1
|
Uddin MH, Ritu JR, Chivers DP, Niyogi S. Neurodevelopmental and behavioural effects of waterborne selenite in larval zebrafish (Denio rerio). ENVIRONMENTAL RESEARCH 2025; 273:121240. [PMID: 40020856 DOI: 10.1016/j.envres.2025.121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| |
Collapse
|
2
|
Jia SZ, Li Y, Xu XW, Huang YP, Deng XY, Zhang ZH, Song GL. Selenoprotein K Confers Protection against Iron Dyshomeostasis-Related Neurotoxicity by Regulating the Palmitoylation of TfR-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40296316 DOI: 10.1021/acs.jafc.4c08266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Selenoprotein K (SELENOK), a protein residing in the endoplasmic reticulum (ER), is modulated by dietary selenium and is expressed at elevated levels in neurons. SELENOK has been shown to participate in cellular antioxidant activity and posttranslational palmitoylation. This study presents both in vivo and in vitro evidence that SELENOK deficiency reduces the palmitoylation of TfR-1, thereby impairing transferrin transport and ultimately leading to a decrease in the intracellular iron content, impaired mitochondrial respiratory chain activity and decreased ATP production. Remarkably, restoring SELENOK levels significantly enhanced TfR-1 palmitoylation, increased intracellular iron levels, and restored mitochondrial function, thus ameliorating cognitive deficits in 7 month-old SELENOK knockout mice. Consistent with these findings, iron supplementation also improved mitochondrial function by elevating intracellular iron levels, thereby improving cognitive deficits in 7 month-old SELENOK knockout mice. Therefore, SELENOK exerts its neuroprotective effect by regulating the palmitoylation of TfR-1 to maintain iron homeostasis, thereby protecting mitochondrial function in neurons.
Collapse
Affiliation(s)
- Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yu Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xin-Wen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yan-Ping Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiao-Yi Deng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518060, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518060, China
| |
Collapse
|
3
|
Yu X, Wu L, Zheng H, Wu W, Tian S. Interaction between dietary selenium intake and age on severe headache or migraine in the United States: a population-based study. Front Nutr 2025; 12:1537151. [PMID: 40201581 PMCID: PMC11975585 DOI: 10.3389/fnut.2025.1537151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Background Studies have shown that an antioxidant diet is a protective factor against migraine. However, the association between selenium, an important antioxidant consumed from the diet, and migraine has received little attention. The aim of this study was to explore the relationship between dietary selenium intake with migraine, with particular interest in age differences. Methods This study based on cross-sectional data from people who took part in the National Health and Nutrition Examination Survey (NHANES) between 1999 and 2004. The multiple logistic regression model was applied to examine the association between selenium intake and migraine, and subgroup analyses were performed. Non-linear associations were explored with restricted cubic spline (RCS) models. Results The study included a total of 9,849 adults aged 20 years and older. Compared with individuals with lowest selenium intake Q1 (≤59.4 ug/day), the adjusted OR values for selenium intake and migraine in Q2 (59.41-82.70 ug/day), Q3 (82.71-106 ug/day), Q4 (106.01-143.16 ug/day), and Q5 (≥143.17 ug/day) were 0.82 (95% CI: 0.64-1.05), 0.99 (95% CI: 0.77-1.26), 0.74 (95% CI: 0.54-0.99), and 0.68 (95% CI: 0.48-0.97), respectively. Sensitivity analyses showed a robust association between them. Our findings also suggested an interaction between age and selenium intake (p for interaction = 0.04). Additionally, the relationship between selenium intake and migraine in adults with 20-50 years was L-shaped. The OR of developing migraine was 0.97 (95% CI: 0.94-0.98) in individuals with selenium intake ≥101.9 ug/day in adults with 20-50 years. Conclusion A higher dietary selenium intake is significantly associated with a decreased prevalence of migraine, and age can modify the association between them. Therefore, the present study indicate that an appropriate intake of selenium-rich foods in adults aged 20-50 years may prevent migraines.
Collapse
Affiliation(s)
- Xinping Yu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Lanxiang Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Sheng Tian
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Selenoproteins: Zoom-In to Their Metal-Binding Properties in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1305. [PMID: 39941073 PMCID: PMC11818150 DOI: 10.3390/ijms26031305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Selenoproteins contain selenium (Se), which is included in the 21st proteinogenic amino acid selenocysteine (Sec). Selenium (Se) is an essential trace element that exerts its biological actions mainly through selenoproteins. Selenoproteins have crucial roles in maintaining healthy brain activity. At the same time, brain-function-associated selenoproteins may also be involved in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The selenoproteins GPx4 (glutathione peroxidase 4), GPx1 (glutathione peroxidase 1), SELENOP (selenoprotein P), SELENOK (selenoprotein K), SELENOS (selenoprotein S), SELENOW (selenoprotein W), and SELENOT (selenoprotein T) are highly expressed, specifically in AD-related brain regions being closely correlated to brain function. Only a few selenoproteins, mentioned above (especially SELENOP), can bind transition and heavy metals. Metal ion homeostasis accomplishes the vital physiological function of the brain. Dyshomeostasis of these metals induces and entertains neurodegenerative diseases. In this review, we described some of the proposed and established mechanisms underlying the actions and properties of the above-mentioned selenoproteins having the characteristic feature of binding transition or heavy metals.
Collapse
Affiliation(s)
| | | | - Carmen Beatrice Dogaru
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (C.M.); (I.S.)
| | | |
Collapse
|
5
|
Chen S, Shcherbina A, Schafer ST, Mattingly ZA, Ramesh J, Narayanan C, Banerjee S, Heath B, Regester M, Chen I, Thakurela S, Hallmayer J, O'Hara R, Solomon M, Nordahl CW, Amaral DG, Chetty S. Cellular mechanisms of early brain overgrowth in autistic children: elevated levels of GPX4 and resistance to ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635706. [PMID: 39975145 PMCID: PMC11838294 DOI: 10.1101/2025.01.30.635706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Autistic individuals with disproportionate megalencephaly (ASD-DM), characterized by enlarged brains relative to body height, have higher rates of intellectual disability and face more severe cognitive challenges than autistic children with average brain sizes. The cellular and molecular mechanisms underlying this neurophenotype remain poorly understood. To investigate these mechanisms, we generated human induced pluripotent stem cells from non-autistic typically developing children and autistic children with and without disproportionate megalencephaly. We assessed these children longitudinally from ages two to twelve years using magnetic resonance imaging and comprehensive cognitive and medical evaluations. We show that neural progenitor cells (NPCs) derived from ASD-DM children exhibit increased rates of cell survival and suppressed cell death, accompanied by heightened oxidative stress and ferrous iron accumulation. Despite these stressors, ASD-DM NPCs actively suppress apoptosis and ferroptosis by regulating proteins such as caspase-3 (CASP3), poly(ADP-ribose) polymerase 1 (PARP1), and glutathione peroxidase 4 (GPX4). Cellular ferroptotic signatures are further supported by elevated expression of selenocysteine genes, including GPX4 , in the blood of ASD-DM children and their mothers, suggesting potential hereditary or environmental influences. Furthermore, we show that peripheral expression of GPX4 and other selenocysteine genes correlate with cognitive outcomes (IQ). These findings underscore the role of ferroptosis in autism, pointing to potential diagnostic biomarkers and targets for intervention.
Collapse
|
6
|
Bai S, Zhang M, Tang S, Li M, Wu R, Wan S, Chen L, Wei X, Feng S. Effects and Impact of Selenium on Human Health, A Review. Molecules 2024; 30:50. [PMID: 39795109 PMCID: PMC11721941 DOI: 10.3390/molecules30010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Selenium (Se) is an essential trace element that is crucial for human health. As a key component of various enzymes and proteins, selenium primarily exerts its biological functions in the form of selenoproteins within the body. Currently, over 30 types of selenoproteins have been identified, with more than 20 of them containing selenocysteine residues. Among these, glutathione peroxidases (GPXs), thioredoxin reductases (TrxRs), and iodothyronine deiodinases (DIOs) have been widely studied. Selenium boasts numerous biological functions, including antioxidant properties, immune system enhancement, thyroid function regulation, anti-cancer effects, cardiovascular protection, reproductive capability improvement, and anti-inflammatory activity. Despite its critical importance to human health, the range between selenium's nutritional and toxic doses is very narrow. Insufficient daily selenium intake can lead to selenium deficiency, while excessive intake carries the risk of selenium toxicity. Therefore, selenium intake must be controlled within a relatively precise range. This article reviews the distribution and intake of selenium, as well as its absorption and metabolism mechanisms in the human body. It also explores the multiple biological functions and mechanisms of selenium in maintaining human health. The aim is to provide new insights and evidence for further elucidating the role of selenium and selenoproteins in health maintenance, as well as for future nutritional guidelines and public health policies.
Collapse
Affiliation(s)
- Song Bai
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Miaohe Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| | - Shouying Tang
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Miao Li
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Rong Wu
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Suran Wan
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Lijun Chen
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| | - Shuang Feng
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| |
Collapse
|
7
|
Pawlik MT, Rinneberg G, Koch A, Meyringer H, Loew TH, Kjellberg A. Is there a rationale for hyperbaric oxygen therapy in the patients with Post COVID syndrome? : A critical review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1797-1817. [PMID: 39545965 PMCID: PMC11579208 DOI: 10.1007/s00406-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The SARS-CoV-2 pandemic has resulted in 762 million infections worldwide from 2020 to date, of which approximately ten percent are suffering from the effects after infection in 2019 (COVID-19) [1, 40]. In Germany, it is now assumed that at least one million people suffer from post-COVID condition with long-term consequences. These have been previously reported in diseases like Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS). Symptoms show a changing variability and recent surveys in the COVID context indicate that 10-30 % of outpatients, 50 to 70% of hospitalised patients suffer from sequelae. Recent data suggest that only 13% of all ill people were completely free of symptoms after recovery [3, 9]. Current hypotheses consider chronic inflammation, mitochondrial dysfunction, latent viral persistence, autoimmunity, changes of the human microbiome or multilocular sequelae in various organ system after infection. Hyperbaric oxygen therapy (HBOT) is applied since 1957 for heart surgery, scuba dive accidents, CO intoxication, air embolisms and infections with anaerobic pathogens. Under hyperbaric pressure, oxygen is physically dissolved in the blood in higher concentrations and reaches levels four times higher than under normobaric oxygen application. Moreover, the alternation of hyperoxia and normoxia induces a variety of processes at the cellular level, which improves oxygen supply in areas of locoregional hypoxia. Numerous target gene effects on new vessel formation, anti-inflammatory and anti-oedematous effects have been demonstrated [74]. The provision of intermittently high, local oxygen concentrations increases repair and regeneration processes and normalises the predominance of hyperinflammation. At present time only one prospective, randomized and placebo-controlled study exists with positive effects on global cognitive function, attention and executive function, psychiatric symptoms and pain interference. In conclusion, up to this date HBO is the only scientifically proven treatment in a prospective randomized controlled trial to be effective for cognitive improvement, regeneration of brain network and improvement of cardiac function. HBOT may have not only theoretical but also potential impact on targets of current pathophysiology of Post COVID condition, which warrants further scientific studies in patients.
