1
|
Vladimir de la Rosa J, Tabraue C, Huang Z, Orizaola MC, Martin‐Rodríguez P, Steffensen KR, Zapata JM, Boscá L, Tontonoz P, Alemany S, Treuter E, Castrillo A. Reprogramming of the LXRα Transcriptome Sustains Macrophage Secondary Inflammatory Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307201. [PMID: 38549193 PMCID: PMC11132038 DOI: 10.1002/advs.202307201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Indexed: 05/29/2024]
Abstract
Macrophages regulate essential aspects of innate immunity against pathogens. In response to microbial components, macrophages activate primary and secondary inflammatory gene programs crucial for host defense. The liver X receptors (LXRα, LXRβ) are ligand-dependent nuclear receptors that direct gene expression important for cholesterol metabolism and inflammation, but little is known about the individual roles of LXRα and LXRβ in antimicrobial responses. Here, the results demonstrate that induction of LXRα transcription by prolonged exposure to lipopolysaccharide (LPS) supports inflammatory gene expression in macrophages. LXRα transcription is induced by NF-κB and type-I interferon downstream of TLR4 activation. Moreover, LPS triggers a reprogramming of the LXRα cistrome that promotes cytokine and chemokine gene expression through direct LXRα binding to DNA consensus sequences within cis-regulatory regions including enhancers. LXRα-deficient macrophages present fewer binding of p65 NF-κB and reduced histone H3K27 acetylation at enhancers of secondary inflammatory response genes. Mice lacking LXRα in the hematopoietic compartment show impaired responses to bacterial endotoxin in peritonitis models, exhibiting reduced neutrophil infiltration and decreased expansion and inflammatory activation of recruited F4/80lo-MHC-IIhi peritoneal macrophages. Together, these results uncover a previously unrecognized function for LXRα-dependent transcriptional cis-activation of secondary inflammatory gene expression in macrophages and the host response to microbial ligands.
Collapse
Affiliation(s)
- Juan Vladimir de la Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Carlos Tabraue
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
- Departamento de MorfologíaUniversidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Zhiqiang Huang
- Department of Biosciences and NutritionKarolinska Institutet, NEOHuddinge14183Sweden
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular MedicineMedical SchoolNanjing UniversityNanjing210093P. R. China
| | - Marta C. Orizaola
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Patricia Martin‐Rodríguez
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory MedicineKarolinska InstituteHuddinge14186Sweden
| | - Juan Manuel Zapata
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Lisardo Boscá
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Cardiovasculares (CIBERCV)Madrid28029Spain
| | - Peter Tontonoz
- Department of Pathology and Laboratory MedicineUniversity of California Los AngelesUCLACalifornia90095USA
| | - Susana Alemany
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| | - Eckardt Treuter
- Department of Biosciences and NutritionKarolinska Institutet, NEOHuddinge14183Sweden
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC)Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
- Department of Metabolic and Immune Diseases. Instituto de Investigaciones Biomédicas Sols‐MorrealeCentro Mixto Consejo Superior de Investigaciones Científicas CSIC‐Universidad Autónoma de MadridMadrid28029Spain
| |
Collapse
|
2
|
García-Cortés CG, Parés-Matos EI. New Regulatory roles for Human Serum Amyloid A. INTERNATIONAL JOURNAL OF RESEARCH IN ONCOLOGY 2024; 3:3249. [PMID: 39044740 PMCID: PMC11262547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The current study illuminates the multifaceted role of Serum Amyloid A (SAA), an essential acute-phase protein implicated in diverse biological realms, encompassing inflammation, oncogenesis, and stress modulation. With a focus on delineating the intricate protein-protein interactions orchestrated by SAA, this investigation unravels its diverse functions within the human physiological landscape. Utilizing the HepG2 cell line, renowned for its proficiency in facilitating SAA overexpression, we meticulously generated protein extracts after inducing SAA hyperexpression. Integrating Co-Immunoprecipitation techniques with Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS) enabled discernment and characterization of the protein complexes intricately associated with SAA. Our data elucidates a pronounced upregulation in SAA expression levels within induced samples compared to controls, substantiating its pivotal role among inflammatory cascades. Specifically, LC/MS/MS profiling delineated interactions with nine distinct proteins, encompassing pivotal players in actin dynamics, neuronal morphogenesis, lipid homeostasis, and immunomodulation. Furthermore, this investigation underscores the plausible ramifications of these molecular interactions in pathologies, including Alzheimer's disease, oncological manifestations, and rheumatoid arthritis. Through comprehensive analyses, this investigation sheds light on the intricate roles of SAA and provides a foundation for future therapeutic modalities targeting SAA pathologies.
Collapse
Affiliation(s)
- Carlos G García-Cortés
- Department of Chemistry, University of Puerto Rico at Mayagüez, CALL BOX 9000, Mayagüez, PR 00681-9000
| | - Elsie I Parés-Matos
- Department of Chemistry, University of Puerto Rico at Mayagüez, CALL BOX 9000, Mayagüez, PR 00681-9000
| |
Collapse
|
3
|
McCarthy WC, Sherlock LG, Grayck MR, Zheng L, Lacayo OA, Solar M, Orlicky DJ, Dobrinskikh E, Wright CJ. Innate Immune Zonation in the Liver: NF-κB (p50) Activation and C-Reactive Protein Expression in Response to Endotoxemia Are Zone Specific. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1372-1385. [PMID: 36946778 PMCID: PMC10121917 DOI: 10.4049/jimmunol.2200900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
Hepatic innate immune function plays an important role in the pathogenesis of many diseases. Importantly, a growing body of literature has firmly established the spatial heterogeneity of hepatocyte metabolic function; however, whether innate immune function is zonated remains unknown. To test this question, we exposed adult C57BL/6 mice to endotoxemia, and hepatic tissue was assessed for the acute phase response (APR). The zone-specific APR was evaluated in periportal and pericentral/centrilobular hepatocytes isolated using digitonin perfusion and on hepatic tissue using RNAscope and immunohistochemistry. Western blot, EMSA, chromatin immunoprecipitation, and immunohistochemistry were used to determine the role of the transcription factor NF-κB in mediating hepatic C-reactive protein (CRP) expression. Finally, the ability of mice lacking the NF-κB subunit p50 (p50-/-) to raise a hepatic APR was evaluated. We found that endotoxemia induces a hepatocyte transcriptional APR in both male and female mice, with Crp, Apcs, Fga, Hp, and Lbp expression being enriched in pericentral/centrilobular hepatocytes. Focusing our work on CRP expression, we determined that NF-κB transcription factor subunit p50 binds to consensus sequence elements present in the murine CRP promoter. Furthermore, pericentral/centrilobular hepatocyte p50 nuclear translocation is temporally associated with zone-specific APR during endotoxemia. Lastly, the APR and CRP expression is blunted in endotoxemic p50-/- mice. These results demonstrate that the murine hepatocyte innate immune response to endotoxemia includes zone-specific activation of transcription factors and target gene expression. These results support further study of zone-specific hepatocyte innate immunity and its role in the development of various disease states.
Collapse
Affiliation(s)
- William C. McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Laura G. Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Maya R. Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Oscar A. Lacayo
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - David J. Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Clyde J. Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
4
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Cheng W, Ramachandran S, Crawford L. Uncertainty quantification in variable selection for genetic fine-mapping using bayesian neural networks. iScience 2022; 25:104553. [PMID: 35769876 PMCID: PMC9234235 DOI: 10.1016/j.isci.2022.104553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we propose a new approach for variable selection using a collection of Bayesian neural networks with a focus on quantifying uncertainty over which variables are selected. Motivated by fine-mapping applications in statistical genetics, we refer to our framework as an "ensemble of single-effect neural networks" (ESNN) which generalizes the "sum of single effects" regression framework by both accounting for nonlinear structure in genotypic data (e.g., dominance effects) and having the capability to model discrete phenotypes (e.g., case-control studies). Through extensive simulations, we demonstrate our method's ability to produce calibrated posterior summaries such as credible sets and posterior inclusion probabilities, particularly for traits with genetic architectures that have significant proportions of non-additive variation driven by correlated variants. Lastly, we use real data to demonstrate that the ESNN framework improves upon the state of the art for identifying true effect variables underlying various complex traits.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Computer Science, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Sohini Ramachandran
- Department of Computer Science, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Microsoft Research New England, Cambridge, MA, USA
| |
Collapse
|
6
|
Peng X, Ma Y, Wang Q, Gao Y, Li G, Jiang C, Gao Y, Feng Y. Serum Amyloid A Correlates With the Osteonecrosis of Femoral Head by Affecting Bone Metabolism. Front Pharmacol 2021; 12:767243. [PMID: 34733165 PMCID: PMC8559508 DOI: 10.3389/fphar.2021.767243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Osteonecrosis of femoral head (ONFH) is a progressive hip joint disease without disease-modifying treatment. Lacking understanding of the pathophysiological process of ONFH has become the humper to develop therapeutic approach. Serum amyloid A (SAA) is an acute phase lipophilic protein during inflammation and we found that SAA is increased for the first time in the serum of ONFH patients through proteomic studies and quantitatively verified by ELISA. Treating rBMSCs with SAA inhibited the osteogenic differentiation via Wnt/β-catenin signaling pathway deactivation and enhanced the adipogenic differentiation via MAPK/PPARγ signaling pathway activation. Finally, bilateral critical-sized calvarial-defect rat model which received SAA treated rBMSCs demonstrated reduction of bone formation when compared to untreated rBMSCs implantation control. Hence, SAA is a vital protein in the physiological process of ONFH and can act as a potential therapeutic target to treat ONFH.
