmacol Pharm Sci 2025; 2025:8276090. [PMID: 40035065 PMCID: PMC11873318 DOI: 10.1155/adpp/8276090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
The long-term pathological state known as metabolic syndrome is characterized by hypertension, insulin resistance diabetes, abdominal obesity, and hyperlipidemia. Seeking healthcare strategies with fewer side effects, such as herbal remedies, is preferable in terms of mitigating the negative consequences of synthetic medications. Ziziphus lotus (L.) (Rhamnaceae) or wild jujube, commonly known as "Sedra," is one of the best choices as it contains a variety of phytochemicals and biologically active compounds. Several flavonoids and stilbenes have been recognized as the primary bioactive components in wild jujube, including rutin, hyperin, isoquercitrin, and resveratrol. These polyphenols are pharmacologically active and have broad-spectrum beneficial effects for reducing the risk factors associated with metabolic syndrome. They exhibit antioxidant and anti-inflammatory properties, regulate lipid metabolism, and possess antiobesity, antihypertensive, and antidiabetic characteristics. However, there are certain limitations to their therapeutic application, such as low bioavailability. Various strategies have been proposed to enhance their pharmacokinetic profile and therapeutic potential for future use. The main goal of this review is to explore the underlying mechanisms related to the therapeutic effects of wild jujube and its active compounds in the treatment and prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Chaimae Alla
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Amanat Ali
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Afaf Mehiou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Youssra Salhi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Nourelhouda Bouanani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| |
Collapse
|
5
|
Xu J, Li F, Zheng M, Sheng L, Shi D, Song K. A Comprehensive Review of the Functional Potential and Sustainable Applications of Aronia melanocarpa in the Food Industry. PLANTS (BASEL, SWITZERLAND) 2024; 13:3557. [PMID: 39771257 PMCID: PMC11679783 DOI: 10.3390/plants13243557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Aronia melanocarpa (black chokeberry) is gaining attention in the food and health sectors due to its rich polyphenolic compounds and potent antioxidant properties. This paper provides a comprehensive review of the current research on the functional applications, bioavailability improvement strategies, and potential uses of Aronia melanocarpa in the food industry. The review highlights key developments in processing techniques, such as microencapsulation and nanotechnology, aimed at enhancing the stability and bioavailability of its active compounds. In addition, the paper explores the diversification of Aronia products, including juices, fermented beverages, and functional foods, and the growing market demand. The potential uses of Aronia melanocarpa leaves and by-products for sustainable production are also examined. Finally, the paper addresses the challenges of consumer acceptance, astringency removal, and the need for further research into the metabolic mechanisms and health benefits of Aronia melanocarpa. Future prospects for the Aronia melanocarpa industry, particularly its role in natural and sustainable food markets, are discussed, with an emphasis on innovative product development and the efficient use of by-products.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China; (J.X.); (F.L.); (M.Z.)
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Fusen Li
- Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China; (J.X.); (F.L.); (M.Z.)
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Meizhu Zheng
- Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China; (J.X.); (F.L.); (M.Z.)
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Li Sheng
- Jilin Qiu Zhiyuan Ecological Technology Co., Ltd., Siping 136000, China;
| | - Dongfang Shi
- Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China; (J.X.); (F.L.); (M.Z.)
| | - Kai Song
- Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China; (J.X.); (F.L.); (M.Z.)
- School of Life Science, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
6
|
Jian X, Shi C, Xu T, Liu B, Zhou L, Jiang L, Liu K. Efficacy and safety of dietary polyphenol administration as assessed by hormonal, glycolipid metabolism, inflammation and oxidative stress parameters in patients with PCOS: a meta-analysis and systematic review. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39682053 DOI: 10.1080/10408398.2024.2440063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND The current knowledge about the efficacy and safety of dietary polyphenol administration in patients with polycystic ovarian syndrome (PCOS) is divergent. OBJECTIVE To evaluate the pooled efficacy and safety of dietary polyphenol administration in the treatment of patients with PCOS. METHODS The pubmed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for randomized controlled trials (RCTs) of dietary polyphenol administration for the treatment of PCOS. English-language RCTs involving adults with PCOS were thoroughly searched in electronic databases from the time of their establishment to May 2024. Random-effects models were used because heterogeneity was derived from differences in intervention materials and study duration, among other confounding factors. The effect sizes of the outcomes in the pooled analysis are expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS A total of 15 RCTs involving 934 patients were finally included. Compared with control treatments, dietary polyphenol administration significantly reduced luteinizing hormone (LH) (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00), and prolactin levels (WMD: -3.73, 95% CI [-6.73 to -0.74], p = 0.01). Dietary polyphenol administration significantly reduced insulin levels (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00). Regarding lipid metabolism, dietary polyphenol administration only reduced triglyceride levels (WMD: -8.96, 95% CI [-16.44 to -1.49], p = 0.02). Malondialdehyde (MDA) (WMD: -0.65, 95% CI [-0.68 to -0.62], p = 0.00), tumor necrosis factor (TNF-α) (WMD: -1.39, 95% CI [-2.41 to -0.37], p = 0.01) concentrations were significantly reduced by dietary polyphenol administration. None of the interventions significantly affected weight, body mass index (BMI), waist circumference (WC), homeostatic model-insulin resistance (HOMA-IR), fasting blood sugar (FBS), glycated hemoglobin (HBA1c), follicle-stimulating hormone (FSH), testosterone (T), dehydroepiandrosterone (DHEA), estradiol (E2), anti-Müllerian hormone (AMH), quantitative insulin-sensitivity check index (QUICKI), sex hormone-binding globulin (SHBG), total antioxidant capacity (TAC), C-peptide, C-reactive protein (CRP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, cholesterol/HDL, acne score, thyroid-stimulating hormone (TSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) or alkaline phosphatase (ALP). CONCLUSION Dietary polyphenol administration was efficacious in patients with PCOS in our study. This review might provide new insight into the treatment of patients with PCOS and the potential of daily polyphenol supplementation in patients with PCOS. Nevertheless, these results must be interpreted carefully as a result of the heterogeneity and risk of bias among the studies and we expect that more high-quality RCTs evaluating the efficacy and safety of dietary polyphenol adnimistration in patients with PCOS will be conducted in the future. SYSTEMATIC REVIEW REGISTRATION CRD42024498494.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| |
Collapse
|
7
|
Gómez-Zorita S, Proença C, Fernández-Quintela A, Moreno-Indias I, Portillo MP. Beneficial Effects of Xanthohumol on Metabolic Syndrome: Evidence from In Vitro and Animal Model Studies. Int J Mol Sci 2024; 25:12434. [PMID: 39596505 PMCID: PMC11594861 DOI: 10.3390/ijms252212434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic syndrome refers to the simultaneous occurrence of several disorders that have been associated with other co-morbidities, such as a pro-inflammatory state and non-alcoholic fatty liver disease. Nowadays, it is a growing public health problem that contributes to the development of non-communicable diseases, such as type 2 diabetes, cardiovascular disease, and cognitive deficits among others. Its incidence has been related to modifiable lifestyle factors, mainly dietary patterns and physical activity. In addition, numerous studies have observed the potential beneficial effects of polyphenols in the prevention and treatment of metabolic syndrome components in both animals and humans. In this line, the aim of this review is to present the scientific evidence available about the beneficial effects of the phenolic compound xanthohumol in the prevention and/or treatment of obesity, dyslipidemia, insulin resistance, and fatty liver, which are important components of metabolic syndrome. All the potential beneficial effects described in this manuscript have been observed in vitro and in animal models, there are no published clinical trials in this context yet.