Collapse
Affiliation(s)
- M T Pawlik
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany.
| | - G Rinneberg
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - A Koch
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany
| | - H Meyringer
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - T H Loew
- Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - A Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Perioperative Medicine and Intensive Care, Medical Unit Intensive Care and Thoracic surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
İlhan Z, Zengin M, Bacaksız OK, Demir E, Ekin İH, Azman MA. Hypericum perforatum L. (St. John's Wort) in broilers diet improve growth performance, intestinal microflora and immunity. Poult Sci 2024; 103:104419. [PMID: 39427421 PMCID: PMC11536019 DOI: 10.1016/j.psj.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Hypericum perforatum L. (St. John's Wort) extract (HPE), powdered H. perforatum (PHP), and selenium (Se) on growth, intestinal flora, and immunity of broiler chicks were investigated. In total, 504 one-day-old broiler chicks were randomly allocated into 6 dietary treatments, which were then denoted as negative control (NC) group (basal diet), containing organic Se 0.2% in the starter and grower period as positive control (PC), containing 1% PHP in the starter and grower period, and HPE I, HPE II, and HPE III groups containing respectively, 1.5, 3.0, and 4.5 mL / kg HPE in the starter and grower period. The results on performance showed that a significant (P < 0.05) higher body weight of chickens in the HPE III group was observed when compared with that of the NC and PHP groups. Although average daily weight gain and feed intake are significant in the HPE III group, the difference in terms of total feed conversion rate was insignificant (P > 0.05). The liver weights in PC and HPE III were lower compared to HPE I (P < 0.05). The difference in total lactic acid bacteria count (TLABC) between the NC group and all HPE groups was found to be significant (P ˂ 0.05), in addition to TLABC was higher in the HPE III group than other groups (P = 0.001). The highest serum antibody titers to the Newcastle disease vaccine were determined in the HPE III group on the 24th, 35th, and 42nd days of age. IL-1B and IL-6 were found to be insignificant between the groups in chickens (P ˃ 0.05). TNF-α in the HPE III group was greatly increased than the other groups and significant compared to the NC and HPE I groups (P = 0.018). In conclusion, 4.5 mL / kg HPE, which has a low production cost and is easy to extract and without causing environmental problems, varied significantly in their impact on growth performance, intestinal microflora, and immunity of growing broilers.
Collapse
Affiliation(s)
- Ziya İlhan
- Faculty of Veterinary Medicine, Department of Microbiology, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye.
| | - Muhittin Zengin
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye; Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Türkiye
| | - Oğuz Koray Bacaksız
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| | - Ergün Demir
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| | - İsmail Hakkı Ekin
- Faculty of Veterinary Medicine, Department of Microbiology, Zeve Campus, Van Yüzüncu Yıl University, Van 65040, Türkiye
| | - Mehmet Ali Azman
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| |
Collapse
|
9
|
Perri G, Mathers JC, Martin-Ruiz C, Parker C, Demircan K, Chillon TS, Schomburg L, Robinson L, Stevenson EJ, Shannon OM, Muniz-Terrera G, Sniehotta FF, Ritchie CW, Adamson A, Burns A, Minihane AM, Walsh J, Hill TR. The association between selenium status and global and attention-specific cognition in very old adults in the Newcastle 85+ Study: cross-sectional and longitudinal analyses. Am J Clin Nutr 2024; 120:1019-1028. [PMID: 39270936 PMCID: PMC11600040 DOI: 10.1016/j.ajcnut.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Selenium has potential safeguarding properties against cognitive decline, because of its role in protecting DNA, proteins, and lipids in the brain from oxidative damage. However, acute and chronic overexposure to selenium can be neurotoxic. OBJECTIVE The aim of this analysis was to explore the association between selenium status [serum selenium and selenoprotein P (SELENOP) concentrations and glutathione peroxidase 3 (GPx3) activity] and cognitive function in 85-y olds living in Northeast England at baseline and ≤5 y of follow-up. METHODS Global cognitive performance was assessed in 755 participants from the Newcastle 85+ study using the standardized Mini-Mental State Examination and attention-specific cognition was assessed using composite scores derived from the Cognitive Drug Research System. Serum selenium, SELENOP, and GPx3 activity were measured at baseline by total reflection X-ray fluorescence, enzyme-linked immunosorbent assay, and coupled-enzyme reaction, respectively. Regression analyses explored linear and nonlinear associations between continuous values and tertiles of selenium status biomarkers, respectively, and cognitive function at baseline. Generalized linear mixed models explored associations between continuous values and tertiles of selenium status biomarkers, and global cognitive decline over 5 y, and attention-specific cognitive decline over 3 y. RESULTS Over 3 and 5 y, none of the selenium biomarkers were associated with the rate of cognitive decline. At baseline, in fully adjusted models, higher serum selenium was nonlinearly associated with global cognition (β = 0.05 ± 0.01, P = 0.387 linear, β = 0.04 ± 0.01, P = 0.002 nonlinear). SELENOP and GPx3 activity were not associated with any cognitive outcomes. CONCLUSIONS There were no associations between selenium status and cognitive decline. However, serum selenium, but not SELENOP or GPx3 activity, was positively associated nonlinearly with global cognition at baseline. Furthermore, these associations were not evident during follow-up, potentially because of residual confounding and reverse causation.
Collapse
Affiliation(s)
- Giorgia Perri
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - John C Mathers
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carmen Martin-Ruiz
- BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Craig Parker
- BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thilo S Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Louise Robinson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emma J Stevenson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver M Shannon
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Graciela Muniz-Terrera
- Department of Social Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, United States; Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom
| | - Falko F Sniehotta
- Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom
| | - Ashley Adamson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alistair Burns
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Jennifer Walsh
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Tom R Hill
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Alarfaj H. Selenium in Surgery. Cureus 2024; 16:e72168. [PMID: 39583421 PMCID: PMC11582387 DOI: 10.7759/cureus.72168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Selenium, a micronutrient essential for many enzymatic functions, is crucial for maintaining human health. Its presence in the human diet is of paramount importance for metabolism and support of the immune system. Many diseases of surgical importance are related to the level of selenoproteins and their influence on different organs. The aim of this concise narrative review is to highlight the role of selenium as a trace element in various surgical morbidities, a concept that is often neglected or not well perceived by most surgeons.
Collapse
|
11
|
Bano I, Malhi M, Talpur HS. Effects of Dietary Selenium Yeast Supplementation on Oxidative Biomarkers of the Brain and Blood in Goats. Biol Trace Elem Res 2024; 202:3999-4006. [PMID: 37991669 DOI: 10.1007/s12011-023-03966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
The present study evaluated the effects of dietary selenium yeast (SY) on the brain, CSF, and blood of 30 crossbreed goats (5-6 months of age) of both sexes. After the acclimatization of 2 weeks, they were randomly separated into two groups (n = 15) named C and SY groups. The C group received only a basal diet, while SY received a basal diet along with 0.3 mg/kg/diet of SY (Sel-Plex®) in total 0.035 mg/kg/diet of SY for 10 weeks. Se concentration (µg /g dry weight) in 15 different parts of the goat's brain was accessed, and results showed that the highest concentration was found in the occipital cerebrum (322.0 ± 6.146), whereas the lowest concentration was found in the midbrain (10.33 ± 0.232). Besides, the oxidative biomarkers including GSH (12.13 ± 0.191), GSH-Px (206.7 ± 2.362), GST (23.80 ± 0.279), CAT (14.80 ± 0.279), and SOD (152.5 ± 9.540) were increased in SY as compared to GSH (8.200 ± 0.144), GSH-Px (112.9 ± 1.183), GST (18.93 ± 0.284), CAT (12.53 ± 0.215), and SOD (109.0 ± 1.966) of C. The level of cholesterol was also significantly decreased in the serum of the SY group (84.87 ± 0.960) as compared to C (110.5 ± 0.592). In addition, the cholesterol level in CSF decreased significantly in SY (0.3567 ± 0.016) as compared to C (0.509 ± 0.009). The current research suggests that SY supplementation has improved the brain's antioxidant status, blood biochemistry, and cholesterol levels in both serum and CSF of goats.
Collapse
Affiliation(s)
- Iqra Bano
- Department of Animal Physiology, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic.