Collapse
Affiliation(s)
- Xiaoyuan Peng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanchun Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyi Li
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenyi Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yun Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Feng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
7
|
Liu P, Zhang S, Jiang L, Ma J, Shao X. A negative association between low-density lipoprotein cholesterol level and infection risk in elderly stage 5 chronic kidney disease patients. Clin Exp Nephrol 2021; 26:113-121. [PMID: 34519901 DOI: 10.1007/s10157-021-02134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND To explore the relationship between low-density lipoprotein cholesterol (LDL-C) level and infection risk in elderly stage 5 kidney disease (CKD) patients. METHODS This study retrospectively analyzed all 378 patients with grade 5 CKD over 60 years old treated in the Nephrology Department of our hospital from February 2014 to July 2019, including 286 cases with infection and 92 cases without. According to LDL-C levels, the patients were divided into three groups (Tertile 1-Tertile 3). Basic patient data and laboratory test results were collected for all three groups for analysis. RESULTS The incidence of infection showed a gradually decreasing trend in the three groups (from 80.2, 78.6 to 68.3%), along with increasing LDL-C levels from Tertile 1 to Tertile 3, although the differences were not statistically significant (p = 0.075). After fully adjusting for confounding factors, the risk of infection was significantly reduced (OR = 0.646, 95% CI 0.420-0.993, p = 0.046) with increasing LDL-C levels. For the LDL-C levels of the three groups, the rising trend of LDL-C was significantly associated with the reduction in infection risk (OR = 0.545, 95% CI 0.317-0.937, p = 0.028). Curve fitting revealed that LDL-C levels were linearly negatively associated with the risk of infection, and the relationship between the two was not affected by the other factors (p for interaction: 0.567-1.000). CONCLUSIONS LDL-C level is linearly negatively associated with the risk of infection in elderly patients with stage 5 CKD.
Collapse
Affiliation(s)
- Ping Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Shuying Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Lijuan Jiang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Jinhong Ma
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| |
Collapse
|
8
|
Martin NJ, Chami B, Vallejo A, Mojadadi AA, Witting PK, Ahmad G. Efficacy of the Piperidine Nitroxide 4-MethoxyTEMPO in Ameliorating Serum Amyloid A-Mediated Vascular Inflammation. Int J Mol Sci 2021; 22:ijms22094549. [PMID: 33925294 PMCID: PMC8123591 DOI: 10.3390/ijms22094549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/24/2023] Open
Abstract
Intracellular redox imbalance in endothelial cells (EC) can lead to endothelial dysfunction, which underpins cardiovascular diseases (CVD). The acute phase serum amyloid A (SAA) elicits inflammation through stimulating production of reactive oxygen species (ROS). The cyclic nitroxide 4-MethoxyTEMPO (4-MetT) is a superoxide dismutase mimetic that suppresses oxidant formation and inflammation. The aim of this study was to investigate whether 4-MetT inhibits SAA-mediated activation of cultured primary human aortic EC (HAEC). Co-incubating cells with 4-MetT inhibited SAA-mediated increases in adhesion molecules (VCAM-1, ICAM-1, E-selectin, and JAM-C). Pre-treatment of cells with 4-MetT mitigated SAA-mediated increases in transcriptionally activated NF-κB-p65 and P120 Catenin (a stabilizer of Cadherin expression). Mitochondrial respiration and ROS generation (mtROS) were adversely affected by SAA with decreased respiratory reserve capacity, elevated maximal respiration and proton leakage all characteristic of SAA-treated HAEC. This altered respiration manifested as a loss of mitochondrial membrane potential (confirmed by a decrease in TMRM fluorescence), and increased mtROS production as assessed with MitoSox Red. These SAA-linked impacts on mitochondria were mitigated by 4-MetT resulting in restoration of HAEC nitric oxide bioavailability as confirmed by assessing cyclic guanosine monophosphate (cGMP) levels. Thus, 4-MetT ameliorates SAA-mediated endothelial dysfunction through normalising EC redox homeostasis. Subject to further validation in in vivo settings; these outcomes suggest its potential as a therapeutic in the setting of cardiovascular pathologies where elevated SAA and endothelial dysfunction is linked to enhanced CVD.
Collapse
|
9
|
Zinellu A, Paliogiannis P, Carru C, Mangoni AA. Serum amyloid A concentrations, COVID-19 severity and mortality: An updated systematic review and meta-analysis. Int J Infect Dis 2021; 105:668-674. [PMID: 33737133 PMCID: PMC7959678 DOI: 10.1016/j.ijid.2021.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES An excessive inflammatory response in patients with coronavirus disease 2019 (COVID-19) is associated with high disease severity and mortality. Specific acute phase reactants might be useful for risk stratification. A systematic review and meta-analysis was conducted of studies on serum amyloid A (SAA) in patients with COVID-19. METHODS The PubMed, Web of Science, and Scopus databases were searched, covering the period January 2020 to December 2020, for studies reporting SAA concentrations, COVID-19 severity, and survival status. RESULTS Nineteen studies involving 5617 COVID-19 patients were included in the meta-analysis. Pooled results showed that SAA concentrations were significantly higher in patients with severe disease and non-survivors (standard mean difference (SMD) 1.20, 95% confidence interval 0.91-1.49, P < 0.001). Extreme between-study heterogeneity was observed (I2 = 92.4%, P < 0.001). In the sensitivity analysis, the effect size was not significantly affected when each study was removed in turn (range 1.10-1.29). The Begg test (P = 0.030), but not the Egger test (P = 0.385), revealed the presence of publication bias. Pooled SMD values were significantly and positively associated with sex (t = 2.20, P = 0.047) and aspartate aminotransferase (t = 3.44, P = 0.014). CONCLUSIONS SAA concentrations were significantly and positively associated with higher COVID-19 severity and mortality. This acute phase reactant might assist with risk stratification and monitoring in this group.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Quality Control Unit, University Hospital (AOUSS), Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia.
| |
Collapse
|
10
|
Bo M, Arru G, Niegowska M, Erre GL, Manchia PA, Sechi LA. Association between Lipoprotein Levels and Humoral Reactivity to Mycobacterium avium subsp. paratuberculosis in Multiple Sclerosis, Type 1 Diabetes Mellitus and Rheumatoid Arthritis. Microorganisms 2019; 7:E423. [PMID: 31597322 PMCID: PMC6843567 DOI: 10.3390/microorganisms7100423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/12/2023] Open
Abstract
Environmental factors such as bacterial infections may play an important role in the development of autoimmune diseases. Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate pathogen of ruminants able to use the host's cholesterol for survival into macrophages and has been associated with multiple sclerosis (MS), type 1 diabetes (T1DM) and rheumatoid arthritis (RA) through a molecular mimicry mechanism. Here, we aimed at investigating the correlation between humoral reactivity against MAP and serum lipoprotein levels in subjects at T1DM risk (rT1DM) grouped by geographical background and in patients affected by MS or RA. Our results showed significant differences in HDL, LDL/VLDL and Total Cholesterol (TC) levels between patients and healthy controls (p < 0.0001). Patients positive to anti-MAP Abs (MAP+) had lower HDL levels in comparison with Abs negative (MAP-) subjects, while opposite trends were found for LDL/VLDL concentrations (p < 0.05). TC levels varied between MAP+ and MAP- patients in all three assessed diseases. These findings suggest the implication of anti-MAP Abs in fluctuations of lipoprotein levels highlighting a possible link with cardiovascular disease. Further studies will be needed to confirm these results in larger groups.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| | - Giannina Arru
- Department of Clinical, Surgical and Experimental Medicine, Neurological Clinic, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy.
| | - Magdalena Niegowska
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| | - Gian Luca Erre
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Viale San Pietro 8, 07100 Sassari, Italy.
| | | | - Leonardo A Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| |
Collapse
|
11
|
Tümer KÇ, Özdemİr H, Eröksüz H. Evaluation of cardiac troponin I in serum and myocardium of rabbits with experimentally induced polymicrobial sepsis. Exp Anim 2019; 69:54-61. [PMID: 31462610 PMCID: PMC7004812 DOI: 10.1538/expanim.19-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Sepsis is a potentially life-threatening condition, and it is frequently complicated by
myocardial damage. Data on myocardial damage in rabbit caecal ligation and puncture (CLP)
models are limited, although numerous animal models have been used to study
sepsis-associated myocardial damage. This study aimed to investigate the effect of CLP on
cardiac muscle by measuring serum cardiac troponin I (cTnI) concentrations and by
detecting both histopathological changes and cTnI immunoreactivity in cardiomyocytes in
rabbits. After CLP was performed in rabbits, blood samples were taken from the jugular
vein at 0, 4, 8, and 12 h for haematological and biochemical analyses. At the end of the
experiment, all of the rabbits were euthanised to examine the histopathological changes
and the cTnI immunoreactivity in cardiac muscle tissue. No changes in serum cTnI
concentration were observed in the experimental group (EG) or control group (CG) at 0 and
4 h. In EG, the mean serum cTnI concentrations were 0.230 ± 0.209 and 1.177 ± 0.971 ng/ml
at 8 and 12 h, respectively. In CG, the mean serum cTnI concentrations were 0.032 ± 0.014
and 0.031 ± 0.021 ng/ml at 8 and 12 h, respectively. Moreover, cytoplasmic cTnI
immunoreactivity decreased in EG compared with that in CG (P<0.01).
The results demonstrated that CLP induced a systemic inflammatory response and caused
myocardial damage in rabbits.