Collapse
Affiliation(s)
- Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.F.-Q.); (M.P.P.)
- Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.F.-Q.); (M.P.P.)
- Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Isabel Moreno-Indias
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29590 Malaga, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (A.F.-Q.); (M.P.P.)
- Lucio Lascaray Research Center, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- BIOARABA Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Liu Q, Ma Q, Li J, Sun L, Zhuang Y. Hypoglycemic Effect of Rambutan (Nephelium lappaceum L.) Peel Polyphenols on Type 2 Diabetes Mice by Modulating Gut Microbiota and Metabolites. Mol Nutr Food Res 2024; 68:e2400555. [PMID: 39385623 DOI: 10.1002/mnfr.202400555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Indexed: 10/12/2024]
Abstract
SCOPE Type 2 diabetes mellitus (T2DM) is a metabolic disease with a major global public health effect. Rambutan peel polyphenols (RPPs) have been reported to exert hypoglycemic activity. However, few studies have been explored from the viewpoint of gut microbiota and its metabolites. METHODS AND RESULTS RPPs are administered by gavage to a mice model of T2DM established by using a high-fat diet combined with streptozotocin. It finds that RPPs treatment alleviates hyperglycemia symptoms by improving glucolipid metabolism and liver function. Immunohistochemistry indicates that the antihyperglycemic effect of RPPs is regulated by the IRS-1/PI3K/AKT/GSK3β signaling pathway. RPPs treatment remodels the structure of gut microbiota (Odoribacter, Lachnospiraceae_NK4A136_group, Lactobacillus, Turicibacter, Erysipelatoclostridium, and Tuzzerella) and enriches the metabolites (RPPs-derived urolithins, short-chain fatty acids, dehydrocholic acid, (+)-catechin, dihydroberberine, pterostilbene, and artesunate) associated with diabetes regulation in T2DM mice. The effects of RPPs in ameliorating glycolipid metabolism disorders are correlated with differential gut microbiota and metabolites. CONCLUSION The gut microbiota and its metabolites are key targets for the hypoglycemic effects of RPPs.
Collapse
Affiliation(s)
- Qiuming Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- School of Chemistry and Resources Engineering, Honghe University, Mengzi, 661199, China
| | - Qingyu Ma
- School of Chemistry and Resources Engineering, Honghe University, Mengzi, 661199, China
| | - Jiao Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Sun
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
10
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
11
|
Gu W, Wu G, Chen G, Meng X, Xie Z, Cai S. Polyphenols alleviate metabolic disorders: the role of ubiquitin-proteasome system. Front Nutr 2024; 11:1445080. [PMID: 39188976 PMCID: PMC11345163 DOI: 10.3389/fnut.2024.1445080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic disorders include obesity, nonalcoholic fatty liver disease, insulin resistance and type 2 diabetes. It has become a major health issue around the world. Ubiquitin-proteasome system (UPS) is essential for nearly all cellular processes, functions as a primary pathway for intracellular protein degradation. Recent researches indicated that dysfunctions in the UPS may result in the accumulation of toxic proteins, lipotoxicity, oxidative stress, inflammation, and insulin resistance, all of which contribute to the development and progression of metabolic disorders. An increasing body of evidence indicates that specific dietary polyphenols ameliorate metabolic disorders by preventing lipid synthesis and transport, excessive inflammation, hyperglycemia and insulin resistance, and oxidative stress, through regulation of the UPS. This review summarized the latest research progress of natural polyphenols improving metabolic disorders by regulating lipid accumulation, inflammation, oxidative stress, and insulin resistance through the UPS. In addition, the possible mechanisms of UPS-mediated prevention of metabolic disorders are comprehensively proposed. We aim to provide new angle to the development and utilization of polyphenols in improving metabolic disorders.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianghui Meng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Shanbao Cai
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
12
|
Khalil A. Nutrition, Lipoproteins and Cardiovascular Diseases. Nutrients 2024; 16:2530. [PMID: 39125409 PMCID: PMC11314000 DOI: 10.3390/nu16152530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) represent the leading cause of mortality worldwide, despite the significant advancements that have been made in terms of primary and secondary prevention strategies over the past decades [...].
Collapse
Affiliation(s)
- Abdelouahed Khalil
- Geriatrics Unit, Department of Medicine, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
13
|
Roumi Z, Mirzababaei A, Abaj F, Davaneghi S, Aali Y, Mirzaei K. The interaction between polyphenol intake and genes (MC4R, Cav-1, and Cry1) related to body homeostasis and cardiometabolic risk factors in overweight and obese women: a cross-sectional study. Front Nutr 2024; 11:1410811. [PMID: 39104759 PMCID: PMC11299215 DOI: 10.3389/fnut.2024.1410811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Background Cardiovascular disease (CVD), which is an important global health challenge, is expanding. One of the main factors in the occurrence of CVD is a high genetic risk. The interaction between genetic risk in CVD and nutrition is debatable. Polyphenols are one of the important dietary components that may have a protective role in people who have a high genetic risk score (GRS) for cardiometabolic risk factors. This study, conducted in overweight and obese women, examines the interaction between polyphenol intake and specific genes (MC4r, Cav-1, and Cry1) related to maintaining body balance and their interaction with cardiometabolic risk factors. Methods This cross-sectional study included 391 women who were overweight or obese, aged 18 to 48 years, with a body mass index (BMI) between 25 and 40 kg/m2. Body composition was measured using the InBody 770 scanner. Total dietary polyphenol intake (TDPI) was assessed with a validated 147-item food frequency questionnaire (FFQ), and polyphenol intakes were determined using the Phenol-Explorer database. Serum samples underwent biochemical tests. The Genetic Risk Score (GRS) was calculated based on the risk alleles of three genes: MC4r, Cav-1, and Cry1. Results The mean ± standard deviation (SD) age and BMI of women were 36.67 (9.1) years and 30.98 (3.9) kg/m2, respectively. The high GRS and high TDPI group had a significant negative interaction with fasting blood glucose (FBS) (p = 0.01). Individuals who had a high GRS and a high phenolic acid intake were found to have a significant negative interaction with Triglyceride (p = 0.04). Similarly, individuals with high GRS and a high intake of flavonoids had a significant negative interaction with TG (p < 0.01) and a significant positive interaction with High-density lipoprotein (HDL) (p = 0.01) in the adjusted model. Conclusion According to our findings, those with a high GRS may have a protective effect on cardiometabolic risk factors by consuming high amounts of polyphenols. Further studies will be necessary in the future to validate this association.