- Department of Veterinary Physiology and Biochemistry, SBBUVAS, Sakrand, 67210, Sindh, Pakistan.
| | - Moolchand Malhi
- Department of Veterinary Physiology and Biochemistry, Sindh Agricultural University, Tandojam, 70060, Sindh, Pakistan.
| | - Hira Sajjad Talpur
- Department of Animal Reproduction, Sindh Agricultural University, Tandojam, 70060, Sindh, Pakistan
| |
Collapse
|
12
|
Bai YZ, Zhang Y, Zhang SQ. New horizons for the role of selenium on cognitive function: advances and challenges. Metab Brain Dis 2024; 39:1255-1268. [PMID: 38963634 DOI: 10.1007/s11011-024-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Cognitive deficits associated with oxidative stress and the dysfunction of the central nervous system are present in some neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Selenium (Se), an essential microelement, exhibits cognition-associated functions through selenoproteins mainly owing to its antioxidant property. Due to the disproportionate distribution of Se in the soil, the amount of Se varies greatly in various foods, resulting in a large proportion of people with Se deficiency worldwide. Numerous cell and animal experiments demonstrate Se deficiency-induced cognitive deficits and Se supplementation-improved cognitive performances. However, human studies yield inconsistent results and the mechanism of Se in cognition still remains elusive, which hinder the further exploration of Se in human cognition. To address the urgent issue, the review summarizes Se-contained foods (plant-based foods, animal-based foods, and Se supplements), brain selenoproteins, mechanisms of Se in cognition (improvement of synaptic plasticity, regulation of Zn2+ level, inhibition of ferroptosis, modulation of autophagy and de novo synthesis of L-serine), and effects of Se on cognitive deficits, as well as consequently sheds light on great potentials of Se in the prevention and treatment of cognitive deficits.
Collapse
Affiliation(s)
- Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 East Yinghua Road, Beijing, 100029, China
- National Center for Respiratory Diseases, Beijing, 100029, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
13
|
Ren B, Situ J, Huang X, Tan Q, Xiao S, Li N, Tian J, Du X, Ni J, Liu Q. Selenoprotein W modulates tau homeostasis in an Alzheimer's disease mouse model. Commun Biol 2024; 7:872. [PMID: 39020075 PMCID: PMC11255228 DOI: 10.1038/s42003-024-06572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Lower selenium levels are observed in Alzheimer's disease (AD) brains, while supplementation shows multiple benefits. Selenoprotein W (SELENOW) is sensitive to selenium changes and binds to tau, reducing tau accumulation. However, whether restoration of SELENOW has any protective effect in AD models and its underlying mechanism remain unknown. Here, we confirm the association between SELENOW downregulation and tau pathology, revealing SELENOW's role in promoting tau degradation through the ubiquitin‒proteasome system. SELENOW competes with Hsp70 to interact with tau, promoting its ubiquitination and inhibiting tau acetylation at K281. SELENOW deficiency leads to synaptic defects, tau dysregulation and impaired long-term potentiation, resulting in memory deficits in mice. Conversely, SELENOW overexpression in the triple transgenic AD mice ameliorates memory impairment and tau-related pathologies, featuring decreased 4-repeat tau isoform, phosphorylation at Ser396 and Ser404, neurofibrillary tangles and neuroinflammation. Thus, SELENOW contributes to the regulation of tau homeostasis and synaptic maintenance, implicating its potential role in AD.
Collapse
Affiliation(s)
- Bingyu Ren
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong, 510630, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jiaxin Situ
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xuelian Huang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qiulong Tan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
14
|
Ge M, Zhou S, Li D, Song D, Yang S, Xu M. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134491. [PMID: 38703686 DOI: 10.1016/j.jhazmat.2024.134491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se0 may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.
Collapse
Affiliation(s)
- Meng Ge
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Da Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.
| |
Collapse
|
15
|
Xie Y, Ke X, Ye Z, Li X, Chen Z, Liu J, Wu Z, Liu Q, Du X. Se-methylselenocysteine ameliorates mitochondrial function by targeting both mitophagy and autophagy in the mouse model of Alzheimer's disease. Food Funct 2024; 15:4310-4322. [PMID: 38529619 DOI: 10.1039/d4fo00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Background: Alzheimer's disease (AD) exerts tremendous pressure on families and society due to its unknown etiology and lack of effective treatment options. Our previous study had shown that Se-methylselenocysteine (SMC) improved the cognition and synaptic plasticity of triple-transgenic AD (3 × Tg-AD) mice and alleviated the related pathological indicators. We are dedicated to investigating the therapeutic effects and molecular mechanisms of SMC on mitochondrial function in 3 × Tg-AD mice. Methods: Transmission electron microscopy (TEM), western blotting (WB), mitochondrial membrane potential (ΔΨm), mitochondrial swelling test, and mitochondrial oxygen consumption test were used to evaluate the mitochondrial morphology and function. Mitophagy flux and autophagy flux were assessed with immunofluorescence, TEM and WB. The Morris water maze test was applied to detect the behavioral ability of mice. Results: The destroyed mitochondrial morphology and function were repaired by SMC through ameliorating mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial fusion/fission balance in 3 × Tg-AD mice. In addition, SMC ameliorated mitochondria by activating mitophagy flux via the BNIP3/NIX pathway and triggering autophagy flux by suppressing the Ras/Raf/MEK/ERK/mTOR pathway. SMC remarkably increased the cognitive ability of AD mice. Conclusions: This research indicated that SMC might exert its therapeutic effect by protecting mitochondria in 3 × Tg-AD mice.
Collapse
Affiliation(s)
- Yongli Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Xiaoshan Ke
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Zhencong Ye
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Xuexia Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Zetao Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Jiantao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Ziyi Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Qiong Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiubo Du
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
16
|
Duan L, Su L, He X, Du Y, Duan Y, Xu N, Wu R, Zhu Y, Shao R, Unverzagt FW, Hake AM, Jin Y, Gao S. Multi-element Exposure and Cognitive Function in Rural Elderly Chinese. Biol Trace Elem Res 2024; 202:1401-1410. [PMID: 37715918 DOI: 10.1007/s12011-023-03774-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/10/2023] [Indexed: 09/18/2023]
Abstract
To investigate the relationship between selenium (Se) based multi-element combined exposure and cognitive function in rural elderly individuals, a cross-sectional study was conducted. The study involved 416 older adults aged 60 and above, residing in four different areas of Enshi county, China, with varying soil Se levels. Inductively coupled plasma mass spectrometry (ICP-MS) was employed to measure the concentrations of Se, copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), magnesium (Mg), cadmium (Cd), arsenic (As), and lead (Pb) in whole blood. Nine standard cognitive tests were applied to assess cognitive function. Analysis of the least absolute shrinkage and selection operator regression (LASSO), covariance (ANCOVA), and generalized linear model (GLM) were utilized to investigate the relationship between element exposure and cognitive function. The results of LASSO revealed that Se, Cu, Fe, Zn, Ca, and Pb were independently identified to be associated with cognition. Both ANCOVA and GLM demonstrated that Se and Ca were correlated with cognitive function. The multi-element model showed higher composite Z scores of 0.32 (95% CI: 0.09 to 0.55) for log-transformed Se (P = 0.007), 0.75 (95% CI: 0.01 to 1.49) for log-transformed Cu (P = 0.048), and a lower score of - 0.67 (95% CI: - 1.26 to - 0.08) for log-transformed Ca (P = 0.025). Furthermore, there was evidence that Se could counteract the negative impact of Ca on cognitive function (P for interaction = 0.031). Our findings suggested that higher levels of Se and Cu were associated with better cognitive function in the elderly and Se can counteract the cognitive damage caused by Ca.
Collapse
Affiliation(s)
- Lidan Duan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
- Xiangya School of Public Health, Central South University, Changsha, 410000, China
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Xiaohong He
- Enshi Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Yegang Du
- Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, 518000, China
| | - Yanying Duan
- Xiangya School of Public Health, Central South University, Changsha, 410000, China
| | - Ning Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Rangpeng Wu
- Enshi Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Yunfeng Zhu
- Enshi Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Ranqi Shao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Frederick W Unverzagt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ann M Hake
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yinlong Jin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
17
|
Kakarla R, Karuturi P, Siakabinga Q, Kasi Viswanath M, Dumala N, Guntupalli C, Nalluri BN, Venkateswarlu K, Prasanna VS, Gutti G, Yadagiri G, Gujjari L. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother Res 2024; 38:1381-1399. [PMID: 38217095 DOI: 10.1002/ptr.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Varanasi, India
| | - Vani Sai Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India
| | - Gopichand Gutti
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh Yadagiri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lohitha Gujjari
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Ralston NVC, Raymond LJ, Gilman CL, Soon R, Seale LA, Berry MJ. Maternal seafood consumption is associated with improved selenium status: Implications for child health. Neurotoxicology 2024; 101:26-35. [PMID: 38272071 PMCID: PMC10978253 DOI: 10.1016/j.neuro.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Selenium (Se) is required for synthesis of selenocysteine (Sec), an amino acid expressed in the active sites of Se-dependent enzymes (selenoenzymes), including forms with essential functions in fetal development, brain activities, thyroid hormone metabolism, calcium regulation, and to prevent or reverse oxidative damage. Homeostatic mechanisms normally ensure the brain is preferentially supplied with Se to maintain selenoenzymes, but high methylmercury (CH3Hg) exposures irreversibly inhibit their activities and impair Sec synthesis. Due to Hg's high affinity for sulfur, CH3Hg initially binds with the cysteine (Cys) moieties of thiomolecules which are selenoenzyme substrates. These CH3Hg-Cys adducts enter selenoenzyme active sites and transfer CH3Hg to Sec, thus irreversibly inhibiting their activities. High CH3Hg exposures are uniquely able to induce a conditioned Se-deficiency that impairs synthesis of brain selenoenzymes. Since the fetal brain lacks Se reserves, it is far more vulnerable to CH3Hg exposures than adult brains. This prompted concerns that maternal exposures to CH3Hg present in seafood might impair child neurodevelopment. However, typical varieties of ocean fish contain far more Se than CH3Hg. Therefore, eating them should augment Se-status and thus prevent Hg-dependent loss of fetal selenoenzyme activities. To assess this hypothesis, umbilical cord blood and placental tissue samples were collected following delivery of a cohort of 100 babies born on Oahu, Hawaii. Dietary food frequency surveys of the mother's last month of pregnancy identified groups with no (0 g/wk), low (0-12 g/wk), or high (12 + g/wk) levels of ocean fish consumption. Maternal seafood consumption increased Hg contents in fetal tissues and resulted in ∼34% of cord blood samples exceeding the EPA Hg reference level of 5.8 ppb (0.029 µM). However, Se concentrations in these tissues were orders of magnitude higher and ocean fish consumption caused cord blood Se to increase ∼9.4 times faster than Hg. Therefore, this study supports the hypothesis that maternal consumption of typical varieties of ocean fish provides substantial amounts of Se that protect against Hg-dependent losses in Se bioavailability. Recognizing the pivotal nature of the Hg:Se relationship provides a consilient perspective of seafood benefits vs. risks and clarifies the reasons for the contrasting findings of certain early studies.