Collapse
Affiliation(s)
- Kenan Çağrı Tümer
- Department of Internal Medicine, Faculty of Veterinary Medicine, Firat University, 23200, Elazığ, Turkey
| | - Haydar Özdemİr
- Department of Internal Medicine, Faculty of Veterinary Medicine, Firat University, 23200, Elazığ, Turkey
| | - Hatice Eröksüz
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23200, Elazığ, Turkey
| |
Collapse
|
12
|
Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals (Basel) 2019; 9:ani9090616. [PMID: 31462005 PMCID: PMC6769738 DOI: 10.3390/ani9090616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Development of an anti-inflammatory state during physical training has been postulated in both human and equine athletes, but it is not completely understood. The aim of this study was to investigate whether endurance training changes pro- and anti-inflammatory cytokine profiles within a 20-week training season in young inexperienced endurance horses. Nine Arabian horses were examined in this prospective 20-week follow-up study. Blood samples were analysed 5 times monthly, at rest and after training sessions. Routine haematological examinations were performed. Cytokine patterns including IL-1β, IL-6, TNF-α, IL-10 mRNA expression using Real Time-PCR, and serum concentrations of IL-1β, IL-2, IL-4, IL-6, IL-17, INFγ, TNF-α, and IL-10 by ELISA test were determined. During endurance training, the most significant decrease in post-exercise cytokine type 1 levels (TNFα and IL-β) occurred within 20 weeks, beginning from the 3rd month of training. IL-6 serum level decreased after the 4th month. The results suggest that endurance training can induce advanced overall anti-inflammatory response as an adaptation to increasing workload.
Collapse
|
13
|
Fluorescent Light Incites a Conserved Immune and Inflammatory Genetic Response within Vertebrate Organs ( Danio Rerio, Oryzias Latipes and Mus Musculus). Genes (Basel) 2019; 10:genes10040271. [PMID: 30987199 PMCID: PMC6523474 DOI: 10.3390/genes10040271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/29/2022] Open
Abstract
Fluorescent light (FL) has been utilized for ≈60 years and has become a common artificial light source under which animals, including humans, spend increasing amounts of time. Although the solar spectrum is quite dissimilar in both wavelengths and intensities, the genetic consequences of FL exposure have not been investigated. Herein, we present comparative RNA-Seq results that establish expression patterns within skin, brain, and liver for Danio rerio, Oryzias latipes, and the hairless mouse (Mus musculus) after exposure to FL. These animals represent diurnal and nocturnal lifestyles, and ≈450 million years of evolutionary divergence. In all three organisms, FL induced transcriptional changes of the acute phase response signaling pathway and modulated inflammation and innate immune responses. Our pathway and gene clustering analyses suggest cellular perception of oxidative stress is promoting induction of primary up-stream regulators IL1B and TNF. The skin and brain of the three animals as well as the liver of both fish models all exhibit increased inflammation and immune responses; however, the mouse liver suppressed the same pathways. Overall, the conserved nature of the genetic responses observed after FL exposure, among fishes and a mammal, suggest the presence of light responsive genetic circuitry deeply embedded in the vertebrate genome.
Collapse
|
14
|
Abstract
Serum amyloid A (SAA) proteins were isolated and named over 50 years ago. They are small (104 amino acids) and have a striking relationship to the acute phase response with serum levels rising as much as 1000-fold in 24 hours. SAA proteins are encoded in a family of closely-related genes and have been remarkably conserved throughout vertebrate evolution. Amino-terminal fragments of SAA can form highly organized, insoluble fibrils that accumulate in “secondary” amyloid disease. Despite their evolutionary preservation and dynamic synthesis pattern SAA proteins have lacked well-defined physiologic roles. However, considering an array of many, often unrelated, reports now permits a more coordinated perspective. Protein studies have elucidated basic SAA structure and fibril formation. Appreciating SAA’s lipophilicity helps relate it to lipid transport and metabolism as well as atherosclerosis. SAA’s function as a cytokine-like protein has become recognized in cell-cell communication as well as feedback in inflammatory, immunologic, neoplastic and protective pathways. SAA likely has a critical role in control and possibly propagation of the primordial acute phase response. Appreciating the many cellular and molecular interactions for SAA suggests possibilities for improved understanding of pathophysiology as well as treatment and disease prevention.
Collapse
Affiliation(s)
- George H Sack
- Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 615, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Johansen MD, de Silva K, Plain KM, Begg DJ, Whittington RJ, Purdie AC. Sheep and cattle exposed to Mycobacterium avium subspecies paratuberculosis exhibit altered total serum cholesterol profiles during the early stages of infection. Vet Immunol Immunopathol 2018; 202:164-171. [PMID: 30078591 DOI: 10.1016/j.vetimm.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/04/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022]
Abstract
Pathogenic mycobacteria such as Mycobacterium tuberculosis are capable of utilising cholesterol as a primary carbon-based energy source in vitro but there has been little research examining the significance of cholesterol in vivo. Johne's disease is a chronic enteric disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). This study sought to evaluate the levels of total serum cholesterol in the host following exposure to MAP. Blood samples were collected from both sheep and cattle prior to experimental challenge with MAP and at monthly intervals post-challenge. Total serum cholesterol levels in sheep challenged with MAP were significantly elevated at 9 weeks post-inoculation (wpi) in comparison to controls. When stratified based on disease outcome, there was no significant difference in serum cholesterol at the timepoints examined between MAP exposed sheep that were susceptible and those that were resistant to Johne's disease. There was a similar elevation in serum cholesterol at 9 wpi in cattle with histopathological gut lesions associated with disease or those with an early high IFN-γ response. Total serum cholesterol in exposed cattle was significantly lower when compared to controls at 13 wpi. Taken together, these results demonstrate changes in serum cholesterol following MAP exposure and disease progression which could reflect novel aspects of the pathogenesis and immune response associated with MAP infection in both sheep and cattle.
Collapse
Affiliation(s)
- M D Johansen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia
| | - K de Silva
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia
| | - K M Plain
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia
| | - D J Begg
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia
| | - R J Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia; School of Life & Environmental Sciences, The University of Sydney, Australia
| | - A C Purdie
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia.
| |
Collapse
|
16
|
Guo J, Chang G, Zhang K, Xu L, Jin D, Bilal MS, Shen X. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget 2018; 8:46769-46780. [PMID: 28596485 PMCID: PMC5564522 DOI: 10.18632/oncotarget.18151] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022] Open
Abstract
Rumen-derived lipopolysaccharide (LPS) is translocated from the rumen into the bloodstream when subacute ruminal acidosis (SARA) occurs following long-term feeding with a high-concentrate (HC) diet in dairy cows. The objective of this study was to investigate the mechanism of inflammatory responses in the liver caused by HC diet feeding. We found that SARA was induced in dairy cows when rumen pH below 5.6 lasted for at least 3 h/d with HC diet feeding. Also, the LPS levels in the portal and hepatic veins were increased significantly and hepatocytes were impaired as well as the liver function was inhibited during SARA condition. Meanwhile, the mRNA expression of immune genes including TNF receptor associated factor 6 (TRAF6), nuclear factor-kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinases (ERK) MAPK, Interleukin-1 (IL-1) and serum amyloid A (SAA) in the liver were significantly increased in SARA cows. Moreover, the phosphorylation level of NF-κB p65 and p38 MAPK proteins in the liver and the concentration of Tumor Necrosis Factor (TNF-α), Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) in peripheral blood were obviously increased under SARA condition. In conclusion, the inflammatory injury in the liver caused by LPS that traveled from the digestive tract to the liver through the portal vein after feeding with a HC diet.
Collapse
Affiliation(s)
- Junfei Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Kai Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Lei Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Di Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Muhammad Shahid Bilal
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
17
|
Sack GH, Zachara N, Rosenblum N, Talbot CC, Kreimer S, Cole R, McDonald TL. Serum amyloid A1 (SAA1) protein in human colostrum. FEBS Open Bio 2018; 8:435-441. [PMID: 29511620 PMCID: PMC5832974 DOI: 10.1002/2211-5463.12383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 11/13/2022] Open
Abstract
Proteins of the serum amyloid A (SAA) family have been remarkably conserved in evolution. Their biologic function(s) are not fully defined but they are likely to be a part of primordial host defense. We have detected a ∼ 12‐kDa protein reacting with antibodies against serum amyloid A (SAA) in human colostrum by western blotting. Mass spectrometry identified the reactive species as SAA1, previously identified as a prominent member of the acute‐phase response in serum. Our finding SAA1 in human colostrum contrasts with bovine, caprine and ovine colostrum where a species corresponding to putative SAA3 is uniformly present. SAA1 protein in human colostrum presumably contributes to neonatal protection.