Collapse
Affiliation(s)
- Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Soheila Davaneghi
- MSC, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasaman Aali
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Xiao X, Ge H, Wang Y, Wan X, Li D, Xie Z. (-)-Gallocatechin Gallate Mitigates Metabolic Syndrome-Associated Diabetic Nephropathy in db/db Mice. Foods 2024; 13:1755. [PMID: 38890983 PMCID: PMC11171689 DOI: 10.3390/foods13111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic syndrome (MetS) significantly predisposes individuals to diabetes and is a prognostic factor for the progression of diabetic nephropathy (DN). This study aimed to evaluate the efficacy of (-)-gallocatechin gallate (GCG) in alleviating signs of MetS-associated DN in db/db mice. We administered GCG and monitored its effects on several metabolic parameters, including food and water intake, urinary output, blood glucose levels, glucose and insulin homeostasis, lipid profiles, blood pressure, and renal function biomarkers. The main findings indicated that GCG intervention led to marked improvements in these metabolic indicators and renal function, signifying its potential in managing MetS and DN. Furthermore, transcriptome analysis revealed substantial modifications in gene expression, notably the downregulation of pro-inflammatory genes such as S100a8, S100a9, Cd44, Socs3, Mmp3, Mmp9, Nlrp3, IL-1β, Osm, Ptgs2, and Lcn2 and the upregulation of the anti-oxidative gene Gstm3. These genetic alterations suggest significant effects on pathways related to inflammation and oxidative stress. In conclusion, GCG demonstrates therapeutic efficacy for MetS-associated DN, mitigating metabolic disturbances and enhancing renal health by modulating inflammatory and oxidative responses.
Collapse
Affiliation(s)
- Xin Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (X.X.); (H.G.); (Y.W.); (X.W.); (D.L.)
- Joint Research Center for Food Nutrition and Health of IHM, Hefei 230036, China
| |
Collapse
|
15
|
Li J, Shi H, Wang L, He N. Effect of Dietary Flavonoids on Circadian Syndrome: A Population-Based Cross-Sectional Study. Metab Syndr Relat Disord 2024; 22:385-393. [PMID: 38452163 DOI: 10.1089/met.2023.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Background: Altering the dietary patterns can potentially decrease the likelihood of metabolic syndrome and circadian syndrome (CircS), but it remains unclear which types of flavonoid compounds are responsible for these effects, particularly among nationally representative populations. Thus, we conducted a cross-sectional study to investigate the impact of flavonoid intake on CircS. Methods: The study included 9212 noninstitutionalized adults from two survey cycles (2007-2008 and 2009-2010) of the National Health and Nutrition Examination Survey (NHANES). Data on six dietary flavonoids were collected through a 24-hr dietary recall, including isoflavones, anthocyanidins, flavan-3-ols, flavanones, flavones, and flavonols. All statistical analyses were weighted to account for the complex survey sampling design to generate nationally representative estimates. Multivariable logistic regression and propensity score matching (PSM) were performed to control for potential confounders and assess the association between the six flavonoids and risk of short sleep. Results: After adjusting for all covariates, only individuals with high intake of total flavanones exhibited a 28% [odds ratio (OR) = 0.72, 95% confidence interval (CI) = 0.64-0.83, P < 0.001] decrease in the risk of CircS. The results obtained through PSM were consistent with this finding (OR = 0.70, 95% CI = 0.61-0.80, P < 0.001). Total flavanone intake displayed a linear dose-response relationship with the likelihood of CircS (P for interaction = 0.448). Conclusions: Our findings suggest that high dietary intakes of flavanones have beneficial effects on reducing the risk of CircS.
Collapse
Affiliation(s)
- Jingkai Li
- College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huishan Shi
- College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingyun Wang
- College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Naifeng He
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
17
|
Huang H, Wei Y, Huang S, Lu S, Su H, Ma L, Huang W. Integrated metabolomic and transcriptomic analyses provide insights into regulation mechanisms during bulbous stem development in the Chinese medicinal herb plant, Stephania kwangsiensis. BMC PLANT BIOLOGY 2024; 24:276. [PMID: 38605285 PMCID: PMC11007893 DOI: 10.1186/s12870-024-04956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.
Collapse
Affiliation(s)
- Hao Huang
- Guangxi Vocational University of Agriculture, Nanning, 530009, China.
| | - Ying Wei
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Shaojun Huang
- Guangxi Vocational University of Agriculture, Nanning, 530009, China
| | - Shijian Lu
- Guangxi Vocational University of Agriculture, Nanning, 530009, China
| | - Huasheng Su
- Guangxi Vocational University of Agriculture, Nanning, 530009, China
| | - Liuhui Ma
- Guangxi Vocational University of Agriculture, Nanning, 530009, China
| | - Weiping Huang
- Guangxi Vocational University of Agriculture, Nanning, 530009, China
| |
Collapse
|
18
|
Jahanafrooz Z, Mousavi MMH, Akbarzadeh S, Hemmatzadeh M, Maggi F, Morshedloo MR. Anti-breast cancer activity of the essential oil from grapefruit mint (Mentha suaveolens × piperita). Fitoterapia 2024; 174:105875. [PMID: 38417678 DOI: 10.1016/j.fitote.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 μg/ml in MCF-7 and 5.9 μg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran.
| | | | - Soghra Akbarzadeh
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Maedeh Hemmatzadeh
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Filippo Maggi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP) research center, University of Camerino, 62032 Camerino, Italy.