Collapse
Affiliation(s)
| | - Laura J Raymond
- Sage Green Nutrition Research Guidance, Grand Forks, ND, 58203, USA
| | - Christy L Gilman
- Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Reni Soon
- Department of Obstetrics and Gynecology, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Lucia A Seale
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Marla J Berry
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
19
|
López-Sánchez C, Lagoa R, Poejo J, García-López V, García-Martínez V, Gutierrez-Merino C. An Update of Kaempferol Protection against Brain Damage Induced by Ischemia-Reperfusion and by 3-Nitropropionic Acid. Molecules 2024; 29:776. [PMID: 38398528 PMCID: PMC10893315 DOI: 10.3390/molecules29040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the striatum and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years. Kaempferol administration at doses that prevent neurological dysfunctions inhibit the critical molecular events that underlie the initial and delayed brain damage induced by ischemic stroke and by 3-nitropropionic acid. It is highlighted that the protection afforded by kaempferol against the initial mitochondrial dysfunction can largely account for its protection against the reported delayed spreading of brain damage, which can develop from many hours to several days. This allows us to conclude that kaempferol administration can be beneficial not only in preventive treatments, but also in post-insult therapeutic treatments.
Collapse
Affiliation(s)
- Carmen López-Sánchez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - Joana Poejo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| | - Virginio García-López
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-Martínez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
20
|
Cengiz Mat O, Alisan Suna P, Baran M, Ceyhan A, Yay A. Studies on the ameliorative potential of dietary supplemented different dose of selenium on doxorubicin-induced ovarian damage in rat. J Biochem Mol Toxicol 2024; 38:e23522. [PMID: 37650874 DOI: 10.1002/jbt.23522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/23/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Doxorubicin (Dox) may induce loss of follicles, resulting in the depletion of ovarian reserve and consequent premature ovarian failure. Selenium (Se) is an oligoelement with fundamental biological features and is among the most common chemical inhibitor compounds. The present study describes the curative effects of dietary supplementation with different Se doses on Dox-induced ovarian damage in rats. In this study, 64 adult female Wistar rats were randomly separated into eight groups: Control group, Dox group (5 mg/kg intraperitoneal [i.p.]), low-dose Se (0.5 mg/kg i.p.), middle dose Se (1 mg/kg i.p.), high dose (Se 2 mg/kg i.p.), Dox + low-dose Se group (0.5 mg/kg i.p.), Dox + middle dose Se (1 mg/kg i.p.), and Dox + high-dose Se group (2 mg/kg i.p.). After the experiment, ovarian follicles were counted, and Antimüllerian hormone, interleukin 1 beta, tumor necrosis factor alpha, and caspase-3 expression were determined. Levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase were biochemically measured in ovarian tissue. Dox caused ovarian injury, as evidenced by significant changes in ovarian markers, histological abnormalities, and the debilitation of antioxidant defense mechanisms. Furthermore, Dox therapy significantly changed the expression of inflammatory and apoptotic markers. Dox + 1 mg Se with various saturations was studied, and this study demonstrated both histopathological and follicular reserve and more protective features. 1 mg Se pretreatment improved Dox-induced ovarian toxicity through alleviating the antioxidant mechanism, decreasing inflammation and apoptosis, and restoring ovarian architecture. As a result, our findings indicate that 1 mg Se is a promising therapeutic agent for the prevention of ovarian damage associated with Dox.
Collapse
Affiliation(s)
- Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Pinar Alisan Suna
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayse Ceyhan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Tokat Gaziosmanpaşa University Vocational School of Health Services, Tokat, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
21
|
Juszczak-Czasnojć M, Tomza-Marciniak A, Pilarczyk B, Gączarzewicz D. Total Selenium Level and Its Distribution between Organs in Beef Cattle in Different Selenium Status. Animals (Basel) 2023; 13:3885. [PMID: 38136922 PMCID: PMC10740525 DOI: 10.3390/ani13243885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to determine the Se concentration in the main tissues of beef cattle and to evaluate the differences in tissue distribution between animals with different selenium status. Selenium concentration was determined in the serum, longissimus dorsi muscle, semitendinosus muscle, kidney, heart, liver, spleen and lungs of cows, heifers and beef bulls, using spectrofluorimetric method. Despite receiving supplementation, 55.6% animals demonstrated an optimal Se level, while 44.4% were deficient. The mean serum Se concentration was significantly higher (p < 0.05) in animals with a normal Se status than in Se-deficient animals. Differences in Se tissue distribution were observed between Se-deficient animals and those with normal Se status. The organs most susceptible to Se deficiency are the semitendinosus muscle, lungs, heart and liver. In both normal and Se-deficient animals, significantly higher Se concentrations were observed in the kidney than other organs (p < 0.05), and the lowest in the muscles. As Se deficiencies can be found among supplemented animals, the level of Se should be monitored in beef cattle in order to detect possible Se deficiencies, which may have negative health effects for animals and reduce the value of animal products as a source of Se in the human diet.
Collapse
Affiliation(s)
- Marta Juszczak-Czasnojć
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.T.-M.)
| | | | | | | |
Collapse
|
22
|
Zeng Z, Cen Y, Luo X. Association between blood selenium with parkinson's disease in the US (NHANES 2011-2020). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117349-117359. [PMID: 37864700 DOI: 10.1007/s11356-023-30337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Selenium is an essential trace element for human health, playing a key role in regulating cellular oxidative stress, immune response, and inflammation. In recent years, the association between selenium and Parkinson's disease (PD) has aroused people's attention. The objective of this study is to investigate the relationship between blood selenium concentrations and PD risk in a sample of U.S. adults. A cross-sectional study was conducted using the National Health and Nutrition Examination Survey (NHANES) data from 2011-2020 and included 15,660 adults aged over 40 years old. Univariate logistic regression and multivariate logistic regression models were utilized to analyze the association between blood selenium concentrations and PD prevalence. Additionally, the restricted cubic spline (RCS) model was applied to investigate the dose-response relationships between blood selenium and PD. The findings indicated a link between elevated blood selenium levels and a reduced occurrence of Parkinson's disease (PD). Notably, this association between blood selenium and PD exhibited a non-linear pattern, wherein the decline in PD risk was more pronounced at higher selenium concentrations than at lower levels. An inflection point emerged at approximately 2.4 μmol/L, beyond which the rate of decline in risk significantly diminished with increasing selenium levels. A potential association between blood selenium concentrations and PD has been observed, with PD patients having lower blood selenium levels compared to non-PD patients. Higher levels of blood selenium may have a protective effect against PD. However, further prospective studies are needed to investigate the effect of blood selenium in PD patients and to determine causality.
Collapse
Affiliation(s)
- Zhaohao Zeng
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yanmei Cen
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoguang Luo
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
23
|
Dogaru CB, Duță C, Muscurel C, Stoian I. "Alphabet" Selenoproteins: Implications in Pathology. Int J Mol Sci 2023; 24:15344. [PMID: 37895024 PMCID: PMC10607139 DOI: 10.3390/ijms242015344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
24
|
Zhou J, Zhang W, Cao Z, Lian S, Li J, Nie J, Huang Y, Zhao K, He J, Liu C. Association of Selenium Levels with Neurodegenerative Disease: A Systemic Review and Meta-Analysis. Nutrients 2023; 15:3706. [PMID: 37686737 PMCID: PMC10490073 DOI: 10.3390/nu15173706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have posed significant challenges to public health, and it is crucial to understand their mechanisms in order to develop effective therapeutic strategies. Recent studies have highlighted the potential role of selenium in ND pathogenesis, as it plays a vital role in maintaining cellular homeostasis and preventing oxidative damage. However, a comprehensive analysis of the association between selenium and NDs is still lacking. METHOD Five public databases, namely PubMed, Web of Science, EMBASE, Cochrane and Clinical Trials, were searched in our research. Random model effects were chosen, and Higgins inconsistency analyses (I2), Cochrane's Q test and Tau2 were calculated to evaluate the heterogeneity. RESULT The association of selenium in ND patients with Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) was studied. A statistically significant relationship was only found for AD patients (SMD = -0.41, 95% CI (-0.64, -0.17), p < 0.001), especially for erythrocytes. However, no significant relationship was observed in the analysis of the other four diseases. CONCLUSION Generally, this meta-analysis indicated that AD patients are strongly associated with lower selenium concentrations compared with healthy people, which may provide a clinical reference in the future. However, more studies are urgently needed for further study and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Zhou
- International School, Jinan University, Guangzhou 510080, China;
| | - Wenfen Zhang
- School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China;
| | - Zhiwen Cao
- Center for Data Science, New York University, New York, NY 10011, USA;
| | - Shaoyan Lian
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jieying Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiaying Nie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ying Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ke Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiang He
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
- Disease Control and Prevention Institute, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Luo J, Su L, He X, Du Y, Xu N, Wu R, Zhu Y, Wang T, Shao R, Unverzagt FW, Hake AM, Jin Y, Gao S. Blood Selenium and Serum Glutathione Peroxidase Levels Were Associated with Serum β-Amyloid in Older Adults. Biol Trace Elem Res 2023; 201:3679-3687. [PMID: 36370334 PMCID: PMC12001324 DOI: 10.1007/s12011-022-03480-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Studies have established the association between blood β-amyloid (Aβ) levels and Alzheimer's disease, but population-based studies concerning the association between selenium (Se) and Aβ levels in blood samples are very limited. Therefore, we explored the association in an elderly population with Se status and serum Aβ measures. METHODS A cross-sectional study on 469 elderly individuals from four rural counties with diverse soil Se levels was carried out. Fasting blood Se, serum selenoprotein P (SELENOP), and glutathione peroxidase (GPX), serum Aβ42, and Aβ40 were measured. Quantile regression models were used to determine the associations of blood Se, serum GPX, and SELENOP with Aβ levels. RESULTS Significant negative associations were observed between blood Se and serum Aβ42 and Aβ40 levels at all percentiles (P < 0.05). The associations were generally stronger at higher Aβ42 and Aβ40 percentiles than lower Aβ42 and Aβ40 percentiles. Blood Se was positively associated with serum Aβ42/Aβ40 ratio at 25th, 50th, and 75th percentiles. Significant positive associations were observed between serum GPX and Aβ42 and Aβ40 levels at all percentiles (P < 0.05). The positive associations were generally stronger at higher Aβ42 and Aβ40 percentiles than at lower percentiles. Serum GPX was negatively associated with Aβ42/Aβ40 ratio at 25th, 50th, 75th, and 95th percentiles. No associations with serum SELENOP and Aβ levels were observed. CONCLUSIONS Our results suggest that higher Se levels are associated with lower serum Aβ42 and Aβ40 levels and with higher Aβ42/Aβ40 ratio, and the results are specific for different selenoproteins.