Collapse
Affiliation(s)
- George H Sack
- Department of Biological Chemistry Johns Hopkins University School of Medicine Baltimore MD USA.,Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Natasha Zachara
- Department of Biological Chemistry Johns Hopkins University School of Medicine Baltimore MD USA
| | - Nadine Rosenblum
- Department of Obstetrics and Gynecology Johns Hopkins University School of Medicine Baltimore MD USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences Johns Hopkins University School of Medicine Baltimore MD USA
| | - Simion Kreimer
- Institute for Basic Biomedical Sciences Johns Hopkins University School of Medicine Baltimore MD USA
| | - Robert Cole
- Department of Biological Chemistry Johns Hopkins University School of Medicine Baltimore MD USA.,Institute for Basic Biomedical Sciences Johns Hopkins University School of Medicine Baltimore MD USA
| | - Thomas L McDonald
- Department of Pathology University of Nebraska Medical Center Omaha NE USA
| |
Collapse
|
18
|
Zhang Q, White HM. Regulation of inflammation, antioxidant production, and methyl-carbon metabolism during methionine supplementation in lipopolysaccharide-challenged neonatal bovine hepatocytes. J Dairy Sci 2017; 100:8565-8577. [DOI: 10.3168/jds.2017-12932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/29/2017] [Indexed: 01/21/2023]
|
19
|
Song Y, Zhao M, Cheng X, Shen J, Khound R, Zhang K, Su Q. CREBH mediates metabolic inflammation to hepatic VLDL overproduction and hyperlipoproteinemia. J Mol Med (Berl) 2017; 95:839-849. [PMID: 28455595 DOI: 10.1007/s00109-017-1534-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Metabolic inflammation is closely associated with hyperlipidemia and cardiovascular disease. However, the underlying mechanisms are not fully understood. The current study established that cAMP-responsive-element-binding protein H (CREBH), an acute-phase transcription factor, enhances very-low-density lipoprotein (VLDL) assembly and secretion by upregulating apolipoprotein B (apoB) expression and contributes to metabolic inflammation-associated hyperlipoproteinemia induced by TNFα, lipopolysaccharides (LPS), and high-fat diet (HFD) in mice. Specifically, overexpression of CREBH significantly induced mRNA and protein expression of apoB in McA-7777 cells. Luciferase assay further revealed that the presence of CREBH could significantly increase the activity of the apoB gene promoter. In contrast, genetic depletion of CREBH in mice resulted in significant reduction in expression of hepatic apoB mRNA. Challenging mice with an acute fat load led to upregulation of triglyceride (TG)-rich lipoprotein secretion in wild type mice, but not in CREBH-null mice. TNFα treatment activated hepatic CREBH expression, which in turn enhanced hepatic apoB biosynthesis and VLDL secretion. Metabolic inflammation induced by LPS or HFD also resulted in overproduction of apoB and hyperlipoproteinemia in wild type mice, but not in CREBH-null mice. This study demonstrates that CREBH could be a mediator between metabolic inflammation and hepatic VLDL overproduction in chronic metabolic disorders. This novel finding establishes CREBH as the first transcription factor that regulates apoB expression on the transcriptional level and the subsequent VLDL biosynthesis in response to metabolic inflammation. The study also provides novel insight into the pathogenesis of hyperlipidemia in metabolic syndrome. KEY MESSAGES CREBH mediates inflammatory signaling to VLDL overproduction in metabolic stress. Activation of CREBH in inflammation enhances mRNA and protein expression of apoB. CREBH presents a potential novel therapeutic target for hyperlipoproteinemia.
Collapse
Affiliation(s)
- Yongyan Song
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Miaoyun Zhao
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Xiao Cheng
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Jing Shen
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Rituraj Khound
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI, 48201, USA
| | - Qiaozhu Su
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA.
| |
Collapse
|
20
|
Aspichueta P, Pérez-Agote B, Pérez S, Ochoa B, Fresnedo O. Impaired response of VLDL lipid and apoB secretion to endotoxin in the fasted rat liver. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial infection elicits hypertriglyceridemia attributed to increased hepatic production of very low-density lipoprotein (VLDL) particles and decreased peripheral metabolism. The mechanisms underlying VLDL overproduction in sepsis are as yet unclear, but seem to be fed/fasted state-dependent. To learn more about this, we investigated hepatocytes isolated from fasted rats, made endotoxic by 1 mg/kg lipopolysaccharide (LPS) injection, for their ability to secrete the VLDL protein and lipid components. The results were then related to lipogenesis markers and expression of genes critical to VLDL biogenesis. Endotoxic rats showed increased levels of serum VLDL-apoB (10-fold), -triglyceride (2-fold), and -cholesterol (2-fold), whereby circulating VLDL were lipid-poor particles. Similarly, VLDL-apoB secretion by isolated endotoxic hepatocytes was ~85% above control, whereas marginal changes in the output of VLDL-lipid classes occurred. This was accompanied by a substantial rise in apoB and a moderate rise in MTP mRNA levels, but with basal de novo formation and efficiency of secretion of triglycerides, cholesterol and cholesteryl esters. These results indicate that during periods of food restriction, endotoxin does not enhance lipid provision to accomplish normal lipidation of overproduced apoB molecules, though this does occur to a sufficient extent to pass the proteasome checkpoint and secretion of lipid-poor, type 2 VLDL takes place.
Collapse
Affiliation(s)
- Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Begoña Pérez-Agote
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Silvia Pérez
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Begoña Ochoa
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain,
| | - Olatz Fresnedo
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| |
Collapse
|
21
|
WANG MIN, ZHAO SHUIPING, TAN MINGYUE. bZIP transmembrane transcription factor CREBH: Potential role in non-alcoholic fatty liver disease (Review). Mol Med Rep 2015; 13:1455-62. [DOI: 10.3892/mmr.2015.4749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
|
22
|
Lee SE, West KP, Cole RN, Schulze KJ, Christian P, Wu LSF, Yager JD, Groopman J, Ruczinski I. Plasma Proteome Biomarkers of Inflammation in School Aged Children in Nepal. PLoS One 2015; 10:e0144279. [PMID: 26636573 PMCID: PMC4670104 DOI: 10.1371/journal.pone.0144279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
Inflammation is a condition stemming from complex host defense and tissue repair mechanisms, often simply characterized by plasma levels of a single acute reactant. We attempted to identify candidate biomarkers of systemic inflammation within the plasma proteome. We applied quantitative proteomics using isobaric mass tags (iTRAQ) tandem mass spectrometry to quantify proteins in plasma of 500 Nepalese children 6–8 years of age. We evaluated those that co-vary with inflammation, indexed by α-1-acid glycoprotein (AGP), a conventional biomarker of inflammation in population studies. Among 982 proteins quantified in >10% of samples, 99 were strongly associated with AGP at a family-wise error rate of 0.1%. Magnitude and significance of association varied more among proteins positively (n = 41) than negatively associated (n = 58) with AGP. The former included known positive acute phase proteins including C-reactive protein, serum amyloid A, complement components, protease inhibitors, transport proteins with anti-oxidative activity, and numerous unexpected intracellular signaling molecules. Negatively associated proteins exhibited distinct differences in abundance between secretory hepatic proteins involved in transporting or binding lipids, micronutrients (vitamin A and calcium), growth factors and sex hormones, and proteins of largely extra-hepatic origin involved in the formation and metabolic regulation of extracellular matrix. With the same analytical approach and the significance threshold, seventy-two out of the 99 proteins were commonly associated with CRP, an established biomarker of inflammation, suggesting the validity of the identified proteins. Our findings have revealed a vast plasma proteome within a free-living population of children that comprise functional biomarkers of homeostatic and induced host defense, nutrient metabolism and tissue repair, representing a set of plasma proteins that may be used to assess dynamics and extent of inflammation for future clinical and public health application.
Collapse
Affiliation(s)
- Sun Eun Lee
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Keith P. West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Kerry J. Schulze
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lee Shu-Fune Wu
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - James D. Yager
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - John Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
23
|
Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, Dolezal T. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS Biol 2015; 13:e1002135. [PMID: 25915062 PMCID: PMC4411001 DOI: 10.1371/journal.pbio.1002135] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/18/2015] [Indexed: 12/20/2022] Open
Abstract
Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. A study of the fruit fly's response to parasitoid wasp eggs reveals that immune cells selfishly release adenosine as a signal to trigger a systemic metabolic switch, thereby suppressing nonimmune processes and securing energy and nutrients for immune activity. Read the Primer. The immune response is energetically costly and often requires adaption of the whole organism to ensure it receives enough energy. It is not well understood how distribution of energy resources within the organism is regulated during an immune response. To understand this better, we used parasitoid wasp infection of fruit fly larvae—the host larvae have 48 h before they pupate to destroy the infecting “alien” or face destruction by the parasitoid that will consume the developing pupa. Here we find a signal, generated by the host immune cells, which mediates a systemic energy switch. This signal—adenosine—suppresses processes driving larval to pupal development of the host, thereby freeing up energy for the immune system. We show that the resulting developmental delay in the fruit fly larvae is crucial for an efficient immune response; without the adenosine signal, resistance to the parasitoid drops drastically. Generation of this signal by immune cells demonstrates that in response to external stressors, the immune system can mobilize reallocation to itself of energy and nutrients from the rest of the organism.
Collapse
Affiliation(s)
- Adam Bajgar
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Katerina Kucerova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Lucie Jonatova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Ales Tomcala
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Ivana Schneedorferova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
| | - Jan Okrouhlik
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Tomas Dolezal
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
24
|
Bresnahan KA, Tanumihardjo SA. Undernutrition, the acute phase response to infection, and its effects on micronutrient status indicators. Adv Nutr 2014; 5:702-11. [PMID: 25398733 PMCID: PMC4224207 DOI: 10.3945/an.114.006361] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Infection and undernutrition are prevalent in developing countries and demonstrate a synergistic relation. Undernutrition increases infection-related morbidity and mortality. The acute phase response (APR) is an innate, systemic inflammatory reaction to a wide array of disruptions in a host's homeostasis, including infection. Released from immune cells in response to deleterious stimuli, proinflammatory cytokines act on distant tissues to induce behavioral (e.g., anorexia, weakness, and fatigue) and systemic effects of the APR. Cytokines act to increase energy and protein requirements to manifest fever and support hepatic acute phase protein (APP) production. Blood concentrations of glucose and lipid are augmented to provide energy to immune cells in response to cytokines. Additionally, infection decreases intestinal absorption of nutrients and can cause direct loss of micronutrients. Traditional indicators of iron, zinc, and vitamin A status are altered during the APR, leading to inaccurate estimations of deficiency in populations with a high or unknown prevalence of infection. Blood concentrations of APPs can be measured in nutrition interventions to assess the time stage and severity of infection and correct for the APR; however, standardized cutoffs for nutrition applications are needed. Protein-energy malnutrition leads to increased gut permeability to pathogens, abnormal immune cell populations, and impaired APP response. Micronutrient deficiencies cause specific immune impairments that affect both innate and adaptive responses. This review describes the antagonistic interaction between the APR and nutritional status and emphasizes the need for integrated interventions to address undernutrition and to reduce disease burden in developing countries.