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
19
|
Xiang G, Guo S, Xing N, Du Q, Qin J, Gao H, Zhang Y, Wang S. Mangiferin, a Potential Supplement to Improve Metabolic Syndrome: Current Status and Future Opportunities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:355-386. [PMID: 38533569 DOI: 10.1142/s0192415x24500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Metabolic syndrome (MetS) represents a considerable clinical and public health burden worldwide. Mangiferin (MF), a flavonoid compound present in diverse species such as mango (Mangifera indica L.), papaya (Pseudocydonia sinensis (Thouin) C. K. Schneid.), zhimu (Anemarrhena asphodeloides Bunge), and honeybush tea (Cyclopia genistoides), boasts a broad array of pharmacological effects. It holds promising uses in nutritionally and functionally targeted foods, particularly concerning MetS treatment. It is therefore pivotal to systematically investigate MF's therapeutic mechanism for MetS and its applications in food and pharmaceutical sectors. This review, with the aid of a network pharmacology approach complemented by this experimental studies, unravels possible mechanisms underlying MF's MetS treatment. Network pharmacology results suggest that MF treats MetS effectively through promoting insulin secretion, targeting obesity and inflammation, alleviating insulin resistance (IR), and mainly operating via the phosphatidylinositol 3 kinase (PI3K)/Akt, nuclear factor kappa-B (NF-[Formula: see text]B), microtubule-associated protein kinase (MAPK), and oxidative stress signaling pathways while repairing damaged insulin signaling. These insights provide a comprehensive framework to understand MF's potential mechanisms in treating MetS. These, however, warrant further experimental validation. Moreover, molecular docking techniques confirmed the plausibility of the predicted outcomes. Hereafter, these findings might form the theoretical bedrock for prospective research into MF's therapeutic potential in MetS therapy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jing Qin
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Huimin Gao
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, P. R. China
| | - Yi Zhang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Shaohui Wang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, P. R. China
| |
Collapse
|
20
|
Yuan F, Zeng Q, Hu Y, Liang J. The Inverse Association Between Isoflavone Intake and Prevalence of Metabolic Syndrome: A Cross-Sectional Study from National Health and Nutrition Examination Survey. Metab Syndr Relat Disord 2024; 22:97-104. [PMID: 37944109 DOI: 10.1089/met.2023.0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Objective: Metabolic syndrome (MetS) is a global disease burden that has resulted in 10 million people being affected by it, yet no new drugs have been approved for clinical treatment. Isoflavone may be able to stop the development of MetS or enhance its treatment. Therefore, we investigated the relationship between dietary intake of isoflavone and prevalence of MetS to find potentially effective treatments. Methods: We conducted a cross-sectional study using data from 8512 National Health and Nutrition Examination Survey (NHANES) participants from 2007 to 2010 and 2017 to 2018 and their associated isoflavone intake from the flavonoid database in the USDA Food and Nutrient Database for Dietary Studies (FNDDS). We investigated the relationship between MetS status and isoflavone intake by adjusting for confounding variables using multivariable logistic regression models. Results: In a multivariable-adjusted model, there was a negative association between isoflavone intake and the incidence of MetS (odds ratio for Q4 vs. Q1 was 0.66, 95% confidence interval = 0.51-0.86, P = 0.003, p for trend was <0.001). This inverse association remained robust across most subgroups, while nonsignificant interactions were tested between isoflavone intake and age, sex, ethnicity, economic status, body mass index, smoking status, alcohol consumption, and physical activity level (P values for interaction >0.05). Conclusions: We found that MetS prevalence decreased with increased isoflavone intake, suggesting that dietary patterns of soy food or supplement consumption may be a valuable strategy to reduce the disease burden and the prevalence of MetS.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qingya Zeng
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanuo Hu
- Department of Diagnostic Radiology, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jixing Liang
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Jha D, Prajapati SK, Deb PK, Jaiswal M, Mazumder PM. Madhuca longifolia-hydro-ethanolic-fraction reverses mitochondrial dysfunction and modulates selective GLUT expression in diabetic mice fed with high fat diet. Mol Biol Rep 2024; 51:209. [PMID: 38270737 DOI: 10.1007/s11033-023-08962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Metabolic disorder is characterized as chronic low-grade inflammation which elevates the systemic inflammatory markers. The proposed hypothesis behind this includes occurrence of hypoxia due to intake of high fat diet leading to oxidative stress and mitochondrial dysfunction. AIM In the present work our aim was to elucidate the possible mechanism of action of hydroethanolic fraction of M. longifolia leaves against the metabolic disorder. METHOD AND RESULTS In the present investigation, effect of Madhuca longifolia hydroethanolic fraction (MLHEF) on HFD induced obesity and diabetes through mitochondrial action and selective GLUT expression has been studied. In present work, it was observed that HFD (50% of diet) on chronic administration aggravates the metabolic problems by causing reduced imbalanced oxidative stress, ATP production, and altered selective GLUT protein expression. Long term HFD administration reduced (p < 0.001) the SOD, CAT level significantly along with elevated liver function marker AST and ALT. MLHEF administration diminishes this oxidative stress. HFD administration also causes decreased ATP/ADP ratio owing to suppressed mitochondrial function and elevating LDH level. This oxidative imbalance further leads to dysregulated GLUT expression in hepatocytes, skeletal muscles and white adipose tissue. HFD leads to significant (p < 0.001) upregulation in GLUT 1 and 3 expression while significant (p < 0.001) downregulation in GLUT 2 and 4 expressions in WAT, liver and skeletal muscles. Administration of MLHEF significantly (p < 0.001) reduced the LDH level and also reduces the mitochondrial dysfunction. CONCLUSION Imbalances in GLUT levels were significantly reversed in order to maintain GLUT expression in tissues on the administration of MLHEF.
Collapse
Affiliation(s)
- Dhruv Jha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| | - Santosh Kumar Prajapati
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Mohit Jaiswal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| |
Collapse
|
22
|
Olędzki R, Harasym J. Assessment of the Effects of Roasting, Contact Grilling, Microwave Processing, and Steaming on the Functional Characteristics of Bell Pepper ( Capsicum annuum L.). Molecules 2023; 29:77. [PMID: 38202659 PMCID: PMC10779832 DOI: 10.3390/molecules29010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Bell peppers (Capsicum annuum L.) in various stages of maturity are widely used in the diets of individuals and in the food industry; they are consumed both fresh and after thermal processing. However, every type of processing impacts the overall textural and bioactive characteristics of this plant-based food. In order to quantify the changes in the bioactive substances and color-structural characteristics that occur during selected heat treatments (contact grilling, roasting, roasting combined with microwaving, and steam cooking) of bell peppers at three maturity stages (green, yellow, and red), analyses of antioxidant activity, reducing sugar content, polyphenolic compound content, textural properties, and color coordinates in the L*a*b* system were carried out. Some of the processes used, such as contact grilling (15.43 mg GAE/g d.b.) and roasting combined with microwaving (15.24 mg GAE/g d.b.), proved to be beneficial as the total polyphenol content of green peppers (2.75 mg GAE/g d.b.) increased. The roasting (3.49 mg TE/g d.b.) and steaming (6.45 mg TE/g d.b.) methods decreased the antioxidant activity of yellow bell peppers (14.29 mg TE/g d.b.). Meanwhile, the roasting (0.88 mg Glc/g d.b.), contact-grilling (2.19 mg Glc/g d.b.), simultaneous microwaving and roasting (0.66 mg Glc/g d.b.), and steaming (1.30 mg Glc/g d.b.) methods significantly reduced the content of reducing sugars and reducing substances in red bell peppers (4.41 mg Glc/g d.b.). The studies proved that in order to preserve the antioxidant and bioactive properties of bell peppers, it is necessary to consider the use of appropriately selected heat treatments, depending on the different stages of maturity. The proper selection of adequate thermal treatment can not only increase digestibility, but also improve the bioavailability of bioactive substances from this raw material.