Collapse
Affiliation(s)
- Jiao Luo
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Liqin Su
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China.
| | - Xiaohong He
- Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Yegang Du
- Academy of Metrology & Quality Inspection, Shenzhen, 518000, China
| | - Ning Xu
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
| | - Rangpeng Wu
- Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Yunfeng Zhu
- Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Ting Wang
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
| | - Ranqi Shao
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
| | - Frederick W Unverzagt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ann M Hake
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yinlong Jin
- CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Beijing, 100050, China
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202-2872, USA
| |
Collapse
|
26
|
Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr 2023; 10:1136458. [PMID: 37006921 PMCID: PMC10060562 DOI: 10.3389/fnut.2023.1136458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Selenium is an essential microelement involved in various biological processes. Selenium deficiency increases the risk of human immunodeficiency virus infection, cancer, cardiovascular disease, and inflammatory bowel disease. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory, hypoglycemic, and intestinal microbiota-regulating properties. The non-linear dose-response relationship between selenium status and health effects is U-shaped; individuals with low baseline selenium levels may benefit from supplementation, whereas those with acceptable or high selenium levels may face possible health hazards. Selenium supplementation is beneficial in various populations and conditions; however, given its small safety window, the safety of selenium supplementation is still a subject of debate. This review summarizes the current understanding of the health-promoting effects of selenium on the human body, the dietary reference intake, and evidence of the association between selenium deficiency and disease.
Collapse
Affiliation(s)
- Ying Sun
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Pin Gong,
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Wenbo Yao,
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qian Ba,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hui Wang,
| |
Collapse
|
27
|
Wang L, Yang F, Hu M, Chen G, Wang Y, Xue H, Fu D, Bai H, Hu G, Cao H. GPX4 utilization by selenium is required to alleviate cadmium-induced ferroptosis and pyroptosis in sheep kidney. ENVIRONMENTAL TOXICOLOGY 2023; 38:962-974. [PMID: 36655595 DOI: 10.1002/tox.23740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a persistent and harmful heavy metal in the environment, can accumulate in the kidneys and cause nephrotoxicity. Selenium (Se) is a beneficial natural element that alleviates the toxicity of Cd. To ascertain the relationship between the protective mechanism of Se against Cd nephrotoxicity and ferroptosis and pyroptosis, we randomly divided 48 sheep into four groups and treated them with Cd chloride and/or sodium selenite for 50 days. The data confirmed that Cd apparently resulted in impaired kidney histology and function, depletion of GSH and nicotinamide adenine dinucleotide phosphate contents and CAT and SOD activities, elevation of MDA level, as well as the reduction in selenoprotein mRNA (GPX1, GPX4, TXNRD1, SELP) levels and GPX4 protein level and immunofluorescence intensity. Meanwhile, Cd induced ferroptosis by causing iron overload, up-regulating PTGS2, NCOA4, TFR1, and LC3B mRNA levels and PTGS2 and LC3B-II/LC3B-I protein levels, reducing SLC7A11 and FTH1 mRNA and protein levels, and enhancing the immunofluorescence co-localization of FTH1/LC3B. Moreover, it was also found that Cd triggered pyroptosis, which was evidenced by the increase of NLRP3 immunohistochemical positive signal, GSDMD-N immunofluorescence intensity, IL-1β and IL-18 release and the levels of pyroptosis-related mRNA (NLRP3, ASC, Caspase-1, GSDMD, IL-1β and IL-18) and proteins (NLRP3, Caspase-1p20, GSDMD-N, IL-1β and IL-18). Notably, Se increased the expression level of GPX4 and the transcription factors TFAP2c and SP1, and ameliorated Cd-induced changes in aforementioned factors. In conclusion, GPX4 utilization by Se might be required to alleviate Cd-induced ferroptosis and pyroptosis in sheep kidney.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guiping Chen
- Department of Agriculture and Rural Affairs of Jiangxi Province, Jiangxi Provincial Agricultural Ecology and Resource Protection Station, Nanchang, Jiangxi, China
| | - Yun Wang
- Jiangxi Biotech Vocational College, Department of Animal Science and Technology, Nanchang, Jiangxi, China
| | - Haotian Xue
- Jiangxi Biotech Vocational College, Department of Animal Science and Technology, Nanchang, Jiangxi, China
| | | | - He Bai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
28
|
Liu R, Zhang K, Li H, Sun Q, Wei X, Li H, Zhang S, Fan S, Wang Z. Dissecting the microbial community structure of internal organs during the early postmortem period in a murine corpse model. BMC Microbiol 2023; 23:38. [PMID: 36765295 PMCID: PMC9912631 DOI: 10.1186/s12866-023-02786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Microorganisms distribute and proliferate both inside and outside the body, which are the main mediators of decomposition after death. However, limited information is available on the postmortem microbiota changes of extraintestinal body sites in the early decomposition stage of mammalian corpses. RESULTS This study investigated microbial composition variations among different organs and the relationship between microbial communities and time since death over 1 day of decomposition in male C57BL/6 J mice by 16S rRNA sequencing. During 1 day of decomposition, Agrobacterium, Prevotella, Bacillus, and Turicibacter were regarded as time-relevant genera in internal organs at different timepoints. Pathways associated with lipid, amino acid, carbohydrate and terpenoid and polyketide metabolism were significantly enriched at 8 h than that at 0.5 or 4 h. The microbiome compositions and postmortem metabolic pathways differed by time since death, and more importantly, these alterations were organ specific. CONCLUSION The dominant microbes differed by organ, while they tended toward similarity as decomposition progressed. The observed thanatomicrobiome variation by body site provides new knowledge into decomposition ecology and forensic microbiology. Additionally, the microbes detected at 0.5 h in internal organs may inform a new direction for organ transplantation.
Collapse
Affiliation(s)
- Ruina Liu
- College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Kai Zhang
- College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Huan Li
- Xi’an Mental Health Center Hospital, Xi’an, 710061 China
| | - Qinru Sun
- College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Xin Wei
- College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Huiyu Li
- College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Siruo Zhang
- Department of Clinical Laboratory, Shaanxi Provincial People’s Hospital, Shaanxi Xi’an, 710068 People’s Republic of China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Shaanxi Xi’an, 710061 People’s Republic of China
| | - Shuanliang Fan
- College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Zhenyuan Wang
- College of Forensic Medicine, Xi’an Jiaotong University, Xi’an, 710061 China
| |
Collapse
|
29
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
30
|
Prasad MV, Prakash B, Narasimha J, Rama Rao SV, Raju M, Zeba P, Sreenivasa Reddy C. Effect of dietary supplementation of organic and inorganic Se on performance and antioxidant response in commercial broiler chickens. Br Poult Sci 2023; 64:110-115. [PMID: 35984308 DOI: 10.1080/00071668.2022.2113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The study was carried out to determine the effects of supplementing organic (OG) or inorganic (IOG) Se to record the performance, immune and anti-oxidant response in broiler chickens.2. One-day-old Vencobb-400 (50.1 ± 0.84 g; n = 280) male broiler chicks were allocated randomly into seven treatments to give eight replicates containing five chicks each and housed in deep littered floor pens (76 cm × 91 cm) for a period of 42 d.3. The control diet (CD) was formulated without any Se supplementation (diet I), CD plus 0.15, 0.30 or 0.45 mg/kg OG Se (diets II, III and IV, respectively) and CD plus 0.15, 0.30 or 0.45 mg/kg IOG Se (diets V, VI and VII, respectively).4. Feed intake (FI), body weight gain (BWG), immune variables and mRNA expression profile of hepatic selenoproteins (SepW, GSHPx1, TrxR and GSHPx3) genes were determined. The BWG, FI and feed conversion ratio did not differ among various dietary treatments.5. The lipid peroxidation and activity of RBC catalase were lower (P < 0.05) in groups fed diets supplemented OG Se compared to those fed IOG Se and CD. The activity of GSH Px was higher among the groups fed diet supplemented OG Se compared to those groups fed OG Se and CD. However, supplementing diets with OG or IOG Se did not affect humoral or cell mediated immune responses.6. The expression levels of SepW were higher (P < 0.01) among the groups supplemented with OG Se. Expression levels of GSH-Px1, TrxR and GSHPx3 were higher (P < 0.01) among the groups supplemented with OG Se compared to those groups fed IOG Se or CD.7. Supplementing OG Se improved the activities of anti-oxidant enzymes and hepatic expression of selenoproteins genes in the present study. However, supplementing OG or IOG Se did not affect growth performance and immune variables in broiler chickens.