Collapse
|
25
|
BP5 regulated B cell development promoting anti-oxidant defence. Amino Acids 2013; 46:209-22. [PMID: 24292101 DOI: 10.1007/s00726-013-1620-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/03/2013] [Indexed: 12/16/2022]
Abstract
Bursa of Fabricius is the humoral immune system for B cell differentiation and antibody production. Bursopentine (BP5) is a novel immunomodulatory peptide and significantly stimulated an antigen-specific immune response in mice. BP5 was also found to protect LPS-activated murine peritoneal macrophages from oxidative stress. In this study, the effects of BP5 on B cell development were examined. The results suggested that BP5 markedly promoted B cell development by increasing CFU-pre B, and affected the redox homeostasis regulation of B cells. To study the molecular mechanism of effect of bursal-derived BP5, this research utilized 2D-E and MALDI-TOF/TOF to analyze the differentially expressed proteins of BP5-treated WEHI-231 cells. The results showed that BP5 affected the redox homeostasis regulation of WEHI-231 cells and induced alterations in the protein expression profiles related to the oxidoreduction coenzyme metabolic process, precursor metabolites and energy, proteolysis, RNA splicing and translation and cellular process, respectively. BP5 also induced glucose-6-phosphate dehydrogenase (G6PD) activity, an essential anti-oxidant cofactor. We found that the redox homeostasis regulation effect of BP5 was reduced in G6PD-deficient cells. These data suggested that BP5 affected the redox balance toward reducing conditions by promoting the expression of G6PD, which in turn regulated the glutathione redox cycle and other processes.
Collapse
|
26
|
Lee MS, Kim B, Lee SM, Cho WC, Lee WB, Kang JS, Choi UY, Lyu J, Kim YJ. Genome-wide profiling of in vivo LPS-responsive genes in splenic myeloid cells. Mol Cells 2013; 35:498-513. [PMID: 23666259 PMCID: PMC3887871 DOI: 10.1007/s10059-013-2349-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharide (LPS), the major causative agent of bacterial sepsis, has been used by many laboratories in genome-wide expression profiling of the LPS response. However, these studies have predominantly used in vitro cultured macrophages (Macs), which may not accurately reflect the LPS response of these innate immune cells in vivo. To overcome this limitation and to identify inflammatory genes in vivo, we have profiled genome-wide expression patterns in non-lymphoid, splenic myeloid cells extracted directly from LPS-treated mice. Genes encoding factors known to be involved in mediating or regulating inflammatory processes, such as cytokines and chemokines, as well as many genes whose immunological functions are not well known, were strongly induced by LPS after 3 h or 8 h of treatment. Most of the highly LPS-responsive genes that we randomly selected from the microarray data were independently confirmed by quantitative RT-PCR, implying that our microarray data are quite reliable. When our in vivo data were compared to previously reported microarray data for in vitro LPS-treated Macs, a significant proportion (∼20%) of the in vivo LPS-responsive genes defined in this study were specific to cells exposed to LPS in vivo, but a larger proportion of them (∼60%) were influenced by LPS in both in vitro and in vivo settings. This result indicates that our in vivo LPS-responsive gene set includes not only previously identified in vitro LPS-responsive genes but also novel LPS-responsive genes. Both types of genes would be a valuable resource in the future for understanding inflammatory responses in vivo.
Collapse
Affiliation(s)
- Myeong Sup Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Byungil Kim
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Sun-Min Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Woo-Cheul Cho
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Un Yung Choi
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Jaemyun Lyu
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University, Yonsei University, Seoul 120–749,
Korea
- Department of Integrated OMICS for Biomedical Sciences, World Class University, Yonsei University, Seoul 120–749,
Korea
| |
Collapse
|
27
|
A systems biology examination of the human female genital tract shows compartmentalization of immune factor expression. J Virol 2013; 87:5141-50. [PMID: 23449785 DOI: 10.1128/jvi.03347-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many mucosal factors in the female genital tract (FGT) have been associated with HIV susceptibility, but little is known about their anatomical distribution in the FGT compartments. This study comprehensively characterized global immune factor expression in different tissue sites of the lower and upper FGT by using a systems biology approach. Tissue sections from the ectocervix, endocervix, and endometrium from seven women who underwent hysterectomy were analyzed by a combination of quantitative mass spectrometry and immunohistochemical staining. Of the >1,000 proteins identified, 281 were found to be differentially abundant in different tissue sites. Hierarchical clustering identified four major functional pathways distinguishing compartments, including innate immune pathways (acute-phase response, LXR/RXR) and development (RhoA signaling, gluconeogenesis), which were enriched in the ectocervix/endocervix and endometrium, respectively. Immune factors important for HIV susceptibility, including antiproteases, immunoglobulins, complement components, and antimicrobial factors, were most abundant in the ectocervix/endocervix, while the endometrium had a greater abundance of certain factors that promote HIV replication. Immune factor abundance is heterogeneous throughout the FGT and shows unique immune microenvironments for HIV based on the exposure site. This may have important implications for early events in HIV transmission and site-specific susceptibility to HIV in the FGT.
Collapse
|
28
|
Baurhoo B, Ferket P, Ashwell CM, de Oliviera J, Zhao X. Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation. PLoS One 2012; 7:e30323. [PMID: 22272335 PMCID: PMC3260269 DOI: 10.1371/journal.pone.0030323] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/27/2011] [Indexed: 12/21/2022] Open
Abstract
Background Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS) from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. Methods and Principal Findings Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic) on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK) and liver glycolysis (ENO2), and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS) down-regulation and ATP citrate lyase (ACLY) and malic enzyme (ME) up-regulations. However, MOS host's lower energy demands were sufficiently met through TCA citrate-derived energy, as indicated by CS up-regulation. Conclusions MOS terminated inflammation earlier than VIRG and reduced glucose mobilization, thus representing a novel biological strategy to alleviate Salmonella-induced systemic inflammation in human and animal hosts.
Collapse
Affiliation(s)
- Bushansingh Baurhoo
- Department of Animal Science, McGill University, Quebec, Canada
- * E-mail: (BB); (XZ)
| | - Peter Ferket
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Chris M. Ashwell
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jean de Oliviera
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Xin Zhao
- Department of Animal Science, McGill University, Quebec, Canada
- * E-mail: (BB); (XZ)
| |
Collapse
|
29
|
Abstract
Acute phase proteins (APP) were first identified in the early 1900s as early reactants to infectious disease. They are now understood to be an integral part of the acute phase response (APR) which is the cornerstone of innate immunity. APP have been shown to be valuable biomarkers as increases can occur with inflammation, infection, neoplasia, stress, and trauma. All animals--from fish to mammals--have demonstrable APP, but the type of major APP differs by species. While the primary application of these proteins in a clinical setting is prognostication, studies in animals have demonstrated relevance to diagnosis and detection and monitoring for subclinical disease. APP have been well documented in laboratory, companion, and large animals. With the advent of standardized and automated assays, these biomarkers are available for use in all fields of veterinary medicine as well as basic and clinical research.
Collapse
|
30
|
Kotas ME, Lee HY, Gillum MP, Annicelli C, Guigni BA, Shulman GI, Medzhitov R. Impact of CD1d deficiency on metabolism. PLoS One 2011; 6:e25478. [PMID: 21980475 PMCID: PMC3183002 DOI: 10.1371/journal.pone.0025478] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/05/2011] [Indexed: 01/29/2023] Open
Abstract
Invariant natural killer T cells (iNKTs) are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.
Collapse
Affiliation(s)
- Maya E Kotas
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America.
| | | | | | | | | | | | | |
Collapse
|
31
|
Marcil V, Seidman E, Sinnett D, Boudreau F, Gendron FP, Beaulieu JF, Ménard D, Precourt LP, Amre D, Levy E. Modification in oxidative stress, inflammation, and lipoprotein assembly in response to hepatocyte nuclear factor 4alpha knockdown in intestinal epithelial cells. J Biol Chem 2010; 285:40448-60. [PMID: 20871093 DOI: 10.1074/jbc.m110.155358] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor mainly expressed in the liver, intestine, kidney, and pancreas. Many of its hepatic and pancreatic functions have been described, but limited information is available on its role in the gastrointestinal tract. The objectives of this study were to evaluate the anti-inflammatory and antioxidant functions of HNF4α as well as its implication in intestinal lipid transport and metabolism. To this end, the HNF4A gene was knocked down by transfecting Caco-2 cells with a pGFP-V-RS lentiviral vector containing an shRNA against HNF4α. Inactivation of HNF4α in Caco-2 cells resulted in the following: (a) an increase in oxidative stress as demonstrated by the levels of malondialdehyde and conjugated dienes; (b) a reduction in secondary endogenous antioxidants (catalase, glutathione peroxidase, and heme oxygenase-1); (c) a lower protein expression of nuclear factor erythroid 2-related factor that controls the antioxidant response elements-regulated antioxidant enzymes; (d) an accentuation of cellular inflammatory activation as shown by levels of nuclear factor-κB, interleukin-6, interleukin-8, and leukotriene B4; (e) a decrease in the output of high density lipoproteins and of their anti-inflammatory and anti-oxidative components apolipoproteins (apo) A-I and A-IV; (f) a diminution in cellular lipid transport revealed by a lower cellular secretion of chylomicrons and their apoB-48 moiety; and (g) alterations in the transcription factors sterol regulatory element-binding protein 2, peroxisome proliferator-activated receptor α, and liver X receptor α and β. In conclusion, HNF4α appears to play a key role in intestinal lipid metabolism as well as intestinal anti-oxidative and anti-inflammatory defense mechanisms.