Collapse
Affiliation(s)
- Remigiusz Olędzki
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
- Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland
| |
Collapse
|
23
|
Caputo V, Tarantino G, Santini SJ, Fracassi G, Balsano C. The Role of Epigenetic Control of Mitochondrial (Dys)Function in MASLD Onset and Progression. Nutrients 2023; 15:4757. [PMID: 38004151 PMCID: PMC10675587 DOI: 10.3390/nu15224757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Metabolic dysfunction-associated steatotic fatty liver disease (MASLD), a novel definition for NAFLD, represents one of the most common causes of liver disease, and its incidence is increasing worldwide. It is characterized by a complex etiopathogenesis in which mitochondrial dysfunction exerts a pivotal role together with alteration of lipid metabolism, inflammation, and oxidative stress. Nutrients and bioactive compounds can influence such mechanisms so that changes in diet and lifestyle are regarded as important treatment strategies. Notably, natural compounds can exert their influence through changes of the epigenetic landscape, overall resulting in rewiring of molecular networks involved in cell and tissue homeostasis. Considering such information, the present review aims at providing evidence of epigenetic modifications occurring at mitochondria in response to natural and bioactive compounds in the context of liver (dys)function. For this purpose, recent studies reporting effects of compounds on mitochondria in the context of NAFLD/MASLD, as well as research showing alteration of DNA methylation and non-coding RNAs-related circuits occurring at liver mitochondria, will be illustrated. Overall, the present review will highlight the importance of understanding the bioactive compounds-dependent epigenetic modulation of mitochondria for improving the knowledge of MASLD and identifying biomarkers to be employed for effective preventative strategies or treatment protocols.
Collapse
Affiliation(s)
- Valerio Caputo
- Department of Life, Health and Environmental Sciences-MESVA, School of Emergency-Urgency Medicine, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (S.J.S.); (G.F.)
- F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80138 Naples, Italy;
| | - Silvano Junior Santini
- Department of Life, Health and Environmental Sciences-MESVA, School of Emergency-Urgency Medicine, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (S.J.S.); (G.F.)
- F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy
| | - Giovanna Fracassi
- Department of Life, Health and Environmental Sciences-MESVA, School of Emergency-Urgency Medicine, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (S.J.S.); (G.F.)
| | - Clara Balsano
- Department of Life, Health and Environmental Sciences-MESVA, School of Emergency-Urgency Medicine, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (S.J.S.); (G.F.)
- F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy
| |
Collapse
|
24
|
Kim HI, Park J. Natural Antioxidants in Obesity and Related Diseases. Antioxidants (Basel) 2023; 12:1966. [PMID: 38001819 PMCID: PMC10669253 DOI: 10.3390/antiox12111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity is a chronic complex disease defined by excessive adiposity that impairs health [...].
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
25
|
Wang C, Liu X, Zhao R, Yang M, Liu W, Dai Q, Bao X, Chen Y, Ma J. The Amorphous Solid Dispersion of Chrysin in Plasdone ® S630 Demonstrates Improved Oral Bioavailability and Antihyperlipidemic Performance in Rats. Pharmaceutics 2023; 15:2378. [PMID: 37896138 PMCID: PMC10610386 DOI: 10.3390/pharmaceutics15102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Chrysin is a flavonoid with various biological activities. However, its low water solubility and strong metabolism render its oral bioavailability rather poor. This study aimed to develop a stable solid dispersion formulation of chrysin to improve the dissolution of chrysin, so as to increase its oral bioavailability and improve its antihyperlipidemic activities. A solid dispersion of chrysin was prepared using a solvent evaporation method, with Plasdone® S630 as the hydrophilic carrier. The formulations were characterized via X-ray diffraction, in vitro dissolution studies, and stability studies. An in-situ perfusion model was used to evaluate the absorption rates. Plasma pharmacokinetics and antihyperlipidemic performance after the oral administration of the chrysin formulations were investigated in rats. It was found that the solid dispersion of chrysin prepared using the drug-polymer mass ratio of 1:6 can form the optimized formulation. X-ray diffraction results showed that the chrysin was in an amorphous state in this optimized formulation. The cumulative release percentage of the optimized solid dispersion of chrysin at pH 1.2 and pH 6.8 was elevated to above 90% within 24 h, indicating that the formulation could enhance the dissolution rates of chrysin. Stability studies showed that the optimized formulation presented acceptable long-term storage stability, but it was susceptible to high temperature and humidity. The solid dispersion of chrysin showed higher absorption rates in the in-situ perfusion model. Pharmacokinetic studies revealed that Cmax and AUC after the intragastric administration of solid dispersion of chrysin were appreciably higher than those resulting from chrysin suspension. The oral bioavailability of the solid dispersion of chrysin was 41 times higher than that of chrysin suspension. Pharmacological studies suggested that the solid dispersion of chrysin was more powerful than chrysin raw material in improving biochemical indicators in the hyperlipidemic model in rats. This study reveals the potential use of a novel oral formulation of chrysin to reduce the currently required high dose.