Collapse
Affiliation(s)
- M V Prasad
- Animal Nutrition Department, P.V.N.R Telangana Veterinary University, Hyderabad, India
| | - B Prakash
- Nutrition Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - J Narasimha
- Animal Nutrition Department, P.V.N.R Telangana Veterinary University, Hyderabad, India
| | - S V Rama Rao
- Nutrition Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - M Raju
- Nutrition Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - P Zeba
- Nutrition Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - C Sreenivasa Reddy
- Nutrition Laboratory, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
31
|
Coverdale JPC, Harrington CF, Solovyev N. Review: Advances in the Accuracy and Traceability of Metalloprotein Measurements Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Crit Rev Anal Chem 2023; 54:2259-2276. [PMID: 36637361 DOI: 10.1080/10408347.2022.2162811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advances in inductively coupled plasma mass spectrometry and the methods used to prepare isotopically enriched standards, allow for the high accuracy measurement of metalloproteins by isotope dilution mass spectrometry. This technique has now reached a level of maturity whereby a step change in the accuracy, precision, and traceability of, in particular, clinical, and biomedical measurements is achievable. Current clinical measurements, which require low limits of detection in the presence of complex sample matrices, use indirect methods based on immunochemistry for the study of human disease. However, this approach suffers from poor traceability, requiring comparisons based on provision of matrix-based reference materials, used as analytical standards. This leads to difficulty when changes in the reference material are required, often resulting in a lack of interlaboratory and temporal comparability in clinical results and reference ranges. In this review, we focus on the most important metalloproteins for clinical studies, to illustrate how the attributes of chromatography coupled to inorganic mass spectrometry can be used for the direct measurement of metalloproteins such as hemoglobin, transferrin, and ceruloplasmin. By using this approach, we hope to demonstrate how isotope dilution analysis can be used as a reference method to improve traceability and underpin clinical, biomedical, and other biological measurements.
Collapse
Affiliation(s)
- James P C Coverdale
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Chris F Harrington
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | | |
Collapse
|
32
|
Ashraf H, Cossu D, Ruberto S, Noli M, Jasemi S, Simula ER, Sechi LA. Latent Potential of Multifunctional Selenium Nanoparticles in Neurological Diseases and Altered Gut Microbiota. MATERIALS (BASEL, SWITZERLAND) 2023; 16:699. [PMID: 36676436 PMCID: PMC9862321 DOI: 10.3390/ma16020699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Neurological diseases remain a major concern due to the high world mortality rate and the absence of appropriate therapies to cross the blood-brain barrier (BBB). Therefore, the major focus is on the development of such strategies that not only enhance the efficacy of drugs but also increase their permeability in the BBB. Currently, nano-scale materials seem to be an appropriate approach to treating neurological diseases based on their drug-loading capacity, reduced toxicity, targeted delivery, and enhanced therapeutic effect. Selenium (Se) is an essential micronutrient and has been of remarkable interest owing to its essential role in the physiological activity of the nervous system, i.e., signal transmission, memory, coordination, and locomotor activity. A deficiency of Se leads to various neurological diseases such as Parkinson's disease, epilepsy, and Alzheimer's disease. Therefore, owing to the neuroprotective role of Se (selenium) nanoparticles (SeNPs) are of particular interest to treat neurological diseases. To date, many studies investigate the role of altered microbiota with neurological diseases; thus, the current review focused not only on the recent advancement in the field of nanotechnology, considering SeNPs to cure neurological diseases, but also on investigating the potential role of SeNPs in altered microbiota.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Davide Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefano Ruberto
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marta Noli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Seyedesomaye Jasemi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Complex Structure of Microbiology and Virology, AOU Sassari, 07100 Sassari, Italy
| |
Collapse
|
33
|
Ralston NVC. Concomitant selenoenzyme inhibitor exposures as etiologic contributors to disease: Implications for preventative medicine. Arch Biochem Biophys 2023; 733:109469. [PMID: 36423662 DOI: 10.1016/j.abb.2022.109469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The physiological activities of selenium (Se) occur through enzymes that incorporate selenocysteine (Sec), a rare but important amino acid. The human genome includes 25 genes coding for Sec that employ it to catalyze challenging reactions. Selenoenzymes control thyroid hormones, calcium activities, immune responses, and perform other vital roles, but most are devoted to preventing and reversing oxidative damage. As the most potent intracellular nucleophile (pKa 5.2), Sec is vulnerable to binding by metallic and organic soft electrophiles (E*). These electron poor reactants initially form covalent bonds with nucleophiles such as cysteine (Cys) whose thiol (pKa 8.3) forms adducts which function as suicide substrates for selenoenzymes. These adducts orient E* to interact with Sec and since Se has a higher affinity for E* than sulfur, the E* transfers to Sec and irreversibly inhibits the enzyme's activity. Organic electrophiles have lower Se-binding affinities than metallic E*, but exposure sources are more abundant. Individuals with poor Se status are more vulnerable to the toxic effects of high E* exposures. The relative E*:Se stoichiometries remain undefined, but the aggregate effects of multiple E* exposures are predicted to be additive and possibly synergistic under certain conditions. The potential for the combined Se-binding effects of common pharmaceutical, dietary, or environmental E* require study, but even temporary loss of selenoenzyme activities would accentuate oxidative damage to tissues. As various degenerative diseases are associated with accumulating DNA damage, defining the effects of complementary E* exposures on selenoenzyme activities may enhance the ability of preventative medicine to support healthy aging.
Collapse
Affiliation(s)
- Nicholas V C Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
34
|
Selenium Forms and Dosages Determined Their Biological Actions in Mouse Models of Parkinson's Disease. Nutrients 2022; 15:nu15010011. [PMID: 36615668 PMCID: PMC9824164 DOI: 10.3390/nu15010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Selenium (Se), an essential antioxidant trace element, is reported to play a role in Parkinson's disease (PD). However, there is a lack of systematic studies on different Se forms against PD. Our study is designed to compare the neuroprotective effects of inorganic and organic Se in two classical PD mice models and investigate the underlying mechanisms for their potentially differential actions against PD. In this study, different dosages of inorganic sodium selenite (Se-Na) or organic seleno-L-methionine (Se-Met) were fed to either acute or chronic PD mice models, and their neuroprotective effects and mechanisms were explored and compared. Se-Na provided better neuroprotective effects in PD mice than Se-Met administered at the same but at a relatively low Se dosage. Se-Na treatment could influence GPX activities but not their mRNA expressions in the midbrains of PD mice. The enhanced GPX activities caused by Se-Na, but not Se-Met, in PD mice could be the major reason for the positive actions of inorganic Se to prevent dopaminergic neuronal loss in this study. In vivo bio-distribution experiments found MPTP injection greatly changed Se bio-distribution in mice, which led to reversed alterations in the bioavailability of Se-Met and Se-Na. Se-Na had higher bioavailability than Se-Met in PD mice, which could explain its better neuroprotective effects compared to Se-Met. Our results proved that Se forms and dosages determined their biological actions in mouse models of PD. Our study will provide valuable scientific evidence to researchers and/or medical professionals in using Se for PD prevention or therapy.
Collapse
|
35
|
Öztürk DK. Element concentrations of cultured fish in the Black Sea: selenium-mercury balance and the risk assessments for consumer health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87998-88007. [PMID: 35819669 DOI: 10.1007/s11356-022-21914-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Fish are a powerful model for risk-benefit analyses to explore the impact of elements on human health among all accessible species. The sea bream (Sparus aurata), sea bass (Dicentrarchus labrax), turbot (Scophthalmus maximus), and weights of > 1 kg large rainbow trout registered as "Turkish Salmon," (Oncorhynchus mykiss) are four economically important cultured species in the Black Sea In this research, it is aimed (1) to determine the value of the elements, (2) to determine total Hg and Se concentrations, Se/Hg molar ratios, and the HBVSe index, and (3) to calculate the consumer's possible health risk in the edible tissues of cultivated four economically important Black Sea fish species. Fish and diet samples from all species were obtained in 2020 from aquaculture locations in the Black Sea (Sinop, Samsun, and Trabzon cites of Turkey). At the end of the study, the elements in all edible tissues and all the parameters analyzed [Se/Hg, estimated daily intake (EDI), target hazard quotient (THQ), maximum allowable consumption rate (CRlim and CRmm)] in cultured fish tissues were below permissible values. Additionally, when compared with the data of the World Health Organization and The National Academy of Sciences, it determined that consuming cultured fish in the Black Sea adequately meets the daily elemental requirement.
Collapse
Affiliation(s)
- Dilara Kaya Öztürk
- Faculty of Fisheries, Department of Aquaculture, Sinop University, Sinop, Turkey.
| |
Collapse
|
36
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
37
|
Talaie A, Jafary H, Faraji F, Malekirad AA. The Serum Oxidative Stress Biomarkers and Selenium Levels in a Group of Migraine Patients Compared with Healthy Controls: a Case-Control Study. Biol Trace Elem Res 2022; 200:4250-4255. [PMID: 34985626 DOI: 10.1007/s12011-021-03024-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
Migraine is one of the most common neurological disorders associated with recurrent attacks of moderate to severe headache. Oxidative stress may play an important role in migraine pathogenesis. This study aimed to measure and compare the serum levels of Selenium, total antioxidant capacity (TAC), and malondialdehyde) MDA (in migraine patients and healthy individuals. This case-control study was performed on 31 migraine patients and 30 age and gender-matched healthy controls. The severity of headache was assessed with a standard questionnaire, and the serum levels of Selenium (Se), MDA, and TAC were measured via biochemical methods. The odds of migraine were calculated across quartile of Se and oxidative stress biomarkers via binary logistic regression. Migraine patients had a significant lower Se levels (81.06 ± 8.66 vs. 88.94 ± 10.23 μg/L, P = 0.002) and a significant higher MDA levels (3.04 ± 1.74 vs. 2.06 ± 0.59 nmol/ml, P = 0.005) compared to healthy participants. Although serum TAC levels (1.34 ± 0.34 vs.1.37 ± 0.33 mmol/L, P = 0.755) were not significantly different between migraine patients rather than healthy subjects. Individuals in the lowest quartile of Se levels were about eleven times more likely to have migraine than those in the highest quartile (OR: 11.2; 95%CI: 1.57 to 80.2; P-trend: 0.016). Besides, being in the highest quartile of the serum MDA level, the odds of having migraine increases 15.4 times compared to the lowest quartile (OR = 15.4, 95%CI: 1.1 to 221, P = 0.044). No significant association was found between TAC and migraine. The lower Se and MDA levels in migraine patients gives rise to the probability which oxidant status may play an underlying role in migraine pathophysiology.