Collapse
Affiliation(s)
- Valérie Marcil
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal H3G 1A4, Quebec
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Feingold KR, Shigenaga JK, Patzek SM, Chui LG, Moser A, Grunfeld C. Endotoxin, zymosan, and cytokines decrease the expression of the transcription factor, carbohydrate response element binding protein, and its target genes. Innate Immun 2010; 17:174-82. [PMID: 20100709 DOI: 10.1177/1753425909357578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Carbohydrate response element binding protein (ChREBP) is a recently discovered transcription factor whose levels and activity are increased by glucose leading to the activation of target genes, which include acetyl-CoA carboxylase, fatty acid synthase, and liver-type pyruvate kinase. Here, we demonstrate that lipopolysaccharide (LPS) treatment causes a marked decrease in ChREBP mRNA and protein levels in the liver of mice fed a normal chow diet or in mice fasted for 24 h and then re-fed a high carbohydrate diet. This decrease occurs rapidly and is a sensitive response (half-maximal dose 0.1 μg/mouse). The decrease in ChREBP is accompanied by a decrease in the expression of ChREBP target genes. Zymosan and turpentine treatment also decrease hepatic ChREBP levels and the expression of its target genes. Additionally, tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) decrease liver ChREBP expression both in vivo and in Hep3B cells in culture. Finally, LPS decreased ChREBP expression in muscle and adipose tissue. These studies demonstrate that ChREBP is down-regulated during the acute phase response resulting in alterations in the expression of ChREBP regulated target genes. Thus, ChREBP joins a growing list of transcription factors that are regulated during the acute phase response.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California-San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Bascands JL, Bachvarova M, Neau E, Schanstra JP, Bachvarov D. Molecular determinants of LPS-induced acute renal inflammation: Implication of the kinin B1 receptor. Biochem Biophys Res Commun 2009; 386:407-12. [DOI: 10.1016/j.bbrc.2009.06.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/26/2022]
|
34
|
Depke M, Steil L, Domanska G, Völker U, Schütt C, Kiank C. Altered hepatic mRNA expression of immune response and apoptosis-associated genes after acute and chronic psychological stress in mice. Mol Immunol 2009; 46:3018-28. [PMID: 19592098 DOI: 10.1016/j.molimm.2009.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/16/2009] [Indexed: 01/16/2023]
Abstract
Using a combination of transcriptional profiling and Ingenuity Pathway Analysis (IPA, www.ingenuity.com) we investigated acute and chronic psychological stress induced alterations of hepatic gene expression of BALB/c mice. Already after a 2-h single stress session, up-regulation of several LPS and glucocorticoid-sensitive immune response genes and markers related to oxidative stress and apoptotic processes were observed. Support for the existence of oxidative stress was gained by measuring increased protein carbonylation, but no alterations of immune responsiveness or cell death were measured in mice after acute stress compared to the control group. When animals were repeatedly stressed during 4.5-days, we found reduced transcription of antigen presentation molecules, altered mRNA levels of immune cell signaling mediators and persisting high expression of apoptosis-related genes. These alterations were associated with a measurable immune suppression characterized by a reduced ability to clear experimental Salmonella typhimurium infection from the liver and a heightened hepatocyte apoptosis. Moreover, genes associated with anti-oxidative functions and regenerative processes were induced in the hepatic tissue of chronically stressed mice. These findings indicate that modulation of the immune response and of apoptosis-related genes is initiated already during a single acute stress exposure. However, immune suppression will only manifest in repeatedly stressed mice which additionally show induction of protective and liver regenerative genes to prevent further hepatocyte damage.
Collapse
Affiliation(s)
- Maren Depke
- Interfaculty Institute of Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The acute-phase response is characterized by increased circulating levels of acute-phase proteins (APPs) generated by the liver. During bacterial pneumonia, APPs correlate with the severity of disease, serve as biomarkers, and are functionally significant. The kinetics and regulatory mechanisms of APP induction in the liver during lung infection have yet to be defined. Here we show that APP mRNA transcription is induced in the livers of mice whose lungs are infected with either Escherichia coli or Streptococcus pneumoniae, and that in both cases this induction occurs in tandem with activation in the liver of the transcription factors signal transducer and activator of transcription 3 (STAT3) and NF-kappaB RelA. Interleukin-6 (IL-6) deficiency inhibited the activation of STAT3 and the induction of select APPs in the livers of pneumonic mice. Furthermore, liver RelA activation and APP induction were reduced for mice lacking all signaling receptors for tumor necrosis factor alpha and IL-1. In a murine hepatocyte cell line, knockdown of either STAT3 or RelA by small interfering RNA inhibited cytokine induction of the APP serum amyloid A-1, demonstrating that both transcription factors were independently essential for the expression of this gene. These data suggest that during pneumonia caused by gram-negative or gram-positive bacteria, the expression of APPs in the liver depends on STAT3 activation by IL-6 and on RelA activation by early-response cytokines. These signaling axes may be critical for integrating systemic responses to local infection, balancing antibacterial host defenses and inflammatory injury during acute bacterial pneumonia.
Collapse
|
36
|
Maurer KJ, Carey MC, Fox JG. Roles of infection, inflammation, and the immune system in cholesterol gallstone formation. Gastroenterology 2009; 136:425-40. [PMID: 19109959 PMCID: PMC2774219 DOI: 10.1053/j.gastro.2008.12.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 12/12/2022]
Abstract
Cholesterol gallstone formation is a complex process mediated by genetic and environmental factors. Until recently, the role of the immune system in the pathogenesis of cholesterol gallstones was not considered a valid topic of research interest. This review collates and interprets an extensive body of basic literature, some of which is not customarily considered to be related to cholelithogenesis, describing the multiple facets of the immune system that appear to be involved in cholesterol cholelithogenesis. A thorough understanding of the immune interactions with biliary lipids and cholecystocytes should modify current views of the pathogenesis of cholesterol gallstones, promote further research on the pathways involved, and lead to novel diagnostic tools, treatments, and preventive measures.
Collapse
Affiliation(s)
- Kirk J Maurer
- Division of Gastroenterology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
37
|
Jiang L, Sørensen P, Røntved C, Vels L, Ingvartsen KL. Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide. BMC Genomics 2008; 9:443. [PMID: 18816405 PMCID: PMC2576255 DOI: 10.1186/1471-2164-9-443] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 09/24/2008] [Indexed: 02/08/2023] Open
Abstract
Background Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment. Results Approximately 20% target transcripts were differentially expressed and eight co-expression clusters were identified. Each cluster had a unique time-dependent expression profile and consisted of genes involved in different biological processes. Our findings suggest that APR in the liver is triggered by the activation of signaling pathways that are involved with common and hepatic-specific transcription factors and pro-inflammatory cytokines. These mediators in turn stimulated or repressed the expression of genes encoding acute phase proteins (APP), collectins, complement components, chemokines, cell adhesion molecules and key metabolic enzymes during the APR. Hormones, anti-inflammatory and other hypothalamus-pituitary-adrenal axis (HPAA) linked mediators also seemed to participate in APR. Conclusion Performing global gene expression analysis on liver tissue from IM LPS treated cows verified that the liver plays a major role in the APR of E. coli mastitis, and that the bovine hepatic APR follows the same pattern as other mammals when they are challenged with LPS. Our work presents the first insight into the dynamic changes in gene expression in the liver that influences the induction, kinetics and clinical outcome of the APR in dairy cows.
Collapse
Affiliation(s)
- Li Jiang
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, DK-8830 Tjele, Denmark
| | | | | | | | | |
Collapse
|
38
|
Malato Y, Sander LE, Liedtke C, Al-Masaoudi M, Tacke F, Trautwein C, Beraza N. Hepatocyte-specific inhibitor-of-kappaB-kinase deletion triggers the innate immune response and promotes earlier cell proliferation during liver regeneration. Hepatology 2008; 47:2036-50. [PMID: 18393321 DOI: 10.1002/hep.22264] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Nuclear factor kappaB (NF-kappaB) is one of the main transcription factors involved in liver regeneration after partial hepatectomy (PH). It is activated upon IkappaB phosphorylation by the IkappaB kinase (IKK) complex comprising inhibitor of kappaB kinase 1 (IKK1), inhibitor of kappaB kinase 2 (IKK2), and nuclear factor-B essential modifier (NEMO). We studied the impact of hepatocyte-specific IKK2 deletion during liver regeneration. A 70% PH was performed on IKK2(f/f) (wild-type) and IKK2DeltaLPCmice (hepatocyte-specific IKK2 knockout mice). PH in IKK2DeltaLPC compared with IKK2(f/f) mice resulted in weaker and delayed NF-kappaB activation in hepatocytes, while nonparenchymal liver cells showed earlier NF-kappaB activation and higher tumor necrosis factor expression. Additionally, these animals showed increased and earlier serum amyloid A and chemotactic cytokine L-1 levels followed by enhanced polymorphonuclear cell recruitment to the liver. These results correlated with earlier Jun kinase activity, c-myc expression, and matrix metalloproteinase-9 activity, suggesting earlier priming in IKK2DeltaLPC mice after PH. These data preceded a more rapid cell cycle progression and earlier hepatocyte proliferation as evidenced through cyclin and 5-bromo-2-deoxyuridine analysis. Interestingly, despite faster G(1)/S progression, IKK2DeltaLPC mice exhibited an enduring mitosis phase, because mitotic bodies were still observed at later stages after PH. CONCLUSION We demonstrate that PH in IKK2DeltaLPC mice triggers a more rapid and pronounced inflammatory response in nonparenchymal liver cells, which triggers earlier hepatocyte proliferation.
Collapse
Affiliation(s)
- Yann Malato
- Medical Clinic III, University Hospital Aachen (RWTH), Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Mancia A, Warr GW, Chapman RW. A transcriptomic analysis of the stress induced by capture-release health assessment studies in wild dolphins (Tursiops truncatus). Mol Ecol 2008; 17:2581-9. [PMID: 18466235 DOI: 10.1111/j.1365-294x.2008.03784.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The health of wild bottlenose dolphins (Tursiops truncatus) is typically evaluated by the study of animals that are captured and released back into the wild after examination. The impact of such studies on gene expression in peripheral blood cells was investigated using microarray and quantitative polymerase chain reaction methods. Significantly increased expression was observed in two major classes of genes: (i) energy metabolism, and (ii) responsiveness to stress and trauma, the latter effect suggesting the initiation of an acute-phase response. The value of data obtained in capture/release studies may need to be weighed against the potential physiological impacts of such studies.