Collapse
Affiliation(s)
- Chenhui Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaowei Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Ruihan Zhao
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Meiqing Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Wenqian Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Qiuyang Dai
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yong Chen
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jun Ma
- Shenzhen Wanhe Pharmaceutical Company & Guangdong Provincial Key Laboratory of Microecological Preparations, 7 Huitong Road, Shenzhen 518107, China
| |
Collapse
|
26
|
Braojos C, Gila-Díaz A, Rodríguez-Rodríguez P, Monedero-Cobeta I, Morales MD, Ruvira S, Ramiro-Cortijo D, Benítez V, Martín-Cabrejas MA, Arribas SM. Effect of Supplementation with Coffee and Cocoa By-Products to Ameliorate Metabolic Syndrome Alterations Induced by High-Fat Diet in Female Mice. Foods 2023; 12:2708. [PMID: 37509800 PMCID: PMC10379158 DOI: 10.3390/foods12142708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Coffee and cocoa manufacturing produces large amounts of waste. Generated by-products contain bioactive compounds with antioxidant and anti-inflammatory properties, suitable for treating metabolic syndrome (MetS). We aimed to compare the efficacy of aqueous extracts and flours from coffee pulp (CfPulp-E, CfPulp-F) and cocoa shell (CcShell-E, CcShell-F) to ameliorate MetS alterations induced by a high-fat diet (HFD). Bioactive component content was assessed by HPLC/MS. C57BL/6 female mice were fed for 6 weeks with HFD followed by 6 weeks with HFD plus supplementation with one of the ingredients (500 mg/kg/day, 5 days/week), and compared to non-supplemented HFD and Control group fed with regular chow. Body weight, adipocyte size and browning (Mitotracker, confocal microscopy), plasma glycemia (basal, glucose tolerance test-area under the curve, GTT-AUC), lipid profile, and leptin were compared between groups. Cocoa shell ingredients had mainly caffeine, theobromine, protocatechuic acid, and flavan-3-ols. Coffee pulp showed a high content in caffeine, protocatechuic, and chlorogenic acids. Compared to Control mice, HFD group showed alterations in all parameters. Compared to HFD, CcShell-F significantly reduced adipocyte size, increased browning and high-density lipoprotein cholesterol (HDL), and normalized basal glycemia, while CcShell-E only increased HDL. Both coffee pulp ingredients normalized adipocyte size, basal glycemia, and GTT-AUC. Additionally, CfPulp-E improved hyperleptinemia, reduced triglycerides, and slowed weight gain, and CfPulp-F increased HDL. In conclusion, coffee pulp ingredients showed a better efficacy against MetS, likely due to the synergic effect of caffeine, protocatechuic, and chlorogenic acids. Since coffee pulp is already approved as a food ingredient, this by-product could be used in humans to treat obesity-related MetS alterations.
Collapse
Affiliation(s)
- Cheyenne Braojos
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (UAM-CSIC), C/Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Andrea Gila-Díaz
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid (UAM-CSIC), C/Arbobispo Morcillo 2, 28029 Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid (UAM-CSIC), C/Arbobispo Morcillo 2, 28029 Madrid, Spain
| | - Ignacio Monedero-Cobeta
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid (UAM-CSIC), C/Arbobispo Morcillo 2, 28029 Madrid, Spain
| | - María Dolores Morales
- Confocal Microscopy Unit, Interdepartmental Research Service (SiDI), Faculty of Medicine, Universidad Autónoma de Madrid (UAM-CSIC), C/Arzobispo Morcillo 2, 28029 Madrid, Spain
| | - Santiago Ruvira
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid (UAM-CSIC), C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- PhD Program in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid (UAM-CSIC), C/Francisco Tomás y Valiente 2, 28049 Madrid, Spain
| | - David Ramiro-Cortijo
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid (UAM-CSIC), C/Arbobispo Morcillo 2, 28029 Madrid, Spain
| | - Vanesa Benítez
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (UAM-CSIC), C/Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - María A Martín-Cabrejas
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (UAM-CSIC), C/Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Silvia M Arribas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid (UAM-CSIC), Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid (UAM-CSIC), C/Arbobispo Morcillo 2, 28029 Madrid, Spain
| |
Collapse
|
27
|
Zhao Z, Gao W, Ding X, Xu X, Xiao C, Mao G, Xing W. The association between dietary intake of flavonoids and its subclasses and the risk of metabolic syndrome. Front Nutr 2023; 10:1195107. [PMID: 37476404 PMCID: PMC10354435 DOI: 10.3389/fnut.2023.1195107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Background The healthiest way to prevent metabolic syndrome (MetS) is through behavioral and nutritional adjustments. We examined the relationship between total flavonoids intake, flavonoid subclasses, and clinically manifest MetS. Methods A cross-sectional analysis was conducted among 28,719 individuals from the National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2007-2011 and 2017-2018. Two 24-h reviews were conducted to determine flavonoids intake and subclasses. The link between flavonoids intake and MetS was investigated using a multivariate logistic regression model. Results Q2 and Q3 of total flavonoids intake were associated with 20 and 19% lower risk of incident MetS after adjusting age and sex. Anthocyanidins and flavanones intake in Q2 and Q3 substantially reduced the MetS risk compared to Q1. MetS risk decreased steadily as the total intake of flavonoids increased to 237.67 mg/d. Flavanones and anthocyanidins also displayed V-shaped relationship curves (34.37 and 23.13 mg/d). Conclusion MetS was adversely linked with total flavonoids intake, flavanones, and anthocyanidins. Moreover, the most effective doses of total flavonoids, flavanones, and anthocyanidins were 237.67, 34.37, and 23.13 mg/d, respectively, potentially preventing MetS.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoli Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Changqian Xiao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
28
|
Yu S, Song JH, Kim HS, Hong S, Park SK, Park SH, Lee J, Chae YC, Park JH, Lee YG. Patulin alleviates hepatic lipid accumulation by regulating lipogenesis and mitochondrial respiration. Life Sci 2023:121816. [PMID: 37271452 DOI: 10.1016/j.lfs.2023.121816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
AIMS The aim of this study is to evaluate the effects of patulin on hepatic lipid metabolism and mitochondrial oxidative function and elucidate the underlying molecular mechanisms. MAIN METHODS The effects of patulin on hepatic lipid accumulation were evaluated in free fatty acid-treated AML12 or HepG2 cells through oil red O staining, triglyceride assay, real-time polymerase chain reaction, and western blotting. Alteration of mitochondrial oxidative capacity by patulin treatment was determined using Seahorse analysis to measure the oxygen consumption rate. KEY FINDINGS The increased amounts of lipid droplets induced by free fatty acids were significantly reduced by patulin treatment. Patulin markedly activated the CaMKII/AMP-activated protein kinase (AMPK)/proliferator-activated receptor-γ coactivator (PGC)-1α signaling pathway in hepatocytes, reduced the expression of sterol regulatory element binding protein 1c (SREBP-1c) and lipogenic genes, and increased the expression of genes related to mitochondrial fatty acid oxidation. In addition, patulin treatment enhanced the mitochondrial consumption rate and increased the expression of mitochondrial oxidative phosphorylation proteins in HepG2 hepatocytes. The effects of patulin on anti-lipid accumulation; SREBP-1c, PGC-1α, and carnitine palmitoyltransferase 1 expression; and mitochondrial oxidative capacity were significantly prevented by compound C, an AMPK inhibitor. SIGNIFICANCE Patulin is a potent inducer of the AMPK pathway, and AMPK-mediated mitochondrial activation is required for the efficacy of patulin to inhibit hepatic lipid accumulation. This study is the first to report that patulin is a promising bioactive compound that prevents the development and worsening of fatty liver diseases, including non-alcoholic fatty liver disease, by improving mitochondrial quality and lipid metabolism.