Collapse
Affiliation(s)
- Afsoon Talaie
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Fardin Faraji
- Department of Neurology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
- Applied Neuroscience Research Center, Islamic Azad University, Arak Branch, Arak, Iran
| | | |
Collapse
|
38
|
Duan WX, Yang XH, Zhang HF, Feng J, Zhang MY. Chemical Structure, Hypoglycemic Activity, and Mechanism of Action of Selenium Polysaccharides. Biol Trace Elem Res 2022; 200:4404-4418. [PMID: 34843085 PMCID: PMC8628488 DOI: 10.1007/s12011-021-03035-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022]
Abstract
Selenium polysaccharides (Se-polysaccharides) are one of important forms of organic Se, in which selenium (Se) and polysaccharides are joined by covalent bonds. In the present review, recent progress in chemical structure and hypoglycemic activity of Se-polysaccharides is summarized. In particular, the mechanism underlying hypoglycemic capacity of Se-polysaccharides is discussed, and the relationship between hypoglycemic activity and chemical structure is analyzed. Besides, strategies for further research into chemical structure and hypoglycemic activity of Se-polysaccharides are proposed. Hypoglycemic activity of Se-polysaccharides is closely related to their inhibitory effect on α-amylase and α-glucosidase, influence on insulin signal pathway especially IRS-PI3K-Akt signaling pathway, and protection capacity against oxidative stress.
Collapse
Affiliation(s)
- Wen-Xia Duan
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Xiao-Hua Yang
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hua-Feng Zhang
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
- Municipal Expert Workstation for Hua-Feng Zhang, Academician and Expert Workstation in Pu'er City of Yunnan Province, Pu'er, 665600, People's Republic of China.
| | - Jing Feng
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, Moscow, 119991, Russia
| | - Meng-Yuan Zhang
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
- Municipal Expert Workstation for Hua-Feng Zhang, Academician and Expert Workstation in Pu'er City of Yunnan Province, Pu'er, 665600, People's Republic of China
| |
Collapse
|
39
|
Passarella D, Ciampi S, Di Liberto V, Zuccarini M, Ronci M, Medoro A, Foderà E, Frinchi M, Mignogna D, Russo C, Porcile C. Low-Density Lipoprotein Receptor-Related Protein 8 at the Crossroad between Cancer and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23168921. [PMID: 36012187 PMCID: PMC9408729 DOI: 10.3390/ijms23168921] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The low-density-lipoprotein receptors represent a family of pleiotropic cell surface receptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family shares common structural features but also has significant differences mainly due to tissue-specific interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegenerative and cancer-related pathways. From one side, its overexpression has been highlighted in many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side, LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor, which are, respectively, the major risk factor for developing Alzheimer’s disease (AD) and the main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible for amyloid formation in AD. The present review analyzes the contributions of LDL receptors, specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on various interactions and peculiar processing, the receptor can contribute to both proliferative and neurodegenerative processes.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Silvia Ciampi
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404897
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
40
|
Liu B, Xu G, Yang W, Strathearn L, Snetselaar LG, Bao W. Association between serum selenium concentrations and learning disability in a nationally representative sample of U.S. children. Nutr Neurosci 2022; 25:1558-1564. [PMID: 33939947 DOI: 10.1080/1028415x.2021.1879541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Oxidative stress has been implicated in the pathogenesis of neurodevelopmental disorders. As an anti-oxidative agent, selenium plays an important role in human health. However, the relationship between selenium status and learning disability (LD), a common neurodevelopmental disorder, is unknown. OBJECTIVE To examine the association between serum selenium concentrations and learning disability. DESIGN Nationwide, population-based, cross-sectional study. PARTICIPANTS/SETTING Children aged 4-11 years who have available data on serum selenium concentrations and LD (N = 1,076) from the U.S. National Health and Nutrition Examination Survey 1999-2000. EXPOSURE Serum selenium levels were measured using atomic absorption spectrometry. MAIN OUTCOME MEASURES Diagnosis of LD was reported by the children's parents. STATISTICAL ANALYSES PERFORMED Logistic regression models with survey weights were conducted adjusting for age, race/ethnicity, family income, total energy intake, body mass index, and serum cotinine levels. RESULTS In this study, 8.2% (95% confidence interval [CI] 5.2%-11.2%) of children had a diagnosis of LD. Serum selenium concentration was lower among children with LD than those without LD (geometric mean ± standard error, 107.7 ± 2.7 ng/mL vs. 112.8 ± 1.0 ng/mL, P for difference = 0.08). The adjusted odds ratio (OR) of LD comparing the highest with lowest tertile of serum selenium concentrations was 0.39 (95% CI 0.19-0.82). Each 10 ng/mL increment in serum selenium concentrations was associated with 31% (OR 0.69, 95% CI 0.51-0.93) lower odds of LD. CONCLUSIONS Higher serum selenium concentration was associated with a lower risk of LD in U.S. children. The causal relationship between selenium and LD and the underlying mechanisms warrant further investigation.
Collapse
Affiliation(s)
- Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA.,Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA, USA
| | - Wenhan Yang
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA.,Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lane Strathearn
- Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA, USA.,Division of Developmental and Behavioral Pediatrics, Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Linda G Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
41
|
Yu R, Wang Z, Ma M, Xu P, Liu L, Tinkov AA, Lei XG, Zhou JC. Associations between Circulating SELENOP Level and Disorders of Glucose and Lipid Metabolism: A Meta-Analysis. Antioxidants (Basel) 2022; 11:1263. [PMID: 35883754 PMCID: PMC9311835 DOI: 10.3390/antiox11071263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Selenoprotein P (SELENOP) is an extracellular antioxidant, selenium transporter, and hepatokine interfering with glucose and lipid metabolism. To study the association between the circulating SELENOP concentration and glucose and lipid metabolic diseases (GLMDs), including gestational diabetes (GD), metabolic syndrome (MetS), non-alcoholic fatty liver disease, obesity, and type 2 diabetes, as well as the individual markers, a meta-analysis was conducted by searching multiple databases from their establishment through March 2022 and including 27 articles published between October 2010 and May 2021, involving 4033 participants. Participants with GLMDs had higher levels of SELENOP than those without GLMDs (standardized mean difference = 0.84, 95% CI: 0.16 to 1.51), and the SELENOP levels were positively correlated with the markers of GLMDs (pooled effect size = 0.09, 95% CI: 0.02 to 0.15). Subgroup analyses showed that the SELENOP concentrations were higher in women with GD and lower in individuals with MetS than their counterparts, respectively. Moreover, SELENOP was positively correlated with low-density lipoprotein cholesterol, but not with the other markers of GLMDs. Thus, the heterogenicity derived from diseases or disease markers should be carefully considered while interpreting the overall positive association between SELENOP and GLMDs. Studies with a larger sample size and advanced design are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ruirui Yu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Zhoutian Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Miaomiao Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Ping Xu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China;
| | - Longjian Liu
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA;
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China
| |
Collapse
|
42
|
The Role and Mechanism of Essential Selenoproteins for Homeostasis. Antioxidants (Basel) 2022; 11:antiox11050973. [PMID: 35624837 PMCID: PMC9138076 DOI: 10.3390/antiox11050973] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022] Open
Abstract
Selenium (Se) is one of the essential trace elements that plays a biological role in the body, mainly in the form of selenoproteins. Selenoproteins can be involved in the regulation of oxidative stress, endoplasmic reticulum (ER) stress, antioxidant defense, immune and inflammatory responses and other biological processes, including antioxidant, anti-inflammation, anti-apoptosis, the regulation of immune response and other functions. Over-loading or lack of Se causes certain damage to the body. Se deficiency can reduce the expression and activity of selenoproteins, disrupt the normal physiological function of cells and affect the body in antioxidant, immunity, toxin antagonism, signaling pathways and other aspects, thus causing different degrees of damage to the body. Se intake is mainly in the form of dietary supplements. Due to the important role of Se, people pay increasingly more attention to Se-enriched foods, which also lays a foundation for better research on the mechanism of selenoproteins in the future. In this paper, the synthesis and mechanism of selenoproteins, as well as the role and mechanism of selenoproteins in the regulation of diseases, are reviewed. Meanwhile, the future development of Se-enriched products is prospected, which is of great significance to further understand the role of Se.
Collapse
|
43
|
Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease. Indian J Clin Biochem 2022; 37:257-266. [DOI: 10.1007/s12291-022-01031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
44
|
The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines 2022; 10:biomedicines10040891. [PMID: 35453641 PMCID: PMC9027222 DOI: 10.3390/biomedicines10040891] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
The selenoprotein glutathione peroxidase 4 (GPX4) is one of the main antioxidant mediators in the human body. Its central function involves the reduction of complex hydroperoxides into their respective alcohols often using reduced Glutathione (GSH) as a reducing agent. GPX4 has become a hotspot therapeutic target in biomedical research following its characterization as a chief regulator of ferroptosis, and its subsequent recognition as a specific pharmacological target for the treatment of an extensive variety of human diseases including cancers and neurodegenerative disorders. Several recent studies have provided insights into how GPX4 is distinguished from the rest of the glutathione peroxidase family, the unique biochemical properties of GPX4, how GPX4 is related to lipid peroxidation and ferroptosis, and how the enzyme may be modulated as a potential therapeutic target. This current report aims to review the literature underlying all these insights and present an up-to-date perspective on the current understanding of GPX4 as a potential therapeutic target.
Collapse
|
45
|
Cheng BJ, Wang J, Meng XL, Sun L, Hu B, Li HB, Sheng J, Chen GM, Tao FB, Sun YH, Yang LS. The association between essential trace element mixture and cognitive function in Chinese community-dwelling older adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113182. [PMID: 35026581 DOI: 10.1016/j.ecoenv.2022.113182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The evidence about the effect of essential trace element (ETE) mixture on cognitive function amongst older adults is limited. This study aims to evaluate the associations of single ETEs and ETE mixture with cognitive function using a representative sample of community-dwelling older adults in China. METHODS A total of 3814 older adults were included in the study. Urinary concentrations of selenium (Se), vanadium (V), cobalt (Co), strontium (Sr), and molybdenum (Mo) were detected by inductively coupled plasma mass spectrometry. Cognitive function in older adults was assessed using the Chinese version of the Mini-Mental State Examination (MMSE). Linear regression and Bayesian kernel machine regression (BKMR) were performed to explore the associations of single ETEs and ETE mixture with cognitive function, respectively. RESULTS Linear regression showed that urinary levels of Se and V were positively associated with MMSE scores in the adjusted single-element models. BKMR also showed marginally positive associations of Se and V with MMSE scores. Moreover, higher urinary levels of ETE mixture were significantly associated with increased MMSE scores in a dose-response pattern, and Se was the most important contributor within the mixture. Both Se and V demonstrated positive additive effects on the associations of other ETEs with MMSE scores, whereas Co had a negative additive effect. CONCLUSIONS V and Se are positively associated with cognitive function, individually and as a mixture. ETE mixture exhibits a linear dose-response association with improved cognitive function, with Se being the most important component within the mixture. Mixture analyses rather than single ETE analyses may provide a real-world perspective on the relationship between ETE mixture and cognitive function. Further cohort studies are needed to clarify the association of multiple ETEs with cognitive function.