Collapse
Affiliation(s)
- A Mancia
- Marine Biomedicine and Environmental Science Center, Medical University of South Carolina, 221 Fort Johnson Road, Charleston, SC 29412, USA
| | | | | |
Collapse
|
40
|
Youn MY, Yoo HS, Kim MJ, Hwang SY, Choi Y, Desiderio SV, Yoo JY. hCTR9, a component of Paf1 complex, participates in the transcription of interleukin 6-responsive genes through regulation of STAT3-DNA interactions. J Biol Chem 2007; 282:34727-34. [PMID: 17911113 DOI: 10.1074/jbc.m705411200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAF, which is composed of Paf1, Cdc73, Ctr9, Leo1, and Rtf1, is a novel complex with multiple functions in transcription-related activities. The PAF complex interacts with histone-modifying enzymes and RNA polymerase II to regulate transcription. With general transcription regulatory potential in yeast, Hyrax/Cdc73 has been reported to associate with beta-catenin to control Wnt/Wg signal-specific transcription in Drosophila. Here, we present the first evidence of IL-6 signal-specific transcriptional regulation by SH2BP1/CTR9 in mammals. Upon LPS injection of mice, we observed transient induction of the mammalian PAF complex in the liver. Inhibition of CTR9 specifically abrogated expression of IL-6-responsive genes, but had no effect on genes constitutively expressed or induced by interferon-beta, TNFalpha, or IL-1beta. The PAF complex was found in the promoter regions of IL-6-responsive HP and FGGgamma, but not in the promoter region of constitutively active GAPDH. Transcriptional activation by STAT3 was inhibited when CTR9 siRNA was introduced, whereas transcriptional activation was enhanced by mCtr9 overexpression. IL-6-activated Stat3 was found to co-localize and interact with CTR9. In CTR9-depleted cells, decreased STAT3 association with the promoter regions, as well as impaired K4-trimethylation of histone H3 in the coding regions, of target genes was observed. These data suggest that CTR9 participates in the transcription of IL-6-responsive genes through the regulation of DNA association of STAT3 and modification of histone methylation.
Collapse
Affiliation(s)
- Min-Young Youn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
He M, Rutledge SL, Kelly DR, Palmer CA, Murdoch G, Majumder N, Nicholls RD, Pei Z, Watkins PA, Vockley J. A new genetic disorder in mitochondrial fatty acid beta-oxidation: ACAD9 deficiency. Am J Hum Genet 2007; 81:87-103. [PMID: 17564966 PMCID: PMC1950923 DOI: 10.1086/519219] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/10/2007] [Indexed: 11/03/2022] Open
Abstract
The acyl-CoA dehydrogenases are a family of multimeric flavoenzymes that catalyze the alpha,beta -dehydrogenation of acyl-CoA esters in fatty acid beta -oxidation and amino acid catabolism. Genetic defects have been identified in most of the acyl-CoA dehydrogenases in humans. Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified acyl-CoA dehydrogenase that demonstrates maximum activity with unsaturated long-chain acyl-CoAs. We now report three cases of ACAD9 deficiency. Patient 1 was a 14-year-old, previously healthy boy who died of a Reye-like episode and cerebellar stroke triggered by a mild viral illness and ingestion of aspirin. Patient 2 was a 10-year-old girl who first presented at age 4 mo with recurrent episodes of acute liver dysfunction and hypoglycemia, with otherwise minor illnesses. Patient 3 was a 4.5-year-old girl who died of cardiomyopathy and whose sibling also died of cardiomyopathy at age 21 mo. Mild chronic neurologic dysfunction was reported in all three patients. Defects in ACAD9 mRNA were identified in the first two patients, and all patients manifested marked defects in ACAD9 protein. Despite a significant overlap of substrate specificity, it appears that ACAD9 and very-long-chain acyl-CoA dehydrogenase are unable to compensate for each other in patients with either deficiency. Studies of the tissue distribution and gene regulation of ACAD9 and very-long-chain acyl-CoA dehydrogenase identify the presence of two independently regulated functional pathways for long-chain fat metabolism, indicating that these two enzymes are likely to be involved in different physiological functions.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase, Long-Chain/analysis
- Acyl-CoA Dehydrogenase, Long-Chain/chemistry
- Acyl-CoA Dehydrogenase, Long-Chain/genetics
- Acyl-CoA Dehydrogenase, Long-Chain/isolation & purification
- Adolescent
- Base Sequence
- Brain/enzymology
- Child
- DNA Mutational Analysis
- Fatty Acids/metabolism
- Female
- Gene Expression Regulation
- Genome, Human
- Humans
- Lipid Metabolism, Inborn Errors/genetics
- Male
- Mitochondrial Diseases/genetics
- Molecular Sequence Data
- Muscle, Skeletal/enzymology
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Substrate Specificity
- Tissue Distribution
Collapse
Affiliation(s)
- M He
- Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fon Tacer K, Kuzman D, Seliskar M, Pompon D, Rozman D. TNF-alpha interferes with lipid homeostasis and activates acute and proatherogenic processes. Physiol Genomics 2007; 31:216-27. [PMID: 17566076 DOI: 10.1152/physiolgenomics.00264.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction between disrupted lipid homeostasis and immune response is implicated in the pathogenesis of several diseases, but the molecular bridges between the major players are still a matter of controversy. Our systemic study of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) in the livers of mice exposed to 20-h cytokine/fasting for the first time shows that TNF-alpha interferes with adaptation to fasting and activates harmful proatherogenic pathways, partially through interaction with the insulin-Insig-sterol regulatory element binding protein (Srebp) signaling pathway. In addition to the increased expression of acute-phase inflammatory genes, the most prominent alterations represent modified lipid homeostasis observed on the gene expression and metabolite levels. These include reduction of HDL-cholesterol, increase of LDL-cholesterol, and elevated expression of cholesterogenic genes, accompanied by increase of potentially harmful precholesterol metabolites and suppression of cholesterol elimination through bile acids, likely by farnesoid X receptor-independent mechanisms. On the transcriptional level, a shift from fatty oxidation toward fatty acid synthesis is observed. The concept of the influence of TNF-alpha on the Srebp regulatory network, followed by downstream effects on sterol metabolism, is novel. Observed acute alterations in lipid metabolism are in agreement with chronic disturbances found in patients.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Center for Functional Genomics and Biochips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
43
|
Bakács T, Mehrishi JN, Szabados T, Varga L, Szabó M, Tusnády G. T Cells Survey the Stability of the Self: A Testable Hypothesis on the Homeostatic Role of TCR-MHC Interactions. Int Arch Allergy Immunol 2007; 144:171-82. [PMID: 17541288 DOI: 10.1159/000103282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 04/11/2007] [Indexed: 01/20/2023] Open
Abstract
In the lifetime of an individual, every single gene will have undergone mutation on about 10(10) separate occasions. Nevertheless, cancer occurs mainly with advancing age. Here, we hypothesize that the evolutionary pressure driving the creation of the T cell receptor (TCR) repertoire was primarily the homeostatic surveillance of the genome. The subtly variable T cells may in fact constitute an evolutionary link between the invariable innate and hypervariable B cell systems. The new model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected TCR and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. Notwithstanding, the 'homeostatic role of T cells' model offers a more realistic explanation as to how a naïve clonal immune system can cope with the much faster replicating pathogens, despite a limited repertoire that is capable of facing only a small fraction of the vast antigenic universe at a time.
Collapse
Affiliation(s)
- Tibor Bakács
- Department of Probability, Alfred Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
44
|
Pastor Rojo O, López San Román A, Albéniz Arbizu E, de la Hera Martínez A, Ripoll Sevillano E, Albillos Martínez A. Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflamm Bowel Dis 2007; 13:269-77. [PMID: 17206721 DOI: 10.1002/ibd.20019] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND In inflammatory bowel disease (IBD), enhanced inflammatory activity in the gut is thought to increase the risk of bacterial translocation and endotoxemia. By searching for signs of endotoxin-signaling cascade activation, including augmented levels of endotoxin, lipopolysaccharide-binding protein (LBP), and soluble CD14 receptor (sCD14), this prospective study sought to establish whether endotoxemia could contribute to greater clinical activity of disease. METHODS Concentrations of plasma endotoxin, LBP, sCD14, several cytokines, acute phase proteins and clinical activity indices were determined in 104 patients with Crohn's disease (CD) and 52 patients with ulcerative colitis (UC). RESULTS Endotoxemia was present in 48% of the patients with CD and in 28% of the patients with UC. The mean LBP was higher in patients with active CD (23.1 +/- 13.7 microg/mL) and UC (21.4 +/- 10.9 microg/mL) than in healthy controls (7.2 +/- 1.8 microg/mL; P < 0.01). Elevated serum concentrations of endotoxin and LBP were even detected in patients with inactive CD. Among the patients with active IBD, those with higher endotoxin levels had the worst clinical activity scores and the highest LBP levels. Treatment normalized LBP concentrations, from 29.1 +/- 13.0 to 15.2 +/- 7.3 microg/mL; (P < 0.05) in active CD and from 21.7 +/- 9.8 to 13.6 +/- 5.7 microg/mL; (P < 0.01) in active UC, along with normalizing endotoxin and sCD14 plasma concentrations. CONCLUSIONS Patients with IBD show increased serum levels of endotoxin, LBP and sCD14. This alteration correlates with disease activity, with normal levels recovered after treatment, although less completely in Crohn's disease, and parallels a rise in proinflammatory cytokines, suggesting a contribution of bacterial products to the inflammatory cascade in these patients.