Collapse
Affiliation(s)
- Seungmin Yu
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Ji-Hye Song
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hee Soo Kim
- Aging and Metabolism Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Seulmin Hong
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Seon Kyeong Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Soo Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Jangho Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Ho Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Yu Geon Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| |
Collapse
|
29
|
Mahdy NE, Abdel-Baki PM, El-Rashedy AA, Ibrahim RM. Modulatory Effect of Pyrus pyrifolia Fruit and its Phenolics on Key Enzymes against Metabolic Syndrome: Bioassay-Guided Approach, HPLC Analysis, and In Silico Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01069-3. [PMID: 37219720 PMCID: PMC10363080 DOI: 10.1007/s11130-023-01069-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/24/2023]
Abstract
This study aims to isolate the active constituents of Pyrus pyrifolia Nakai fruits using a bioassay-guided fractionation approach, test their activity in vitro against key enzymes for metabolic disorders, and support it with molecular docking simulations. The antioxidant potential of the methanolic extract (ME), its polar (PF), and non-polar fractions (NPF), along with the inhibitory activity against α-glucosidase, α-amylase, lipase, angiotensin I converting enzyme (ACE), renin, inducible nitric oxide synthase (iNOS), and xanthine oxidase (XO) were assessed. The PF exhibited the highest antioxidant and enzyme inhibitory activity. Purification of PF yielded rutin, isoquercitrin, isorhamnetin-3-O-β-D-glucoside, chlorogenic acid, quercetin, and cinnamic acid. HPLC-UV analysis of the PF allowed for the quantification of 15 phenolic compounds, including the isolated compounds. Cinnamic acid was the most powerful antioxidant in all assays and potent enzyme inhibitor against the tested enzymes (α-glucosidase, α-amylase, lipase, ACE, renin, iNOS, and XO). Additionally, it showed high affinity to target α-glucosidase and ACE active sites with high docking scores (calculated total binding free energy (ΔGbind) -23.11 kcal/mol and - 20.03 kcal/mol, respectively]. A 20-ns molecular dynamics simulation using MM-GBSA analysis revealed a stable conformation and binding patterns in a stimulating environment of cinnamic acid. Interestingly, the isolated compounds' dynamic investigations including RMSD, RMSF, and Rg demonstrated a stable ligand - protein complex to the active site of iNOS with ΔGbind ranging from - 68.85 kcal/mol to -13.47 kcal/mol. These findings support the notion that P. pyrifolia fruit is a functional food with multifactorial therapeutic agents against metabolic syndrome-associated diseases.
Collapse
Affiliation(s)
- Nariman E Mahdy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Passent M Abdel-Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, National Research Center (NRC), Dokki, Giza, 12622, Egypt
| | - Rana M Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| |
Collapse
|
30
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:2413. [PMID: 37242296 PMCID: PMC10221365 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
31
|
Wang Y, Jia Y, Li S, Li N, Zhou J, Liu J, Yang S, Zhang M, Panichayupakaranant P, Chen H. Gut microbiome-mediated glucose and lipid metabolism mechanism of star apple leaf polyphenol-enriched fraction on metabolic syndrome in diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154820. [PMID: 37094426 DOI: 10.1016/j.phymed.2023.154820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Diabetes is a kind of metabolic syndrome (MetS) that seriously threatens human health globally. The leaf of star apple (Chrysophyllum cainito L.) is an incompletely explored folk medicine on diabetes. And, the effects and mechanisms on diabetes complicated glycolipid metabolism disorders are unknown till now. PURPOSE This study aimed to investigate the constituents of star apple leaf polyphenol enriched-fraction (SAP), and elucidate their treatment effects and mechanism on diabetes and accompanied other MetS. METHODS The components of SAP were tentatively identified by HPLC-Q-TOF-MS/MS. The antioxidant activity was determined by the scavenging of free radicals and hypoglycemic activities by inhibition of α-glucosidase in vitro. HepG2 cells were used for evaluating the alleviation effects of SAP on lipid accumulation. Streptozotocin and high-fat diet induced diabetic mice were grouped to evaluate the effects of different dosages of SAP. 16S rRNA was conducted to analysis gut microbiome-mediated glucose and lipid metabolism mechanism. RESULTS It showed that myricitrin was one of the main active constituents of SAP. SAP not only showed low IC50 on -glucosidase (24.427± 0.626 μg/mL), OH·(3.680± 0.054 μg/mL) and ABTS· (9.155±0.234 μg/mL), but significantly induced the lipid accumulation in HepG2 cells (p < 0.05). SAP at 200 mg/kg·day significantly decreased the blood glucose, insulin and oral glucose tolerance test value (p < 0.05). The insulin resistance indexes and oxidative stress were alleviated after administration. SAP not only attenuated hepatic lipid deposition, but also reversed the hepatic glycogen storage. 16S rRNA sequencing results revealed that the interaction between SAP and gut microbiota led to the positive regulation of beneficial bacteria including Akkermansia, Unspecified S24_7, Alistipes and Unspecified_Ruminococcaceae, which might be one of the mechanisms of SAP on MetS. CONCLUSION For the first time, this study explored the regulation effect of star apple leaf polyphenols on the hepatic glycolipid metabolism and studied the underlying mechanism from the view of gut microbiota. These findings indicated that SAP possesses great potential to serve as a complementary medicine for diabetes and associated MetS. It provided scientific evidence for folk complementary medicine on the treatment of diabetes-complicated multiple metabolic disorders.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuyu Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
32
|
Tobin I, Zhang G. Regulation of Host Defense Peptide Synthesis by Polyphenols. Antibiotics (Basel) 2023; 12:660. [PMID: 37107022 PMCID: PMC10135163 DOI: 10.3390/antibiotics12040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance has created an urgent need for antibiotic-alternative strategies for disease control and prevention. Host defense peptides (HDPs), which have both antimicrobial and immunomodulatory properties, are an important component of the innate immune system. A host-directed approach to stimulate the synthesis of endogenous HDPs has emerged as a promising solution to treat infections with a minimum risk for developing antimicrobial resistance. Among a diverse group of compounds that have been identified as inducers of HDP synthesis are polyphenols, which are naturally occurring secondary metabolites of plants characterized by the presence of multiple phenol units. In addition to their well-known antioxidant and anti-inflammatory activities, a variety of polyphenols have been shown to stimulate HDP synthesis across animal species. This review summarizes both the in vitro and in vivo evidence of polyphenols regulating HDP synthesis. The mechanisms by which polyphenols induce HDP gene expression are also discussed. Natural polyphenols warrant further investigation as potential antibiotic alternatives for the control and prevention of infectious diseases.