Collapse
Affiliation(s)
- Bei-Jing Cheng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiang-Long Meng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Liang Sun
- Fuyang Center for Diseases Prevention and Control, Fuyang, Anhui 236069, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang, Anhui 236069, China
| | - Huai-Biao Li
- Fuyang Center for Diseases Prevention and Control, Fuyang, Anhui 236069, China
| | - Jie Sheng
- School of Public Health, Experimental Center for Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Gui-Mei Chen
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fang-Biao Tao
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Ye-Huan Sun
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Lin-Sheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
46
|
Wang X, Wang H, Zhang F, Cui Y, Zhang D, Shen X. Threshold effects and interactive effects of total zinc and selenium intake on cognitive function in older adults. Clin Nutr ESPEN 2022; 47:383-390. [PMID: 35063231 DOI: 10.1016/j.clnesp.2021.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND & AIMS The aim of this study was to assess threshold effects and interactive effects of total zinc and selenium intake on cognitive function in older adults. METHODS We used data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. Zinc and selenium intake were obtained through two 24-h dietary recalls. Cognitive performance was evaluated by the Digit Symbol Substitution Test (DSST). Smooth curve fitting, two-piecewise multivariable linear regression models, binary logistic regression model, multiplicative interactions model, and additive interactions model were used to evaluate the association between zinc, selenium intake and their interactive effect on cognitive function. RESULTS A total of 2450 participants aged 60 years or older were included. Zinc and selenium intake was non-linearly associated with cognitive function. The inflection point for zinc intake was 8.94 mg/d in males and 7.58 mg/d in females. When zinc intake was below inflection point, zinc intake was positively associated with the DSST test in males (β = 1.02, 95% CI, 0.44 to 1.60) and females (β = 0.94, 95% CI, 0.26 to 1.62). When zinc intake above inflection point, there is no association between zinc intake and the DSST test in both sexs. The inflection point for selenium intake was 186.33 μg/d in males and 68.40 μg/d in females. Among males, the β (95% CIs) was 0.03 (0.01,0.06) to the left side of the inflection point and -0.06 (-0.10, -0.02) to the right of the inflection point. Among females, the β (95% CIs) was 0.13 (0.04,0.22) to the left side of the inflection point and 0.01 (-0.01,0.04) to the right of the inflection point. Besides, zinc and selenium have significant interaction on DSST test only in females (P = 0.028, RERI = 0.418). CONCLUSIONS The present study demonstrated that zinc and selenium intake was non-linearly associated with cognitive function in different sex. There was an interactive effect between zinc and selenium intake on improving cognitive function, especially in females.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qing Dao, Shandong Province, China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qing Dao, Shandong Province, China
| | - Fan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qing Dao, Shandong Province, China
| | - Yixin Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qing Dao, Shandong Province, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qing Dao, Shandong Province, China
| | - Xiaoli Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qing Dao, Shandong Province, China.
| |
Collapse
|
47
|
ZHANG HY, WANG Q, SHI LY, ZHANG XF, ZHANG HL. Synthesis and antioxidant activity of selenium polysaccharide from Lotus root. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Jalali H, Golchin H, Sadri Z, Karimzadeh Bardei L, Nabiuni M. Selenium enhances the expression of miR-9, miR-124 and miR-29a during neural differentiation of bone marrow mesenchymal stem cells. J Trace Elem Med Biol 2022; 69:126898. [PMID: 34800856 DOI: 10.1016/j.jtemb.2021.126898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selenium (Se) is a trace element that plays important role in antioxidant defense in the brain. Sodium selenite (Na2SeO3) is an inorganic salt of Se which has an antioxidant function. In the present study, we investigated the effect of Sodium selenite on the expression of important neuronal microRNAs during neural differentiation of bone marrow-derived stem cells (BMSCs). METHODS Mesenchymal stem cells were collected from rat bone marrow and cultured in the Dulbecco's Modified Eagle Medium (DMEM) medium. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay was conducted to determine the toxicity of Na2SeO3. For neural induction, BMSCs were divided into control, Na2SeO3 containing (10 ng/mL) and Na2SeO3 free groups and cultured in DMEM medium supplemented with Isobutyl-l-methylxanthine (IBMX), Fibroblast growth factor 2 (FGF2), B27, Retinoic acid, and brain derived neurotrophic factor (BDNF) for 14 days. At the end of the differentiation, immunostaining against Microtubule associated protein 2 (Map-2) and Choline acetyltransferase (ChAT) proteins was performed. Also, the total RNA is extracted from control and neural differentiated cells using a special kit, and the expression of miR-9, miR-124, and miR-29a was analyzed using real-time polymerase chain reaction (RT-PCR). RESULTS Increasing Na2SeO3 concentrations had increasing toxicity; therefore, the concentration of 10 ng/mL was used as a supplement during neural differentiation. Examination of the expression of Map-2 and ChAT proteins showed that Na2SeO3 increased the expression of them and consequently the neuronal differentiation of BMSCs. Na2SeO3 also significantly increased the expression of miR-9, miR-124, and miR-29a in BMSCs undergoing neuronal differentiation. CONCLUSIONS Our results suggest that the protective effect of selenium on neural differentiation of stem cells may be mediated through neuron specific microRNAs. This result further highlights the importance of selenium supplementation in preventing neuronal diseases.
Collapse
Affiliation(s)
- Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Hasti Golchin
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Zahra Sadri
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| | - Latifeh Karimzadeh Bardei
- School of Biology, College of Science, University of Tehran, Engelab Ave., Tehran, 14155-6655, Iran.
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave., Tehran, 15719-14911, Iran.
| |
Collapse
|
49
|
Zhang S, Zhang H, Shi L, Li Y, Tuerhong M, Abudukeremu M, Cui J, Li Y, Jin DQ, Xu J, Guo Y. Structure features, selenylation modification, and improved anti-tumor activity of a polysaccharide from Eriobotrya japonica. Carbohydr Polym 2021; 273:118496. [PMID: 34560937 DOI: 10.1016/j.carbpol.2021.118496] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022]
Abstract
A homogeneous polysaccharide, EJP90-1, was isolated from the leaves of E. japonica by hot water extraction in this study. EJP90-1 (7702 Da) was a heteropolysaccharide mainly consisting of →5)-linked-α-L-Araf-(1→, →4)-linked-β-D-Manp-(1→, →2,4)-linked-α-L-Rhap-(1→, →4)-linked-α-D-Xylp-(1→, →4)-linked-β-D-Galp-(1→, →2)-linked-β-D-Galp-(1→, →6)-linked-β-D-Glcp-(1→, α-D-Glcp-(4→, and t-linked-α-L-Araf. EJP90-1 was found to show moderate anti-tumor activity at the cellular level. In order to improve the anti-tumor activity and the potential applications of EJP90-1, a typical sodium selenite-nitric acid (Na2SeO3-HNO3) modification on EJP90-1 was carried out. X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometer (EDS) analysis confirmed that Se was successfully introduced into the polymer chain of EJP90-1. The subsequent in vitro cytotoxicity evaluation showed the selenylation modification derivative (EJP90-1-Se) possessed significant antiproliferative activity against cancer cells (HepG2 and A549 cells) through inducing cell apoptosis. The anti-tumor activity of EJP90-1-Se was further confirmed by zebrafish models, which inhibited the proliferation and migration of HepG2 cells and the angiogenesis.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
50
|
Soleimani Asl S, Amiri I, Samzadeh-Kermani A, Abbasalipourkabir R, Gholamigeravand B, Shahidi S. Chitosan-coated Selenium nanoparticles enhance the efficiency of stem cells in the neuroprotection of streptozotocin-induced neurotoxicity in male rats. Int J Biochem Cell Biol 2021; 141:106089. [PMID: 34601090 DOI: 10.1016/j.biocel.2021.106089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is one of the common neurodegenerative diseases characterized by memory impairment. The protective effects of stem cell-based therapy have been reported in AD. In this study, it was assumed that Chitosan-coated Selenium nanoparticles (ChSeNPs) increase the efficiency of stem cells in the attenuation of neurotoxicity in the rat AD model. The AD model was induced using Streptozotocin (STZ) and treated by the adipose-derived mesenchymal stem cells (AMSCs) and SeNPs/ChSeNPs (0.4 mg/kg). Passive avoidance learning and recognition memory were assessed using shuttle box and novel object recognition tasks. The amyloid-beta deposition, the injected cells' homing and survival, antioxidant capacity, and BDNF concentration were evaluated using the histological, biochemical, and ELISA methods. The results showed that the combined administration of ChSeNPs and AMSCs is more effective in increasing the step-through latency and discrimination index than administering SeNPs and stem cells. Combined therapy caused a significant increase in antioxidant capacity that ChSeNPs was more effective than SeNPs, while AMSCs beside SeNPs had a greater effect on BDNF levels compared to conventional treatment of nanoparticles or AMSCs alone. Ultimately, the homing and survival of the transplanted AMSCs were greater in the group that received both stem cells and ChSeNPs. Taken together, it seems that the administration of ChSeNPs enhances the efficiency of transplanted stem cells in decreasing the neurotoxicity induced by STZ through an increase in the antioxidant capacity.
Collapse
Affiliation(s)
- Sara Soleimani Asl
- Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bahareh Gholamigeravand
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|