Collapse
Affiliation(s)
- Oscar Pastor Rojo
- Servicio de Bioquímica Clínica, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Hartman ZC, Kiang A, Everett RS, Serra D, Yang XY, Clay TM, Amalfitano A. Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J Virol 2006; 81:1796-812. [PMID: 17121790 PMCID: PMC1797572 DOI: 10.1128/jvi.01936-06] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nearly 50 years ago, the discovery of interferon prompted the notion that host cells innately respond to viral invasion. Since that time, technological advances have allowed this response to be extensively characterized and dissected in vitro. However, these advances have only recently been applied to highly complex, in vivo biological systems. To this end, we exploited high-titer adenovirus (Ad) vectors to globally investigate the innate immune response to nonenveloped viral infection in vivo. Our results indicated a potent cellular transcriptome response shortly after infection, with global assessments revealing significant dysregulation in approximately 15% of the measured transcripts derived from Ad vector-transduced tissue. Bioinformatics-based transcriptome analysis revealed a complex innate response to Ad infection, with induction of proinflammatory responses (and suppression of metabolism and mitochondrial genes) akin to those observed when mice are challenged with lipopolysaccharide. Despite this commonality, there were many unique aspects of the Ad-dependent transcriptome response, including the upregulation of several RNA regulatory mechanisms and apoptosis-related pathways, accompanied by the suppression of lysosomal and endocytic genes. Our results also implicated the Toll-like receptors (TLRs) in these responses, prompting specific investigations into this pathway. By using MyD88KO mice, our results confirmed that Ad-induced dysregulation of five functionally related gene clusters are significantly dependent on this TLR adaptor gene. MyD88 deficiency also resulted in significantly diminished, although not abolished, adaptive and acute-phase immune responses to Ad, confirming the transcriptome data, as well as specifically identifying MyD88 as a significant Ad immunity amplifier and regulator in vivo.
Collapse
Affiliation(s)
- Zachary C Hartman
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Tugendreich S, Pearson CI, Sagartz J, Jarnagin K, Kolaja K. NSAID-induced acute phase response is due to increased intestinal permeability and characterized by early and consistent alterations in hepatic gene expression. Toxicol Pathol 2006; 34:168-79. [PMID: 16642600 DOI: 10.1080/01926230600611752] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toxicogenomics using a reference database can provide a better understanding and prediction of toxicity, largely by creating biomarkers that tie gene expression to actual pathology events. During the course of building a toxicogenomic database, an observation was made that a number of non-steroidal anti-inflammatory compounds (NSAIDs) at supra-pharmacologic doses induced an acute phase response (APR) and displayed hepatic gene expression patterns similar to that of intravenous lipopolysaccharide (LPS). Since NSAIDs are known to cause injury along the gastrointestinal tract, it has been suggested that NSAIDs increase intestinal permeability, allowing LPS and/or bacteria into the systemic circulation and stimulating an APR detectable in the liver. A short term study was subsequently conducted examining the effects of aspirin, indomethacin, ibuprofen, and rofecoxib to rats and a variety of endpoints were examined that included serum levels of inflammatory cytokines, histologic evaluation, and hepatic gene expression. Both indomethacin and ibuprofen injured the gastrointestinal tract, induced an APR, and increased serum levels of LPS, while rofecoxib and aspirin did not affect the GI tract or induce an APR. In treatments that eventually showed a systemic inflammatory response, hepatic expression of many inflammatory genes was noted as early as 6 hours after treatment well before alterations in traditional clinical pathology markers were detected. This finding led to the creation of a hepatic gene expression biomarker of APR that was effectively shown to be an early identifier of imminent inflammatory injury. In terms of the relative gastrointestinal safety and the NSAIDs studied, an important safety distinction can be made between the presumptive efficacious dose and the APR-inducing dose for indomethacin (1-2-fold), ibuprofen (5-fold), and rofecoxib (approximately 250-fold). Our data support the notion that NSAID-induced intestinal injury results in leakage of commensural bacteria and/or LPS into the circulation, provoking a systemic inflammatory response and that hepatic gene expression-based biomarkers can be used as early and sensitive biomarkers of APR onset.
Collapse
|
47
|
Abstract
Hepatocytes contain abundant endoplasmic reticulum (ER) which is essential for protein metabolism and stress signaling. Hepatic viral infections, metabolic disorders, mutations of genes encoding ER-resident proteins, and abuse of alcohol or drugs can induce ER stress. Liver cells cope with ER stress by an adaptive protective response termed unfolded protein response (UPR), which includes enhancing protein folding and degradation in the ER and down-regulating overall protein synthesis. When the UPR adaptation to ER stress is insufficient, the ER stress response unleashes pathological consequences including hepatic fat accumulation, inflammation and cell death which can lead to liver disease or worsen underlying causes of liver injury, such as viral or diabetes-obesity-related liver disease.
Collapse
Affiliation(s)
- Cheng Ji
- Gastroenterology/Liver Division, Keck School of Medicine and the Research Center for Liver Disease, University of Southern California and the USC-UCLA Research Center for Alcoholic Liver and Pancreatic Disease, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
48
|
Takabe W, Matsukawa N, Kodama T, Tanaka K, Noguchi N. Chemical structure-dependent gene expression of proteasome subunits via regulation of the antioxidant response element. Free Radic Res 2006; 40:21-30. [PMID: 16298756 DOI: 10.1080/10715760500354430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Antioxidants possess potent ability to regulate gene expression beyond their specific antioxidant activity. Genomic analysis reveals that three phenolic antioxidants, probucol, BO-653, and tBHQ, all of which have a phenoxyl group with one or two tert-butyl groups at the ortho-position, inhibit both the mRNA and protein levels of proteasome alpha-subunits in human endothelial cells. The chemical structure required for the gene regulation was studied by using derivatives of BO-653 and other antioxidants. It was found that the phenoxyl group and tert-butyl group at the ortho-position of the compounds were critical for down-regulation of the proteasome gene. Two antioxidant responsive elements (AREs) were identified in the promoter region of proteasome alpha subunit 3 (PSMA3). Results from promoter truncation analysis revealed that the proximal ARE region was necessary for the down-regulation of the expression of PSMA3. Electrophoretic mobility shift assays revealed that BO-653-mediated induction of DNA-binding to an upstream promoter region of PSMA3 containing the ARE motif was blocked by antibody against c-Jun but not Nrf2. These results indicate that the suppression of the proteasome alpha subunits expression by phenolic antioxidants is strictly dependent on both their chemical structure and the ARE consensus region in the promoter, which may be negatively regulated by AP-1.
Collapse
Affiliation(s)
- Wakako Takabe
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Japan
| | | | | | | | | |
Collapse
|
49
|
Eckersall PD, Young FJ, Nolan AM, Knight CH, McComb C, Waterston MM, Hogarth CJ, Scott EM, Fitzpatrick JL. Acute Phase Proteins in Bovine Milk in an Experimental Model of Staphylococcus aureus Subclinical Mastitis. J Dairy Sci 2006; 89:1488-501. [PMID: 16606719 DOI: 10.3168/jds.s0022-0302(06)72216-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives were to establish the origin of 2 acute phase proteins in milk during subclinical bovine mastitis and to characterize the relationship between those proteins in milk and blood. Haptoglobin (Hp) and mammary-associated serum amyloid A (M-SAA3) appear in milk during mastitis, whereas Hp and serum amyloid A increase in serum during mastitis. The concentrations of these proteins were determined in an experimental model using a field strain of Staphylococcus aureus to induce subclinical mastitis in dairy cows. The expression of mRNA coding for these proteins was assessed and the presence of M-SAA3 in mammary tissues was determined using immunocytochemistry. Increases of M-SAA3 and Hp in milk occurred within 12 h of Staphylococcus aureus infusion, with peak concentrations occurring 3 d after infusion of the bacteria. The increase of acute phase proteins in milk (15 h) preceded the increase in serum concentrations of both proteins (24 h). Expression of mRNA for M-SAA3 and Hp increased in both mammary and hepatic tissues 48 h after infusion of the mammary glands. In mammary tissue, the increase of M-SAA3 mRNA was greater than the increase in Hp mRNA expression, whereas in hepatic tissue, the increase in M-SAA3 mRNA was less than that for Hp mRNA. Immunocytochemistry demonstrated that M-SAA3 protein was present within secretory epithelial cells at significantly higher levels in infected mammary glands than in control tissues. These proteins, which have host defense and antibacterial activities, may play a significant role in the early response to invasion of mammary tissues by pathogenic bacteria.
Collapse
Affiliation(s)
- P D Eckersall
- Division of Animal Production and Public Health, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, Kaufman RJ. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 2006; 124:587-99. [PMID: 16469704 DOI: 10.1016/j.cell.2005.11.040] [Citation(s) in RCA: 640] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 09/08/2005] [Accepted: 11/11/2005] [Indexed: 12/16/2022]
Abstract
Regulated intramembrane proteolysis (RIP) of endoplasmic reticulum (ER) membrane-anchored transcription factors is known to maintain sterol homeostasis and to mediate the unfolded protein response (UPR). Here, we identified CREBH as a RIP-regulated liver-specific transcription factor that is cleaved upon ER stress and required to activate expression of acute phase response (APR) genes. Proinflammatory cytokines increase expression of ER membrane-anchored CREBH. In response to ER stress, CREBH is cleaved by site-1 and site-2 proteases to liberate an amino-terminal fragment that transits to the nucleus to activate transcription of the genes encoding serum amyloid P-component (SAP) and C-reactive protein (CRP). Proinflammatory cytokines and lipopolysaccharide activate the UPR and induce cleavage of CREBH in the liver in vivo. Together, our studies delineate a molecular mechanism for activation of an ER-localized transcription factor, CREBH, and reveal an unprecedented link by which ER stress initiates an acute inflammatory response.
Collapse
Affiliation(s)
- Kezhong Zhang
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|