Collapse
Affiliation(s)
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
33
|
Inhibition Effect of Adipogenesis and Lipogenesis via Activation of AMPK in Preadipocytes Treated with Canavalia gladiata Extract. Int J Mol Sci 2023; 24:ijms24032108. [PMID: 36768430 PMCID: PMC9916869 DOI: 10.3390/ijms24032108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to investigate the effect of Canavalia gladiata extract (CGE) on the regulation of AMP-activated protein kinase (AMPK) in 3T3-L1 preadipocytes and evaluate the adipogenesis and lipogenesis mechanisms. In 3T3-L1 preadipocytes, lipid accumulation and differentiation were suppressed by 1.1, 1.3, and 1.4 times under the CGE treatment at 0.25, 0.5, and 1.0 mg/mL, respectively. The expression of the main genes involved in the inhibition of adipogenesis was evaluated at the mRNA level via a transcription-polymerase chain reaction. The extract at 1.0 mg/mL increased the mRNA expressions of AMPK and carnitine palmitoyl transferase-1 (CPT-1) by 1.9 and 1.2 times, respectively, while it decreased the expression of sterol regulatory element binding proteins-1c (SREBP-1c), peroxisome proliferator activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), and fatty acid synthase (FAS) by 1.1, 1.2, 1.8, and 1.5 times, respectively, indicating inhibition of the adipogenesis and lipogenesis potential of CGE. Gallic acid (4.02 mg/g) was identified as the main component of the CGE via LC-MS/MS and HPLC analysis. The results of this study suggested that CGE can be utilized as an anti-obesity food additive or medication by activating the AMPK-induced regulation and suppressing adipogenesis transcription factors.
Collapse
|
34
|
Zhang J, Deng J, Yang H. Editorial: Natural polyphenols and metabolic syndrome. Front Nutr 2023; 10:1190577. [PMID: 37153922 PMCID: PMC10157201 DOI: 10.3389/fnut.2023.1190577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Affiliation(s)
- Juntao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Haixia Yang
| |
Collapse
|
35
|
Ma S, Zheng X, Zhang Y, Zhao S, Yi J, Cai S. Exploring the Promotive Effects and Mechanisms of Different Polyphenolic Extracts from Prinsepia utilis Royle Seed Shell on Tyrosinase. Foods 2022; 11:foods11244015. [PMID: 36553757 PMCID: PMC9777575 DOI: 10.3390/foods11244015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Prinsepia utilis Royle (P. utilis) is commonly used as a food ingredient and herbal medicine according to folk records, yet little research has been done on the seed shell, a processing waste. The aim of this study was to investigate the distribution of polyphenolic components and the tyrosinase activation activity of different extracts from the seed shell by UHPLC-ESI-HRMS/MS, in vitro tyrosinase activity assay, molecular docking and molecular dynamics. A total of 16 phytochemicals were identified, of which (+)-catechin and (-)-epicatechin were the major polyphenolic compounds. Both the esterified and insoluble bound polyphenols exhibited tyrosinase activation activity, and the esterified polyphenols showed better tyrosinase activation activity. (+)-Catechin and (-)-epicatechin might be the main activators of tyrosinase, both of which may act as substrate to affect tyrosinase activity. By molecular docking and molecular dynamics simulation studies, (+)-catechin and (-)-epicatechin can be efficiently and stably bound to the tyrosinase active site through hydrogen bonds, van der Waals forces and π-bonds. The results of this study may not only provide a scientific basis for exploring P. utilis seed shell as a potential activator of tyrosinase, but also contribute to the high value utilization of P. utilis processing by-products.
Collapse
|
36
|
Ramírez-Garza SL, Laveriano-Santos EP, Arancibia-Riveros C, Carrasco-Jimenez JC, Bodega P, de Cos-Gandoy A, de Miguel M, Santos-Beneit G, Fernández-Alvira JM, Fernández-Jiménez R, Martínez-Gómez J, Estruch R, Lamuela-Raventós RM, Tresserra-Rimbau A. Urinary Nitric Oxide Levels Are Associated with Blood Pressure, Fruit and Vegetable Intake and Total Polyphenol Excretion in Adolescents from the SI! Program. Antioxidants (Basel) 2022; 11:2140. [PMID: 36358511 PMCID: PMC9686949 DOI: 10.3390/antiox11112140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Nitric oxide (NO) is important to cardiovascular health (CVH), and its bioavailability could be regulated by the antioxidant effect of polyphenols, improving endothelial function and consequently blood pressure (BP). However, scant research has been carried out on NO and CVH correlates in adolescent populations. Therefore, our aim was to investigate the association between NO and the CVH status and other health factors in adolescents. NO, total polyphenol excretion (TPE), anthropometric measurements, BP, blood lipid profile, blood glucose, diet, physical activity, and smoking status were recorded, while CVH score was classified as ideal, intermediate, and poor. Negative associations were observed between NO and body mass index, body fat percentage, BP, and triglycerides; and positive associations between NO and skeletal muscle percentage, HDL-cholesterol, fruit and vegetable intake, and TPE was observed. To capture more complex interactions among different factors, multiple linear regression was performed, obtaining a significant association between NO and fruit and vegetable intake (β = 0.175), TPE (β = 0.225), and systolic BP (β = -0.235). We conclude that urinary NO levels are positively associated with the consumption of fruits and vegetables rich in antioxidants such as polyphenols and negatively associated with systolic BP.
Collapse
Affiliation(s)
- Sonia L. Ramírez-Garza
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d’Innovació Alimentària (XIA), Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Emily P. Laveriano-Santos
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d’Innovació Alimentària (XIA), Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Camila Arancibia-Riveros
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d’Innovació Alimentària (XIA), Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | | | - Patricia Bodega
- Foundation for Science, Health and Education (SHE), 08008 Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Amaya de Cos-Gandoy
- Foundation for Science, Health and Education (SHE), 08008 Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Mercedes de Miguel
- Foundation for Science, Health and Education (SHE), 08008 Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Gloria Santos-Beneit
- Foundation for Science, Health and Education (SHE), 08008 Barcelona, Spain
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Hospital Universitario Clinico San Carlos, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain
| | | | - Ramón Estruch
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Department of Internal Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d’Innovació Alimentària (XIA), Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Anna Tresserra-Rimbau
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Xarxa d’Innovació Alimentària (XIA), Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| |
Collapse
|